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ABSTRACT
Traditional implementations of federated learning for preserving
data privacy are unsuitable for longitudinal health data. To remedy
this, we develop a federated enhanced fuzzy c-means clustering
(FeFCM) algorithm that can identify groups of patients based on
complex behavioral intervention responses. FeFCM calculates a
global cluster model by incorporating data frommultiple healthcare
institutions without requiring patient observations to be shared.
We evaluate FeFCM on simulated clusters as well as empirical data
from four different dietary health studies in Massachusetts. Results
find that FeFCM converges rapidly and achieves desirable clustering
performance. As a result, FeFCM can promote pattern recognition
in longitudinal health studies across hundreds of collaborating
healthcare institutions while ensuring patient privacy.

CCS CONCEPTS
• Computing methodologies → Machine learning; Cluster
analysis; Distributed algorithms; • Applied computing → Life
and medical sciences.
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1 INTRODUCTION AND BACKGROUND
While modern healthcare institutions collect a vast array of data
on their patients, its use is often restricted due to data privacy regu-
lations such as the Health Insurance Portability and Accountability
Act (HIPAA) and other laws [9, 12, 17]. Medical data is sensitive and
highly regulated - anonymization is often insufficient to protect a
patient’s identity [15], and other technical challenges create diffi-
culties in preserving privacy as well [3, 20]. As a result, healthcare
institutions are often unable to share data with researchers who
develop machine learning algorithms in the health domain [14, 22].
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Federated learning provides a solution. In lieu of data aggre-
gation, the model’s parameters are distributed to individual data
sources (termed clients) and averaged [10]. In this way, a decen-
tralized network of clients such as medical research centers can
train models while circumventing the need to share data (see Figure
1), preserving patient privacy [14, 22]. This paper uses federated
learning with fuzzy clustering to identify groups while allowing ob-
servations to be related to more than one cluster at a time [16]. This
is necessary to group patients based on behavioral interventions,
as it captures the complex relationship between patients, behaviors,
and outcomes in longitudinal health studies [5, 8].

Figure 1: Comparison of federated learning. In A, health-
care institution data are aggregated to train the model. In B,
parameters are distributed to each institution for training,
keeping patient data private.

While federated clustering has been proposed [11, 13], the exist-
ing methods are not usable in longitudinal health studies. Firstly,
they can require hundreds of rounds of communication. More im-
portantly, they treat data from different clients as one aggregated
set, rather than as individual trials, which may be undesirable when
researchers seek to ensure that all clusters contain some observa-
tions from every client. Furthermore, they do not typically operate
on clients whose datasets contain different unique features, which
can occur if clients did not collect the same number of time points
in their studies. Hence, current federated clustering methods are
unsuitable for longitudinal trials.

In this paper, we develop and evaluate a federated fuzzy clus-
tering method that maintains the privacy-preserving quality of
federated learning while overcoming the aforementioned limita-
tions on longitudinal health data. Specifically, we propose federated
eFCM (FeFCM), a federated version of the enhanced fuzzy c-means
clustering (eFCM) algorithm for longitudinal health studies [8].

Our work’s novelty is that it extends federated learning to longi-
tudinal health data clustering, a necessity that previous research
has not yet addressed. Since the algorithm is new, we focus on
evaluating its efficacy, rather than discussing specific system im-
plementation details such as types of databases or communication
techniques. Such details will be developed further in future work.

1
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In FeFCM, after distributing starting centroids, each individual
client runs eFCM simultaneously. The optimal number of clusters
is selected through client voting, and final centroids are shared and
aggregated using principal component analysis and weighted aver-
aging to develop a global cluster model. Hence, FeFCM minimizes
necessary communication, identifies clusters on longitudinal data
with varying numbers of time points, and preserves patient privacy.

We evaluate FeFCM on both simulated clusters and empirical
harmonized data from four longitudinal dietary studies in Mas-
sachusetts [6]. In the empirical data, each study represents a dif-
ferent client. We find that the FeFCM provides adequate global
solutions based on multiple clustering metrics.

Our paper is structured as follows. First, Section 2 explains the
FeFCM model. Then, Section 3 discusses our evaluation methods,
including data and model parameters, while Section 4 evaluates
the performance of FeFCM. Finally, Section 5 discusses the findings
and future work, and Section 6 summarizes our conclusions.

2 FEDERATED ENHANCED FUZZY C-MEANS
CLUSTERING (FEFCM)

This section outlines our proposed version of the eFCM algorithm
which clusters data from multiple decentralized clients, such as
healthcare institutions. Its input takes the form of a matrix or data
frame; rows represent observations (patients or other individuals)
and columns represent features (attributes) at a given time point in
the longitudinal study. Figure 4 lists the FeFCM procedure.

In FeFCM, each client first performs eFCM individually. After
sharing their solutions, each client then aggregates results from
all other clients to create a global cluster model. We assume that
each client contains an adequate number of sample observations -
a number larger than the potential number of clusters in the data -
and can communicate model parameters with every other client.

2.1 FeFCM Communication Architecture
The process of calculating the global model using data from across
multiple clients is modeled as a decentralized parallel system. In
this architecture, each client runs the algorithm simultaneously in
parallel, until a round of communication is required. This allows
the number of clients in practice to be easily scaled, since each
client will contribute additional computing power.

Figure 2 demonstrates how clients transmit data in two rounds of
communication. In the first, each client communicates its number
of features (time points), and the client with the most generates
the starting centroids, transmitting them to all other clients. In the
second, each client transmits their updated centroids and their vote
for the optimal number of clusters to every other client. These are
then aggregated into the global model, as discussed below.

2.2 eFCM Clustering
In eFCM, each observation 𝑥𝑝 possesses a degree of belonging to
each cluster 𝑐𝑖 [8], stored in a matrix 𝑈 (example in Equation 1).

𝑐1 𝑐2 𝑐3
𝑥1

𝑈 = ...

𝑥𝑝


0.7 0.2 0.1
... ... ...

0.3 0.4 0.3

 (1)

Figure 2: The decentralized communication process in Fe-
FCM, shown on 4 clients across Massachusetts.

Two equations are used to calculate𝑈 . At iteration 𝑡 , the degree
of belonging 𝑢𝑖 𝑗 between observation 𝑖 and centroid 𝑗 is calculated
using Equation 2, where𝑚 represents the fuzzifier [2] (typically
between 1.5 and 3). 𝑢𝑖 𝑗 represents the 𝑖 𝑗th entry of the matrix 𝑈 .
Equation 3 calculates each updated centroid𝑉𝑗 at the next iteration.
These calculations repeat iteratively until convergence.

𝑢𝑖 𝑗,𝑡 =
1∑𝐶

𝑘=1
∥𝑥𝑖−𝑉𝑗,𝑡 ∥2
∥𝑥𝑖−𝑉𝑘,𝑡 ∥2

2
𝑚−1

(2)

𝑉𝑗,𝑡+1 =

∑𝑁
𝑖=1 𝑢

𝑚
𝑖 𝑗,𝑡

𝑥𝑖∑𝑁
𝑖=1 𝑢

𝑚
𝑖 𝑗,𝑡

(3)

2.3 FeFCM Starting Centroid Initialization
To initialize the starting centroids, we construct a new eFCM proce-
dure for the decentralized computing framework. The eFCM initial-
ization scheme described in [8] is applied to the dataset of the client
with the largest number of features or attributes, and the starting
centroids are then projected into PCA space and inverse-projected
back into the space of each individual client. The initialization is
described in Figure 3.

2.4 FeFCM Global Model
Figure 4 describes how the global cluster model is constructed
from each client. FeFCM begins with principal component analysis
(PCA), a procedure that transforms data into a set of standardized,
orthogonal principal components [1].

Projecting into PCA space allow datasets from different clients
to be represented in a common space. The centroids derived from
eFCM in a matrix format can be transformed into PCA space and
projected onto an 𝑛-dimensional plane by dropping the principal
components representing the least variance. Preserving influen-
tial features permits the aggregation of cluster results containing
different numbers of time points in longitudinal data.

Let 𝑉𝑗,𝑘 represent a final given centroid in PCA space for the
client 𝑘 after the convergence of eFCM and 𝑉𝑗,0 represent the start-
ing centroid in PCA space. Equation 4 calculates final centroids 𝑉 ∗

𝑗

for the global cluster model by averaging the direction vector of
the centroid 𝑗 movement from start to end of eFCM across each

2
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Figure 3: FeFCM starting centroid initialization algorithm.

client. The average is weighted by 𝑛𝑘 , the number of observations
contained in each client 𝑘 , such that clients with more samples have
greater influence. This produces the final global cluster model.

𝑉 ∗
𝑗 = 𝑉𝑗,0 +

𝑁∑︁
𝑘=1

1
𝑛𝑘

(𝑉𝑗,𝑘 −𝑉𝑗,0) (4)

3 EVALUATION METHODS
FeFCM was implemented in Python 3.8 and evaluated on two clus-
tering tasks using a desktop with an Intel Core i7-6700 CPU. Note
that while in practice, FeFCM is intended to run on a CPU at each
participating client, allowing the number of clients to be easily
scaled, for ease of evaluation we simply run each client’s portion
separately on the same CPU and combine the results, averaging the
time across trials. Below, we describe the empirical and simulated
data for each task, the parameter settings, and the metrics reported.

3.1 Training Data
Dietary Study Data. First, this study applied FeFCM to harmonized
data from four longitudinal dietary health studies in [6]. These
studies recorded the types of foods which respondents consumed
over 24 hours, which were processed into multiple overall diet
quality scores. For this study, we used the 2010 Alternate Healthy
Eating Index (AHEI-2010) section of the data [4].

Each study represents a separate client in the distributed algo-
rithm. Client data sets contained between 2 and 4 features, each
representing an AHEI-2010 score at a different time point in the lon-
gitudinal study. Note that in this work we sample only completed
cases (with no missing values) for performance evaluation.

Simulated Data. Second, this study applied FeFCM to simulated
clusters to test the algorithm in scenarios with different numbers of
clients. To simulate the data, we used eFCM to identify five cluster
centroids from each of the four clients and classify each of the
client’s observations into a cluster. To simulate new clusters, we

Figure 4: Steps in the full FeFCM algorithm.

randomly generated observations from a multivariate Gaussian
distribution centered on each cluster centroid using the parameters
learned from the four empirical dietary studies. The covariance
matrix for a given distribution was calculated from the existing
observations assigned to the cluster associated with its centroid.

We simulated datasets containing 4, 20, and 100 clients. With 4
clients, we simulated Gaussian clusters with 10 times the number of
samples of the original data. With 20 clients, observations from the
4 simulated clients were randomly divided into 5 separate clients
each. The same was done for the 100 client dataset, with a small
number of observations dropped to ensure divisibility by 5. Table 1
displays the number of samples and time points for each dataset
(where𝑀 represents the total number of clients).

3.2 Model Parameters
FeFCM used a fuzzifier of𝑚 = 2.7 (based on other empirical evalu-
ation and visualization [5, 6]) using 300 maximum iterations and a
tolerance of 10−4. Clustering attempts were repeated 10 times with

3
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Table 1: Number of empirical samples compared to number
of samples per client across simulated datasets

Empirical Time Empirical Samples per client for𝑀 =

Client ID Points Samples 4 20 100

1 2 263 2630 526 105
2 3 180 1800 360 72
3 3 129 1290 258 51
4 4 176 1760 352 70

different starting centroids, and the algorithm selected the set with
the lowest total within-cluster sum of squares (inertia) as the final
output.

3.3 Model Evaluation
FeFCM performance was evaluated using several metrics. The al-
gorithm was repeated across 10 trials; the means and standard
deviations of metrics are reported in Tables 2 and 3. Metrics are
listed as follows:

• Xie-Beni (XB) index: ratio of cluster compactness to clus-
ter separation [21] (Equation 5). Smaller values, indicating
more compact and separate clusters, are preferred. This is
standard for fuzzy clustering evaluation [8, 21].

𝐼𝑋𝐵 =

𝑐∑
𝑖=1

𝑛∑
𝑗=1

𝑢𝑚
𝑖 𝑗
| |𝑉𝑖 − 𝑋 𝑗 | |2

𝑛

(
min
𝑖≠𝑗

| |𝑉𝑖 −𝑉𝑗 | |2
) (5)

• Inertia: within-cluster sum of squares, which eFCM seeks
to minimize [8]. Lower inertia is preferable.

• Silhouette score: how well entries fit their own cluster com-
pared to others, on average [18]. A positive score indicates
effective clustering; higher scores are preferable.

In addition, we include the total iterations for convergence and
time taken in seconds across clients. These confirm the computa-
tional efficiency of the algorithm.

4 RESULTS
4.1 Dietary Study Data
On empirical dietary data across individual clients, as displayed
in Table 2, FeFCM consistently achieved low XB indices of 0.11 to
0.14 and positive silhouette scores of 0.17 to 0.34 with low standard
deviations, indicating consistent performance across trials. The
algorithm also converged relatively quickly, averaging between 78
to 92 iterations per client and only requiring 0.14 to 0.49 seconds
on average across clients to run in Python.

The global model also performed well, achieving a silhouette
score of 0.3. While the global XB index of 0.85 was larger than
any individual client, it was still small (less than 1), and likely
grew simply due to the larger number of samples reducing cluster
compactness. Finally, the global model inertia of 13988 was lower
than the summed average inertia across individual clients, which
totaled about 17534 - improving over individual cluster models.

4.2 Simulated Data
FeFCMobtains similar results when scaling up the number of clients.
Table 3 depicts the performance of the FeFCM global model on 5
clusters simulated from multivariate Gaussian distributions. The
global model achieved positive silhouette scores (0.24 to 0.35) and a
reasonable XB index (0.75 to 1.01). However, increasing the number
of clients decreased performance on these metrics.

FeFCM also successfully identified the correct number of clusters
often. As shown in Table 3, across all client scenarios, the global
model selected 5 to 6 clusters. The best result occurred for 100
clients, where FeFCM correctly found 5 clusters in every trial.

Furthermore, FeFCM leverages distributed computing to yield
faster runtime and convergence. The 100 client scenario averaged
0.1 seconds and 78 iterations per client compared to the 4 client
case, which averaged 2.8 seconds and 114 iterations per client, as
shown in Table 3. This most likely occurred because the 100-client
scenario featured fewer observations per client.

5 DISCUSSION
In this paper, we developed FeFCM for federated fuzzy clustering in
a decentralized, distributed system of clients. In this way, multiple
healthcare institutions can cooperate to identify cluster centroids
while keeping patient data private. Using PCA, FeFCM also allows
clustering of observations from varying client datasets that may
not share the same number of features. Since longitudinal datasets
from different institutions may collect different numbers of time
points which may be represented as separate features, this method
is highly useful for longitudinal health studies.

In experimental evaluation with 4 clients on simulated and em-
pirical data, FeFCM achieves desirable clustering performance on
the XB index and average silhouette score. Similar success was
achieved in the 20 client and 100 client scenarios on simulated data.
FeFCM also converges relatively quickly and requires only two
rounds of communication with clients - one to initialize starting
centroids, and one to aggregate the results into a global model -
which is far less than traditional federated learning [10, 13].

To extend the model, further theoretical exploration under vari-
ous statistical assumptions may be necessary. For example, feder-
ated learning assumes that data is identically and independently
distributed (iid) among clients [10]. Though the dietary data used in
this study is non-iid, more extreme data distributions, such as large
imbalances in the sample sizes across clients, might result in per-
formance differences. Hence, it may be worth adopting strategies
for non-iid data from existing federated learning research [23, 24].

Future research in this area could also use alternate evaluation
metrics or other techniques for selecting the optimal number of
clusters. For example, existing techniques like the gap statistic [19]
could be adapted to the federated paradigm. Alternative voting
schemes like simple majority votes rather than a weighted average
could be evaluated as well.

Additionally, to handle incomplete data which often occurs in
longitudinal health studies, we can integrate imputation techniques
such as MIFuzzy [5]. Federated learning can also be extended to
neuro-fuzzy classification of clinical intervention outcomes [7].
These methods can yield new insights in medical research and
improve individual intervention plans.

4
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Table 2: FeFCM Performance on 4 Study Sites

mean (SD)
Client 1 2 3 4 Global Model

XB Index 0.11 (0.00) 0.14 (0.01) 0.13 (0.03) 0.13 (0.00) 0.85 (0.97)
Silhouette 0.22 (0.00) 0.34 (0.05) 0.17 (0.11) 0.28 (0.00) 0.30 (0.08)
Inertia 3870 (0.01) 2313 (61) 3133 (202) 6147 (0.09) 13988 (493)
Time (s) 0.49 (0.26) 0.14 (0.07) 0.21 (0.10) 0.26 (0.16)
Iterations 92 (41) 78 (38) 90 (44) 91 (56)

Table 3: FeFCM Performance on 5 Simulated Clusters

Number of Global Model mean (SD)
Clients 4 20 100

XB Index 0.75 (0.21) 0.81 (0.17) 1.01 (0.31)
Silhouette 0.35 (0.02) 0.25 (0.01) 0.24 (0.01)
Time (s) 2.85 (0.46) 0.64 (0.03) 0.10 (0.00)
Iterations 114 (13) 127 (5) 78 (1)

Clusters Found 5 (1) 6 (0) 5 (0)

6 CONCLUSION
Unlike existing federated learning, our proposed federated fuzzy
clustering, called FeFCM, clusters longitudinal data with different
numbers of time points, more efficiently identifies clusters dis-
tributed across several disparate healthcare institutions or other
clients, and protects individual patient privacy. This method could
even be deployed in a large-scale integrated pattern recognition
platform for longitudinal health studies and clinical interventions,
enabling collaboration between hundreds of different study sites.
Such a platform would better improve health information commu-
nication and keep patients’ personal data safe.

7 ACKNOWLEDGEMENT
This research was partly supported by NSF/IIS 2218596 to Dr. Hua
Fang and Dr. Honggang Wang.

REFERENCES
[1] Hervé Abdi and Lynne J. Williams. 2010. Principal component analysis. Wiley

Interdisciplinary Reviews: Computational Statistics 2, 4 (June 2010), 433–459. https:
//doi.org/10.1002/wics.101

[2] James C. Bezdek, Robert Ehrlich, and William Full. 1984. FCM: The fuzzy c-
means clustering algorithm. Computers & Geosciences 10, 2-3 (Jan. 1984), 191–203.
https://doi.org/10.1016/0098-3004(84)90020-7

[3] Min Chen, Yongfeng Qian, Jing Chen, et al. 2020. Privacy Protection and Intrusion
Avoidance for Cloudlet-Based Medical Data Sharing. IEEE Transactions on Cloud
Computing 8, 4 (Oct. 2020), 1274–1283. https://doi.org/10.1109/tcc.2016.2617382

[4] Stephanie E. Chiuve, Teresa T. Fung, Eric B. Rimm, et al. 2012. Alternative Dietary
Indices Both Strongly Predict Risk of Chronic Disease. The Journal of Nutrition
142, 6 (April 2012), 1009–1018. https://doi.org/10.3945/jn.111.157222

[5] Hua Fang. 2017. MIFuzzy clustering for incomplete longitudinal data in smart
health. Smart Health 1-2 (June 2017), 50–65. https://doi.org/10.1016/j.smhl.2017.
04.002

[6] Venkata Sukumar Gurugubelli, Hua Fang, James M. Shikany, et al. 2022. A review
of harmonization methods for studying dietary patterns. Smart Health 23 (mar
2022), 100263. https://doi.org/10.1016/j.smhl.2021.100263

[7] Venkata Sukumar Gurugubelli, Hua Fang, and Honggang Wang. 2019. Neuro-
Fuzzy classifier for longitudinal behavioral intervention data. In 2019 Interna-
tional Conference on Computing, Networking and Communications (ICNC). IEEE.
https://doi.org/10.1109/iccnc.2019.8685574

[8] Venkata Sukumar Gurugubelli, Zhouzhou Li, Honggang Wang, and Hua Fang.
2018. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Interven-
tion Data. IEEE. https://doi.org/10.1109/iccnc.2018.8390419

[9] Health Insurance Portability and Accountability Act of 1996, 45 CFR § 164.502.
1996.

[10] Jakub Konecný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
2016. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. ArXiv abs/1610.02527 (2016).

[11] Hemant H Kumar, Karthik V R, and Mydhili K Nair. 2020. Federated K-Means
Clustering: A Novel Edge AI Based Approach for Privacy Preservation. IEEE.
https://doi.org/10.1109/ccem50674.2020.00021

[12] Office for Civil Rights. 2013. Summary of the HIPAA Privacy Rule. https://www.
hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html Accessed
January 3, 2022.

[13] Witold Pedrycz. 2021. Federated FCM: Clustering Under Privacy Requirements.
(2021), 1–1. https://doi.org/10.1109/tfuzz.2021.3105193

[14] Nicola Rieke, JonnyHancox,Wenqi Li, et al. 2020. The future of digital healthwith
federated learning. 3, 1 (Sept. 2020). https://doi.org/10.1038/s41746-020-00323-1

[15] Luc Rocher, Julien M. Hendrickx, and Yves-Alexandre de Montjoye. 2019. Esti-
mating the success of re-identifications in incomplete datasets using generative
models. Nature Communications 10, 1 (July 2019). https://doi.org/10.1038/s41467-
019-10933-3

[16] Enrique H. Ruspini, James C. Bezdek, and James M. Keller. 2019. Fuzzy Clustering:
A Historical Perspective. IEEE Computational Intelligence Magazine 14, 1 (Feb.
2019), 45–55. https://doi.org/10.1109/mci.2018.2881643

[17] Tobias Schulte. 2020. The protection of personal data in health information systems
– principles and processes for public health. Technical Report 2021-1994-41749-
57154. World Health Organization Regional Office for Europe, Copenhagen.

[18] Ketan Rajshekhar Shahapure and Charles Nicholas. 2020. Cluster Quality Anal-
ysis Using Silhouette Score. In 2020 IEEE 7th International Conference on Data
Science and Advanced Analytics (DSAA). IEEE. https://doi.org/10.1109/dsaa49011.
2020.00096

[19] Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 63, 2 (2001), 411–423. https:
//doi.org/10.1111/1467-9868.00293

[20] Volker Tresp, J. Marc Overhage, Markus Bundschus, et al. 2016. Going Digital:
A Survey on Digitalization and Large-Scale Data Analytics in Healthcare. Proc.
IEEE 104, 11 (Nov. 2016), 2180–2206. https://doi.org/10.1109/jproc.2016.2615052

[21] X.L. Xie and G. Beni. 1991. A validity measure for fuzzy clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence 13, 8 (1991), 841–847.
https://doi.org/10.1109/34.85677

[22] Jie Xu, Benjamin S. Glicksberg, Chang Su, et al. 2020. Federated Learning for
Healthcare Informatics. 5, 1 (Nov. 2020), 1–19. https://doi.org/10.1007/s41666-
020-00082-4

[23] Yue Zhao, Meng Li, Liangzhen Lai, et al. 2018. Federated Learning with Non-IID
Data. (2018). https://arxiv.org/pdf/1806.00582.pdf

[24] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. 2021. Federated learning
on non-IID data: A survey. Neurocomputing 465 (Nov. 2021), 371–390. https:
//doi.org/10.1016/j.neucom.2021.07.098

5

132

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on August 28,2023 at 01:58:05 UTC from IEEE Xplore.  Restrictions apply. 


