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ABSTRACT  8 

Structural health monitoring (SHM) technologies offer ever-increasing opportunities to continually observe various 9 

responses and states of structures, such as settlement-induced building damage. Recent advances in reliability 10 

updating have enabled estimating the probability of failing to meet a prescribed objective for systems using various 11 

types of information including those acquired from SHM. However, reliability updates are sensitive to monitoring 12 

location, especially when the risks are evolving. Therefore, there may exist optimal locations in a system for 13 

monitoring that yield maximum value for reliability updating. This paper proposes a computational framework for 14 

optimal monitoring location based on an innovative metric called sensitivity of information (SOI). This metric 15 

quantifies the change in unconditional and conditional reliability indexes, which subsequently facilitates fast 16 

exploration of optimal monitoring location by parameterizing an optimization function. A state-of-the-practice case 17 

related to assessing evolving risks posed by tunneling-induced settlement to buildings is explored in-depth with 18 

respect to the progression of tunneling. Simulation results showcase that the proposed framework can successfully 19 

find the monitoring location that is the most impactful to the accuracy of the updated reliability. 20 

Key words: Infrastructure monitoring; reliability updating; reliability analysis; Machine Learning; surrogate 21 

models; Tunneling excavation 22 

1. Introduction 23 

Infrastructure systems are often subject to various forms of stressors that can threaten their functionality and safety 24 

[1]. To capture those potentially unsafe conditions that may cause future catastrophic events, structural reliability 25 
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analysis for structures is indispensable. As sensors and, more broadly, monitoring technologies advance, valuable 26 

information can be acquired without much effort. This brings new opportunities for risk analysis. It also introduces 27 

new challenges for the integration of data and re-evaluation of the established risk assessment processes to update 28 

risk assessments. Grounded in the Bayesian updating theory, the emergence of reliability updating technique fills 29 

this gap by updating the probability of failure. In this context, let 𝐹 denote the failure event and 𝑍 denote the 30 

observed information. Reliability updating aims to estimate the conditional probability of failure, Pr(𝐹|𝑍), which 31 

can be formulized as [2], 32 

Pr(𝐹|𝑍) =
Pr(𝐹 ∩ 𝑍)
Pr(𝑍)

 (1) 

where Pr(𝐹|𝑍) is the conditional probability of failure given information 𝑍 (or the so-called posterior probability 33 

of failure) and Pr(𝐹 ∩ 𝑍) is the probability of the joint event 𝐹 ∩ 𝑍. The information 𝑍 can be generally classified 34 

into two groups that are inclusive of equality and inequality types. Computation of reliability updating with equality 35 

information is typically non-trivial through the conventional approaches such as surface integral [2] [3] and 36 

Bayesian networks [4]–[6]. This computational challenge has been addressed by subtly introducing an auxiliary 37 

random variable to transform the equality information into an inequality one [2]. However, the computation of 38 

Pr(𝐹|𝑍) requires the probability of a joint event, 𝐹 ∩ 𝑍, which is typically a very rare event. This probability can 39 

be estimated through subset simulation (SS) to improve the computational efficiency [7]–[10]. Moreover, by 40 

decomposing Pr(𝐹 ∩ 𝑍) into two more frequent probabilities Pr(𝑍) and Pr(𝐹|𝑍) and training a surrogate model 41 

for the limit state function, metamodel-based approaches can facilitate fast estimation of Pr(𝐹|𝑍) [11], [12].  42 

Reliability updating has been recently applied in engineering for solving various types of practical problems. 43 

For example, field data and soil characteristics have been used to accurately estimate the reliability of a shallow 44 

foundation in a silty soil with spatially variable properties simulated via random fields [13]. Moreover, 45 

metamodeling techniques have been integrated to analyze the prior and posterior failure probabilities of a sheet pile 46 

wall in a dyke [14]. This work demonstrated the computational capability of metamodel-based reliability updating 47 

in estimating Pr(𝐹|𝑍). To ensure the safety of buildings in vicinity of a tunnel line, the settlement monitoring data 48 

at different locations were used to update the reliability of tunneling-induced settlement during excavation [15]. 49 
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This technique can better assist in risk management decisions if the ability of the planned tunneling line to satisfy 50 

the safety requirement can be checked in real-time through settlement monitoring. Analogous to this case, the 51 

deformation measurements of an excavation in sandy trench with a sheet pile retaining wall were also used to update 52 

the reliability of a construction site at its full excavation status [8]. This work can be viewed as a practical case for 53 

engineers in construction sites in avoiding catastrophic trench collapse. Additionally, to improve alarming system 54 

of a flood defense infrastructure, reliability updating together with head monitoring information were implemented 55 

in [16] to mitigate the risk of piping-induced levee failure in the presence of highly uncertain geohydrological 56 

properties. This work represents the potential capability of reliability updating in strengthening risk-informed 57 

warning systems against natural hazards. To achieve the largest benefits, Klerk et al. [17] also used reliability 58 

updating and VOI (value of information) to seek for optimal structural health monitoring of flood defense systems 59 

from a set of representative case studies. Huang et al. [18] are among the very first authors who proposed an adaptive 60 

reliability updating of bridges using structural properties derived from nondestructive testing .  Using Bayesian 61 

inference, Jin et al. [19] proposed an adaptive approach to seek for soil parameters that correspond to the measured 62 

deformation on site, which facilitates the prediction of deflections. Subsequently, Jin et al. [20] applied a Bayesian 63 

method to explore most probable parameters and demonstrated a process for obtaining those parameters. Moreover, 64 

reliability updating has also been implemented in performance assessment of deteriorating reinforced concrete 65 

structures [21], slope stability [22], [23], structural inspection and repair of infrastructures [24], system 66 

identification [25], life-cycle analysis [6] and other applications [26]–[32]. 67 

The reviewed literature showcases the high capability of reliability updating in successfully tracking the risk to 68 

infrastructures by incorporating the monitoring information within the existing computational scheme of reliability 69 

evaluation. For improving risk assessment, it is also necessary to properly select the monitoring location. Jiang et 70 

al. [33] proposed exploring the location of boreholes for site investigation for a slope by maximizing VOI. Hu et al. 71 

[34] proposed an efficient method to reduce the computational cost for site investigation of slope stability 72 

assessment through VOI analysis. These efforts are grounded in theory of VOI, which is tailored to minimize the 73 

economic cost considering possible structural failure, maintenance and rehabilitation. However, the estimate of VOI 74 

index can be trapped in a dilemma when the cost of consequences (e.g., structural failure) is unknown or probability 75 
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distribution of information is unavailable. Moreover, VOI is not appropriate anymore for exploring the optimal 76 

monitoring location when safety consideration is more important than economy. Therefore, it can be inferred that 77 

there must exist optimal monitoring locations, where the updated reliability can be utmost sensitive to the obtained 78 

information. To this end, this paper develops a method that efficiently determines the optimal monitoring location 79 

by introducing a novel metric called sensitivity of information (SOI) that measures the amplitude of the sensitivity 80 

at any location. Without knowing the cost of consequences, SOI is defined as the change in updated and prior 81 

reliability index, which facilitates the quantitative measurement of sensitivity of updated reliability index to the new 82 

information at a specific location. To improve the computational efficiency of estimating Pr(𝐹|𝑍), SS along with 83 

foregoing presented decomposition of Pr(𝐹 ∩ 𝑍) are integrated within the proposed computational framework. 84 

Moreover, the proposed SOI index subsequently parameterizes an objective function that is designed to find the 85 

optimal monitoring location by searching for its maxima based on a surrogate-assisted optimization. To examine 86 

the computational efficiency, a state-of-the-practical case of tunneling-induced settlement to building damage is 87 

investigated.  88 

The rest of this article is mainly organized in 5 sections. Section 2 briefly introduces the concept of reliability 89 

updating. Section 3 presents the proposed SOI index together with the framework for determining the optimal 90 

monitoring location. Subsequently, section 4 presents the procedures of analyzing SOI and exploring the optimal 91 

settlement monitoring location for a practical case that investigates the risk posed by tunneling-induced settlements. 92 

Conclusive remarks are drawn in section 5. 93 

2 Reliability updating with equality information 94 

Generally, the main difference between reliability analysis and updating lies in whether the observational 95 

information is available or not. Reliability analysis focuses on the computation of unconditional probability of 96 

failure Pr(𝐹) while reliability updating estimates the conditional probability of failure Pr(𝐹|𝑍). Let 𝑔(𝑿) denote 97 

the performance function, the response of which determines the condition of the system: 𝑔(𝑿) ≤ 0 indicates failure 98 

and 𝑔(𝑿) > 0  means safe state; the boundary region where 𝑔(𝑿) = 0  is called the limit state. Thus, the 99 

unconditional probability of failure can be defined as: 100 
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Pr(𝐹) = Pr(𝑔(𝑿) ≤ 0) (2) 

Methods for computing Pr(𝐹) include but are not limited to: crude Monte-Carlo simulation (MCS) [35], [36], first- 101 

or second-order reliability analysis method (FORM & SORM) [37], [38], importance sampling (IS) [39], [40], SS 102 

[41]–[43] and surrogate-based methods [44]–[47]. As Eq. (1) shows, the estimate of Pr(𝐹|𝑍) needs to compute 103 

Pr(𝑍) and Pr(𝐹 ∩ 𝑍). According to [2], the probability of information Pr(𝑍) can be computed as follows, 104 

Pr(𝑍) = 1 Pr(𝑍|Θ(𝑿) = θ)
!∈#!

𝑓(θ)𝑑θ (3) 

where 𝑿 denotes the vector of random variables, Θ(𝑿) denotes a function parameterized by 𝑿 with the realization 105 

notation θ , that can be the uncertainty of the system characteristic, Θ$(𝑿) , or the external loadings, Θ%(𝑿) . 106 

Moreover, 𝑓(∙) represents the probability density function (PDF) and 𝛺! is the probabilistic space of Θ(𝑿). In this 107 

context, the probability of the joint event Pr(𝐹 ∩ 𝑍) can be derived as, 108 

Pr(𝐹 ∩ 𝑍) = 1 Pr(𝐹|Θ(𝑿) = θ)Pr(𝑍|Θ(𝑿) = θ)
!∈#!

𝑓(θ)𝑑θ (4) 

For any likelihood functions, 𝐿(𝒙), the following identity holds true [2]: 109 

𝐿(𝒙) =
1
𝑐
Pr{𝑈 − 𝛷&'[𝑐𝐿(𝒙)] ≤ 0} (5) 

where c is a constant satisfying 0 ≤ 𝑐𝐿(𝒙) ≤ 1, 𝛷&' denotes the inverse standard normal cumulative distribution 110 

function, and 𝑈 represents a standard normal variable. By reformulation the equality information into inequality 111 

one, Pr(𝑍) can be estimated by introducing the auxiliary random variable, 𝑈, and define an augmented Limit State 112 

Function (LSF), 113 

Pr(𝑍) = 𝛼Pr(ℎ(𝑈, 𝑿) ≤ 0) (6) 

where 𝛼 = ()*𝑍+𝑿 = 𝐱,
-(𝐱)

 is an introduced proportionality constant [2], ℎ(𝑈, 𝑿) is the augmented limit state function 114 

with an auxiliary standard normal random variable, 𝑈 [2], 115 

ℎ(𝑈, 𝑿) = 𝑈 − 𝛷&'[𝑐𝐿(𝑿)] (7) 

Similarly, Pr(𝐹 ∩ 𝑍) can be computed by defining a limit state function that takes the maximum value of 𝑔(𝑿) 116 

and ℎ(𝑈, 𝑿), 117 
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Pr(𝐹 ∩ 𝑍) = 𝛼Pr(max[𝑔(𝑿), ℎ(𝑃, 𝑿)] ≤ 0) (8) 

Derivation of Eq. (8) is not elaborated in this paper for the sake of brevity. Detailed derivation can be found in [2]. 118 

Note that 𝑈  is not necessarily a standard normal random variable, it can be as simple as a standard uniform 119 

distributed random variable. Therefore, one can rewrite Eq. (7) as, 120 

ℎ(𝑈, 𝑿) = 𝑃 − 𝑐𝐿(𝑿) (9) 

However, the adoption of standard normal random variable can improve the smoothness of the responses of the 121 

function. To increase the readability, the computational scheme based on Eq. (9) is used throughout the paper. 122 

Combining Eq. (6) and (8), the conditional probability of failure can be obtained by canceling out the constant 𝛼, 123 

Pr(𝐹|𝑍) =
Pr(J(𝑈, 𝑿) ≤ 0)
Pr(ℎ(𝑈, 𝑿) ≤ 0)

 (10) 

where J(𝑈, 𝑿) = max[𝑔(𝑿), ℎ(𝑈, 𝑿)]. Eq. (10) enables fast reliability updating by solving two structural reliability 124 

problems. Typically, the numerator in Eq. (10) is very small, which requires powerful structural reliability methods 125 

such as subset simulation [7], [8]. In the following context, an efficient and robust approach for the estimation of 126 

Pr(𝐹|𝑍) is presented, which facilities the localization of optimal monitoring location. 127 

3 Optimal monitoring location analysis with SOI 128 

Data measured at different locations of structures and infrastructure systems may have distinct impacts on the 129 

updated reliability. To precisely quantify this difference, a concept of sensitivity of information for the updated 130 

reliability is proposed in this paper. Moreover, the proposed concept can be further leveraged to identify the optimal 131 

monitoring location that makes the most significant contribution to the change of updated reliability. In this section, 132 

the concepts of sensitivity of information (SOI) are elaborated. By maximizing the objective function involving SOI, 133 

the optimal monitoring location can be derived with the goal of risk tracking for structures and infrastructure 134 

systems.  135 

3.1 Sensitivity of information analysis for reliability updating 136 

In practical engineering, acquiring information is typically costly; therefore, engineers should prudently select a 137 

worthwhile location for structural monitoring and diagnosis. However, information collected in some locations has 138 

very neglectable impact on the change of updated reliability. On the other hand, the updated reliability is very 139 
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sensitive to the information stemming from very valuable locations. Therefore, the level of sensitivity of updated 140 

reliability to the change of information should be mathematically quantified. In this paper, the foregoing concept is 141 

denoted as sensitivity of information.  142 

One should note that SOI here is substantially different in concept from Value of Information. VOI is tailored 143 

to evaluate the monetary value of acquired information with the consideration of possible structural failure, 144 

maintenance and rehabilitation. In other words, the objective of VOI is to establish a value system for acquired 145 

information primarily from an economic cost perspective. In contrary, SOI is aimed at evaluating the sensitivity of 146 

risk updates to monitoring location. The objective here is to compare the power of different monitoring locations 147 

(topology) for risk tracking and the focus is on system safety. In practical engineering, the probability distributions 148 

of many variables are technically imprecise or unavailable, and engineers often only know the approximate range 149 

of possible outcomes of random variable. In this context, SOI is a practical risk-informed metric that supports 150 

decisions for strategic placement of monitoring systems. 151 

Let Pr(𝐹|𝑍 = 𝑧, 𝐿 = 𝑙) represent the conditional probability of failure given the specific equality information 152 

𝑧 and the monitoring location 𝑙, which can be calculated based on Eq. (10). The difference of the conditional 153 

reliability index, 𝛽12$3, compared to the unconditional reliability index, 𝛽14524, can be calculated as, 154 

𝑑61(𝑍 = 𝑧, 𝐿 = 𝑙) = U𝛽12$3 − 𝛽14524U = |−𝛷&'[Pr(𝐹|𝑍 = 𝑧, 𝐿 = 𝑙)] − (−𝛷&'[Pr(𝐹)])|

= |𝛷&'[Pr(𝐹)] − 𝛷&'[Pr(𝐹|𝑍 = 𝑧, 𝐿 = 𝑙)]| 
(11) 

where 𝑑61 denotes the change in reliability. However, the information 𝑧 is typically unknown before it is measured 155 

at the location 𝑙. In fact, 𝑧 can be any number from −∞ to +∞ without any prior knowledges. However, some 156 

ranges can be unrealistic. Therefore, it is assumed that 𝑧 is uniformly distributed over the interval [𝑍728 , 𝑍618], 157 

where 𝑍728 and 𝑍618 represent the lower and upper bounds of possible information which can be determined by 158 

engineering judgement. Therefore, the expected value of 𝑑61(𝑍, 𝐿 = 𝑙) can be adopted to reflect the magnitude of 159 

𝑑61(𝑍, 𝐿 = 𝑙). In this paper, the sensitivity of information at location 𝑙 is computed as, 160 

𝑆𝑂𝐼(	𝐿 = 𝑙) = 1 𝑑61(𝑍 = 𝑧, 𝐿 = 𝑙)𝑓6(𝑧)𝑑𝑧
9:

&:
≈

1
𝑍618 − 𝑍728

1 𝑟61(𝑍 = 𝑧, 𝐿 = 𝑙)𝑑𝑧
;"#$

;%&$
 (12) 
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It can be inferred from Eq. (12) that 𝑆𝑂𝐼 varies with location 𝐿. If Z is a vector, Eq. (12) becomes a multiple 161 

integral with Z integrated over all dimensions. Moreover, a monitoring location with a large 𝑆𝑂𝐼 tends to have 162 

significant impact on the change of reliability index while monitoring location with a small SOI indicates that the 163 

monitoring action is not valuable. The computation of Eq. (12) involves an operation of integral, which requires 164 

numerical discretization. Hence, the computational complexity depends on the scheme of such numerical 165 

discretization. Assume that the integral space is discretized into 𝑛<5$  pieces. Subsequently, Eq. (12) can be 166 

calculated as, 167 

𝑆𝑂𝐼(	𝐿 = 𝑙) ≈
1

𝑍618 − 𝑍728
b𝑑61(𝑍 = 𝑧5 , 𝐿 = 𝑙)
='()

5>'

∆? (13) 

where 𝑧5 = (2𝑖 − 1)∆? is the point centered at the integral pieces and ∆?= e𝑍618 − 𝑍728f/𝑛<5$. Eq. (12) needs to 168 

investigate the estimate of reliability updating 𝑛<5$ times, which is computationally very intensive and not practical. 169 

Concerning this issue, the computation of 𝑑61(𝑍 = 𝑧, 𝐿 = 𝑙) in Eq. (11) needs to be optimized.  170 

3.2 Computational details of SOI  171 

The computation of 𝑑61(𝑍 = 𝑧, 𝐿 = 𝑙) needs to investigate the estimates of Pr(𝐹) and Pr(𝐹|𝑍) for 𝑛< times. These 172 

probabilities can be possibly rare for some cases. To enhance the computational efficiency and robustness of the 173 

estimates of Pr(𝐹)  and Pr(𝐹|𝑍) , SS along with a strategy of decomposing Pr(𝐹 ∩ 𝑍)  into Pr(𝑍|𝐹) ∙ Pr(𝐹)  is 174 

utilized in this paper. Therefore, the following equation is represented to estimate Pr(𝐹|𝑍), 175 

Pr(𝐹|𝑍) =
Pr(𝑍|𝐹) ∙ Pr(𝐹)

Pr(𝑍)
 (14) 

Eq. (14) optimizes the computation of Eq. (10) by decomposing Pr(𝐹 ∩ 𝑍) into Pr(𝑍|𝐹) and Pr(𝐹) via Bayes’ 176 

theorem. This strategy completely avoids the computation of the probability of the rare event of Pr(𝐹 ∩ 𝑍). 177 

Integrating with SS, Eq. (14) can be rewritten as, 178 

Pr(𝐹|𝑍) =
Pr(𝑍|𝐹)
Pr(𝑍)

𝑃 hi𝐹5

@

5>'

j =
Pr(𝑍|𝐹)
Pr(𝑍)

𝑃(𝐹')k𝑃(𝐹59'|𝐹5)
@&'

5>'

 (15) 

where 𝐹5 denotes the intermediate failure event of 𝑔(𝑿),  𝑚 denotes the number of subsets and 𝐹@ is the target 179 

failure event. Given that 𝐹 = 𝐹@, Eq. (15) can be further simplified as, 180 



9 
 

Pr(𝐹|𝑍) =
Pr(𝑍|𝐹@)
Pr(𝑍)

𝑃(𝐹')k𝑃(𝐹59'|𝐹5)
@&'

5>'

 (16) 

This indicates that the computation of Pr(𝐹|𝑍)  only relies on the estimates of Pr(𝑍)  and Pr(𝑍|𝐹@) once the 181 

estimate of Pr(𝐹) is completed through SS. For different information, the estimate of Pr(𝐹|𝑍) can be as simple as 182 

reevaluating Pr(𝑍) and Pr(𝑍|𝐹@) based on the samples remained in the last target subset. However, we often 183 

encounter the situation where Pr(𝐹|𝑍) cannot be estimated with sufficient accuracy due to the insufficient samples. 184 

This inaccuracy can lead to the associated inaccurate computation of 𝑆𝑂𝐼(	𝐿 = 𝑙). To overcome this limitation, 185 

samples generated through Markov Chain Monte Carlo simulation (MCMC) in each subset 𝑆5 , 𝑖 = 1,2, … ,𝑚 should 186 

be sufficient so that COVA*|, is smaller than 𝐶𝑂𝑉3B4, where COVA*|, and 𝐶𝑂𝑉3B4 denote the coefficient of variation 187 

(COV) of Pr(𝐹|𝑍) and the prescribed threshold, respectively. Toward this goal, the number of intermediate failure 188 

samples for SS is redefined in an adaptive way to facilitate the robust estimation of Pr(𝐹|𝑍). Therefore, procedures 189 

for estimating Pr(𝐹|𝑍) through the adaptive adjustment of 𝑁$$ is summarized in the following procedures: 190 

• Step 1: Define initial parameters 𝐶𝑂𝑉3B4, 𝑁$$ and 𝑝C for SS. In this paper, the UQLab toolbox with Reliability 191 

module in MATLAB® software is used. Other sets for performing SS follows the default settings in UQLab [48], 192 

[49]. 193 

• Step 2: Perform SS and record the computational results such as 𝑃D, 𝑡5s,  COVA* and 𝑆
5 etc. In this step, the 194 

proposal distribution for MCMC is selected to be uniform. Moreover, a conceptual illustration of this computation 195 

for a 2D problem is presented in Fig 1. For this step, all the failure samples are kept for the sake of computing 196 

Pr(𝑍|𝐹) in step 4.  197 

• Step 3: Estimate Pr(𝑍) with the following limit state function, 198 

ℎ'(𝑝, 𝒙) = 𝑃 − 𝑐'𝐿(𝑿) (17) 

In most cases, Pr(𝑍) can be estimated through MCS if the estimate of 𝐿(𝒙) is model free. Otherwise, Pr(𝑍) can be 199 

estimated through SS. 200 
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  201 
 202 

Fig 1. Illustration of SS for a 2D example with safe and failure domains and the limit state 𝑔(𝑋', 𝑋E) = 0  203 

• Step 4: Estimate Pr(𝑍|𝐹) based on the kept failure samples in step 2 with the following limit state function, 204 

ℎE(𝑃, 𝑿) = 𝑃 − 𝑐E𝐿(𝑿) (18) 

• Step 5: Check if COVA*|, ≤ 𝐶𝑂𝑉3B4. Go to Step 6 if satisfied; otherwise, reset 𝑁$$ = 𝑁$$7F$3 + ∆𝑁$$ and go back 205 

to Step 2, where 𝑁$$7F$3 denotes the number of intermediate failure samples in each subset in the last iteration. 206 

• Step 6: Output Pr(𝐹) and Pr(𝐹|𝑍). 207 

Essentially, step 5 investigates the computation of COVA*|,  which impacts the computational robustness of the 208 

updated reliability. Let 𝑃D, 𝑃;, 𝑃;|D and 𝑃D|; denote Pr(F), Pr(Z), Pr(𝑍|𝐹) and Pr(𝐹|𝑍)for the sake of readability 209 

of this manuscript. To this end, 	COVA*|, is computed in the following context. In virtue of the equality Var(𝐴𝐵) =210 

[E(𝐴)]EVar(𝐵) + [E(𝐵)]EVar(𝐴) + Var(𝐴)Var(𝐵) , where A and B are two mutually independent random 211 

variables, the following equation holds true, 212 

COVA*|, =
𝑉𝑎𝑟 |𝑃D∩;

1
𝑃;
}
'
E

𝐸 |𝑃D∩;
1
𝑃;
}

=
[E(𝑃D∩;)]EVar |

1
𝑃;
} + ÄE | 1𝑃;

}Å
E
Var(𝑃D∩;) + Var(𝑃D∩;)Var |

1
𝑃;
}Ç

'
E

𝐸e𝑃;|Df𝐸(𝑃D)𝐸 |
1
𝑃;
}

 

(19) 

𝑋' 

𝑋E 

 Failure domain 

Ω!:	𝑔(𝑋", 𝑋#) ≤ 0 

Safe domain 

Ω$:		𝑔(𝑋", 𝑋#) > 0 
	𝑔(𝑋", 𝑋#) = 𝑡" 

	𝑔(𝑋", 𝑋#) = 𝑡% = 0 

	𝑔(𝑋", 𝑋#) = 𝑡# 

∙∙∙ 
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where 𝑃D, 𝑃D∩; and 𝑃;|D denote Pr(𝐹), Pr(𝐹 ∩ 𝑍) and Pr(𝑍|𝐹), E(∙) and Var(∙) represent the operations of mean 213 

and variance. Moreover, E(𝑃D∩;) = 𝐸e𝑃;|Df𝐸(𝑃D) . The computation of Var(𝑃D∩;) , 𝐸 |
'
A,
}  and Var | '

A,
}  is 214 

elaborated next. First, Var(𝑃D∩;) can be estimated according to the following equation, 215 

Var(𝑃D∩;) = Vare𝑃D𝑃;|Df 

= [E(𝑃D)]EVare𝑃;|Df + ÉEe𝑃;|DfÑ
EVar(𝑃D) + Var(𝑃D)Vare𝑃;|Df 

(20) 

If 𝑁$$ is sufficiently large, the following equation holds true, 216 

lim
I))→C

E(𝑃D) ≅ 𝑃àD (21) 

where 𝑃àD  denotes the ground truth of the unconditional probability of failure. The variance of 𝑃D  can be 217 

correspondingly calculated as, 218 

Var(𝑃D) = COVA*
E [E(𝑃D)]E (22) 

and the COV of 𝑃K, COVA*, is calculated as, 219 

COVA* = âbCOV1L(
E

@

5>'

, for	𝑖 = 2,3, … ,𝑚 (23) 

Generally, the COV of each 𝑝̂5 can be estimated as,  220 

COV1L- = ç
1 − 𝑃5
𝑃5𝑁

, for	𝑖 = 1 (24) 

and 221 

COV1L( = ç
1 − 𝑃5
𝑃5𝑁

(1 + 𝛾5), for	𝑖 = 2,3, … ,𝑚 (25) 

where 𝛾5 is a computational index that can be determined as, 222 

𝛾5 = 2 b è1 −
𝑘𝑁M
𝑁 ë

I/I.&'

O>'

𝜌5(𝑘) (26) 
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where 𝜌5(𝑘) denotes the correlation coefficient at lag k of the stationary sequence ì𝐼P,O
{5}: 𝑘 = 1,… ,𝑁/𝑁Mï, which 223 

can be calculated as, 224 

𝜌5(𝑘) = 𝑅5(𝑘)/𝑅5(0) (27) 

The covariance sequence {𝑅5(𝑘): 𝑖 = 0,… ,𝑁/𝑁M − 1} can be estimated based on Markov chain samples as follows, 225 

𝑅5(𝑘) ≅ ó
1

𝑁$$ − 𝑘𝑁M
b b 𝐼P,7

{5}𝐼P,79O
{5}

I))/I.&O

5>'

I.

P>'

ò − 𝑝5E (28) 

where 𝑁M denotes the number of Markov chains and 𝐼P,7
{5} denotes the failure indicator for the 𝑘th sample in the 𝑗th 226 

Markov chain simulation level 𝑖. Typically, COVA* based on real simulations is slightly larger than the theoretical 227 

one. To ensure the accuracy, the threshold of COVA* can be set slightly stricter than the desired level. Moreover, the 228 

mean and the variance of 𝑃;|D are estimated as, 229 

Ee𝑃;|Df = 𝑃;|D (29) 

and 230 

Vare𝑃;|Df = 𝑁𝑃;|De1 − 𝑃;|Df (30) 

Therefore, Var(𝑃D∩;) can be obtained by combining Eq. (19) ~ (30). Moreover, 	E |
'
A,
} and Var | '

A,
}  can be 231 

estimated through numerical simulation by taking the reciprocal of a normal random variable (The Central Limit 232 

Theorem) after its COV and mean are acquired. Importantly, the computation of COV of  𝑃; depends on the type 233 

of reliability method (i.e., MCS or SS). One should note that the proposed approach overperforms those approaches 234 

that rely on the limit state function of joint event (i.e., J(𝑈, 𝑿) defined in Eq. (10)) [7], [8]. Different from the 235 

computational scheme that needs to estimate Pr(𝐹 ∩ 𝑍) , Pr(𝑍|𝐹)  only focuses on the failure domain of the 236 

performance function, which completely avoids unnecessary computational efforts of estimating	Pr(𝑍|𝐹) . To 237 

clarify this point, let Pr(F)= 10&T and Pr(Z)= 10&E and F and Z be mutually independent. Then the joint event 238 

Pr(F ∩ Z) can be as small as 10&U. This means that the total number of simulations based on F ∩ Z can be larger 239 

than 25000 if the batch size is set as 5000. However, the proposed approach only needs to estimate Pr(F) and 240 

subsequently estimate Pr(F|Z) based on the failure samples from Pr(F). Because these failure samples are already 241 
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calculated through performance function in the procedure of estimating Pr(F), estimation of Pr(F|Z) does not require 242 

any simulation. This indicates that the total number of simulations is around 15000. Therefore, the cost of simulation 243 

through proposed approach relies on Pr(F) but not Z. 244 

3.3 Analysis of optimal monitoring location 245 

The metric SOI can be leveraged to derive the optimal monitoring location that has the most significant impact on 246 

the change of updated reliability index. Generally, the optimal monitoring location can be identified according to 247 

the following equation, 248 

𝒍∗ = arg	max
7∈W

𝑆𝑂𝐼 (	𝑳 = 𝒍) (31) 

where 𝒍∗  denotes the vector of optimal monitoring location (𝒍∗  is not bold as 𝑙∗  if it denotes one location), 𝛤 249 

represents the domain of the global feasible monitoring locations and 𝑆𝑂𝐼(	𝑳 = 𝒍) represents the sensitivity of 250 

information at location 𝒍. However, the optimization problem represented in Eq. (31) can be computationally 251 

prohibitive due to the complex topology of monitoring location with large dimension or discretization. To further 252 

interpret this point, let 𝑁X denote the total number of discretized mapping points, it can be calculated as, 253 

𝑁X = k 𝑁5<
I'(/

5>'

 (32) 

where 𝑁<5@  is the number of the dimension of 𝛤 and 𝑁5<  represents the number of discretized points in the ith 254 

direction. For example, 𝑁X can be as large as 10Y for topology with three dimensions if it is discretized into 100 255 

pieces in each dimension. The optimization defined in Eq. (31) becomes computationally intractable if SOIs of all 256 

these discretized points are calculated. To efficiently solve the optimization problem in Eq. (31), a surrogate model-257 

based optimization solution is adopted to find 𝑙∗. In this paper, the Kriging surrogate model with noisy responses is 258 

adopted to tackle the inconsistent estimate of SOI presented in section 3.2. Based on Kriging surrogate model with 259 

noisy response, SOI for each discretized sample 𝑙 can be represented as: 260 

𝑆𝑂𝐼û (𝒍) = 𝑭(𝒍, 𝜷) + 	𝛹(𝒍) + 𝜖O = 𝒇X(𝒍)𝜷 + 𝛹(𝒍) + 𝜖O , (33) 

where 𝑆𝑂𝐼û (𝒍) denotes the estimated value of SOI at 𝑳 = 𝒍 estimated through the Kriging surrogate model, 𝛹(𝒍) 261 

denotes the Gaussian process, 𝜖O is the additive noise of response which follows a zero-mean Gaussian distribution 262 
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with covariance matrix 𝚺Z, and 𝐹(𝒍, 𝜷) is the so-called regression basis denoting the Kriging trend, which can be a 263 

constant, a polynomial term or any mathematical form. Moreover, 𝒇(𝒍) is the vector of Kriging basis and 𝜷 is the 264 

vector of regression coefficients. Specifically, 𝒇X(𝒍)𝜷	  often takes the form of ordinary ( 𝛽C ), linear 265 

(𝛽C+∑ [𝛽]=[𝑥]=
I'(/
=>' ) or quadratic (𝛽C+∑ [𝛽]=[𝑥]=

I'(/
=>' +∑ ∑ [𝛽]=O[𝑥]=[𝑥]O

I'(/
O>=

I'(/
=>' ), where [𝛽]= and [𝑥]= denote 266 

the nth component of 𝜷 and 𝒍, respectively. Moreover, 𝛹(𝒍) has a zero mean and a covariance matrix between two 267 

points, 𝒍5 and 𝒍P: 268 

COV|𝛹(𝒍5), 𝛹e𝒍Pf} = 	𝜎E𝑅e𝑙5 , 𝑙P; 𝜽f, (34) 

where 𝜎E is the process variance or the generalized mean square error from the regression part and 𝑅e𝒍5 , 𝒍P; 𝜽f is 269 

the correlation function or the kernel function representing the correlation function of the process with hyper-270 

parameter 𝜽. Multiple types of correlation functions are available for Kriging models including linear, exponential, 271 

Gaussian, Matérn models, among others [50]. In this paper, the Gaussian kernel function is implemented: 272 

𝑅e𝒍5 , 𝒍P; 𝜽f = k expè−[𝜃]= |[𝒍5]= − É𝒍PÑ=}
E
ë

I'(/

=>'

, (35) 

where [𝒍5]=  is the nth component of the realization 𝒍5 , 𝜽 denotes the hyper-parameter that can be estimated via 273 

maximum likelihood estimation (MLE) or cross-validation [50]. It is shown that the Kriging prediction is very 274 

sensitive to the value of 𝜽 [51]–[53]. In this article, the optimal hyper-parameter 𝜽∗ is searched through MLE: 275 

𝜽∗ =	argmin
𝜽𝝐ℝ

1
2
Älog èdet |𝑅e𝒍5 , 𝒍P; 𝜽f}ë + 𝑛<%$log(2𝜋𝜎E) + 𝑛<%$Å, (36) 

where 𝑛<%$  is the number of design-of-experiment (DoE) points. Thus, for a number of DoE (training) points, 276 

𝑆^2_ = [𝒍', 𝒍E, … , 𝒍@] , and the corresponding responses from the performance function 𝐘 =277 

[𝑆𝑂𝐼(𝒍'), 𝑆𝑂𝐼(𝒍E), … , 𝑆𝑂𝐼(𝒍@)], the traditional BLUP (Best Linear Unbiased Predictor) estimation of Kriging 278 

prediction for a group of testing points, 𝑆3 = [𝒍', 𝒍E, … , 𝒍I0] gives: 279 

𝜇Ò(𝒍3) = 𝒇X(𝒍3)𝜷≥ + 𝒓µ(𝒍3)X𝜸, 𝒍3 ∈ 𝑆3 . (37) 

where 𝒍3 denotes testing samples. Moreover, let 𝑪 = 𝜎E𝑹 + 𝚺Z, 𝚺Z = 𝜎=E𝑰 (where 𝑰 is an identity matrix and 𝜎=E is 280 

the variance of noise of 𝑆𝑂𝐼) and τ = 𝜎E/(𝜎=E + 𝜎E), where 𝜎E is the Gaussian process variance, and 𝒖(𝒍3) are: 281 
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𝜎E =	
1
𝑚
(𝒀 − 𝑭𝜷)X𝑹&'(𝒀 − 𝑭𝜷) (38) 

The parameters presented in Eq. (37) can be calculated as, 282 

	𝜷≥ = 	 (𝑭X𝑪&'𝑭)&'𝑭X𝑪&'𝒀,  

𝜸 = 	𝑪&'e𝒀 − 𝑭𝜷≥f,  

𝒓(𝒍3) = [𝑅(𝒍', 𝒍3; 𝜽), … . 𝑅(𝒍𝒎, 𝒍3; 𝜽)]'×@X , 𝒍3 ∈ 𝑆3	 

𝒓µ(𝒍3) = (1 − τ)𝒓(𝒍3) 

𝑹≥ = (1 − τ)𝑹 + τ𝑰 

𝑭 =	 [𝒇(𝒍'), 𝒇(𝒍E), …𝒇(𝒍@)]X . 

(39) 

Then, the mean-square error (MSE) of 𝑆𝑂𝐼û (𝒍3) can be calculated by: 283 

𝜎Ò
E(𝒍3) = (𝜎=E + 𝜎E) |1 + 𝒖X(𝒍3)e𝑭X𝑹≥&'𝑭f

&'𝒖(𝒍3) − 𝒓µX(𝒍3)𝑹≥&'𝒓µ(𝒍3)}, (40) 

where 𝒖(𝒍3) = 	𝑭X𝑪&'𝒓(𝒍3) − 𝒇(𝒍3) . According to Kriging theory, for all testing points, 𝑆3 , the outputs 𝒀 =284 

[𝑔(𝒍'), 𝑔(𝒍E), … , 𝑔(𝒍3)] from the Kriging model are parameterized with the mean, 𝜇cL(𝒍3), and the variance, 𝜎cL
E(𝒍3): 285 

𝑆𝑂𝐼û (𝒍3)	~	𝑁 |𝜇Ò(𝒍3), 𝜎Ò
E(𝒍3)},			𝒍3 ∈ 𝑆3 . (41) 

The general principle of surrogate-based optimization is to start with a small number of training points that compute 286 

𝑆𝑂𝐼 to build a surrogate for 𝑆𝑂𝐼û (	𝑳 = 𝒍) and subsequently refine the Kriging surrogate model by adaptively adding 287 

new training samples until the target 𝒍∗ is steadily identified. The procedure discussed above is elaborated in the 288 

following steps: 289 

• Step 1: Discretizing the regions of observation, Ωde, into discretized points and denote these samples as 𝑆28. 290 

• Step 2: Select a limited number of points from 𝑆W as initial training points 𝒍5= for Kriging construction. As 291 

suggested by [44], the number of 𝒍5= should be greater than 
(I'(/9')(I'(/9E)

E
. Note that 𝒍34 can change upon every 292 

iteration of active learning but it is equal to 𝒍5= in the first iteration. 293 

• Step 3: Construct the Kriging model with current training points	𝒍34. Denote the Kriging model as 𝑆𝑂𝐼û (𝒍). 294 

Construction is based on UQLab toolbox in MATLAB®, with ordinary Kriging basis and Gaussian correlation 295 

function. The model type is selected as prediction with noisy responses and other parameters follow default settings. 296 
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Subsequently, the Kriging responses 𝜇Ò(𝒍)	and variances 	𝜎Ò
E(𝒍) can be acquired from UQLab toolbox [50]. 297 

• Step 4: To search for the maximum value of 𝑆𝑂𝐼, the expected improvement learning function (EI) for global 298 

optimization is adopted. The next training point is selected according to the following criterion and is denoted as 299 

𝒍34∗ .  300 

𝒍34∗ = arg	max
𝒍∈g1

EI(𝒍) (42) 

where, 301 

EI(𝒍) = e𝜇Ò(𝒍) − 𝑆𝑂𝐼û @Fh
∗ fΦ¬

𝜇Ò(𝒍) − 𝑆𝑂𝐼û @Fh
∗

𝜎Ò(𝒍)
√ + 𝜎Ò(𝒍)φ¬

𝜇Ò(𝒍) − 𝑆𝑂𝐼û @Fh
∗

𝜎Ò(𝒍)
√ (43) 

where 𝑆𝑂𝐼û @Fh
∗  denotes the maximum SOI among 𝒍34 in the current iteration. 302 

• Step 5: Determine if the stopping criterion (𝑚𝑎𝑥(𝐸𝐼) ≤ 𝐸𝐼3B4) has been satisfied in the current iteration, where 303 

𝐸𝐼3B4 denotes the threshold value. In this paper,  𝐸𝐼3B4 is set as 10&U and the maximum number of  iterations is set 304 

as 100. Go to Step 6 if satisfied; otherwise, go back to Step 3.  305 

• Step 6: Output 𝒍∗ and 𝑆𝑂𝐼û  for 𝑆28. 306 

The above procedure presents an efficient approach for evaluating SOI for all potential monitoring points. However, 307 

the computational complexity of constructing Kriging surrogate model increases substantially as 𝑁<5@ grows. This 308 

is known as the ‘curse of dimensionality’, which can be further optimized in the future. To explore the performance 309 

of the proposed framework, a geotechnical case that investigates tunneling-induced settlement to building damage 310 

is investigated in the next section.  311 

4 Case study 312 

4.1 Description of the physical model 313 

Settlements caused by the construction of tunnel can threaten the functionalities and integrity of structures and 314 

infrastructure systems aboveground. This process is illustrated in Fig 2, where the y axis follows the reverse 315 

direction of tunnel advance and x axis is perpendicular to the tunnel longitudinal axis [15], [54]. Origin is the 316 

intersection of the extensional line of building wall and the y-axis. Moreover, the positive degree refers to 317 

alignments counterclockwise with respect to the x-axis. Starting from tunnel portal 𝑦 = 𝑦K  and adaptively 318 
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advancing towards 𝑦 = −∞ with the tunnel boring machine (TBM), a tunnel is under construction with the tunnel 319 

face located at 𝑦 = 𝑦$. In this paper, 𝑦K is assumed to originate from infinity with 𝑦K = +∞. A building wall of 320 

length 𝑙8657<, denoted by a reference point 𝐴∆, is located at a distance 𝑑245c from the origin and aligned 𝜃4 degrees 321 

with respect to the tunnel transverse plane. To better interpret the concept, a 3D plot of this physical model is 322 

showcased in Fig 3, where 𝑑 and 𝑧C denote the diameter of tunnel and the depth from surface of ground (𝑧 = 0) to 323 

the center of tunnel. The objective is to identify the optimal monitoring location on the feasible grounds to better 324 

tracking risks of building subsidence as the tunneling excavation proceeds. As introduced later, these feasible 325 

grounds are typically off the location of TBM. The formulas that predict the tunneling-induced subsidence of 326 

building, analysis of reliability updating and exploration of the optimal monitoring location are subsequently 327 

introduced in the following context. 328 

 
Fig 2. Illustration of tunneling-induced settlements. 329 

 330 

 
Fig 3. 3D illustration of tunnel and building wall positions. 331 
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The soil over the excavated underground space can be viewed as a distributed loading with the other ending 332 

node fixed at 𝑦 = +∞. According to [15], [55], [56], the settlement of ground can be calculated as, 333 

𝑆e𝑥, 𝑦, 𝑧, 𝑑, 𝑦$, 𝑦C, 𝑦K , 𝑧C, 𝑉- , 𝐾h , 𝐾if

= −1000 ∙ 𝑆@Fh ∙ exp −
𝑥E

2 ∙ 𝐾hE ∙ (𝑧C − 𝑧)E
Ç

∙ 𝛷 ¬
𝑦 − (𝑦$ + 𝑦C)
𝐾i ∙ (𝑧C − 𝑧)

√ − 𝛷 ¬
𝑦 − 𝑦K

𝐾i ∙ (𝑧C − 𝑧)
√Ç 

(44) 

where 𝑉-  is the volume ground loss per unit and 𝐾h  and 𝐾i  are non-dimensional through width parameters 334 

reflecting characteristics of the soil and describing the Gaussian settlement profiles in the transverse and 335 

longitudinal direction. It is typically assumed that 𝐾h = 𝐾i = 𝐾	[57]. Moreover, 𝑆@Fh denotes the absolute value 336 

of maximum settlement at 𝑦 (𝑦 ≥ 𝑦$) and can be calculated as, 337 

𝑆@Fh =
𝑉- ∙ 𝜋 ∙ 𝑑E

√2𝜋 ∙ 𝐾h ∙ (𝑧C − 𝑧) ∙ 4
 (45) 

where 𝑦C in Eq. (44) is the horizontal shift of the longitudinal settlement profile with respect to the tunnel face and 338 

can be calculated as, 339 

𝑦C = −𝛷&'(𝛿) ∙ 𝐾 ∙ 𝑧C (46) 

where 𝛿 represents the ratio between the surface settlement above the tunnel face and 𝑆@Fh at 𝑦 = +∞. In this 340 

paper, 𝛿 is defined as 0.3 for the sake of practical consideration [40], [41]. The shape of settlement is presented in 341 

Fig 4. It can be observed that the shape of settlement along the x-axis follows the PDF of Gaussian distribution, 342 

while along the y-axis, the shape is close to the CDF of Gaussian distribution. The settlement reaches the highest 343 

value at (0,30,0).   344 
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           (a)               (b)  

Fig 4. Settlement produced by tunnel excavation in (a) the 3D surface plot and (b) the x-y view with 𝑑 = 12m, 345 

𝑦$ = 0, 𝑧C = 23m, 𝑉- = 0.5% and 𝐾 = 0.5.  346 

By treating the building wall as a weightless linear elastic rectangular beam, the response of the building to the 347 

settlement is modeled through the equivalent beam method [60]. The distribution of tensile strains along the beam 348 

is governed by the shape of the deflection and the mode of deformation. The extreme fiber strains caused by bending 349 

and shear 𝜀84 and 𝜀<4 can be calculated according to the following equations, 350 

𝜀84 è𝑉- , 𝐾,
𝐸
𝐺ë

= (𝜀8	@Fh + 𝜀B) ∙ 𝐸k$2 (47) 

 351 

𝜀<4 è𝑉- , 𝐾,
𝐸
𝐺ë

= Œ𝜀B è1 −
𝐸
4𝐺ë

+ ç
𝜀BE

16è
𝐸
𝐺ë

E
+ 𝜀<	@FhE œ ∙ 𝐸k'2 (48) 

where _
l
 represents the ratio between the Young’s modulus and the shear modulus of the building material and 𝐸k$2 352 

and 𝐸k'2 are multiplicative model errors. In this paper, 
_
l
, 𝐸k$2 and 𝐸k'2 are modeled as random variables. Moreover, 353 

𝜀8	@Fh  and 𝜀<	@Fh  are the maximum bending and shear strains due to the deflection. Specifically, 𝜀8	@Fh  and 354 

𝜀<	@Fh are calculated separately for the different zones of the building. The building zones that have settlements 355 

induced by the tunnel can be typically classified into two types: the sagging and hogging deflections. As shown in 356 

Fig 5, the main difference of them lies in the position of the profile curvature change: sagging deflection represents 357 
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upwards concavity while hogging deflection indicates downwards concavity. To better illustrate the foregoing 358 

difference, Fig 6 showcases the sagging and hogging deflections in the different zones of a building. 359 

The number of inflection points along the building depends on the three parameters 𝑙8657< , 𝑑245c  and 𝜃4 . 360 

Moreover, the type of deflection of a building depends on the number of inflection points, which are summarized 361 

in Table 1. A conceptual plot for the last case in Table 1 is shown in Fig 6, where the building is divided in to three 362 

zones: one sagging zone and two hogging zones. Let 𝑙4%K denote the horizontal distance between two reference 363 

points and ∆4%K  be the relative deflection; the deflection ratio ∆4%K/𝑙4%K  for different deflection types can be 364 

represented as ∆$Fc/𝑙$Fc and ∆B2c/𝑙B2c. The maximum bending and shear strains, 𝜀8	@Fh and 𝜀<	@Fh, for a given 365 

zone (sagging or hogging) can be calculated as follows [61], 366 

𝜀8	@Fh =
∆4%K/𝑙4%K

è
𝑙4%K
12𝑡 +

3𝐼
2𝑎𝑙4%K𝐻

𝐸
𝐺ë
 (49) 

and 367 

𝜀<	@Fh =
∆4%K/𝑙4%K

¬1 +
𝐻𝑙4%KE

18𝐼
𝐺
𝐸√
 

(50) 

where 𝐻 denotes the height of building, 𝐼 = 𝐻T/12 is the inertia per unit length, 𝑡 is depth of neutral axis and  𝑎 =368 

𝑡 is the location of the fiber where strains are calculated. For sagging and hogging deflections, 𝑡 = 𝐻/2 and 𝐻, 369 

respectively. Moreover, the resultant horizontal strain in the ground surface along the base of the team, 𝜀B, in Eq. 370 

(47) and (48) can be computed according to the following equation: 371 

𝜀B(𝑥, 𝑦, 𝑧, 𝑉- , 𝐾) ≡ cosE𝜃4 ∙ 𝜀B,hh + sinE𝜃4 ∙ 𝜀B,ii + 2 ∙ cos𝜃4 	sin𝜃4 ∙ 𝜀B,hi (51) 

where 𝜀B,hh, 𝜀B,ii and 𝜀B,hi are the fields of strain in the ground. The maximum strain of the building 𝜀@Fh can be 372 

determine according to the six parameters, 373 

𝜀@Fh = maxÉ𝜀84
$Fc, 𝜀<4

$Fc, 𝜀84
B2c,', 𝜀<4

B2c,', 𝜀84
B2c,E, 𝜀<4

B2c,EÑ (52) 
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Fig 5. Conceptual illustration of sagging and hogging deflections in different zones of a building. 374 

 
Fig 6. A building that is subjected to tunneling-induced settlement with 1 sagging and 2 hogging zones. 375 

The location of the building determines the number of extreme fiber strains. It indicates that the building can be 376 

divided into sagging and hogging zones. Therefore, six notations including 𝜀84
$Fc, 𝜀<4

$Fc, 𝜀84
B2c,', 𝜀<4

B2c,', 𝜀84
B2c,E and 377 

𝜀<4
B2c,E are sufficient to represent the 4 cases described in Table 1, where  𝜀84

$Fc, 𝜀84
B2c,' and 𝜀84

B2c,E are the maximum 378 

bending strains in sagging zone and  𝜀<4
$Fc, 𝜀<4

B2c,' and 𝜀<4
B2c,E are the maximum shear strains in hogging zone. For 379 

the first case, the last four terms are equal to zero due to the existence of one sagging zone; For the second case, 380 

one hogging zone indicates that the third and fourth terms are non-zero; For the third case, the last two terms are 381 

equal to zero while all the six terms are non-zero for the last case. Finally, the geometry of the cracks can be 382 

estimated. Moreover, the classification of damage due the cracks is summarized in Table 2, where 𝜀75@ denotes the 383 

limit tensile strain. 384 

 Table 1. Types of deflection of building located in a specific location 385 
Location of building Number of inflections Types of Deflection 

Above the tunnel axis 0 1 sagging 

Far from the tunnel axis 0 1 hogging 
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Starts in the sagging zone 
and reaches the hogging zone 1 1 sagging and 1 hogging 

Central part in the sagging 
zone and lateral parts in the 

hogging zone 
2 1 sagging and 2 hogging 

 386 

Table 2. Classification of damage [61]. 387 
Category of 
damage 

Normal degree 
of severity Typical damage Tensile strain 

εmno(%) 
Limiting strain 

εpqm(%) 

0 Negligible < 0.1 mm 0-0.050 0.050 

1 Very slight < 1.0 mm 0.050-0.075 0.075 

2 Slight < 5.0 mm 0.075-0.150 0.150 

3 Moderate < 15.0 mm 0.150-0.300 0.300 

4 Severe < 25.0 mm >0.300 - 

5 Very Severe > 25.0 mm - - 
 388 

To calculate 𝜀B,hh, 𝜀B,ii and 𝜀B,hi, let 𝑈h and 𝑈i denote the horizontal displacements in [mm] in the transvers 389 

and longitudinal direction, respectively, at a certain position with coordinate  𝑥, 𝑦, 𝑧 in [m]. 𝑈h  and 𝑈i  can be 390 

calculated as, 391 

𝑈h =
𝑥

𝑧C − 𝑧
∙ 𝑆 (53) 

and 392 

𝑈i = 1000 ∙
𝑉- ∙ 𝑑E

8 ∙ (𝑧C − 𝑧)
∙ 

÷exp h
−e𝑦 − (𝑦$ + 𝑦C)f

E − 𝑥E

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
j − exph

−e𝑦 − 𝑦Kf
E
− 𝑥E

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
j◊ 

(54) 

Therefore 𝜀B,hh, 𝜀B,ii and 𝜀B,hi can be calculated based on 𝑈h and 𝑈i, 393 

𝜀B,hh =
𝜕𝑈h
𝜕𝑥

=
𝑆/1000
𝑧C − 𝑧

∙ h1 − ¬
𝑥E

𝐾hE ∙ (𝑧C − 𝑧)E
√j (55) 

and 394 
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𝜀B,ii =
𝜕𝑈i
𝜕𝑦

=
𝑉- ∙ 𝑑E

8 ∙ (𝑧C − 𝑧)
∙

⎣
⎢
⎢
⎢
⎢
⎡¬
−2𝑦 + 2(𝑦$ + 𝑦C)
2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E

√ exph
−e𝑦 − (𝑦$ + 𝑦C)f

E − 𝑥E

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
j

−¬
−2𝑦 + 2𝑦K)

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
√exph

−e𝑦 − 𝑦Kf
E − 𝑥E

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
j

⎦
⎥
⎥
⎥
⎥
⎤

 (56) 

and 395 

𝜀B,hi =
1
2
¬
𝜕𝑈h
𝜕𝑦

+
𝜕𝑈i
𝜕𝑥

√ (57) 

where rs3
ri
 and rs4

rh
 read as, 396 

𝜕𝑈h
𝜕𝑦

=
𝑥

𝑧C − 𝑧
∙ ¬−

𝑉- ∙ 𝜋 ∙ 𝑑E

√2𝜋 ∙ 𝐾h ∙ (𝑧C − 𝑧) ∙ 4
√

∙

⎝

⎜
⎜
⎜
⎛ 1

√2𝜋
𝑒&

ti&(i)9i5)u4(?5&?)
v
6

E ∙ ¬
1

𝐾i(𝑧C − 𝑧)
√

−
1
√2𝜋

𝑒&
t

i&i7
u4(?5&?)

v
6

E ∙ ¬
1

𝐾i(𝑧C − 𝑧)
√ ∙ exp ¬−

𝑥E

2 ∙ 𝐾hE ∙ (𝑧C − 𝑧)E
√
⎠

⎟
⎟
⎟
⎞

 

(58) 

and 397 

𝜕𝑈i
𝜕𝑥

=
𝑉- ∙ 𝑑E

8 ∙ (𝑧C − 𝑧)
∙

(−2𝑥)
2 ∙ 𝐾hE ∙ (𝑧C − 𝑧)E

⎣
⎢
⎢
⎢
⎢
⎡exp h

−e𝑦 − (𝑦$ + 𝑦C)f
E − 𝑥E

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
j

−exph
−e𝑦 − 𝑦Kf

E − 𝑥E

2 ∙ 𝐾iE ∙ (𝑧C − 𝑧)E
j

⎦
⎥
⎥
⎥
⎥
⎤

 (59) 

4.2 Sensitivity of information (SOI) analysis  398 

In this subsection, the computational procedure for the estimation of SOI for different locations is elaborated. 399 

According to [15], the event that tunnel excavation-caused building crack exceeds 0.1mm (εpqm = 0.05%) is defined 400 

as the limit state, indicating damage level 1 in Table 2. Accordingly, the limiting strain for this case can be set as 401 

𝜀75@ = 0.05%, leading to the limit state function (LSF), g(X) for this case, 402 

𝑔(𝑿) = 𝜀75@ − 𝜀@Fh(𝑿) (60) 

where 𝑿  denotes the vector of random variables. In this context, 𝑿 =403 

Ä𝑉-; 𝐾;
_
l
; 𝐸k$2

$Fc; 𝐸k$2
B2c,'; 𝐸k$2

B2c,E; 𝐸k'2
$Fc; 𝐸k'2

B2c,'; 𝐸k'2
B2c,E	Å, where 𝐸k$2

$Fc, 𝐸k$2
B2c,', 𝐸k$2

B2c,E, 𝐸k'2
$Fc, 𝐸k'2

B2c,' and 𝐸k'2
B2c,E are the 404 
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errors of the equivalent beam model of Eq. (47) and (48) in the sagging and hogging zones, respectively. The 405 

probabilistic distribution of these 9 random variables is summarized in Table 3. Moreover, the failure domain 𝛺K 406 

can be defined as, 407 

𝛺K = {𝑔(𝒙) ≤ 0} (61) 

where 𝒙 is a stochastic realization from 𝑿. To precisely assess and track the risk of the tunnelling-induced settlement 408 

to the building, the measurement of settlement at the location 𝑙@ , 𝑠@(𝑙@) , is conducted over the region of 409 

observation, 𝛺28. 𝑍728 and 𝑍618 are equal to 5 [m] and 15 [m], respectively, based on engineering experience.  Fig 410 

7 illustratively interprets this strategy, where the light green region is represented as 𝛺28. Moreover, the relation 411 

between the measured and ground truth settlement can be read as: 412 

𝑆@ = 𝑆e𝑥@5 , 𝑦@5 , 𝑧@5 , 𝑉7 , 𝐾f + 𝐸K + 𝐸@ = 	𝑆e𝑥@5 , 𝑦@5 , 𝑧@5 , 𝑉7 , 𝐾f + 𝐸_ (62) 

where 𝐸K is the model error interpreting the potential inaccuracy of the Gaussian settlement shape and 𝐸@ is the 413 

measurement error stemming from the manmade imprecision, imperfection of instruments etc. Let 𝐸_ = 𝐸K + 𝐸@, 414 

the likelihood function for this case is defined as: 415 

𝐿(𝑣7 , 𝑘) = 𝑓_ |𝑠@5 − 𝑆e𝑥@5 , 𝑦@5 , 𝑧@5 , 𝑣7 , 𝑘f} (63) 

where 𝑣7  and 𝑘 are the realizations of random variables 𝑉7  and 𝐾, and 𝑓_  is the PDF of the integrated error 𝐸_ . 416 

Therefore, the two augmented limit state function ℎ'(𝑃, 𝑿) and ℎE(𝑃, 𝑿) can be sequentially defined based on Eq. 417 

(63). Before exploring 𝑙∗  over 𝛺28 , the procedures of estimating P(F) and P(F|Z) are elaborated. Therein, four 418 

measurements, 𝑠@e𝑥@5 , 𝑦@5 , 𝑧@5 f, 𝑖 = 1,2,3 and 4 are ready to update P(F|Z) from P(F). The corresponding data and 419 

simulation results are reported in Table 4 together with the corresponding interpretative figures illustrated in Fig 8. 420 

Table 3. Probabilistic distribution of random variables [15]. 421 

Random variable Description Type of 
distribution Mean Standard 

deviation 

𝐾(-)   Trough width parameter Lognormal 0.3 0.06 

𝑉-(%) Volume loss Lognormal 0.4 0.16 

_
l
(-) Material ratio Beta 2.5 0.045 
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÷
𝐸k$2
$Fc; 𝐸k$2

B2c,'; 𝐸k$2
B2c,E;

𝐸k'2
$Fc; 𝐸k'2

B2c,'; 𝐸k'2
B2c,E ◊(-) Equivalent beam model errors Lognormal 1.0 0.05 

𝐸@(mm) Measurement error Normal 0 1 
𝐸K(mm) Settlement model error Normal 0 2 

 422 

  
Fig 7. Conceptual illustration of Ωde and the monitoring measurement 𝑠@(𝑙@), where 423 

𝑙@ = (𝑥@, 𝑦@, 𝑧@) and 𝑙@ ∈ 𝛺28. 424 
 425 
 426 
 427 

Table 4. Simulation results of case study through the proposed reliability updating method, where 428 
COVwx) = 0.05 and 𝑁5= = 10y.  429 

Information Position Pr(F) Pr(F|Z) 𝑑61 COVA* COVA*|, 𝑁%zF 
𝑠@(𝑙') = 10 (10,10,0) 8.26 × 10&T 1.29 × 10&E 0.069 0.0449 0.0471 56000 
𝑠@(𝑙E) = 10 (15,15,0) 8.40 × 10&T 8.47 × 10&E 0.425 0.0375 0.0497 84000 
𝑠@(𝑙T) = 10 (20,20,0) 8.31 × 10&T 2.23 × 10&E 0.161 0.0448 0.0494 56000 
𝑠@(𝑙y) = 10 (25,25,0) 8.36 × 10&T 9.84 × 10&T 0.025 0.0453 0.0462 56000 

 430 
Table 5. Simulation results via MCS, FORM/SORM, IS and the proposed method.  431 

Method Pr(𝐹|𝑍) Pr(𝐹) 𝑁$5@ 

MCS 9.76 × 10&E 8.35 × 10&T 10Y 

FORM [2] N/A 2.13 × 10&E 100 

SORM [2] N/A 8.27 × 10&E 132 

IS [2]` 5.34 × 10&T 6.15 × 10&T 5100 

The proposed method 9.84 × 10&E 8.26 × 10&T 22498 
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 432 
By setting 𝐾 and 𝑉- as the x and y axis and starting with 𝑁$$ = 10y, Fig 8(a) illustrates the estimate of Pr(F) 433 

through SS with information 𝑠@(𝑙y), where 𝑆', 𝑆E and 𝑆T denote samples located in the three intermediate subsets. 434 

However, the initial set of 𝑁$$  is insufficient so that COVA* 	is estimated as large as 0.0657. Therefore, 𝑁$$  is 435 

adaptively increased to 2 × 10y and Pr(F) is finally estimated as 8.26 × 10&T with COVA*  equal to 0.0449. Fig 436 

8(b) showcases the estimate of Pr(Z) based on the augmented limit state function ℎ'(𝑃, 𝑿) = 0, where the darker 437 

dots denote the accepted samples, 𝑆FMM, and the brighter ones represent the rejected samples, 𝑆4%P. In this step, Pr(Z) 438 

is estimated as 8.87 × 10&Y and 𝑐' is equal to 1.78 × 10&U. Fig 8(c) showcases the estimate of Pr(Z|F) through 439 

the augmented limit state function ℎE(𝑃, 𝑿) = 0, where the darker dots denote the accepted samples, 𝑆FMM7F$3, and the 440 

brighter ones represent the rejected samples, 𝑆4%P7F$3. One should note that É𝑆FMM7F$3 , 𝑆4%P7F$3Ñ ∈ 𝑆7F$3 , where 𝑆7F$3 is the 441 

last sample set in Fig 8(a). In this step, the two terms are estimated as Pr(Z|F) = 1.05 × 10&U  and 𝑐E =442 

2.02 × 10&U. Fig 8(d) exhibits the conventional procedure represented in Eq. (10) that relies on the computational 443 

scheme 𝑃(𝐹 ∩ 𝑍)/𝑃(𝑍)  with the joint limit state function 𝐽(𝑃, 𝑿) = max[𝑔(𝑿), ℎ'(𝑃, 𝑿)] . The conventional 444 

approach results in the simulation data with 𝑃(𝐹 ∩ 𝑍) = 2.92 × 10&T, which is significantly smaller than Pr(F). 445 

This implies that more evaluations of 𝑔(𝑿) should be conducted compared to the proposed approach, which further 446 

demonstrate the computational efficiency of the proposed reliability updating approach. Moreover, the size of 447 

samples in each subset is adaptively increased to guarantee the sufficiently consistency of  Pr(Z|F), which facilitates 448 

the computational robustness of SOI and the exploration of 𝑙∗. To further demonstrate the computational efficiency 449 

of the proposed method, the computational performance via MCS, FORM, SORM and IS is summarized in Table 5. 450 

All implementations are conducted through UQLab package in MATLAB with default settings. By treating the 451 

result of MCS as the benchmark, all the four methods are able to estimate the prior failure probability.  However, 452 

the posterior failure probability cannot be estimated through FORM or SORM. It is shown that the estimated 453 

posterior failure probability is more accurate than the importance sampling method used in literature [2]. According 454 

to Table 5, Pr(𝐹|𝑍) is estimated as 9.76 × 10&E through MCS. Comparing this with estimates of 9.84 × 10&E and 455 
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5.34 × 10&T using the proposed method and IS, respectively, it is evident that the proposed method overperforms 456 

IS.  457 

SOI can be understood as a metric that considers the change of Pr(𝐹) due to all possible information that could 458 

be acquired at a specific location. Moreover, it can be concluded from the simulation results that SOI is not solely 459 

determined by Pr(𝐹); it is determined by both Pr(𝐹) and Pr(𝐹|𝑍). A monitoring system placed at a location with 460 

a large SOI improves the accuracy of Pr(𝐹) estimation significantly. Therefore, acquiring information at that 461 

location is necessary if one needs to have a more accurate Pr(𝐹|𝑍). Estimation of SOI in turn requires investigating 462 

an integral and evaluation of the limit state function multiple times.  463 

Fig 9 showcases the relation of 𝑑61 versus Z at locations 𝑙' and 𝑙T. One can infer that 𝑑61(𝑙') reaches 0 when 464 

𝑍 = 8.7, which indicates that the updated reliability deviates substantially from the prior one when the information 465 

is involved because it is beyond the expectation of prior knowledge. However,  𝑑61(𝑙T) almost increases linearly 466 

over the interval [𝑍728,	𝑍618]. The next subsection elaborates the procedures of exploring 𝑙∗ over different regions 467 

of observation and excavation stage. 468 

It can be observed from Table 4 that 𝑑61 with 𝑠@(𝑙E) = 10 is apparently the largest one, which also indicates 469 

the largest change for the update of reliability when information 𝑠@(𝑙E) is available. As the location transits from 470 

𝑙E to 𝑙y and the settlement information keeps unchanged, 𝑟61 decreases significantly from 0.2099 to 0.0129. This is 471 

in attributed to the location of  𝑙y is further from both the tunnel axis and building facade compared to location 𝑙E. 472 

Therefore, 𝑟61 can be an efficient metric for quantifying the contribution of the change of updated reliability for 473 

different source of information. Moreover, the significance of information at some locations cannot be interpreted 474 

by intuition, therefore, the metric 𝑑61 can reflect this effect. For example, 𝑑61 is estimated as 0.1219 at location 𝑙', 475 

which is less significant than location 𝑙T because the settlement close to TBM becomes smaller, thereby it has less 476 

influence on 𝑑61. This point, however, does not indicate that  𝑙' is less valuable than  𝑙T in terms of SOI because 477 

Table 6 presents that SOI for location 𝑙' is greater than location 𝑙T . Nevertheless, 𝑙E is deemed to be the most 478 

significant location among three selected points according to SOI.  479 

 480 
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Table 6. SOIs at locations 𝑙' , 𝑙E , 𝑙T 481 
and 𝑙y 482 

Number Location SOI 
1 𝑙' 0.1219 
2 𝑙E 0.2099 
3 𝑙T 0.0801 
4 𝑙y 0.0129 

 483 

  
         (a)       (b)  

  
     (c)      (d) 

Fig 8. Use information 𝑠@(𝑙y) via SS to estimate (a) Pr(F) based on 𝑔(𝑿); (b) Pr(Z) based on ℎ'(𝑃, 𝑿) at the 484 

location; (c) Pr(Z|F)  based on ℎE(𝑃, 𝑿′) , where 𝑿′ ∈ Ω{  and (d) Pr(Z ∩ F)  based on 𝐽(𝑃, 𝑿) =485 

max[𝑔(𝑿), ℎ'(𝑃, 𝑿)]. 486 
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   (a)      (b)  

Fig 9. 𝑑61 versus Z at the location of (a) 𝑙' and (b)	𝑙T 487 
 488 

4.3 Optimal settlement monitoring location  489 

In this subsection, 𝑙∗ is explored over the whole region of observations, Ωde, globally, where the corresponding 490 

steps are depicted in Fig10. In Fig 10(a), the tunnel is plotted with gray region, the light red square showcases where 491 

the building façade locates, 𝐶$  represents the contour of tunneling excavation-induced settlement and Ωde  is 492 

represented by light blue square. Initially, 81 equally distributed training samples (locations), 𝑙5=, represented with 493 

black star dots are ready to training a surrogate model for 𝑆𝑂𝐼û (𝑙) over Ωde = É𝑥75@' , 𝑥75@E ; 𝑦75@' , 𝑦75@E ;	Ñ, where 494 

É𝑥75@' , 𝑥75@E ; 𝑦75@' , 𝑦75@E ;	Ñ  denotes the x and y limits of axis of Ωde . For example, Ωde  is parameterized by 495 

[10,30; 10,30; ] in the Fig 10(a) and the true responses of the 81 discretized training samples are estimated, which 496 

facilitates the initial construction of 𝑆𝑂𝐼û (𝑙). Subsequently, extra training samples are adaptively enriched through 497 

the EI active learning function and terminates until the stopping criterion is satisfied. For this case, 7 extra training 498 

samples are finally added and the surface plot of 𝑆𝑂𝐼û (𝑙) based on the Kriging surrogate model is represented in Fig 499 

10(b). Fig 10(c) showcases the x-y view of 𝑆𝑂𝐼û (𝑙), where 𝑆𝑂𝐼û  increases as the regions transits from blue to yellow. 500 

Moreover, the initial optimal location, 𝑙5=∗ , among 𝑙5= is identified as (15,27.5,0) and finally transits to the final 501 

optimal location, 𝑙∗, where 𝑙∗ = (14.9,24.8,0) with SOI estimated as 0.2356, as highlighted in Fig 10(d). 502 
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      (a)         (b)  

  
     (c)        (d) 

Fig 10. Procedure of exploring 𝑙∗  through surrogate-based optimization with (a) the initial training 503 

samples located in Ωde = [10,30; 10,30; ], where 𝑦$ = 0; (b) surface plot of 𝑆𝑂𝐼û ; (c) the addition of 504 

training samples through active learning and the identified 𝑙∗ and (d) an overview of 𝑙∗ in the process of 505 

tunneling excavation. 506 
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     (a)        (b) 

Fig 11. Surface plots based on metrics defined with (a) Î|#&)0
|#&)0

− 1Î and (b) Ï
A7
#&)0

A7
#2(&2 − 1Ï 507 

One should note that SOI can take different forms; it can be also defined  as Î |#&)0
|#2(&2

− 1Î, Ï
A7
#&)0

A7
#2(&2 − 1Ï, among 508 

other possibilities. Fig 11 showcases the surface plots of  Î |#&)0
|#2(&2

− 1Î and Ï
A7
#&)0

A7
#2(&2 − 1Ï versus x and y. It can be 509 

observed from Fig 11 and Fig 10(b) that all these three metrics can efficiently quantify the sensitivity of the 510 

information. By comparing Fig 11 with Fig 10(b), the metric based on  Î |#&)0
|#2(&2

− 1Î indicates the least variation, 511 

while Ï
A7
#&)0

A7
#2(&2 − 1Ï indicates the highest variation. Moreover, due to the smooth property of the metric based on 512 

U𝛽12$3 − 𝛽14524U , it is more efficient for integration with surrogate models. Moreover, the metric based on 513 

U𝛽12$3 − 𝛽14524U is more intuitive for understanding and communication of the concept of SOI. According to this 514 

experimental study, while the shape of SOI is affected the functional form, the optimal monitoring location remains 515 

the same. 516 
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     (a)        (b) 

  
 (c) (d) 

Fig 12. Investigation of simulation results with (a) 9, (b) 25, (c) 121 and (d) 441 initial training samples 517 

Moreover, the definition of initial samples can also affect the performance of the proposed framework. If the 518 

initial training sample size is insufficient, the problem can become ill-conditioned. To explore such an effect, the 519 

number of initial training samples is increased from 9, to 25, 121, and 441. The corresponding simulation results 520 

are illustrated in Fig 12. According to Fig 12 (a), all the added training samples and the identified optimal sample 521 

are clustered at the right bottom corner. This can be attributed to the scant initial training samples that lead to large 522 

uncertainties in the active learning process of the surrogate model. The computational performance gets rid of ill 523 

condition as the number of initial training samples reaches 25 as seen in Fig 12(b). In this figure, 21 additional 524 

samples are included. As the number of initial training samples reaches 121, the number of additional training 525 

samples decreases, as seen in Fig 12(c). On the other hand, it is computationally demanding to prepare a large 526 
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number of initial training samples. This is seen in Fig 12(d), where no extra training sample is needed to refine the 527 

Kriging surrogate model because the 441 initial samples are sufficient for estimating the value of SOI.  528 

  
         (a)           (b)  

  
         (c)          (d) 

Fig 13. Illustration of identified 𝑙∗s with (a) 𝛺28 = 𝛺}, 𝑦$ = 0 and −3; (b) 𝛺28 = 𝛺~, 𝑦$ = 0 and −3 529 

(c)	𝛺28 = 𝛺 , 𝑦$ = 0 and −3 and (d) 𝛺28 = 𝛺^, 𝑦$ = 0 and −3. 530 

As the excavation of tunnel proceeds and Ωde changes, 𝑙∗ changes accordingly. Fig 13 showcases four scenarios, 531 

𝛺}, 𝛺~, 𝛺  and 𝛺< of Ωde for tunnel excavation along with the tunnel façade 𝑦$ changing from 0 to -3, of which 532 

the simulation results are summarized in Table 7. According to Fig 13, 𝑙∗  changes from (14.9,24.8,0)  to 533 

(12.5,20.2,0) while the excavation proceeds to 𝑦$ = −3 and Ωde keeps unchanged which leads to SOI increases 534 

from 0.2356 to 0.6042. This phenomenon can be interpreted by the settlement caused by excavation of tunnel 535 

dominates the change of the updated reliability. Moreover, Fig 13(b) represents that 𝑙∗ maintains unchanged even 536 
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though 𝑦$ changes from 0 to -3 along with the increase of SOI from 0.0327 to 0.0798. This is because the point at 537 

the very bottom left over Ωde = 𝛺~  is the most valuable point. As Ωde changes from 𝛺} to 𝛺~ , 𝑙∗(𝑦$ = 0) and 538 

𝑙∗(𝑦$ = −3)  are estimated as (−14.5,23.7,0)  and (−11.9,21.5,0)  with SOI equals to 0.2391 and 0.7329, 539 

respectively. It can be inferred from the comparison between Fig 13(a) and (c) that above two optimal locations are 540 

closely symmetric to the two identified optimal locations when Ωde = [10,30; 10,30; ] along the y-axis. This can 541 

be explained by the symmetric characteristics of Gaussian settlement defined in Eq. (44). In Fig 13(d), 𝑙∗ changes 542 

from (0.5, −10,0)  to (7.5, −10,0) with the corresponding SOI estimated as 0.0824 and 0.0261, when Ωde = 𝛺^. 543 

The tunnel façade at 𝑦$ = 0 causes a slight deviation of  𝑙∗ close to the building side when Ωde = 𝛺^ and this effect 544 

of deviation strengthens when 𝑦$ = −3. 545 

Table 7. Identification of 𝑙∗ with corresponding SOI based on different combinations of 𝛺28 546 
and 𝑦$. 20 simulations are conducted to eliminate the uncertainty of the method, where 𝑙

∗̅(m) 547 
and SOI#### (-) denote the mean of 𝑙∗(m) and 𝑆𝑂𝐼 (-) 548 

 Region Parameters (m) 𝑦$(m) 𝑙∗̅(m) 𝑆𝑂𝐼##### (-) COV𝑆𝑂𝐼 

𝛺} [10,30; 10,30; ] 
0 (14.52,24.17, 0) 0.2389 0.112 
-3 (12.88,19.25, 0) 0.5326 0.127 

𝛺~ [−30,−10;−30,−10; ] 
0 (−10,−10, 0) 0.0392 0.027 
-3 (−10,−10, 0) 0.0827 0.022 

𝛺  [−30,−10; 10,30; ] 0 (−14.47, 23.15, 0) 0.2622 0.134 
-3 (−11.77, 21.29, 0) 0.6480 0.108 

𝛺^ [−10,10;−30,−10; ] 0 (0.52, −10.0, 0) 0.0927 0.035 
-3 (7.58, −10.0, 0) 0.0272 0.024 

 549 

Therefore, the procedures represented above showcase a systematic approach for localizing the optimal 550 

monitoring topology for the risk assessment and tracking of a tunneling-induced structural failure. Instead of 551 

focusing on the location where the largest deformation happens, this paper sheds light on utilizing probabilistic 552 

tools to account for the uncertainties involved. It can be further investigated to explore the uncertainty of the soil 553 

properties via random fields modelling and consider the paradigm that can handle multiple building over the 554 

tunneling contour. It is expected that this work can be leveraged to improve the efficiency for decision-making of 555 

structural health/risk monitoring of geo-structures. 556 

5. Conclusions and discussions 557 
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This paper proposes a computational framework based on a novel metric called SOI (sensitivity of information) to 558 

determine the optimal monitoring location for risk tracking of infrastructure systems. Generally, the major 559 

contributions of this paper can be summarized as: 560 

• A novel metric called SOI (Sensitivity of Information) is proposed to quantify the change in updated and prior 561 

reliability of a structure or a system at a specific location with possible new information that can be acquired 562 

through a monitoring system placed at another location. In terms of failure risk, SOI seeks for monitoring 563 

locations that offer the highest sensitivity of reliability update to new information. Monitoring at locations with 564 

high SOI can significantly improve the accuracy of updated reliability for the structure or infrastructure system 565 

of interest. Compared to VOI, the calculation of SOI is more straightforward and is purely grounded in 566 

reliability updating theory without the need to establish possible actions and costs.  567 

• Determining the proposed SOI is computationally very challenging. Therefore, a novel computational 568 

framework is proposed to facilitate efficient computation of SOI and to explore the optimal monitoring location 569 

for infrastructure systems. This is achieved through integration of adaptively trained surrogate models based 570 

on active learning concepts in the computation of SOI as well as in solving the optimization model that is 571 

formulated in search of the location with maximum SOI.  572 

To explore the performance of the proposed computational framework, a practical case that investigates the risk 573 

posed by tunneling-induced settlement to building damage is studied. Simulation results showcase that the optimal 574 

settlement monitoring grounded in reliability updating theory can be accurately determined. In of the context of risk 575 

analysis, this proposed framework can also be applied to other infrastructure systems whenever the identification 576 

of optimal monitoring location is needed. For example, it can be modified for optimal sensor placement for fire 577 

warning systems or for structural health monitoring application. A challenge in the application of the proposed 578 

framework is the associated computational cost of evaluating the limit state function. While this problem is 579 

addressed in this paper through integration of adaptive Kriging, for complex performance functions, e.g., high-580 

dimensional or non-smooth limit state functions [62] additional research may be needed. Moreover, SOI in this 581 

paper is defined as U𝛽12$3 − 𝛽14524U. Other forms of SOI can be explored in depth in future studies. 582 
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