
Environmental Science
Advances

PAPER

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
6 

Ju
ly

 2
02

3.
 D

ow
nl

oa
de

d 
on

 8
/3

/2
02

3 
12

:5
4:

30
 A

M
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.

View Article Online
View Journal  | View Issue
Mid-infrared spe
aDepartment of Chemistry, University at Buff

New York, 14260, USA. E-mail: lvelarde@bu
bDepartment of Computer Science and E

University of New York, Buffalo, New York,

† Electronic supplementary informa
https://doi.org/10.1039/d3va00111c

‡ These authors contributed equally.

Cite this: Environ. Sci.: Adv., 2023, 2,
1099

Received 1st May 2023
Accepted 5th July 2023

DOI: 10.1039/d3va00111c

rsc.li/esadvances

© 2023 The Author(s). Published by
ctroscopy and machine learning
for postconsumer plastics recycling†

Nicholas Stavinski, ‡a Vaishali Maheshkar, ‡b Sinai Thomas,a Karthik Dantu *b

and Luis Velarde *a

Materials recovery facilities (MRFs) require new automated technologies if growing recycling demands are

to be met. Current optical screening devices use visible (VIS) and near-infrared (NIR) wavelengths,

frequency ranges that can experience challenges during the characterization of postconsumer plastic

waste (PCPW) because of the overly-absorbing spectral bands from dyes and other polymer additives.

Technological bottlenecks such as these contribute to 91% of plastic waste never actually being

recycled. The mid-infrared (MIR) region has attracted recent attention due to inherent advantages over

the VIS and NIR. The fundamental vibrational modes found therein make MIR frequencies promising for

high fidelity machine learning (ML) classification. To-date, there are no ML evaluations of extensive MIR

spectral datasets reflecting PCPW that would be encountered at MRFs. This study establishes quantifiable

metrics, such as model accuracy and prediction time, for classification of a comprehensive MIR database

consisting of five PCPW classes that are of economic interest: polyethylene terephthalate (PET #1), high-

density polyethylene (HDPE #2), low-density polyethylene (LDPE #4), polypropylene (PP #5), and

polystyrene (PS #6). Autoencoders, an unsupervised ML algorithm, were applied to the random forest

(RF), k-nearest neighbor (KNN), support vector machine (SVM), and logistic regression (LR) models. The

RF model achieved accuracies of 100.0% in both the C–H stretching region (2990–2820 cm−1) and

molecular fingerprint region (1500–650 cm−1). The C–H stretching region was found to be free from

additives that were responsible for misclassification in other regions, making it a fruitful frequency range

for future PCPW sorting technologies. The MIR classification of black plastics and polyethylene PCPW

using ML autoencoders was also evaluated for the first time.
Environmental signicance

Plastics are central to everyday human life due to their unique chemical and physical properties. Non-degradable post-consumer plastic waste (PCPW), however,
raises signicant concerns for the environment. Currently, a small fraction of PCPW is recycled, with most ending up in landlls or incinerators. New
opportunities for recovering value from PCPW using mid-infrared light (MIR) have emerged. One challenge is to evaluate the effects of spectral contributions
from polymer additives embedded within PCPW, as these components may hinder recycling. Here, a MIR database of PCPW addresses a need for high-quality
datasets. Autoencoders were implemented as a pre-processing technique for machine learning (ML) classication. Through a synergistic chemistry and ML
approach, quantiable metrics were established for applications in PCPW recycling and upcycling.
1 Introduction

Plastic pollution is a global crisis,1 affecting air quality,2,3

drinking water,4,5 food sources,6 communities,7 and wildlife.8–11

A 2017 report by Geyer et al. projected plastic waste accumula-
tions in landlls and surrounding environments to reach 12
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billion metric tons by the year 2050.12 If current production and
energy consumption trends continue, it is believed the negative
impacts from plastic pollution will become irreversible.13

Consequently, there has been an unprecedented surge of
multi-disciplinary research aimed at reducing plastic waste,
limiting the production of virgin polymers, and improving
pathways for PCPW to re-enter the value chain.14–27 The devel-
opment of automated optical sorting technologies for imple-
mentation at MRFs is one of these active research thrusts in the
plastics recycling community.28,29 This is because MRFs
currently rely on air jets, magnetic separators, mechanical
pistons, and human intervention to sort PCPW, all of which are
methods that have been deemed insufficient to meet growing
recycling demands.30,31
Environ. Sci.: Adv., 2023, 2, 1099–1109 | 1099
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Articial intelligence (AI) and computer vision have emerged
as potential solutions for high-throughput classication thanks
to their scalability, accuracy, and capability to be integrated
with sensors.32–45 Pioneering efforts towards high-throughput
polymer characterization using MIR spectra are underway,
exemplied by the work of Bar-Ziv, Zavala, and co-workers,
where novel sensing technologies are being combined with
ML hardware.46–48 MIR spectroscopy has some advantages over
NIR methods due to the freedom from congested vibrational
overtone bands and characteristic polymer vibrations.49 In
addition, current NIR devices at MRFs struggle to sort dark-
colored or black plastics due the overly absorbing spectral
bands.50–53 With these recent advantages, the need for
a comprehensive PCPW MIR database has become apparent
and validation methods need to be thoroughly examined.

Computers must rst learn from experience prior to classi-
cation.54 Reports to-date have focused on supervised learning
algorithms, but there is a current knowledge gap as to how
applicable unsupervised algorithms, such as autoencoders,
could be for classication of PCPW spectral datasets. Autoen-
coders have provided promising results for images of PCPW.55

Therefore, new ML approaches seeking to deconvolute complex
MIR spectra must rst gain experience from reliable data-
sets.56,57 Thanks to reports from the microplastics community,
ATR-FTIR spectroscopy has proven to be a robust technique for
generating MIR databases of marine plastic debris and other
polymers.9,58,59

To-date, published MIR datasets do not reect the molecular
heterogeneity of PCPW that would be found on MRF conveyor
belts, as microplastics databases are comprised of samples that
have been chemically- and physically-altered by environmental
factors such as oxidation and UV irradiation. As presented by
Andraju et al., signicant advances in PCPW research could be
achieved by applying ML to spectral datasets comprised of
materials that would be found in real-world settings.60 Coupling
AI to sensors may provide cost-effective solutions by exploiting
the chemical and physical properties of PCPW, therefore
enhancing science returns at MRFs. Extrapolation of these
properties may also assist with downstream chemical recycling
efforts as well. Together, complementary technologies in the
mechanical sorting and chemical recycling industries may help
mitigate the impact of global warming and reduce greenhouse
gas emissions.61

In this work, a MIR database comprised of real-world PCPW
was generated, curated, and evaluated with goal of expediting
innovation in plastics sorting industries. Containing ve resin
identication code (RIC) plastics, PET #1, HDPE #2, LDPE #4,
PP #5, and PS #6, the database was trained and tested using the
following ML algorithms: RF, KNN, SVM, and LR. One-
dimensional convolutional neural networks were also evalu-
ated (see ESI Section 3c†). Autoencoders were applied to PCPW
MIR spectra for the rst time. Classication accuracies and
prediction speeds of discrete MIR frequency ranges provided an
unprecedented glimpse of the complexity that exists within the
global plastic waste crisis. It is anticipated this work will help
guide future explorations into building custom ML algorithms
for PCPW recycling research, as well as assisting with the
1100 | Environ. Sci.: Adv., 2023, 2, 1099–1109
development of MIR sensors that seek to record spectra in high-
throughput fashion.

2 Material and methods
2.1. Sample preparation

A database of 835 plastic items (167 objects per RIC) consisting
of PET, HDPE, LDPE, PP, and PS were collected from residential
living areas and university campuses in Buffalo, NY (Table S1†).
Organized by their RIC, a 1 × 1 inch sample was removed from
each PCPW, given a number identier, and archived. Samples
were prepared using metal-cutting scissors so that a at surface
could be used for ATR-FTIR measurements. Wrapping labels,
residual contaminants, and/or food particulates were removed
from each sample by washing the materials with deionized
water and allowing them to dry overnight prior to analysis. The
laboratory benchtop was cleaned regularly with a dampened
cloth and then dried to prevent cross-contamination from bulk
samples. Virgin polymers used for reference purposes were
acquired from Curbell Plastics, Inc. (Orchard Park, NY); it is
understood that these polymers may have trace quantities of
proprietary additive mixtures embedded within their polymeric
matrices, which is why they are used primarily for visual
representation in comparison with PCPW that were assessed in
this study.

2.2. ATR-FTIR measurements and processing

A VERTEX 70 FT-IR spectrometer (Bruker, Billerica, MA, USA)
equipped with a zinc selenide single-reection 45° angle ATR
accessory (Pike Technologies, Madison, WI, USA) was used to
acquire mid-infrared spectra of the prepared PCPW. Spectra for
each sample were recorded using 2 cm−1 resolution, a 1.5 mm
aperture, 64 background acquisitions, and 32 sample acquisi-
tions. Three spectra per unique sample were recorded to build
the database and introduce variability in intensity between each
measurement. This was achieved by sampling different surface
locations across the sample and reapplying different amounts
of force to the ATR accessory's pressure head. Spectra were
acquired from 4000 to 650 cm−1 and processed using OPUS 7.5.
Each spectrum contains 3474 data points, where each point
represents the intensity in percent transmittance or absorbance
units at a given wavenumber. The raw spectra (percent trans-
mittance) were processed by converting from percent trans-
mittance to absorbance, applying a concave rubber band
baseline correction (10 iterations, 64 baseline points, and
excluded CO2 bands), and performing a minimum/maximum
normalization.

2.3. Classication methods

A key advancement in this work compared to prior work is the
use of autoencoders, a modern machine learning technique to
identify unique features in training data. An autoencoder is
composed of an encoder and a decoder sub-model. The encoder
compresses the input, and the decoder recreates the input from
the compressed version provided by the encoder. Autoencoders
learn how to efficiently compress and encode data. Typically,
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3va00111c


Fig. 1 Database learning curves for standard ML models iterated over
increasing training set sizes: (a) RF (b) KNN (c) SVM (d) LR. Moving
average (yellow line). Accuracy of a single iteration (blue dot).
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autoencoders reduce data dimensions by learning to ignore
noise found within data.62 In our approach, we only use the
encoder part of the autoencoder. Aer training, the decoder is
discarded. The encoder is used for feature extraction and the
features are passed on to classication algorithms for accurate
classication. Four hyperparameters were used: code size (3474
nodes), number of layers (2 encoder and 2 decoder), number of
nodes (6948 nodes in encoder layer 1 and 3474 nodes in encoder
layer 2. 3474 in decoder layer 1 and 6948 nodes in decoder layer
2), and loss function (mean squared error). We test several
classiers for their classication accuracy using our
autoencoder-based features. They include KNN, LR, SVM, and
RF. KNN is a supervised learning algorithm which makes
predictions by calculating the distance between the test data
point and training data points. The class containing K data
points nearest to the test data point is selected as the class for
the test datapoint. LR is used to predict the probability of
a target variable based on the relationship between existing
independent variables. It is used when the target variable is
binary and widely used for classication. SVM nds an optimal
boundary, known as a hyperplane, between different classes. It
maximizes the separation boundary between data points. The
algorithm uses the Radial Basis Function kernel for complex
data transformations andmaximizes the separation boundaries
between data points. RF combines output of multiple decision
trees using ensemble technique to produce a single result on
majority voting for classication. The single result, which is
a combination of learning models, increases the overall accu-
racy. The RF model was built using the scikit-learn library of
Python. The default values of the hyperparameters were applied
according to the sklearn application programming interface
(API). The parameter default values reported by the sklearn API
were also applied to the SVM, KNN, and LR models.

A total of 2505 datales were acquired (501 MIR spectra per
RIC) for this study. A Dell XPS 13 computer (9310 × 64-based
PC, Processor-11th Gen Intel (R) Core (TM) i7-1185G7 at 3.00
GHz, 2995 MHz, 4 Core(s), 8 Logical Processors) utilizing
Python 3.9.16, Google Colab, and the scikit-learn library was
used for processing. The dataset is split into training and
testing datasets using a 75 : 25 ratio, respectively, with 1878
training les and 627 testing les for each plastic type. Strati-
cation of the dataset is done to ensure that the training and
testing sets have the same percentage of samples in the target
class as the original dataset.

Learning curves were produced to assess the robustness of
the MIR dataset. A loop with increasing training set size was
performed, with increments of 10 les (e.g., 90 les per training
set size). For each training set size, the accuracy was calculated
10 times via data stratication. The average of the 10 accuracy
values was taken. Accuracies were then plotted against the
training set size. Confusion matrices for each training set size
were produced to indicate the accuracy for each label. The
overall performance of the database was validated through
a learning curve analysis. The spectral dataset (501 les of each
plastic type: PET #1, HDPE #2, LDPE #4, PP #5, PS #6) is split
into 75 : 25 train test ratio resulting in 1878 train les. Test
accuracy is calculated for a different number of train les
© 2023 The Author(s). Published by the Royal Society of Chemistry
resulting in the curve observed in Fig. 1. As the number of
training set samples increases, the test set accuracy saturates
showing that the classication accuracy saturates and also
indicating that the dataset is robust.

3 Results and discussion
3.1. Machine learning and discrete mid-infrared regions

Autoencoders were implemented as a pre-processing technique
with the RF, KNN, SVM, and LR models to evaluate unsuper-
vised learning of PCPW MIR spectra and improve classication
accuracies using standard techniques such as principal
component analysis (PCA). Autoencoders compress the most
important features of the input data and learn a detailed
representation via dimensionality reduction. To the best of the
author's knowledge, this is the rst demonstration of autoen-
coders using PCPW MIR spectra, and it could prove to be an
important steppingstone for future unsupervised algorithms to
be integrated with robotics, standoff detection sensors, and
other sorting technologies at MRFs.

Three metrics were used to evaluate the performance of each
algorithm: (1) classication accuracy, (2) prediction time, and
(3) IR frequency region. This study assesses machine learning
performances across the entire MIR spectrum so that discrete
frequency ranges can be identied for practical implementation
at MRFs. Three datasets were evaluated: the entire MIR from
4000–650 cm−1, the C–H stretching region from 2990–
2820 cm−1, and the molecular ngerprint region from 1500–
650 cm−1 (Fig. 2). Furthermore, two important sub-topics in the
eld are also investigated: the classication of black or dark-
colored plastics and HDPE/LDPE differentiation.

Pre-processing using autoencoders signicantly improved
classication, as model accuracies of 100%, 96.6%, 96.4%, and
94.9% were achieved for the RF, SVM, KNN, and LR classiers,
respectively (see the ESI† for accuracies obtained without pre-
processing). The RF model produced the highest accuracies
across all algorithms and MIR regions-of-interest or ROI (Table
1). The entire MIR, C–H stretching region, and ngerprint
Environ. Sci.: Adv., 2023, 2, 1099–1109 | 1101
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Fig. 2 Mid-infrared (4000–650 cm−1) spectra of 835 postconsumer
plastics that were evaluated in this study (red). Virgin polymer (black).
Spectra are shown in percent transmittance (y-axis minimum is 30%
per RIC).
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regions achieved 100%, 100%, and 99.9% prediction accuracies,
respectively, for the RF model. To improve the accuracy of the
RF model, hyperparameters were tuned to optimize the model's
performance.63 Specically, the number of estimators, which is
the number of trees in a given forest, was set to a value of 100.
Gini criterion was used to measure the quality of split. Other
parameters, such as maximum depth of the tree, was set to none
and the minimum number of samples required to split an
internal node was xed to a value of 2. RF uses a combination of
multiple decision trees which results in less over-tting.
Furthermore, since the dataset is of sufficient size for classi-
cation (Fig. 1), the overall accuracy of the algorithm increases.

Prediction times for individual spectra are presented in
Table 1. The SVM model performed the fastest for the entire
MIR, C–H stretching, and ngerprint regions, with values of 54,
35, and 33 microseconds, respectively. Interestingly, this
nding was an improvement over MIR spectra that were spec-
trally manipulated using a baseline correction procedure,
Table 1 Classification accuracies and prediction times for mid-infrared s
Spectra were processed according to procedures specified in 2.2 and 2.

Algorithm

Full mid-infrared
(4000–650 cm−1)

C–H s
2820

Accuracy (%) s (ms) Accur

RF 100 46.9 100
KNN 97.8 831 95.1
SVM 96.5 0.0540 83.8
LR 95.4 96.7 89.9

1102 | Environ. Sci.: Adv., 2023, 2, 1099–1109
conversion to absorbance, and minimum/maximum normali-
zation (ESI Table S1b†); for the processed spectra in the same
ROI, SVM processing speeds were 58, 50, and 57 microseconds,
respectively.

Single spectrum prediction time is a metric that may provide
a link between controlled laboratory experiments, such as ATR-
FTIR spectroscopy, and real-world MRF sorting systems. This is
because the algorithm fundamentals can be quantied in
context with the same vibrational modes that will be observed in
future standoff detection sensors. Understanding the perfor-
mance of these algorithms will accelerate research progress in
recycling industries, as model selection, MIR frequency
window, and computational hardware will need to be factored
into the engineering of standoff detection devices. Quantum
cascade lasers are an attractive lasing technology towards this
approach because of their portability and spectral tunability
from ∼3–25 micrometers.64,65 Due to the nanometer-scale
engineering of the device's electronic wavefunctions, desired
lasing properties can be achieved and applied to polymer
identication sensors.18,66,67

Greater than a 78% prediction accuracy was achieved across
all standard ML models (RF, KNN, SVM, and LR). These clas-
siers alone were sufficient for PCPW classication of this
study's database (ESI Fig. S4–S6†). However, the spectral
distortions and unidentied peaks originating from polymer
additives in the ngerprint region are likely being captured in
ML training (i.e., the classiers are sorting unknown PCPW
spectra by not only their base polymer composition but also by
the additives found within the different RIC classes). The
heterogeneity of the composition of PCPW is presented in
Fig. 2. Numerous unidentied MIR bands appear from 4000–
650 cm−1, but the most predominant unidentied features were
found within the molecular ngerprint region from 1500–
650 cm−1 (Fig. 2).

Themolecular ngerprint region was particularly sensitive to
vibrational responses from additives such as organic pigment
molecules or calcium carbonate.68,69 The presence of unknown
functional groups embedded within a polymeric matrix can
alter the intrinsic oscillator strength of a given polymer's
vibrational modes; thus, affecting ML classication accuracies.
Furthermore, surface contamination, such as water, which has
bending O–H modes at 850–600 cm−1, can further impact
PCPW classication at MRFs.
pectral regions (Fig. 2) of postconsumer plastics collected in this study.
3

tretching (2990–
cm−1) Fingerprint (1500–650 cm−1)

acy (%) s (ms) Accuracy (%) s (ms)

39.9 99.9 47.5
303 88.6 349
0.0350 80.9 0.0330
2.42 78.2 6.96

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3va00111c


Paper Environmental Science: Advances

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
6 

Ju
ly

 2
02

3.
 D

ow
nl

oa
de

d 
on

 8
/3

/2
02

3 
12

:5
4:

30
 A

M
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online
This is a critical nding in the mechanical recycling
community because previously reported MIR databases are
comprised of clean polymer resins or environmentally-modied
microplastics, both of which are not optimal for guiding the
development of automated MRF sorting technologies. While this
frequency region is, indeed, home to many characteristic poly-
mer vibrational modes, the task of sorting economically-
important RIC plastics becomes more challenging when PCPW
is also composed of unknown breakdown products, contami-
nants, harmful chemicals, and other non-intentionally added
substances.70 This study shows that PCPW MIR bands can
become signicantly inuenced by additives and other contam-
inants. It is anticipated that more advancedMLmethods that are
uniquely constructed for identication of additives may not only
assist with mechanical sorting, but also help improve toxicity
assessments and enhance the downstream recovery process of
valued materials by maximizing scientic feedback (e.g., polymer
resin, additive, blend composition, hazardous contaminant, etc.)
per AI-assisted spectral acquisition.

Fig. 3 presents the confusion matrices for all three ROIs.
Expectedly, the full MIR performed the best, as it provides the
maximum amount of vibrational information for each archived
material. Unfortunately, no single-mode MIR sensor is capable
of achieving such a broad spectral coverage to date. For this
reason, the evaluation of discrete ROIs would give a better gauge
Fig. 3 Confusion matrices of ML models applied across five plastic type
label accuracies are highlighted in blue along the diagonal of each conf

© 2023 The Author(s). Published by the Royal Society of Chemistry
for MIR frequency regions that are best-suited for PCPW
mechanical sorting.

The C–H asymmetric and symmetric vibrations around
2990–2820 cm−1 were largely free from polymer additives and
other unknown substances (Fig. 2). This can be due to the fact
that C–H stretching modes from the polymer in this region have
a highmolar absorptivity, considering the Beer–Lambert law for
an ATR-FTIR measurement, the polymer's volumetric concen-
tration at a particular energy should be much greater than that
of any embedded additive substance. This important nding is
fundamentally relevant for future PCPW sorting developments,
as this ROI will be most characteristic of the base polymer
structure. Furthermore, by limiting the ROI to a maximum
frequency of 2990 cm−1, interference from water's O–H
stretching modes can also be avoided as water is common in
MRF environments. A thorough study by Gall et al. suggests
bands beyond 3000 cm−1 may originate from the polyamide
(PA) N–H stretches of slip agents located at sample surfaces, as
well as unknown contaminants, hydroxyl groups, and hydrogen
bonding interactions.71 The intense vibration at ∼1640 cm−1

was prominent across all RIC datasets in this study except for
LDPE, and may also correspond to carbonyl stretching of PA
variants. Deconvoluting MIR spectra that are saturated with
signals from unknown additives could be advanced via ML.
However, new databases containing different classes of
s and the mid-infrared regions-of-interest (Fig. 2). True and predicted
usion matrix. Trained data were processed using the methods in 2.3.

Environ. Sci.: Adv., 2023, 2, 1099–1109 | 1103
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additives (e.g., organic pigments/dyes, plasticizers, ame retar-
dants, llers, etc.) will be crucially needed. Careful examination
of the MIR spectra of PCPW, polymer additives, and the struc-
ture–property relationships found between them may help
alleviate recycling bottlenecks that are encountered not only at
MRFs but in chemical recycling industries as well.
3.2. HDPE and LDPE

Classication of semicrystalline polyethylene (PE) waste has
been a long-standing problem for optical screening devices, as
proof-of-principle reports have evaluated HDPE and LDPE
separate from the other RIC polymers,72 as blended mixtures,73

or broadly dened under a single class label, PE.37,46,48 To the
best of the author's knowledge, there are no ML studies of
PCPW MIR spectra of HDPE and LDPE. This is signicant
because both density variants comprise two major resin code
plastics (#2 and #4), yet the majority of recyclables found
beneath those labels can vary in their shape and size. Classi-
cation of these materials would help improve the purity of
recovered polyolens and circularity of mixed PCPW.

From rigid milk cartons to lm plastics, the versatility of PE
as a consumer plastic can be traced back to mechanical prop-
erties such as degree of crystallinity.74,75 Indeed, the vibrational
properties of PE is well understood and, consequently, the MIR
spectra of HDPE and LDPE are nearly-identical.76,77 However,
the differentiation between PE PCPW, especially those that are
unable to be classied using NIR sensors, remains unexplored
due to the lack of published MIR databases reecting hetero-
geneity of real-world materials.

Subtle differences between HDPE and LDPE are observable
in the MIR region, such as the 1377 cm−1 symmetrical methyl
deformation corresponding to the degree of polymer chain
branching.78 A report by Jung et al. investigated this feature in
marine microplastics, but deemed that is was insufficient for
classication of environmentally-modied samples (e.g., aged
plastics).9 Fig. 4 shows how the conformational defect region
corresponding to methylene “wagging” modes is susceptible to
interference from additives, further rendering the 1377 cm−1
Fig. 4 Semicrystalline regions of HDPE (red) and LDPE (blue) waste
plastics. Reference HDPE and LDPE spectrum (black).
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peak unviable for PE discernment unless more elaborate clas-
sication techniques are applied. This observation suggests
polymer additives found in PCPW can be signicant enough to
mask spectral features that would otherwise be used to char-
acterize virgin forms of the polymer, further highlighting the
need for open-access spectral datasets. The semicrystalline
bands at 3000–2800 cm−1, 1500–1450 cm−1, and 750–700 cm−1

can reect the cooling processes at manufacturing facilities.
These ROIs were found to be less hindered by additives (Fig. 4).
These peaks appear as doublets in ATR-FTIR spectra due to the
lateral vibrations within crystalline PE's orthorhombic unit
cell.74

ML autoencoders were applied to the semicrystalline C–H
stretching modes of HDPE and LDPE (ESI Table S1e†). Classi-
cation accuracies of 100%, 97.6%, 96.5%, and 96.9% were
received for the RF, KNN, SVM, and LR models, respectively.
The SVM model achieved the fastest prediction of 39 micro-
seconds for the C–H stretching ROI. A methyl asymmetric
stretch at ∼2956 cm−1 is an indicator of the less-crystalline
LDPE PCPW, as this corresponds to greater methyl branching
among the PE chains (Fig. 4). This mode likely contributed to
the classication performance of HDPE and LDPE in this
region.

The ngerprint ROI, which was most inaccurate for PCPW
classication, performed well for HDPE and LDPE alone (ESI
Table S1e†). Confusion matrices suggested greater than 94%
classication accuracy for the ROIs and ML classiers (ESI
Fig. S7†). This result may be misleading, however, since the
additives found within the ngerprint ROI had distinctly-
different spectral features (Fig. 2). These features may have
factored into the ML training and testing process.

First, broad peaks at 1427 cm−1 and 677 cm−1 along the
lower-frequency shoulders of the semi-crystalline methylene
bends were observable for HDPE and LDPE lm plastics (Fig. 4).
This observation has not been observed among other MIR
studies of postconsumer PE plastic polymers. A sharp peak
located at 875 cm−1 corresponding to the C–O asymmetric bend
was also present, suggesting the 1427 cm−1 and 875 cm−1

modes correspond to the additive, calcite (CaCO3).79 Calcite can
potentially lead to misclassication between PE and polyvinyl
chloride (PVC) depending on the MIR ROI. Future work is
needed to understand specic the origins of specic additive
vibrations, such as the mode at 677 cm−1. Rijavec et al. recently
provided a valuable ML study focused on ML classication of
PVC materials.40

Second, contamination with PP led to misclassication in
both the C–H stretching and ngerprint ROIs (Fig. 3). The SVM
and LR models performed the poorest of the selected algo-
rithms. PP spectra within the C–H stretching ROI show strong
vibrational bands at 2917 cm−1 and 2849 cm−1 of varying
intensity ratios (Fig. 2). The presence of these methylene
asymmetric and symmetric stretches suggests that PCPW are
blended mixtures comprised of both PE and PP. Achieving
a greater understanding of polymer-based cross-contamination
at MRFs, as well as in surrounding environments, will help
enable more material to be successfully recycled and re-enter
new economic streams.71,80,81
© 2023 The Author(s). Published by the Royal Society of Chemistry
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These ndings support the need to further evaluate and
quantify the chemical and physical structures of recyclable
polymers. Other properties, such as thermal, electrical,
mechanical, or optical, may be leveraged, in this regard,
depending on the spectroscopic technique.60,82 Classication of
discrete ROIs using ML is a fruitful direction to explore in this
eld, especially when considering the impact these scientic
returns may have when applied to chemical recycling
technologies.
3.3. Black and dark-colored plastics

ML algorithms trained using MIR spectra of black and dark-
colored plastics achieved high prediction accuracies, a result
that has proven challenging for current optical screening
devices at MRFs (Table 1 and ESI Table S1†). In this study, 8.3%
of PCPW were considered as black or dark-colored, with the
total percentage of all colorant-containing materials to be 19%.
While the MIR region enables the characterization of dark and
black plastics, the presence of additives such as colorants and
UV-protecting agents were still found to inuence prediction
accuracies. Specically, carbon black has been shown by
Sigornet et al. to increase the ngerprint ROI's spectral baseline,
which can distort lineshapes.83 Fig. 5 shows an increase in
absorbance units from 0.1 to 0.35 for an uncolored PP sample
and multiple black-colored PP samples, respectively. This result
validates the prediction of Sigornet et al., suggesting black
plastics can impact ML accuracies of MIR spectral datasets.83

Similar baseline increases were also observed for other dark-
colored materials found in this study's database. These mate-
rials likely had high concentrations of organic pigment mole-
cules, but further additive-specic studies are needed to
understand their role in presenting complexities to the auto-
mated sorting process of mixed wastestreams. These ndings
were further validated using this study's RF model, as
substantial misclassication (∼12%) was observed between
dark- and light-colored plastics (Fig. S9 in the ESI†). Future MIR
Fig. 5 Polypropylene waste plastic with zero carbon black content
(black). Black-colored polypropylene waste plastics (red). Spectra were
normalized to the 2916 cm−1 asymmetric methylene stretch.

© 2023 The Author(s). Published by the Royal Society of Chemistry
PCPW sensors should carefully consider the frequency range of
their equipment, as well as the predominant materials that may
ow through a given MRF sorting line. For example, if the
materials are mostly waste electronic plastics, electrical
conductivity components, or mechanical coverings, carbon
black concentrations are likely to be greater.83

While this study provides the rst glimpse of an extensive
PCPW MIR database, it should be noted that practical MIR
sorting systems may receive spectra that appear different from
those that are found in literature, other online databases, or are
acquired in controlled-laboratory settings. In these cases, the
underlying fundamentals for spectra (e.g., selection rules, peak
location, lineshapes, etc.) of standoff detection systems should
be included with future reports to better expedite innovation in
the mechanical sorting sector. Furthermore, cross-validation of
processed and unprocessed datasets, in which spectral manip-
ulations produce varying ML results, should also be conducted
(see ESI† for ML results of different spectral processing
methods that were applied in this study).
4 Conclusions

A spectral database comprised of 835 real-world plastics (2505
spectra) and ve RIC polymers (PET #1, HDPE #2, LDPE #4, PP
#5, PS #6) was classied using autoencoder pre-processed
machine learning algorithms. The fundamental vibrational
modes characteristic of mixed plastic waste that would be found
at materials recovery facilities were revealed and classied for
the rst time. Quantiable metrics including classication
accuracy and prediction time provide a baseline for other
researchers in the eld to develop custom algorithms and
standoff detection systems. The RF model achieved the highest
accuracy across all four standard classiers, while the SVM
model achieved the fastest per spectrum prediction time.
Discrete MIR frequency ranges were assessed for the purpose of
identifying regions that are most characteristic of each resin
code plastic, as much of the MIR was found to be convoluted
with signals originating from unknown polymer additives and
contaminants. The C–H stretching region proved to be a prom-
ising MIR frequency range for future studies due to its (1)
freedom from additives, (2) high classication accuracies, and
(3) fast prediction times. Other topics of interest to the
community were also investigated, including the classication
of black plastics using MIR wavelengths and the differentiation
of HDPE and LDPE. The authors aim for this work to help
accelerate innovation in recycling industries and, ultimately,
mitigate the negative impacts originating from the plastic waste
crisis.
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19 A. d. C. Mungúıa-López, D. Göreke, K. L. Sánchez-Rivera,
H. A. Aguirre-Villegas, S. Avraamidou, G. W. Huber and
V. M. Zavala, Quantifying the environmental benets of
a solvent-based separation process for multilayer plastic
lms, Green Chem., 2023, 25, 1611–1625.

20 N. Vora, P. R. Christensen, J. Demarteau, N. R. Baral,
J. D. Keasling, B. A. Helms and C. D. Scown, Leveling the
cost and carbon footprint of circular polymers that are
chemically recycled to monomer, Sci. Adv., 2021, 7, eabf0187.

21 J. Woidasky, I. Sander, A. Schau, J. Moesslein, P. Wendler,
D. Wacker, G. Gao, D. Kirchenbauer, V. Kumar, D. Busko,
I. A. Howard, B. S. Richards, A. Turshatov, S. Wiethoff and
C. Lang-Koetz, Inorganic uorescent marker materials for
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data
https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data
https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3va00111c


Paper Environmental Science: Advances

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
6 

Ju
ly

 2
02

3.
 D

ow
nl

oa
de

d 
on

 8
/3

/2
02

3 
12

:5
4:

30
 A

M
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online
identication of post-consumer plastic packaging, Resour.,
Conserv. Recycl., 2020, 161, 104976.

22 S. Zhong, K. Zhang, M. Bagheri, J. G. Burken, A. Gu, B. Li,
X. Ma, B. L. Marrone, Z. J. Ren, J. Schrier, W. Shi, H. Tan,
T. Wang, X. Wang, B. M. Wong, X. Xiao, X. Yu, J.-J. Zhu
and H. Zhang, Machine Learning: New Ideas and Tools in
Environmental Science and Engineering, Environ. Sci.
Technol., 2021, 55, 12741–12754.

23 C. Lubongo, T. Congdon, J. McWhinnie and P. Alexandridis,
Economic feasibility of plastic waste conversion to fuel using
pyrolysis, Sustainable Chem. Pharm., 2022, 27, 100683.
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82 M. Bredács, C. Barretta, L. F. Castillon, A. Frank, G. Oreski,
G. Pinter and S. Gergely, Prediction of polyethylene density
from FTIR and Raman spectroscopy using multivariate
data analysis, Polym. Test., 2021, 104, 107406.

83 C. Signoret, A.-S. Caro-Bretelle, J.-M. Lopez-Cuesta, P. Ienny
and D. Perrin, Alterations of plastics spectra in MIR and the
potential impacts on identication towards recycling,
Resour., Conserv. Recycl., 2020, 161, 104980.
Environ. Sci.: Adv., 2023, 2, 1099–1109 | 1109

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3va00111c

	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c

	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c

	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c
	Mid-infrared spectroscopy and machine learning for postconsumer plastics recyclingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3va00111c




