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ABSTRACT

Structural health monitoring (SHM) technologies offer ever-increasing opportunities to continually observe various
responses and states of structures, such as settlement-induced building damage. Recent advances in reliability
updating have enabled estimating the probability of failing to meet a prescribed objective for systems using various
types of information including those acquired from SHM. However, reliability updates are sensitive to monitoring
location, especially when the risks are evolving. Therefore, there may exist optimal locations in a system for
monitoring that yield maximum value for reliability updating. This paper proposes a computational framework for
optimal monitoring location based on an innovative metric called sensitivity of information (SOI). This metric
quantifies the change in unconditional and conditional reliability indexes, which subsequently facilitates fast
exploration of optimal monitoring location by parameterizing an optimization function. A state-of-the-practice case
related to assessing evolving risks posed by tunneling-induced settlement to buildings is explored in-depth with
respect to the progression of tunneling. Simulation results showcase that the proposed framework can successfully
find the monitoring location that is the most impactful to the accuracy of the updated reliability.

Key words: Infrastructure monitoring, reliability updating; reliability analysis; Machine Learning; surrogate

models; Tunneling excavation

1. Introduction
Infrastructure systems are often subject to various forms of stressors that can threaten their functionality and safety

[1]. To capture those potentially unsafe conditions that may cause future catastrophic events, structural reliability
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analysis for structures is indispensable. As sensors and, more broadly, monitoring technologies advance, valuable
information can be acquired without much effort. This brings new opportunities for risk analysis. It also introduces
new challenges for the integration of data and re-evaluation of the established risk assessment processes to update
risk assessments. Grounded in the Bayesian updating theory, the emergence of reliability updating technique fills
this gap by updating the probability of failure. In this context, let F denote the failure event and Z denote the
observed information. Reliability updating aims to estimate the conditional probability of failure, Pr(F|Z), which

can be formulized as [2],

Pr(F|Z) = % D

where Pr(F|Z) is the conditional probability of failure given information Z (or the so-called posterior probability
of failure) and Pr(F N Z) is the probability of the joint event F N Z. The information Z can be generally classified
into two groups that are inclusive of equality and inequality types. Computation of reliability updating with equality
information is typically non-trivial through the conventional approaches such as surface integral [2] [3] and
Bayesian networks [4]-[6]. This computational challenge has been addressed by subtly introducing an auxiliary
random variable to transform the equality information into an inequality one [2]. However, the computation of
Pr(F|Z) requires the probability of a joint event, F N Z, which is typically a very rare event. This probability can
be estimated through subset simulation (SS) to improve the computational efficiency [7]-[10]. Moreover, by
decomposing Pr(F N Z) into two more frequent probabilities Pr(Z) and Pr(F|Z) and training a surrogate model
for the limit state function, metamodel-based approaches can facilitate fast estimation of Pr(F|Z) [11], [12].
Reliability updating has been recently applied in engineering for solving various types of practical problems.
For example, field data and soil characteristics have been used to accurately estimate the reliability of a shallow
foundation in a silty soil with spatially variable properties simulated via random fields [13]. Moreover,
metamodeling techniques have been integrated to analyze the prior and posterior failure probabilities of a sheet pile
wall in a dyke [14]. This work demonstrated the computational capability of metamodel-based reliability updating
in estimating Pr(F|Z). To ensure the safety of buildings in vicinity of a tunnel line, the settlement monitoring data

at different locations were used to update the reliability of tunneling-induced settlement during excavation [15].
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This technique can better assist in risk management decisions if the ability of the planned tunneling line to satisfy
the safety requirement can be checked in real-time through settlement monitoring. Analogous to this case, the
deformation measurements of an excavation in sandy trench with a sheet pile retaining wall were also used to update
the reliability of a construction site at its full excavation status [8]. This work can be viewed as a practical case for
engineers in construction sites in avoiding catastrophic trench collapse. Additionally, to improve alarming system
of a flood defense infrastructure, reliability updating together with head monitoring information were implemented
in [16] to mitigate the risk of piping-induced levee failure in the presence of highly uncertain geohydrological
properties. This work represents the potential capability of reliability updating in strengthening risk-informed
warning systems against natural hazards. To achieve the largest benefits, Klerk et al. [17] also used reliability
updating and VOI (value of information) to seek for optimal structural health monitoring of flood defense systems
from a set of representative case studies. Huang et al. [ 18] are among the very first authors who proposed an adaptive
reliability updating of bridges using structural properties derived from nondestructive testing . Using Bayesian
inference, Jin et al. [19] proposed an adaptive approach to seek for soil parameters that correspond to the measured
deformation on site, which facilitates the prediction of deflections. Subsequently, Jin et al. [20] applied a Bayesian
method to explore most probable parameters and demonstrated a process for obtaining those parameters. Moreover,
reliability updating has also been implemented in performance assessment of deteriorating reinforced concrete
structures [21], slope stability [22], [23], structural inspection and repair of infrastructures [24], system
identification [25], life-cycle analysis [6] and other applications [26]-[32].

The reviewed literature showcases the high capability of reliability updating in successfully tracking the risk to
infrastructures by incorporating the monitoring information within the existing computational scheme of reliability
evaluation. For improving risk assessment, it is also necessary to properly select the monitoring location. Jiang et
al. [33] proposed exploring the location of boreholes for site investigation for a slope by maximizing VOI. Hu et al.
[34] proposed an efficient method to reduce the computational cost for site investigation of slope stability
assessment through VOI analysis. These efforts are grounded in theory of VOI, which is tailored to minimize the
economic cost considering possible structural failure, maintenance and rehabilitation. However, the estimate of YOI
index can be trapped in a dilemma when the cost of consequences (e.g., structural failure) is unknown or probability

3
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distribution of information is unavailable. Moreover, VOI is not appropriate anymore for exploring the optimal
monitoring location when safety consideration is more important than economy. Therefore, it can be inferred that
there must exist optimal monitoring locations, where the updated reliability can be utmost sensitive to the obtained
information. To this end, this paper develops a method that efficiently determines the optimal monitoring location
by introducing a novel metric called sensitivity of information (SOI) that measures the amplitude of the sensitivity
at any location. Without knowing the cost of consequences, SOI is defined as the change in updated and prior
reliability index, which facilitates the quantitative measurement of sensitivity of updated reliability index to the new
information at a specific location. To improve the computational efficiency of estimating Pr(F|Z), SS along with
foregoing presented decomposition of Pr(F N Z) are integrated within the proposed computational framework.
Moreover, the proposed SOI index subsequently parameterizes an objective function that is designed to find the
optimal monitoring location by searching for its maxima based on a surrogate-assisted optimization. To examine
the computational efficiency, a state-of-the-practical case of tunneling-induced settlement to building damage is
investigated.

The rest of this article is mainly organized in 5 sections. Section 2 briefly introduces the concept of reliability
updating. Section 3 presents the proposed SO! index together with the framework for determining the optimal
monitoring location. Subsequently, section 4 presents the procedures of analyzing SOI and exploring the optimal
settlement monitoring location for a practical case that investigates the risk posed by tunneling-induced settlements.
Conclusive remarks are drawn in section 5.

2 Reliability updating with equality information

Generally, the main difference between reliability analysis and updating lies in whether the observational
information is available or not. Reliability analysis focuses on the computation of unconditional probability of
failure Pr(F) while reliability updating estimates the conditional probability of failure Pr(F|Z). Let g(X) denote
the performance function, the response of which determines the condition of the system: g(X) < 0 indicates failure
and g(X) > 0 means safe state; the boundary region where g(X) = 0 is called the limit state. Thus, the

unconditional probability of failure can be defined as:
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Pr(F) = Pr(g(X) < 0) (2)
Methods for computing Pr(F) include but are not limited to: crude Monte-Carlo simulation (MCS) [35], [36], first-
or second-order reliability analysis method (FORM & SORM) [37], [38], importance sampling (1S) [39], [40], SS
[41]-[43] and surrogate-based methods [44]-[47]. As Eq. (1) shows, the estimate of Pr(F|Z) needs to compute

Pr(Z) and Pr(F N Z). According to [2], the probability of information Pr(Z) can be computed as follows,

Pr(2) = J Pr(Z|0(X) =6) f(6)d6 3)

0eng
where X denotes the vector of random variables, ©(X) denotes a function parameterized by X with the realization
notation 0, that can be the uncertainty of the system characteristic, ©(X), or the external loadings, 0,(X).
Moreover, f(+) represents the probability density function (PDF) and {2 is the probabilistic space of ©(X). In this

context, the probability of the joint event Pr(F N Z) can be derived as,

Pr(FNnZ) = J Pr(F|0(X) = 8)Pr(Z|0(X) = 6) f(6)d6 4)

SIS0

For any likelihood functions, L(x), the following identity holds true [2]:
1
L(x) = EPF{U —® cL(x)] < 0} (5)

where c is a constant satisfying 0 < cL(x) < 1, @~ denotes the inverse standard normal cumulative distribution
function, and U represents a standard normal variable. By reformulation the equality information into inequality
one, Pr(Z) can be estimated by introducing the auxiliary random variable, U, and define an augmented Limit State
Function (LSF),

Pr(Z) = aPr(h(U,X) < 0) (6)

pr(Z|X = x)

) is an introduced proportionality constant [2], h(U, X) is the augmented limit state function

where a =
with an auxiliary standard normal random variable, U [2],
h(U,X) =U — @ 1[cL(X)] (7)
Similarly, Pr(F N Z) can be computed by defining a limit state function that takes the maximum value of g(X)

and h(U, X),
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Pr(F n Z) = aPr(max[g(X), h(P,X)] < 0) €))
Derivation of Eq. (8) is not elaborated in this paper for the sake of brevity. Detailed derivation can be found in [2].
Note that U is not necessarily a standard normal random variable, it can be as simple as a standard uniform
distributed random variable. Therefore, one can rewrite Eq. (7) as,
h(U,X) =P — cL(X) 9)
However, the adoption of standard normal random variable can improve the smoothness of the responses of the
function. To increase the readability, the computational scheme based on Eq. (9) is used throughout the paper.

Combining Eq. (6) and (8), the conditional probability of failure can be obtained by canceling out the constant «,

Pr(J(U,X) <0)
Pr(h(U,X) <0)

Pr(F|Z) = (10)

where J(U, X) = max[g(X), h(U, X)]. Eq. (10) enables fast reliability updating by solving two structural reliability
problems. Typically, the numerator in Eq. (10) is very small, which requires powerful structural reliability methods
such as subset simulation [7], [8]. In the following context, an efficient and robust approach for the estimation of
Pr(F|Z) is presented, which facilities the localization of optimal monitoring location.

3 Optimal monitoring location analysis with SOI

Data measured at different locations of structures and infrastructure systems may have distinct impacts on the
updated reliability. To precisely quantify this difference, a concept of sensitivity of information for the updated
reliability is proposed in this paper. Moreover, the proposed concept can be further leveraged to identify the optimal
monitoring location that makes the most significant contribution to the change of updated reliability. In this section,
the concepts of sensitivity of information (SOIJ) are elaborated. By maximizing the objective function involving SO/,
the optimal monitoring location can be derived with the goal of risk tracking for structures and infrastructure
systems.

3.1 Sensitivity of information analysis for reliability updating

In practical engineering, acquiring information is typically costly; therefore, engineers should prudently select a
worthwhile location for structural monitoring and diagnosis. However, information collected in some locations has

very neglectable impact on the change of updated reliability. On the other hand, the updated reliability is very
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sensitive to the information stemming from very valuable locations. Therefore, the level of sensitivity of updated
reliability to the change of information should be mathematically quantified. In this paper, the foregoing concept is
denoted as sensitivity of information.

One should note that SOI here is substantially different in concept from Value of Information. VOI is tailored
to evaluate the monetary value of acquired information with the consideration of possible structural failure,
maintenance and rehabilitation. In other words, the objective of VOI is to establish a value system for acquired
information primarily from an economic cost perspective. In contrary, SO/ is aimed at evaluating the sensitivity of
risk updates to monitoring location. The objective here is to compare the power of different monitoring locations
(topology) for risk tracking and the focus is on system safety. In practical engineering, the probability distributions
of many variables are technically imprecise or unavailable, and engineers often only know the approximate range
of possible outcomes of random variable. In this context, SO/ is a practical risk-informed metric that supports
decisions for strategic placement of monitoring systems.

Let Pr(F|Z = z,L = 1) represent the conditional probability of failure given the specific equality information
z and the monitoring location [, which can be calculated based on Eq. (10). The difference of the conditional

reliability index, Bpos¢, compared to the unconditional reliability index, fB,rior, can be calculated as,

dup(Z = 2,L = 1) = |Bpost = Bprior| = |=@7[Pr(FIZ = z,L = D] — (=~ [Pr(F)])|
(11)
= |@71[Pr(F)] — @ [Pr(F|Z =z, L = 1)]|
where d,,;, denotes the change in reliability. However, the information z is typically unknown before it is measured

at the location [. In fact, z can be any number from —oo to +oo without any prior knowledges. However, some

ranges can be unrealistic. Therefore, it is assumed that z is uniformly distributed over the interval [Z;,p, Zypp],
where Z,p, and Z,,,, represent the lower and upper bounds of possible information which can be determined by
engineering judgement. Therefore, the expected value of d,,;,,(Z, L = [) can be adopted to reflect the magnitude of

dyp(Z, L = 1). In this paper, the sensitivity of information at location [ is computed as,

Zupb

+00
SOI(L=1) = J dup(Z = z,L = Df,(2)dz ~ —J
—0 Zupb - Zlob Z

Tw(Z = z,L = 1)dz (12)

lob
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It can be inferred from Eq. (12) that SOI varies with location L. If Z is a vector, Eq. (12) becomes a multiple
integral with Z integrated over all dimensions. Moreover, a monitoring location with a large SOI tends to have
significant impact on the change of reliability index while monitoring location with a small SOI indicates that the
monitoring action is not valuable. The computation of Eq. (12) involves an operation of integral, which requires
numerical discretization. Hence, the computational complexity depends on the scheme of such numerical
discretization. Assume that the integral space is discretized into ng;s pieces. Subsequently, Eq. (12) can be

calculated as,

Nais

SOI(L = D) z—Z dup(Z = 2, L = 1) A, (13)
Zupb Zlob

where z; = (2i — 1)4, is the point centered at the integral pieces and A,= (Zupb -7 lob) /Nais- Eq. (12) needs to
investigate the estimate of reliability updating ny;s times, which is computationally very intensive and not practical.
Concerning this issue, the computation of d,;,(Z = z, L = ) in Eq. (11) needs to be optimized.

3.2 Computational details of SO/

The computation of d,,,, (Z = z, L = 1) needs to investigate the estimates of Pr(F) and Pr(F|Z) for n, times. These
probabilities can be possibly rare for some cases. To enhance the computational efficiency and robustness of the
estimates of Pr(F) and Pr(F|Z), SS along with a strategy of decomposing Pr(F N Z) into Pr(Z|F) - Pr(F) is

utilized in this paper. Therefore, the following equation is represented to estimate Pr(F|Z),

Pr(F|Z) = Pr(zllfr)(; r(F) (14)

Eq. (14) optimizes the computation of Eq. (10) by decomposing Pr(F N Z) into Pr(Z|F) and Pr(F) via Bayes’
theorem. This strategy completely avoids the computation of the probability of the rare event of Pr(F N Z).

Integrating with SS, Eq. (14) can be rewritten as,

PrZIF) ((~ Pr(Z|F
pr(Flz) = 5 00 (ﬂ Fl-) =P ]_[ P(FivalFD) (15)

1=
where F; denotes the intermediate failure event of g(X), m denotes the number of subsets and F,, is the target
failure event. Given that F = F,,, Eq. (15) can be further simplified as,

8
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Pr(Z|Ey)

Pr(F|Z) = Pr(Z)

= P(R) ]_[ P(FisalFD) (16)

This indicates that the computation of Pr(F|Z) only relies on the estimates of Pr(Z) and Pr(Z|F,,) once the
estimate of Pr(F) is completed through SS. For different information, the estimate of Pr(F|Z) can be as simple as
reevaluating Pr(Z) and Pr(Z|F,,) based on the samples remained in the last target subset. However, we often
encounter the situation where Pr(F|Z) cannot be estimated with sufficient accuracy due to the insufficient samples.
This inaccuracy can lead to the associated inaccurate computation of SOI( L = [). To overcome this limitation,
samples generated through Markov Chain Monte Carlo simulation (MCMC) in each subset S ii=1,2,..,mshould

be sufficient so that COVp Fiz is smaller than COVyy,., where COVPF| , and COVyp, denote the coefficient of variation

(COV) of Pr(F|Z) and the prescribed threshold, respectively. Toward this goal, the number of intermediate failure
samples for SS is redefined in an adaptive way to facilitate the robust estimation of Pr(F|Z). Therefore, procedures
for estimating Pr(F|Z) through the adaptive adjustment of N is summarized in the following procedures:
e Step 1: Define initial parameters COV,p,., Ngs and pg for SS. In this paper, the UQLab toolbox with Reliability
module in MATLAB® software is used. Other sets for performing SS follows the default settings in UQLab [48],
[49].
e Step 2: Perform SS and record the computational results such as P, t;s, COVp, and § Eetc. In this step, the
proposal distribution for MCMC is selected to be uniform. Moreover, a conceptual illustration of this computation
for a 2D problem is presented in Fig 1. For this step, all the failure samples are kept for the sake of computing
Pr(Z|F) in step 4.
e Step 3: Estimate Pr(Z) with the following limit state function,

hi(p,x) = P — ¢;L(X) (17)
In most cases, Pr(Z) can be estimated through MCS if the estimate of L(x) is model free. Otherwise, Pr(Z) can be

estimated through SS.
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Failure domain

Qf: g(Xl,Xz) <0

9X, X)) =t, =0

giX, X)) =t

Safe domain
gX, X)) =t

Q5 g(X1,X,) >0

X1
Fig 1. Illustration of SS for a 2D example with safe and failure domains and the limit state g(X;,X,) = 0

e Step 4: Estimate Pr(Z|F) based on the kept failure samples in step 2 with the following limit state function,
h,(P,X) =P — c,L(X) (18)

e Step 5: Check if COVp nz S COV,p,. Go to Step 6 if satisfied; otherwise, reset Ngg = NSt + AN, and go back

to Step 2, where N4t denotes the number of intermediate failure samples in each subset in the last iteration.

e Step 6: Output Pr(F) and Pr(F|Z).

Essentially, step 5 investigates the computation of COVPF| , which impacts the computational robustness of the

updated reliability. Let Pg, Pz, Pzjr and Pg z denote Pr(F), Pr(Z), Pr(Z|F) and Pr(F|Z)for the sake of readability

of this manuscript. To this end, COVp FiZ is computed in the following context. In virtue of the equality Var(AB) =

[E(A)]?Var(B) + [E(B)]?Var(4) + Var(4)Var(B), where 4 and B are two mutually independent random

variables, the following equation holds true,

N

Var (Pm 7 P_lz)

COVp,, = T
E (Proz )
(19)

1
[[E(PFOZ)]ZVar (%) +[E (%)]2 Var(Prnz) + Var(Peaz)Var (P_1Z)]2

E(Pyr)E(Pp)E (P—lz)

10



213 where Pg, Ppnz and Pz p denote Pr(F), Pr(F N Z) and Pr(Z|F), E() and Var(*) represent the operations of mean

214  and variance. Moreover, E(Prnz) = E (PZ|F)E (Pg). The computation of Var(Prnz), E (Pi) and Var (Pi) is
Z

Z

215  eclaborated next. First, Var(Prnz) can be estimated according to the following equation,

Var(PFnz) = Var(PszlF)

(20)
2
= [E(Pr)]?Var(Pyr) + [E(Pzr )] Var(Pr) + Var(Pg)Var(Py )
216  If Ny, is sufficiently large, the following equation holds true,
le‘filo E(Pp) = Pp (21)

217  where Pp denotes the ground truth of the unconditional probability of failure. The variance of Pp can be
218  correspondingly calculated as,
Var(Pg) = COV3,[E(Pg)]? (22)

219 and the COV of Py, COVp,, is calculated as,

m
COVp,, = 2 COVZ fori=23,..,m (23)

=1

220  Generally, the COV of each p; can be estimated as,

1-P ]
COVp, = PN fori =1 (24)
221  and
1-P .
COVﬁl = PL—N(l + ]/i), fori =2,3,...,m (25)
222 where y; is a computational index that can be determined as,
N/Ne.—1 N
v=2 ) (1-=)nat (26)
k=1

11
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where p; (k) denotes the correlation coefficient at lag & of the stationary sequence {IJ.{‘ik}: k=1,..,N /NC}, which

can be calculated as,

pi(k) = R;(k)/R;(0) (27)

The covariance sequence {R;(k):i = 0, ..., N/N, — 1} can be estimated based on Markov chain samples as follows,

N¢ Nss/Nc_k

1 S p
R;(k) = —2 Z B8 2 28
i(k) No, — kN, L 4 Lk pi (28)

where N, denotes the number of Markov chains and Ij[’l;} denotes the failure indicator for the kth sample in the jth
Markov chain simulation level i. Typically, COVp, based on real simulations is slightly larger than the theoretical
one. To ensure the accuracy, the threshold of COVp,, can be set slightly stricter than the desired level. Moreover, the

mean and the variance of Py are estimated as,

E(PZ|F) = Pyr (29)
and

Var(Pzr) = NPz (1 — Pyr) (30)

Therefore, Var(Pgnz) can be obtained by combining Eq. (19) ~ (30). Moreover, E (Pi) and Var (pi) can be
Z

y4

estimated through numerical simulation by taking the reciprocal of a normal random variable (The Central Limit
Theorem) after its COV and mean are acquired. Importantly, the computation of COV of P, depends on the type
of reliability method (i.e., MCS or SS). One should note that the proposed approach overperforms those approaches
that rely on the limit state function of joint event (i.e., J(U, X) defined in Eq. (10)) [7], [8]. Different from the
computational scheme that needs to estimate Pr(F N Z), Pr(Z|F) only focuses on the failure domain of the
performance function, which completely avoids unnecessary computational efforts of estimating Pr(Z|F). To
clarify this point, let Pr(F)= 1073 and Pr(Z)= 102 and F and Z be mutually independent. Then the joint event
Pr(F N Z) can be as small as 10~°. This means that the total number of simulations based on F N Z can be larger
than 25000 if the batch size is set as 5000. However, the proposed approach only needs to estimate Pr(F) and

subsequently estimate Pr(F|Z) based on the failure samples from Pr(F). Because these failure samples are already

12
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calculated through performance function in the procedure of estimating Pr(F), estimation of Pr(F|Z) does not require
any simulation. This indicates that the total number of simulations is around 15000. Therefore, the cost of simulation
through proposed approach relies on Pr(F) but not Z.

3.3 Analysis of optimal monitoring location

The metric SOI can be leveraged to derive the optimal monitoring location that has the most significant impact on
the change of updated reliability index. Generally, the optimal monitoring location can be identified according to
the following equation,

" =argmaxSOI (L =1) (31)

ler

where I* denotes the vector of optimal monitoring location (I* is not bold as [* if it denotes one location), I
represents the domain of the global feasible monitoring locations and SOI( L = ) represents the sensitivity of
information at location I. However, the optimization problem represented in Eq. (31) can be computationally
prohibitive due to the complex topology of monitoring location with large dimension or discretization. To further

interpret this point, let N denote the total number of discretized mapping points, it can be calculated as,
Naim
Ny = 1_[ N£ (32)
i=1
where Ng;p, is the number of the dimension of I and Nid represents the number of discretized points in the "
direction. For example, Ny can be as large as 10° for topology with three dimensions if it is discretized into 100
pieces in each dimension. The optimization defined in Eq. (31) becomes computationally intractable if SOIs of all
these discretized points are calculated. To efficiently solve the optimization problem in Eq. (31), a surrogate model-
based optimization solution is adopted to find [*. In this paper, the Kriging surrogate model with noisy responses is
adopted to tackle the inconsistent estimate of SOI presented in section 3.2. Based on Kriging surrogate model with
noisy response, SO/ for each discretized sample ! can be represented as:
SOID) =FULP + YD +e =fTOB+¥) + €, (33)
where SOI(1) denotes the estimated value of SOI at L = I estimated through the Kriging surrogate model, ¥ (1)

denotes the Gaussian process, € is the additive noise of response which follows a zero-mean Gaussian distribution

13



263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

with covariance matrix X,,, and F(l, B) is the so-called regression basis denoting the Kriging trend, which can be a
constant, a polynomial term or any mathematical form. Moreover, f(I) is the vector of Kriging basis and B is the

vector of regression coefficients. Specifically, fT()B often takes the form of ordinary (B, ), linear

(Bo+Zndm[B],[x]n) or quadratic (Bo+Zm 2™ [Bln[x]ntEna™ Tp 2 [B]nx [x]n[x]k), where [B], and [x], denote

the n™ component of B and L, respectively. Moreover, ¥ (1) has a zero mean and a covariance matrix between two
points, l; and [;:

cov (lp(ll-),sv(lj)) = o2R(1;,1; 0), (34)
where a2 is the process variance or the generalized mean square error from the regression part and R(li, Lj; 0) is
the correlation function or the kernel function representing the correlation function of the process with hyper-

parameter 8. Multiple types of correlation functions are available for Kriging models including linear, exponential,

Gaussian, Matérn models, among others [50]. In this paper, the Gaussian kernel function is implemented:
Ngim
2
R(li,lj; 9) = 1_[ exp (—[H]n ([li]n — [lj]n) ), (35)
n=1
where [I;],, is the n™ component of the realization I;, @ denotes the hyper-parameter that can be estimated via

maximum likelihood estimation (MLE) or cross-validation [50]. It is shown that the Kriging prediction is very

sensitive to the value of @ [S1]-[53]. In this article, the optimal hyper-parameter 8* is searched through MLE:

0" = argmin— [log (det (R(ll, ))) + ngeslog(2ma?) + ndes], (36)
feR

where 14, is the number of design-of-experiment (DoE) points. Thus, for a number of DoE (training) points,
Spor = [l L, ., L] , and the corresponding responses from the performance function Y =
[SoI(ly),S0I(l,),...,S0I(l,,)], the traditional BLUP (Best Linear Unbiased Predictor) estimation of Kriging
prediction for a group of testing points, S; = [ly, I, ..., ly,] gives:

updy) = fTADB + 1)y, l; €5, (37)
where I, denotes testing samples. Moreover, let C = 6%R + X, £, = 621 (where I is an identity matrix and o2 is

the variance of noise of SOI) and T = 62 /(02 + 0?), where o2 is the Gaussian process variance, and u(l,) are:
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o= %(Y— FBTR (Y —FB) (38)
The parameters presented in Eq. (37) can be calculated as,
B = (F'C'F)~"'FTcy,
y=C'(Y-FB)

r(ly) = [R(11,1;0), ... R(Ly, Ui; 0)] 1, Le € St

(39)
() = A -0rd)
R=0-1DR+l
F=[f(l),fdy), .. fA]".
Then, the mean-square error (MSE) of SOI(l,) can be calculated by:
0F(1) = (07 + o) (1 + ") (FRTF) udl) — # (1)R'F(1)), (40)

where u(l;) = FTCr(l,) — f(l,). According to Kriging theory, for all testing points, S;, the outputs ¥ =

[9(11), g(12), ..., g(1)] from the Kriging model are parameterized with the mean, 145(1;), and the variance, O'QZ 1p):

SO ~ N (1 (1), 02 (1)), L € S (41)
The general principle of surrogate-based optimization is to start with a small number of training points that compute
SOI to build a surrogate for SOI( L = I) and subsequently refine the Kriging surrogate model by adaptively adding
new training samples until the target I* is steadily identified. The procedure discussed above is elaborated in the
following steps:
e Step 1: Discretizing the regions of observation, (), into discretized points and denote these samples as Sy, .

e Step 2: Select a limited number of points from S as initial training points I;;, for Kriging construction. As

(Ngim+ 1N gim+2)
2

suggested by [44], the number of l;;, should be greater than . Note that l;,- can change upon every

iteration of active learning but it is equal to l;;, in the first iteration.
e Step 3: Construct the Kriging model with current training points I,.. Denote the Kriging model as SOI(1).
Construction is based on UQLab toolbox in MATLAB®, with ordinary Kriging basis and Gaussian correlation

function. The model type is selected as prediction with noisy responses and other parameters follow default settings.
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Subsequently, the Kriging responses pz (1) and variances sz (D) can be acquired from UQLab toolbox [50].

e Step 4: To search for the maximum value of SOI, the expected improvement learning function (EI) for global
optimization is adopted. The next training point is selected according to the following criterion and is denoted as
l;,.

l;, = arg max EI(1) (42)

leSr

where,

5% (l) - SOI;nax> n O'&(l)(p (ﬁuﬁ(l) - SOIr*nax> (43)

EIQD) = (4D = SOlnax)® ( -0 -0
where SOI;, 4, denotes the maximum SOJ among 1, in the current iteration.

e Step 5: Determine if the stopping criterion (max(EI) < El.y,) has been satisfied in the current iteration, where
Elp, denotes the threshold value. In this paper, El, is set as 107> and the maximum number of iterations is set
as 100. Go to Step 6 if satisfied; otherwise, go back to Step 3.

e Step 6: Output I* and SOI for S,,,,.

The above procedure presents an efficient approach for evaluating SO for all potential monitoring points. However,
the computational complexity of constructing Kriging surrogate model increases substantially as Ng;p,, grows. This
is known as the ‘curse of dimensionality’, which can be further optimized in the future. To explore the performance
of the proposed framework, a geotechnical case that investigates tunneling-induced settlement to building damage
is investigated in the next section.

4 Case study

4.1 Description of the physical model

Settlements caused by the construction of tunnel can threaten the functionalities and integrity of structures and
infrastructure systems aboveground. This process is illustrated in Fig 2, where the y axis follows the reverse
direction of tunnel advance and x axis is perpendicular to the tunnel longitudinal axis [15], [54]. Origin is the
intersection of the extensional line of building wall and the y-axis. Moreover, the positive degree refers to

alignments counterclockwise with respect to the x-axis. Starting from tunnel portal y = yr and adaptively
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advancing towards y = —oo with the tunnel boring machine (TBM), a tunnel is under construction with the tunnel
face located at y = y;. In this paper, y; is assumed to originate from infinity with y; = +oco. A building wall of
length 1,14, denoted by a reference point 4, is located at a distance dorig from the origin and aligned 6, degrees
with respect to the tunnel transverse plane. To better interpret the concept, a 3D plot of this physical model is
showcased in Fig 3, where d and z, denote the diameter of tunnel and the depth from surface of ground (z = 0) to
the center of tunnel. The objective is to identify the optimal monitoring location on the feasible grounds to better
tracking risks of building subsidence as the tunneling excavation proceeds. As introduced later, these feasible
grounds are typically off the location of TBM. The formulas that predict the tunneling-induced subsidence of
building, analysis of reliability updating and exploration of the optimal monitoring location are subsequently

introduced in the following context.

Building

" Tunnel advance

Fig 2. Illustration of tuﬁﬂéﬁﬁé—induced settlements.

Tunnel Advance
Fig 3. 3D illustration of tunnel and building wall positions.
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The soil over the excavated underground space can be viewed as a distributed loading with the other ending

node fixed at y = 400, According to [15], [55], [56], the settlement of ground can be calculated as,

S(x' y; z, d; ySl yOJ yfl ZO' VL; Kx; Ky)

xZ
= —1000 - Spyax - €XP [— 2-KZ - (z9 — z)z]
x 0

o (v = Os + 30 Y —Yr )]
e oer Rl e

where V;, is the volume ground loss per unit and K, and K,, are non-dimensional through width parameters

(44)

reflecting characteristics of the soil and describing the Gaussian settlement profiles in the transverse and
longitudinal direction. It is typically assumed that K, = K,, = K [57]. Moreover, Sy, 45 denotes the absolute value

of maximum settlement at y (y = y,) and can be calculated as,

VL'T['dZ
V2K, (zg—2) -4

(45)

Smax =

where y, in Eq. (44) is the horizontal shift of the longitudinal settlement profile with respect to the tunnel face and
can be calculated as,

Yo =—@ (8 K-z (46)
where § represents the ratio between the surface settlement above the tunnel face and S, at y = +oo. In this
paper, & is defined as 0.3 for the sake of practical consideration [40], [41]. The shape of settlement is presented in
Fig 4. It can be observed that the shape of settlement along the x-axis follows the PDF of Gaussian distribution,
while along the y-axis, the shape is close to the CDF of Gaussian distribution. The settlement reaches the highest

value at (0,30,0).
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Fig 4. Settlement produced by tunnel excavation in (a) the 3D surface plot and (b) the x-y view with d = 12m,

Vs =0,2z9 =23m,V, = 0.5% and K = 0.5.

By treating the building wall as a weightless linear elastic rectangular beam, the response of the building to the
settlement is modeled through the equivalent beam method [60]. The distribution of tensile strains along the beam
is governed by the shape of the deflection and the mode of deformation. The extreme fiber strains caused by bending

and shear &, and &;,- can be calculated according to the following equations,

E
evr (Vi K%)= (€ max + &) - Ee, (47)
E E e (E\?

Ear (VL,K,E) = 1én (1 —E) + 1—6(5) +€dmax 'Egdr (48)

E . o .
where - represents the ratio between the Young’s modulus and the shear modulus of the building material and E,

e . E .
and E,, are multiplicative model errors. In this paper, —, E,, and E,, are modeled as random variables. Moreover,
&dr G’ “Ebr &dr

€p max aNd €4 max are the maximum bending and shear strains due to the deflection. Specifically, &, ;4 and
€4 max are calculated separately for the different zones of the building. The building zones that have settlements
induced by the tunnel can be typically classified into two types: the sagging and hogging deflections. As shown in

Fig 5, the main difference of them lies in the position of the profile curvature change: sagging deflection represents
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upwards concavity while hogging deflection indicates downwards concavity. To better illustrate the foregoing
difference, Fig 6 showcases the sagging and hogging deflections in the different zones of a building.

The number of inflection points along the building depends on the three parameters lpy1q, dorig and 6.
Moreover, the type of deflection of a building depends on the number of inflection points, which are summarized
in Table 1. A conceptual plot for the last case in Table 1 is shown in Fig 6, where the building is divided in to three
zones: one sagging zone and two hogging zones. Let [,.¢ denote the horizontal distance between two reference
points and A,.; be the relative deflection; the deflection ratio Aer /L. for different deflection types can be
represented as Agqg/lsqg and Appg/lnog. The maximum bending and shear strains, € mqyx and €g may, for a given
zone (sagging or hogging) can be calculated as follows [61],

e — Aref/lref
b max (lref 3] E) (49)

12t ¥ 2al,.,HG
and
_ Aref/lref

g -_——
d max ) Hl,z,ef G (50)
T8l E

where H denotes the height of building, I = H3 /12 is the inertia per unit length, t is depth of neutral axis and a =
t is the location of the fiber where strains are calculated. For sagging and hogging deflections, t = H/2 and H,
respectively. Moreover, the resultant horizontal strain in the ground surface along the base of the team, ¢, in Eq.
(47) and (48) can be computed according to the following equation:

en(x,y,2,V, K) = cos?0y * & yy + SiN?0, * £y, + 2 COSO, SING, * €1 1y (51)
where &p xx, €,y and &y 4, are the fields of strain in the ground. The maximum strain of the building &;,,, can be

determine according to the six parameters,

_ sag _sag _hog,1l _hog,21 _hog,2 _hog,2
emax = max[ey?, 6509, 6,79 €070 €077 70 ] (52)
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Fig 5. Conceptual illustration of sagging and hogging deflections in different zones of a building.

! lho g2 | lsag |

hog !

thog

Hogging Sagging Hogging
zone 2 zone zone 1
Fig 6. A building that is subjected to tunneling-induced settlement with 1 sagging and 2 hogging zones.

The location of the building determines the number of extreme fiber strains. It indicates that the building can be

hog,1 _hog,1 _hog,2
g _sag og og 092 ,0d

o . . . . . . . . sa
divided into sagging and hogging zones. Therefore, six notations including .7, £,,.7, €,,.7 ", €4, » Epy

hog,2 . . . sa hog,1 hog,2 .
sdrg are sufficient to represent the 4 cases described in Table 1, where sbrg , sbrg and sbrg are the maximum

. . . . sa hog,1 hog,2 . : : :
bending strains in sagging zone and €329, 729" and £°9* are the maximum shear strains in hogging zone. For
dr > “dr dr

the first case, the last four terms are equal to zero due to the existence of one sagging zone; For the second case,
one hogging zone indicates that the third and fourth terms are non-zero; For the third case, the last two terms are
equal to zero while all the six terms are non-zero for the last case. Finally, the geometry of the cracks can be
estimated. Moreover, the classification of damage due the cracks is summarized in Table 2, where &;;,,, denotes the

limit tensile strain.

Table 1. TZBes of deflection of building located in a sEeciﬁc location

Location of building Number of inflections Types of Deflection
Above the tunnel axis 0 1 sagging
Far from the tunnel axis 0 1 hogging
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Starts in the sagging zone . .
and reaches the hogging zone ! I sagging and I hogging
Central part in the sagging
zone and lateral parts in the 2 1 sagging and 2 hogging

hogging zone

386
387 Table 2. Classification of damage [61].
Category of Normal degree . Tensile strain ~ Limiting strain
damage of severity Typical damage Emax(%0) €lim (%)
0 Negligible < 0.1 mm 0-0.050 0.050
1 Very slight < 1.0 mm 0.050-0.075 0.075
2 Slight < 5.0 mm 0.075-0.150 0.150
3 Moderate < 15.0 mm 0.150-0.300 0.300
4 Severe < 25.0 mm >0.300 -
5 Very Severe > 25.0 mm - -
388
389 To calculate &y xx, €n,.yy and €y, 5y, let Uy and U,, denote the horizontal displacements in [mm] in the transvers

390  and longitudinal direction, respectively, at a certain position with coordinate x, y, z in [m]. U, and U,, can be

391 calculated as,

U, = ad S
* = 20—z (53)
392 and
U, = 1000
Yo 8:(zg—2)
2 2 (54)
o [T O +y))" =) =y~ )~
P 2-KZ - (29 — 2)? P 2-KZ - (29 — 2)?
393  Therefore &y xx, €n,yy and &y x, can be calculated based on U, and U,,,
oU, S/1000 x2
=X |1-=— 55
Ehxx = 5y Zo—Z ( (K,f (2o — Z)2>> (55)

394 and
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=2y + 2(ys + ¥o) -(y— s + yo))2 — x?
v, - d exp

au,, 2Ky - (20 — 2)? 2-Kj - (20 — 2)? (56)
Sh, = = .
7oy 8:(z-2) —2y + 2y) ~(y—y) -2
- 2 7 | €XP 2 2
2Ky (z0—2) 2-Ky-(zo—2)
and
1(oU, aU,
gh,xy = E( ay + E) (57)
where 9Ux and 90y read as,
ay ax
U,  x ( V,-m-d? )
0y 20—z \ V2n-K, (zy—2)-4
(y—((ys+y<3))2
Ky (zg—2z
1 masl (#) (58)
V21 Ky(ZO - Z)
( y-yr )2
1 _\Ky(z—2) 1 ) ( x? )
__e 2 . —_— . eX —
27 (Ky(zo —-Zz) P{73 K2 (zy — 2)2
and
2 2
~(y = s +y0) —x
2 exp K2, —_ )2
U, V,-d (—2x) 2:Ky (20— 2)
= (59)

ox  8-(z0—2) 2-KZ-(2,—2)? ~(y—y) -2
Z'Ky'(zo_z)

4.2 Sensitivity of information (SOI) analysis
In this subsection, the computational procedure for the estimation of SO/ for different locations is elaborated.
According to [15], the event that tunnel excavation-caused building crack exceeds 0. 1mm (g3, = 0.05%) is defined
as the limit state, indicating damage level 1 in Table 2. Accordingly, the limiting strain for this case can be set as
&iim = 0.05%, leading to the limit state function (LSF), g(X) for this case,

9(X) = €im — Emax(X) (60)

where X denotes the vector of random variables. In this context, X =

..E psag. phogl, phog2 nsag, phogl, hog?2 sag rhog1l hog2 psag rhog,l hog,2
[VL,K,E,Eng,ESbr sEg, i Ee, s Ee, 3 Ee, " |, where Eg, 7L E. 7 Eg P Ee 7 Ee 7 and Eg 7 are the
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errors of the equivalent beam model of Eq. (47) and (48) in the sagging and hogging zones, respectively. The
probabilistic distribution of these 9 random variables is summarized in Table 3. Moreover, the failure domain £2¢
can be defined as,

0 ={g(x) <0} (61)
where x is a stochastic realization from X. To precisely assess and track the risk of the tunnelling-induced settlement
to the building, the measurement of settlement at the location L, sp, (L), is conducted over the region of
observation, Q,p,. Zj,p and Z,,,, are equal to 5 [m] and 15 [m], respectively, based on engineering experience. Fig
7 illustratively interprets this strategy, where the light green region is represented as ),,,. Moreover, the relation
between the measured and ground truth settlement can be read as:

Sm = S(xb, Vi 200, Vi, K) + Ef + Eny = S(xky, v, 2, Vi, K) + Eg (62)
where Ef is the model error interpreting the potential inaccuracy of the Gaussian settlement shape and Ej;, is the
measurement error stemming from the manmade imprecision, imperfection of instruments etc. Let Eg = Ef + Ep,,
the likelihood function for this case is defined as:

LK) = fi (sh = S(ch Vi, Zh, 01, k) (63)
where v; and k are the realizations of random variables V; and K, and fi is the PDF of the integrated error Ef.
Therefore, the two augmented limit state function h; (P, X) and h, (P, X) can be sequentially defined based on Eq.
(63). Before exploring I* over ,,, the procedures of estimating P(F) and P(F|Z) are elaborated. Therein, four
measurements, S, (x,in, Vi, Z,in), i = 1,2,3 and 4 are ready to update P(F|Z) from P(F). The corresponding data and

simulation results are reported in Table 4 together with the corresponding interpretative figures illustrated in Fig 8.

Table 3. Probabilistic distribution of random variables [15].

. oy Type of Standard

Random variable Description distribution Mean deviation
K(-) Trough width parameter Lognormal 0.3 0.06
V(%) Volume loss Lognormal 0.4 0.16
=) Material ratio Beta 2.5 0.045
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sag. hog,1, ~hog,2
Bepy i Ber” i Berr Equivalent b del L 1 1.0 0.05
sag. hog,l hog,2 ) quivalent beam model errors ognorma . .
Egdr ’ Egdr ’ Esdr
E,,(mm) Measurement error Normal 0 1
Ef(mm) Settlement model error Normal 0 2
422
Building
x
+ -+
Sm(lm)
y
.TBM
/ Tunnel advance
Region of observation
423 Fig 7. Conceptual illustration of Q,}, and the monitoring measurement s, (1,,), where
424 ln = (X Yo Zm) and L, € Q.
425
426
427
428 Table 4. Simulation results of case study through the proposed reliability updating method, where
429 COVy, = 0.05 and N;,, = 10*.
Information Position Pr(F) Pr(F|Z) dup COVp, COVp,, Ny
sm(ly) =10  (10,10,0) 826x 1073 1.29x 1072 0.069 0.0449 0.0471 56000
sp(l;) =10  (15,150) 840x 1073 847 x 1072 0425 0.0375 0.0497 84000
sm(l3) =10  (20,20,0) 831x1073 223x1072 0.161 0.0448 0.0494 56000
sm(ly) =10  (25,250) 836x1073 9.84x10°3 0.025 0.0453 0.0462 56000
430
431 Table 5. Simulation results via MCS, FORM/SORM, IS and the Brogosed method.
Method Pr(F|Z) Pr(F) Ngim
MCS 9.76 X 1072 8.35x 1073 106
FORM [2] N/A 2.13x 1072 100
SORM [2] N/A 8.27 x 1072 132
IS [2] 5.34 x 1073 6.15x 1073 5100
The proposed method 9.84 x 1072 8.26 x 1073 22498
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By setting K and V}, as the x and y axis and starting with Ny, = 10%, Fig 8(a) illustrates the estimate of Pr(F)
through SS with information s, (l4), where S;, S, and S5 denote samples located in the three intermediate subsets.
However, the initial set of Ny is insufficient so that COVp, is estimated as large as 0.0657. Therefore, Ng; is
adaptively increased to 2 X 10* and Pr(F) is finally estimated as 8.26 x 10~3 with COVp,. equal to 0.0449. Fig
8(b) showcases the estimate of Pr(Z) based on the augmented limit state function h; (P, X) = 0, where the darker
dots denote the accepted samples, S, and the brighter ones represent the rejected samples, Sy ;. In this step, Pr(Z)
is estimated as 8.87 X 107% and ¢, is equal to 1.78 X 107>, Fig 8(c) showcases the estimate of Pr(Z|F) through
the augmented limit state function h, (P, X) = 0, where the darker dots denote the accepted samples, S}, and the
brighter ones represent the rejected samples, S1a5°. One should note that [Si%!, S135] € S5t | where S'@5* is the

last sample set in Fig 8(a). In this step, the two terms are estimated as Pr(Z|F) = 1.05 X 107° and ¢, =
2.02 X 107>, Fig 8(d) exhibits the conventional procedure represented in Eq. (10) that relies on the computational
scheme P(F N Z)/P(Z) with the joint limit state function J(P,X) = max[g(X), h;(P,X)]. The conventional
approach results in the simulation data with P(F N Z) = 2.92 x 1073, which is significantly smaller than Pr(F).
This implies that more evaluations of g(X) should be conducted compared to the proposed approach, which further
demonstrate the computational efficiency of the proposed reliability updating approach. Moreover, the size of
samples in each subset is adaptively increased to guarantee the sufficiently consistency of Pr(Z|F), which facilitates
the computational robustness of SOI and the exploration of [*. To further demonstrate the computational efficiency
of the proposed method, the computational performance via MCS, FORM, SORM and IS is summarized in Table 5.
All implementations are conducted through UQLab package in MATLAB with default settings. By treating the
result of MCS as the benchmark, all the four methods are able to estimate the prior failure probability. However,
the posterior failure probability cannot be estimated through FORM or SORM. 1t is shown that the estimated
posterior failure probability is more accurate than the importance sampling method used in literature [2]. According

to Table 5, Pr(F|Z) is estimated as 9.76 X 102 through MCS. Comparing this with estimates of 9.84 x 10~2 and
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5.34 x 1073 using the proposed method and IS, respectively, it is evident that the proposed method overperforms
1S.

SOI can be understood as a metric that considers the change of Pr(F) due to all possible information that could
be acquired at a specific location. Moreover, it can be concluded from the simulation results that SO/ is not solely
determined by Pr(F); it is determined by both Pr(F) and Pr(F|Z). A monitoring system placed at a location with
a large SOI improves the accuracy of Pr(F) estimation significantly. Therefore, acquiring information at that
location is necessary if one needs to have a more accurate Pr(F|Z). Estimation of SO/ in turn requires investigating
an integral and evaluation of the limit state function multiple times.

Fig 9 showcases the relation of d,,,, versus Z at locations [; and I3. One can infer that d,,,,(I;) reaches 0 when
Z = 8.7, which indicates that the updated reliability deviates substantially from the prior one when the information
is involved because it is beyond the expectation of prior knowledge. However, d,;,(l3) almost increases linearly
over the interval [Z,p,, Zypp|. The next subsection elaborates the procedures of exploring [* over different regions
of observation and excavation stage.

It can be observed from Table 4 that d,,,, with s,,,(I;) = 10 is apparently the largest one, which also indicates
the largest change for the update of reliability when information s,,(l,) is available. As the location transits from
l; to 1, and the settlement information keeps unchanged, 7;,;, decreases significantly from 0.2099 to 0.0129. This is
in attributed to the location of [, is further from both the tunnel axis and building facade compared to location [,.
Therefore, 1;,;, can be an efficient metric for quantifying the contribution of the change of updated reliability for
different source of information. Moreover, the significance of information at some locations cannot be interpreted
by intuition, therefore, the metric d,,;, can reflect this effect. For example, d,,;, is estimated as 0.1219 at location [,
which is less significant than location l; because the settlement close to TBM becomes smaller, thereby it has less
influence on d,,;,. This point, however, does not indicate that [, is less valuable than I3 in terms of SOI because
Table 6 presents that SOI for location [, is greater than location l3 . Nevertheless, [, is deemed to be the most

significant location among three selected points according to SOI.
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481 Table 6. SOIs at locations [y, [,, I3

482 and [,
Number Location SOl
1 Il 0.1219
2 l, 0.2099
3 l5 0.0801
4 ly 0.0129
483
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484  Fig 8. Use information s,,(l,) via SS to estimate (a) Pr(F) based on g(X); (b) Pr(Z) based on h; (P, X) at the

485  location; (c¢) Pr(Z|F) based on h,(P,X') , where X' € Q¢ and (d) Pr(ZnF) based on J(P,X)=

486  max[g(X), h,(P,X)].
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Fig 9. d,,;,, versus Z at the location of (a) l; and (b) I3

4.3 Optimal settlement monitoring location

In this subsection, [* is explored over the whole region of observations, ., globally, where the corresponding
steps are depicted in Figl0. In Fig 10(a), the tunnel is plotted with gray region, the light red square showcases where
the building fagade locates, Cs represents the contour of tunneling excavation-induced settlement and Q,y, is
represented by light blue square. Initially, 81 equally distributed training samples (locations), l;;,, represented with
black star dots are ready to training a surrogate model for SOI(l) over Qqp, = [x}im,xlzim s Vi Vims ], where
[xllim, X Vi Ve ] denotes the x and y limits of axis of (,,. For example, Q,, is parameterized by
[10,30;10,30; ] in the Fig 10(a) and the true responses of the 81 discretized training samples are estimated, which
facilitates the initial construction of SOI(I). Subsequently, extra training samples are adaptively enriched through
the EI active learning function and terminates until the stopping criterion is satisfied. For this case, 7 extra training
samples are finally added and the surface plot of SOI(l) based on the Kriging surrogate model is represented in Fig
10(b). Fig 10(c) showcases the x-y view of SOI(1), where SOI increases as the regions transits from blue to yellow.
Moreover, the initial optimal location, l},,, among [, is identified as (15,27.5,0) and finally transits to the final

optimal location, [*, where [* = (14.9,24.8,0) with SOI estimated as 0.2356, as highlighted in Fig 10(d).
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Fig 10. Procedure of exploring [* through surrogate-based optimization with (a) the initial training

samples located in Qg = [10,30;10,30; ], where y, = 0; (b) surface plot of SOI; (c) the addition of
training samples through active learning and the identified [* and (d) an overview of ™ in the process of

tunneling excavation.
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prior f
F; post
other possibilities. Fig 11 showcases the surface plots of ﬁp—o_“ — 1| and # — 1| versus x and y. It can be
prior f

observed from Fig 11 and Fig 10(b) that all these three metrics can efficiently quantify the sensitivity of the

information. By comparing Fig 11 with Fig 10(b), the metric based on Bpost _ 1| indicates the least variation,
prior
post
while ﬁ — 1] indicates the highest variation. Moreover, due to the smooth property of the metric based on
f

|ﬁpost - ,Bpn-or|, it is more efficient for integration with surrogate models. Moreover, the metric based on
| Bpost — ,Bpn-or| is more intuitive for understanding and communication of the concept of SOI. According to this

experimental study, while the shape of SOI is affected the functional form, the optimal monitoring location remains

the same.
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Fig 12. Investigation of simulation results with (a) 9, (b) 25, (c) 121 and (d) 441 initial training samples

Moreover, the definition of initial samples can also affect the performance of the proposed framework. If the
initial training sample size is insufficient, the problem can become ill-conditioned. To explore such an effect, the
number of initial training samples is increased from 9, to 25, 121, and 441. The corresponding simulation results
are illustrated in Fig 12. According to Fig 12 (a), all the added training samples and the identified optimal sample
are clustered at the right bottom corner. This can be attributed to the scant initial training samples that lead to large
uncertainties in the active learning process of the surrogate model. The computational performance gets rid of ill
condition as the number of initial training samples reaches 25 as seen in Fig 12(b). In this figure, 21 additional
samples are included. As the number of initial training samples reaches 121, the number of additional training

samples decreases, as seen in Fig 12(c). On the other hand, it is computationally demanding to prepare a large
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527  number of initial training samples. This is seen in Fig 12(d), where no extra training sample is needed to refine the

528  Kriging surrogate model because the 441 initial samples are sufficient for estimating the value of SOI.
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529 Fig 13. Illustration of identified [*s with (a) 2,, = 24, ¥s = 0 and —3; (b) 2, = 25, s = 0 and —3
530 (©) 2,p =2¢,ys = 0and —3 and (d) 2,, = 2p, y, = 0 and —3.
531 As the excavation of tunnel proceeds and (), changes, [* changes accordingly. Fig 13 showcases four scenarios,
532 (4, 0p, 0 and 0, of Q,}, for tunnel excavation along with the tunnel facade y, changing from 0 to -3, of which
533 the simulation results are summarized in Table 7. According to Fig 13, [* changes from (14.9,24.8,0) to
534  (12.5,20.2,0) while the excavation proceeds to y; = —3 and Q}, keeps unchanged which leads to SOI increases
535  from 0.2356 to 0.6042. This phenomenon can be interpreted by the settlement caused by excavation of tunnel
536

dominates the change of the updated reliability. Moreover, Fig 13(b) represents that [* maintains unchanged even
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though y, changes from 0 to -3 along with the increase of SOI from 0.0327 to 0.0798. This is because the point at
the very bottom left over ., = Q5 is the most valuable point. As Q,}, changes from 2,4 to 25, [*(y; = 0) and
I*(ys = —3) are estimated as (—14.5,23.7,0) and (—11.9,21.5,0) with SOI equals to 0.2391 and 0.7329,
respectively. It can be inferred from the comparison between Fig 13(a) and (c) that above two optimal locations are
closely symmetric to the two identified optimal locations when Q,, = [10,30; 10,30; ] along the y-axis. This can
be explained by the symmetric characteristics of Gaussian settlement defined in Eq. (44). In Fig 13(d), [* changes
from (0.5,—10,0) to (7.5,—10,0) with the corresponding SOI estimated as 0.0824 and 0.0261, when Qg = 2p.
The tunnel fagade at y; = 0 causes a slight deviation of [* close to the building side when Q,, = 2, and this effect
of deviation strengthens when y;, = —3.

Table 7. Identification of [* with corresponding SOI based on different combinations of (2,

and y,. 20 simulations are conducted to eliminate the uncertainty of the method, where T*(m)
and SOI (-) denote the mean of [*(m) and SOI (-)

Region Parameters (m) Ys(m) T (m) SOI(-) COVyy,
0 (14.52,24.17,0)  0.2389 0.112
Q24 [10,30; 10,30;]
-3 (12.88,19.25,0)  0.5326  0.127
0 (—=10,-10,0) 0.0392  0.027
Q5 [—30,—10; —30,—10; ]
-3 (—=10,-10,0) 0.0827  0.022
Qc [=30,—10;10,30; ] 0 (—14.47,23.15,0) 0.2622 0.134
-3 (—11.77,21.29,0) 0.6480 0.108
an 0. 0 (0.52,-10.0,0)  0.0927 0.035
p [~10,10; =30, ~10;] -3 (7.58,—-10.0,0)  0.0272  0.024

Therefore, the procedures represented above showcase a systematic approach for localizing the optimal
monitoring topology for the risk assessment and tracking of a tunneling-induced structural failure. Instead of
focusing on the location where the largest deformation happens, this paper sheds light on utilizing probabilistic
tools to account for the uncertainties involved. It can be further investigated to explore the uncertainty of the soil
properties via random fields modelling and consider the paradigm that can handle multiple building over the
tunneling contour. It is expected that this work can be leveraged to improve the efficiency for decision-making of
structural health/risk monitoring of geo-structures.

5. Conclusions and discussions
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This paper proposes a computational framework based on a novel metric called SO/ (sensitivity of information) to
determine the optimal monitoring location for risk tracking of infrastructure systems. Generally, the major
contributions of this paper can be summarized as:

* A novel metric called SOI (Sensitivity of Information) is proposed to quantify the change in updated and prior
reliability of a structure or a system at a specific location with possible new information that can be acquired
through a monitoring system placed at another location. In terms of failure risk, SOI seeks for monitoring
locations that offer the highest sensitivity of reliability update to new information. Monitoring at locations with
high SOI can significantly improve the accuracy of updated reliability for the structure or infrastructure system
of interest. Compared to VOI, the calculation of SOI is more straightforward and is purely grounded in
reliability updating theory without the need to establish possible actions and costs.

* Determining the proposed SOI is computationally very challenging. Therefore, a novel computational
framework is proposed to facilitate efficient computation of SOI and to explore the optimal monitoring location
for infrastructure systems. This is achieved through integration of adaptively trained surrogate models based
on active learning concepts in the computation of SO/ as well as in solving the optimization model that is
formulated in search of the location with maximum SOI.

To explore the performance of the proposed computational framework, a practical case that investigates the risk

posed by tunneling-induced settlement to building damage is studied. Simulation results showcase that the optimal

settlement monitoring grounded in reliability updating theory can be accurately determined. In of the context of risk
analysis, this proposed framework can also be applied to other infrastructure systems whenever the identification
of optimal monitoring location is needed. For example, it can be modified for optimal sensor placement for fire
warning systems or for structural health monitoring application. A challenge in the application of the proposed
framework is the associated computational cost of evaluating the limit state function. While this problem is
addressed in this paper through integration of adaptive Kriging, for complex performance functions, e.g., high-
dimensional or non-smooth limit state functions [62] additional research may be needed. Moreover, SO/ in this

paper is defined as | Bpost — Bpn-or|. Other forms of SO/ can be explored in depth in future studies.
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