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Abstract 13 

Pressure swing adsorption (PSA) is a widely used technology to separate a gas product from 14 
impurities in a variety of fields. Due to the complexity of PSA operations, process and instrument 15 
faults can occur at different parts and/or steps of the process. Thus, effective process monitoring is 16 
critical for ensuring efficient and safe operations of PSA systems. However, multi-bed PSA 17 
processes present several major challenges to process monitoring. First, a PSA process is operated in 18 
a periodic or cyclic fashion and never reaches a steady state; Second, the duration of different 19 
operation cycles is dynamically controlled in response to various disturbances, which results in a 20 
wide range of normal operation trajectories. Third, there is limited data for process monitoring, and 21 
bed pressure is usually the only measured variable for process monitoring. These key characteristics 22 
of the PSA operation make process monitoring, especially early fault detection, significantly more 23 
challenging than that for a continuous process operated at a steady state. To address these challenges, 24 
we propose a feature-based statistical process monitoring (SPM) framework for PSA processes, 25 
namely feature space monitoring (FSM). Through feature engineering and feature selection, we show 26 
that FSM can naturally handle the key challenges in PSA process monitoring and achieve early 27 
detection of subtle faults from a wide range of normal operating conditions. The performance of FSM 28 
is compared to the conventional SPM methods using both simulated and real faults from an industrial 29 
PSA process. The results demonstrate FSM's superior performance in fault detection and fault 30 
diagnosis compared to the traditional SPM methods. In particular, the robust monitoring performance 31 
from FSM is achieved without any data preprocessing, trajectory alignment or synchronization 32 
required by the conventional SPM methods. 33 
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1 Introduction 36 

The synthetic zeolites developed by Union Carbide in the 1950s enabled the development of the 37 
pressure swing adsorption (PSA) processes. The first industrial application of PSA went on stream in 38 
1966 at a Union Carbide production facility. Since then, PSA has been widely used to separate a gas 39 
product from impurities in various fields, from traditional bulk gas separation and drying, to CO2 40 
sequestration, trace contaminant removal, and many others. A good review of the historical 41 
development of PSA technology can be found in (Elseviers et al., 2015). With ever-increasing 42 
product capacity and carefully designed operations, modern multi-bed PSA systems can take full 43 
advantage of the feed pressure to optimize performance and recover more product gases. For multi-44 
bed PSA systems, adsorber vessels are connected by a complex pipe network with literally hundreds 45 
of valves to automatically switch the gas flows among the beds, which results in an intrinsically 46 
transient, cyclic, highly nonlinear, and complex dynamic process. As industrial adsorbents are 47 
usually highly efficient and stable, major production disruptions are most often caused by valve-48 
related problems, such as internal leakage or stiction. If a potential valve problem could be detected 49 
in real-time while still in its early stage, corresponding actions can be scheduled as an online 50 
maintenance event, which can be conducted without the downtime and in coordination with other 51 
process and business considerations. In other words, if a fault can be detected early, the problem can 52 
be addressed with minimum disruption before it escalates to a highly costly emergency shutdown. 53 
Clearly, successful early fault detection and diagnosis can greatly improve the PSA process 54 
throughput, product quality, and economic performance. In addition, such a process monitoring 55 
system can serve as a remote monitoring and early warning system for unattended or autonomous 56 
PSA operations.  57 

The intrinsically transient and cyclic operation of PSA processes renders most available fault 58 
detection and diagnosis solutions ineffective. Despite the importance and potential impact of PSA 59 
process monitoring, research in this area has been scarce. Pan et al. (2004) proposed a monitoring 60 
approach for continuous processes with periodic characteristics by identifying a stochastic state space 61 
model that captures the statistical behavior of changes occurring from one period to another. This 62 
approach was validated using a wastewater treatment process (WWTP). While there are similarities 63 
between WWTP and PSA processes, there are also major differences. Most notably, for the activated 64 
sludge process, which is the central part of a WWTP, there is a strong cycle-to-cycle dynamics due to 65 
the continuous growth of the microorganisms, which provides a "linkage" from cycle to cycle. In 66 
comparison, for PSA processes, the cycle-to-cycle dynamics is almost non-existent due to the 67 
absence of such a linkage between cycles. In addition, the activated sludge process is a natural 68 
periodic process with a somewhat constant cycle time driven by the diurnal temperature and light 69 
changes. As a result, obtaining the same number of measurements from each period can be easily 70 
achieved, which is required by the state space modeling approach. In contrast, PSA is an engineered 71 
periodic process, with cycle time dynamically controlled in response to many disturbances that affect 72 
a PSA operation, including varying customer demands, operation schedule adjustment based on 73 
electricity pricing to minimize cost, and/or raw material feed composition variations. As a result, the 74 
cycle time is frequently and often significantly adjusted, which does not satisfy the condition that 75 
each cycle contains the same number of measurements as required by the state space approach 76 
proposed in (Pan et al., 2004). In addition, the state space inferential prediction proposed by Pan et al. 77 
requires quality-relevant process output, which we do not have in this study. Recently, Wang et al. 78 
(2017) proposed a geometric framework for the monitoring and fault detection of periodic processes. 79 
The fault detection is based on the "centroids of the centroids" of the training/normal cycles and a 80 
corresponding confidence region defined based on them. The proposed approach was applied to a 81 
simulated two-bed PSA process and showed superior performance compared to the conventional 82 
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dynamic PCA (DPCA) and multi-way PCA (MPCA) methods. For the simulated PSA process, 26 83 
variables were used for process monitoring, including feed flow rates, pressures, and concentrations 84 
in and across both beds. However, in industrial PSA processes, most of these variables are not 85 
measured, especially the concentrations in and across the beds. In fact, for almost all PSA plants, 86 
pressure is the only process variable constantly monitored. In this case, the method proposed by 87 
(Wang et al., 2017) is not applicable as there is no centroid for a single variable. Another proposed 88 
method for monitoring industrial PSA processes is a US patent (Arslan et al., 2014). This method 89 
first applied a moving window discrete Fourier transform (DFT) to convert process data (i.e., bed 90 
pressure profiles) into frequency spectra; next, a number of "relevant" peaks were identified from the 91 
frequency spectra; and finally the logarithm of the amplitude ratio of peak 𝑘𝑘 between beds 𝑖𝑖 and 𝑗𝑗 is 92 
computed over time to capture the normal process behavior and monitored for fault detection. 93 
However, the "relevant peaks" were selected in an ad hoc manner, and there is no description on how 94 
"relevance" was evaluated or how the "relevant" peaks were identified. Recently, slow feature 95 
analysis (SFA) has been proposed to capture slowly varying dynamics in a process (e.g., dynamics 96 
across multiple cycles) (Shang et al., 2015). SFA enables separation of normal process changes due 97 
to process dynamics from process faults. SFA has been utilized for the monitoring of nonstationary 98 
chemical processes subject to time variant conditions (Zhao & Huang, 2018) and cyclic processes 99 
including WWTPs (Hong et al., 2020; K. Wang et al., 2021). However, SFA is not suitable for PSA 100 
processes due to the lack of slow cycle-to-cycle dynamics.  101 

To develop a process monitoring solution that is suitable for PSA and other cyclic industrial 102 
processes, we present a different approach based on the feature space monitoring (FSM) framework 103 
we developed recently (He & Wang, 2018). Instead of monitoring the original pressure profile of a 104 
PSA process, we first conduct feature engineering, where statistical and shape/morphological features 105 
are computed based on the pressure profile to capture the characteristics of each step of the operation 106 
cycle. Next, these features are grouped by cycles and monitored by a linear or nonlinear MSPM 107 
method for fault detection and diagnosis. Through feature engineering and selection, we not only can 108 
readily address the unique challenges associated with cyclic processes, such as the unequal duration 109 
for different cycles/steps, but also could detect subtle changes early from a wide range of normal 110 
cycle durations. The rest of the paper is organized as follows. Sec. 2 discusses the key characteristics 111 
of the industrial PSA process and the challenges posed to the conventional MSPM methods by these 112 
characteristics. Sec. 3 briefly reviews statistics pattern analysis (SPA), which is the predecessor and a 113 
special case of FSM. Sec. 4 introduces the proposed FSM method for PSA processes. Sec. 5 presents 114 
several case studies, including simulated and real faults in an industrial PSA process, to demonstrate 115 
the performance of the proposed method, which is compared to those of the conventional MPCA-116 
based methods. Finally, Sec. 6 discusses the results and draws some conclusions. 117 

2 PSA Process Characteristics and Their Challenges to Conventional MSPM 118 

In this section, we discuss the unique characteristics of PSA processes and how these characteristics 119 
pose challenges to process monitoring. 120 

2.1 PSA process characteristics 121 

PSA processes are operated on repeated cycles of adsorption and regeneration. As shown in Figure 1, 122 
the bed pressure is raised during the adsorption step and the impurities are adsorbed by the adsorbent, 123 
providing the high-purity product gas. During the regeneration step, the bed pressure is lowered and 124 
the impurities are cleaned or purged from the adsorbent, allowing the adsorption-regeneration cycle 125 
to be repeated. Therefore, a PSA process is a continuous process but never operates at any single 126 
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steady state. Instead, it repeats a sequence of operation steps over and over. This is usually termed a 127 
cyclic steady-state process, where cycles are very similar to each other, and a whole cycle is 128 
considered a "steady-state". 129 

[Figure 1 here] 130 

To take full advantage of the feed pressure and to recover more product gas, multi-bed multi-step 131 
PSA systems have been widely applied in industrial applications. In terms of process monitoring, the 132 
bed pressure is always measured and is often the only variable constantly measured for PSA 133 
processes. The industrial data utilized in this work were collected from one of Linde's 12-bed 15-step 134 
PSA systems. Figure 2 shows two common ways to visualize pressure trajectories in a multi-bed PSA 135 
process. Due to the sensitivity of the process's actual operation and production data, all axis tick 136 
labels in this and other figures are omitted when real operation data are used. Figure 2 (A) shows 137 
time-series pressure profiles of multiple beds (only three out of twelve beds are shown here to reduce 138 
clutter). This type of pressure time-series plot is useful for visualizing and observing between-bed 139 
variations. However, only severe faults that significantly deviate from the nominal trajectory can be 140 
detected by the naked eyes using this type of plot; in addition, it becomes very cluttered and difficult 141 
to read if all beds were plotted on the same figure. Another way to visualize the pressure profile 142 
within a bed over multiple cycles is to overlay cycles based on the start of each cycle, as illustrated in 143 
Figure 2 (B). This type of plot can be used to visualize within-bed variations. However, due to the 144 
variable duration of cycles, again, only severe faults that show significant deviations from the normal 145 
operation can be detected directly by the naked eyes from this type of plot. 146 

[Figure 2 here] 147 

In terms of process monitoring, PSA processes share more similarities with batch processes than with 148 
continuous processes. For example, PSA and batch processes can both have variable batch/cycle 149 
duration and step durations; they are often dynamic transient processes and do not have a steady 150 
state. The variable nature of the PSA cycle duration is demonstrated in Figure 3 (A), which plots the 151 
durations of different cycles from one PSA bed. For the PSA process studied in this work, each cycle 152 
consists of 15 steps, as illustrated in Figure 2. For the step durations, about half of the steps follow 153 
similar trends as the cycle duration, while the remaining steps have relatively constant durations. 154 
Figure 3 (B) plots the variable step duration of the adsorption step across different cycles, and Figure 155 
3 (C) plots the relatively constant step duration of an equalization step across different cycles. For the 156 
PSA process studied in this work, the cycle duration is in the order of tens of minutes and the step 157 
durations vary from seconds to minutes. 158 

[Figure 3 here] 159 

Several observations can be made from these plots. First, the cycles are asynchronous across different 160 
beds; for the same bed, the cycles do not exactly overlap with each other either. Second, despite the 161 
overall highly nonlinear behavior for each cycle, the pressure profile for each individual step is 162 
usually much simpler and can be approximated by a simple linear or polynomial function. Finally, 163 
not only the cycle durations but also the step durations vary from cycle to cycle. It is important to 164 
note that the variations in cycle/step duration is not caused by unmeasured normal process variations, 165 
instead, it is a result of deliberate control of cycle and step durations to ensure product quality in 166 
response to dynamic scheduling and/or measured disturbances such as demand change and weather 167 
conditions. In addition, these characteristics are not unique to PSA processes but are rather common 168 
to other cyclic steady-state processes, such as heat exchanger networks under fouling with cleaning-169 
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in-place (CIP) operations (Georgiadis & Papageorgiou, 2000), and catalytic conversion processes 170 
where the catalyst undergoes periodic deactivation and activation.(Jain & Grossmann, 1998) 171 

2.2 Challenges in monitoring PSA processes  172 

As discussed above, normal PSA operations cover a wide range of pressure trajectories, due to the 173 
dynamically controlled step/cycle durations in response to external disturbances. It is clearly a highly 174 
challenging task to detect a subtle fault early from a wide range of normal cycle/step durations with 175 
the bed pressure as the only monitored variable. In addition, the characteristics of the PSA processes 176 
(and cyclic steady-state processes in general), including asynchronous trajectories, variable cycle/step 177 
durations, and nonlinear dynamics, present significant challenges to process monitoring. These 178 
challenges cannot be effectively addressed by commonly used multivariate statistical monitoring 179 
(MSPM) methods, including both conventional MSPM methods such as MPCA, trilinear 180 
decomposition (TLD), and parallel factor analysis (PARAFAC) (Wise et al., 1999), and more recent 181 
methods such as multi-way independent component analysis (MICA) (Yoo et al., 2004) and kernel 182 
PCA (KPCA) (Choi et al., 2005). These methods assume that the normal process data follow the 183 
same distribution and require the construction of a two-dimensional (2-D) data matrix (for data 184 
unfolding approaches) or a 3-D data array (for multi-way approaches). In other words, they require 185 
synchronization of all steps within a cycle to achieve equal step and cycle durations. Trajectory 186 
synchronization can be done through different ways, including simple cut, interpolation, dynamic 187 
time warping (DTW), etc. However, these preprocessing steps have their drawbacks, including 188 
trajectory distortion, information loss, etc. (He & Wang, 2007, 2018). In particular, synchronization 189 
is undesirable for PSA processes because the step durations are dynamically controlled and may 190 
contain important information on the state of the process operation. Artificially changing the 191 
step/cycle durations may distort the contained information and negatively affect the fault detection 192 
and diagnosis performance.  193 

In this work, built upon our work in batch process monitoring that can naturally handle variable 194 
batch/step durations, we develop an FSM approach for PSA processes. We show that a balance 195 
between sensitivity and robustness of the FSM approach can be achieved through feature engineering 196 
and selection, which enables early detection of subtle faults with very low false alarm rate. 197 

3 A Brief Review of Statistics Pattern Analysis 198 

In traditional MSPM approaches for process monitoring, such as PCA and PLS-based approaches, it 199 
is inexplicitly assumed that normal process data (or scores in principal component subspace) follow a 200 
multivariate Gaussian distribution. However, this assumption is usually not satisfied in industrial 201 
applications, especially for batch processes whose data are often highly non-Gaussian. Statistics 202 
pattern analysis (SPA) was proposed to address the non-Gaussian process data commonly seen in 203 
industrial processes. In SPA, various statistics of process variables, instead of process variables 204 
themselves, are modeled for process monitoring. A statistics pattern (SP) is a collection of various 205 
statistics calculated using process data, which captures the characteristics of individual variables 206 
(e.g., mean and variance), the interactions among different variables (e.g., covariance), the dynamics 207 
(e.g., auto-, cross-correlations), as well as process nonlinearity and process data non-Gaussianity 208 
(e.g., skewness, kurtosis, and other higher-order statistics or HOS). SPA has been implemented for 209 
both continuous and batch process monitoring. For continuous processes, SPs corresponding to 210 
different time periods are computed using a moving window approach. For batch processes, the SP 211 
for each batch (or each step in a batch) is computed using all measurements from the batch (or step). 212 
In this way, the variable batch/step duration can be naturally handled without any data preprocessing.  213 
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For process monitoring, SPA assumes that the SPs of normal operations follow a similar pattern (i.e., 214 
normal pattern), while the SPs of abnormal or faulty operations must show some deviation from the 215 
normal pattern. A multivariate statistical model can be developed for the normal SPs, which enables 216 
the determination of a boundary for normal operation or threshold for fault detection. The 217 
implementation of SPA can be simplified by assuming that the normal SPs follow a multivariate 218 
Gaussian distribution. Although this assumption appears to be the same as the traditional MSPM 219 
methods, it is important to note that this assumption (i.e., normal SPs follow a Gaussian distribution) 220 
is usually satisfied to a much better degree for SPs than for the measured process variables 221 
themselves. As different statistics are the averages of different functions of the variable 222 
measurements in a window/batch/step, the distribution of SPs is asymptotically Gaussian. This 223 
argument is supported by the central limit theorem (CLT) under weak dependencies, which relaxes 224 
the requirement on the independency among different random variables (Dedecker & Rio, 2008). It 225 
was further shown that the CLT applies to sums of bounded random variables generated from 226 
stationary dynamic systems (Pène, 2005), which applies to different statistics computed using 227 
measurements collected from stable processes. The assumption was also validated in (He & Wang, 228 
2011) for batch process monitoring. With this simplification, the characteristics of normal SPs can be 229 
captured by the covariance structure of SPs, similar to PCA, and a threshold can be defined (e.g., 230 
based on Hotelling's T2 or squared prediction error (SPE)). The test SPs can then be projected onto 231 
the model and the obtained metric such as T2 or SPE is compared to the threshold for fault detection. 232 
More details on batch-based SPA can be found in (He & Wang, 2011). Since the introduction of 233 
SPA, several variations and extensions of SPA have been reported in the literature for process 234 
monitoring (He & Xu, 2016; Yang et al., 2018; Zhang et al., 2018; Zhou & Gu, 2019). 235 

4 The Proposed Feature Space Monitoring Framework 236 

As PSA and other cyclic continuous processes share many similarities with batch processes, we 237 
expect SPA for batch monitoring can be extended to monitor PSA processes. However, major 238 
differences between PSA and regular batch processes must be considered. For the PSA process 239 
studied here, the bed pressure is the only measured variable, therefore only univariate statistics can be 240 
calculated for process monitoring. In addition, one major challenge for PSA monitoring is that 241 
although under tight process control, the normal PSA operation has a wide distribution of step/cycle 242 
durations in response to disturbances such as customer demand and scheduling based on electricity 243 
pricing. Therefore, normal PSA operation data exhibit a wide distribution of normal cycle trajectory, 244 
which makes the detection, not to mention early detection, of abnormal cycles highly challenging. To 245 
address this challenge, we explore the power of feature engineering to achieve both sensitivity and 246 
robustness in the monitoring performance, as well as minimal data preprocessing for easy practical 247 
implementation. Once a fault is detected, it is desirable to identify in which step the fault has 248 
occurred, so that the corresponding valves, bed and/or pipeline can be identified for further 249 
examination. The proposed fault detection and diagnosis framework is termed feature space 250 
monitoring or FSM. There are three steps involved in the proposed FSM framework: 1) feature 251 
engineering and selection; 2) fault detection; and 3) fault diagnosis. They are discussed in the 252 
following sections. 253 

4.1 Feature engineering  254 

As shown in Figure 2, although a complete cycle of a PSA process is highly nonlinear, each step is 255 
much simpler and can be described by a simple linear or polynomial model. Therefore, in this work, 256 
we compute different features for each step separately. In addition to univariate statistics, we explore 257 
morphological features to better capture the characteristics of pressure profile in each step of the 258 
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process. To handle the irregularities in industrial data, for each characteristic we consider multiple 259 
features that may exhibit different level of sensitivity to outliers. For example, to assess the 260 
dispersion of pressure measurement during a processing step, we compare features that use the mean 261 
of the pressure measurements as the reference with others that use the median as the reference. Based 262 
on the observation of the pressure profiles and discussions with process engineers, totally 12 features 263 
(as defined in the remaining section), both statistical and morphological, are examined in this work to 264 
determine if they would provide adequate process monitoring. All features are calculated for each 265 
step using raw pressure measurements without any preprocessing such as synchronization, centering, 266 
scaling or normalization.  267 

In this work, we use a vector  𝒙𝒙𝒊𝒊 ∈ ℜ𝑁𝑁𝑖𝑖 to represent the 𝑁𝑁𝑖𝑖 pressure measurements in cycle 𝑖𝑖 (𝑖𝑖 =268 
1,2, … ,𝒞𝒞), where 𝒞𝒞 is the number of cycles from all beds and 𝑁𝑁𝑖𝑖 varies from cycle to cycle. A subset 269 
of 𝒙𝒙𝒊𝒊: 𝒙𝒙𝑖𝑖,𝑗𝑗 ∈ ℜ𝑁𝑁𝑖𝑖,𝑗𝑗 represents the pressure measurements of step 𝑗𝑗 (𝑗𝑗 = 1,2, … ,𝒮𝒮) during cycle 𝑖𝑖; and 270 
𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) �𝑡𝑡 = 1,2, … ,𝑁𝑁𝑖𝑖,𝑗𝑗� represents an individual pressure measurement during step 𝑗𝑗 of cycle 𝑖𝑖 at 271 
time 𝑡𝑡; 𝑁𝑁𝑖𝑖,𝑗𝑗 is the duration of step 𝑗𝑗 of cycle 𝑖𝑖. Note that total sample number in cycle 𝑖𝑖: 𝑁𝑁𝑖𝑖 =272 
∑ 𝑁𝑁𝑖𝑖,𝑗𝑗𝒮𝒮
𝑗𝑗=1  and total sample number across all 𝒞𝒞 cycles: 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖𝒞𝒞

𝑖𝑖=1 = ∑ ∑ 𝑁𝑁𝑖𝑖,𝑗𝑗𝒮𝒮
𝑗𝑗=1

𝒞𝒞
𝑖𝑖=1 . For each step 273 

of a given cycle, the definitions of different features are given below. 274 

1. Mean (𝜇𝜇𝑖𝑖,𝑗𝑗), which captures the central tendency of pressure. 275 

𝜇𝜇𝑖𝑖,𝑗𝑗 = 1
𝑁𝑁𝑖𝑖,𝑗𝑗

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1  (1) 276 

2. Standard deviation (𝑠𝑠𝑖𝑖,𝑗𝑗), which measures the spread or dispersion of pressure measurements 277 
relative to its mean. 278 

𝑠𝑠𝑖𝑖,𝑗𝑗 = �
1
𝑁𝑁𝑖𝑖,𝑗𝑗

∑ �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) − 𝜇𝜇𝑖𝑖,𝑗𝑗�
𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1  (2) 279 

3. Skewness (𝛾𝛾𝑖𝑖,𝑗𝑗), which measures the asymmetry of pressure distribution about its mean. 280 

𝛾𝛾𝑖𝑖,𝑗𝑗 =
1

𝑁𝑁𝑖𝑖,𝑗𝑗
∑ �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)−𝜇𝜇𝑖𝑖,𝑗𝑗�

3𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1

𝑠𝑠𝑖𝑖,𝑗𝑗
3  (3) 281 

4. Kurtosis (𝜅𝜅𝑖𝑖,𝑗𝑗), which measures whether the pressure distribution is heavy-tailed or light-tailed 282 
relative to a normal distribution. The following so-called excess kurtosis is used in this work 283 
so that the standard normal distribution has a kurtosis of zero. 284 

𝜅𝜅𝑖𝑖,𝑗𝑗 =
1

𝑁𝑁𝑖𝑖,𝑗𝑗
∑ �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)−𝜇𝜇𝑖𝑖,𝑗𝑗�

4𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1

𝑠𝑠𝑖𝑖,𝑗𝑗
4 − 3 (4) 285 

5.  Coefficient of variation (𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗), a.k.a., relative standard deviation, is the standardized measure 286 
of dispersion of pressure distribution. 287 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝑠𝑠𝑖𝑖,𝑗𝑗
𝜇𝜇𝑖𝑖,𝑗𝑗

 (5) 288 
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6. Interquartile range (𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗), which also measures spread or dispersion of pressure 289 
measurements. 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗 is based upon, and relative to, the median, instead of the mean as in 𝑠𝑠𝑖𝑖,𝑗𝑗. 290 
As a result, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗 is less sensitive to extreme measurements or outliers. 291 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝑄𝑄3𝑖𝑖,𝑗𝑗 − 𝑄𝑄1𝑖𝑖,𝑗𝑗  (6) 292 

where 𝑄𝑄1𝑖𝑖,𝑗𝑗  and 𝑄𝑄3𝑖𝑖,𝑗𝑗 are the lower quartile (i.e., 25-th percentile) and upper quartile 293 
(i.e., 75-th percentile) of all pressure measurements in step 𝑗𝑗 of cycle 𝑖𝑖, respectively. 294 

7. Quartile coefficient of dispersion (𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑗𝑗), which measures dispersion of pressure 295 
measurements based on its interquartile range 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗. 296 

𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑗𝑗 = 𝑄𝑄3𝑖𝑖,𝑗𝑗−𝑄𝑄1𝑖𝑖,𝑗𝑗
𝑄𝑄3𝑖𝑖,𝑗𝑗+𝑄𝑄1𝑖𝑖,𝑗𝑗

= 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗
𝑄𝑄3𝑖𝑖,𝑗𝑗+𝑄𝑄1𝑖𝑖,𝑗𝑗

 (7) 297 

8. Mean absolute deviation (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗), which measures dispersion of pressure measurements in 298 
terms of the absolute deviation from their mean. 299 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗 = 1
𝑁𝑁𝑖𝑖,𝑗𝑗

∑ �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) − 𝜇𝜇𝑖𝑖,𝑗𝑗�
𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1  (8) 300 

9. Median absolute deviation (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗), which measures dispersion of pressure measurements in 301 
terms of the absolute deviation from their median. 302 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(�𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖,𝑗𝑗)�) (9) 303 

10. Slope (𝑆𝑆𝑖𝑖,𝑗𝑗), which measures the overall slope of change in pressure measurements. 304 

𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗�𝑁𝑁𝑖𝑖,𝑗𝑗�−𝑥𝑥𝑖𝑖,𝑗𝑗(1)

𝑁𝑁𝑖𝑖,𝑗𝑗−1
 (10) 305 

11. Slope of linear regression line (𝑆𝑆𝐿𝐿𝐿𝐿,𝑖𝑖,𝑗𝑗), which measures the slope of pressure change when 306 
linearity is assumed. 𝑆𝑆𝐿𝐿𝐿𝐿,𝑖𝑖,𝑗𝑗 is determined through simple linear regression. 307 

• 𝑆𝑆𝐿𝐿𝐿𝐿,𝑖𝑖,𝑗𝑗 =
𝑁𝑁𝑖𝑖,𝑗𝑗∙∑ �𝑡𝑡∙𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)�

𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1 −�∑ 𝑡𝑡

𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1 �∙�∑ 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)

𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1 �

𝑁𝑁𝑖𝑖,𝑗𝑗∙∑ (𝑡𝑡2)
𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1 −�∑ 𝑡𝑡

𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1 �

2  (11) 308 

12. Mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗), which measures the errors between the expected pressure 309 
measurements based on linear regression and the observed pressure measurements. 310 

For the steps with relatively flat pressure profiles (e.g., adsorption, hold and purge steps), 311 
we first estimate the global mean of step 𝑗𝑗 over all cycles under normal conditions (i.e., 312 
the training data). 313 

𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗 = 1
𝑀𝑀
∑ 𝜇𝜇𝑖𝑖,𝑗𝑗𝑀𝑀
𝑗𝑗=1  (12) 314 

where 𝑀𝑀 is the total number of cycles in the training data. Then MAE can be calculated as 315 
the following 316 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 =  1
𝑁𝑁𝑖𝑖,𝑗𝑗

∑ �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) − 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗�
𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1    (13) 317 
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For the steps with sloped pressure profiles (e.g., equalization, provide purge, blowdown or 318 
evacuation, and pressurization steps), the predicted pressure measurements, 𝑥𝑥�𝑖𝑖,𝑗𝑗(𝑡𝑡) (𝑡𝑡 =319 
1,2, …𝑁𝑁𝑖𝑖,𝑗𝑗) are computed by linear regression using the linear model estimated from all 320 
training data. 321 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 =  1
𝑁𝑁𝑖𝑖,𝑗𝑗

∑ �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) − 𝑥𝑥�𝑖𝑖,𝑗𝑗(𝑡𝑡)�𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡=1    (14) 322 

Finally, for each cycle, we have all the above-described features combined. 323 

𝒇𝒇𝑖𝑖 = �𝝁𝝁𝑖𝑖|𝒔𝒔𝑖𝑖|𝜸𝜸𝑖𝑖|𝜿𝜿𝑖𝑖|𝑪𝑪𝑪𝑪𝑖𝑖|𝑰𝑰𝑰𝑰𝑰𝑰𝑖𝑖|𝑸𝑸𝑸𝑸𝑸𝑸𝑖𝑖|𝑫𝑫𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖�𝑫𝑫𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖�𝑺𝑺𝑖𝑖|𝑺𝑺𝐿𝐿𝐿𝐿,𝑖𝑖�𝑴𝑴𝑴𝑴𝑴𝑴𝑖𝑖� (15) 324 

where 𝝁𝝁𝑖𝑖 = �𝜇𝜇𝑖𝑖,1, 𝜇𝜇𝑖𝑖,2,⋯ , 𝜇𝜇𝑖𝑖,𝑇𝑇� is a row vector of dimension (1 × 𝒮𝒮). 𝒮𝒮 is the total number of steps in 325 
a cycle. The same concatenation convention applies to all types of features. Therefore, 𝒇𝒇𝑖𝑖 is a row 326 
vector of dimension �1 × ∑ 𝑄𝑄𝑗𝑗𝒮𝒮

𝑗𝑗=1 � where 𝑄𝑄𝑗𝑗 is the number of features used to characterize step 𝑗𝑗 of 327 
the PSA process. For simplicity, we use 𝐹𝐹 to denote the total number of features included in each 328 
cycle so that 𝒇𝒇𝑖𝑖 is a row vector containing 𝐹𝐹 features. In this work, we utilize 12 different types of 329 
features, as defined in Eqs. (1)~(14), for all the 15 steps, which would result in 180 features for each 330 
cycle (i.e., 𝐹𝐹 = 180). 331 

After the extracted features are concatenated into a row vector for each cycle following Eqn. (15), the 332 
features from multiple cycles are concatenated into a matrix as the following. 333 

𝑭𝑭𝑇𝑇𝑇𝑇 = �

𝒇𝒇1
𝒇𝒇2
⋮
𝒇𝒇𝒞𝒞

� (16) 334 

In this way, a training feature matrix 𝑭𝑭TR based on 𝒞𝒞 normal cycles is obtained, which has a 335 
dimension of (𝒞𝒞 × 𝐹𝐹), despite different step/cycle durations in the data. The features of test cycle(s) 336 
𝑭𝑭𝑇𝑇𝑇𝑇 are extracted in the same way except that some of the features are generated with reference to 337 
the training cycles (e.g., 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗 in Eqn. (12)). 338 

It is worth noting that the statistical and morphological features are extracted for each step of each 339 
cycle based on the raw training data without any preprocessing, without synchronization, scaling, 340 
normalization nor alignment. Since the features are calculated using all measurements from each step 341 
of the cycle, they are all scalars regardless of the step/cycle durations. Therefore, FSM naturally 342 
handles unequal step/cycle durations and asynchronous step/cycle trajectories. In addition, the 343 
structure shown in Eqn. (15) has the flexibility of allowing different number of features for different 344 
steps. In addition, cycle-based features can be conveniently added in a similar fashion. 345 

4.2 Feature selection 346 

Feature selection has been widely studied in supervised learning where it has been shown that 347 
including irrelevant and noisy features increases model complexity and can degrade model prediction 348 
performance (Andersen & Bro, 2010; Lee et al., 2020; Lindgren et al., 1994; Wang et al., 2015). 349 
Feature selection also has other benefits including reducing computational cost, improving 350 
interpretability of the model, etc. Since MSPM method based on PCA is a dimension reduction 351 
technique that is capable of handling collinearity in the process data, it may appear that feature 352 
selection is redundant and unnecessary. However, as shown in (Ghosh et al., 2014), feature selection 353 
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can have a significant impact on the monitoring performance of PCA-based MSPM. Specifically, 354 
experiments were conducted to show that including irrelevant and noisy features in a PCA-based 355 
MSPM model can degrade process monitoring performance (Ghosh et al., 2014).  356 

In general, variable selection is more challenging for process monitoring as it is an unsupervised 357 
learning. Specifically, in process monitoring available data for model training are predominantly 358 
normal data. Even if fault data were available, they do not represent all possible fault scenarios. 359 
Therefore, for process monitoring, it is reasonable to assume that only normal operations data are 360 
available for feature selection, as features that are sensitive for detecting one type of fault may not be 361 
sensitive for detecting other (potentially unseen) faults. In this work we propose a new feature 362 
selection method for process monitoring that utilizes normal operation data only. We assume the true 363 
relevant features that are important for process monitoring should capture the key characteristics of 364 
the normal operation; consequently, if the true relevant features were used for process monitoring, 365 
the monitoring performance would be insensitive to the subsets of the training data used for model 366 
building. In other words, features extracted from a set of normal operation data (e.g., the training 367 
data) should show (highly) similar behavior as those extracted from another independent set of 368 
normal data (e.g., the validation data). In this work, we use false alarm rate (FAR) and false alarm 369 
magnitude (FAM) to quantify the difference between the training and validation performance, where 370 
FAM is defined as the difference between the monitoring statistic (e.g., T2 or SPE) of the false alarm 371 
sample and the threshold of that statistic. In this work, 10-fold cross-validation is conducted using 372 
normal operation data to select features that result in similar FAR and FAM in the validation data, 373 
and feature selection is conducted through exhaustive search. A more systematic approach is under 374 
investigation. In the end, the following four features were selected: mean (𝜇𝜇), standard deviation (𝑠𝑠), 375 
slope of linear regression line (𝑆𝑆𝐿𝐿𝐿𝐿) and mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀). It is worth noting that all median 376 
or quartile based robust features were not selected in this work. The possible reason is that since the 377 
PSA process is tightly controlled, these robust (hence less sensitive) features do not offer advantage 378 
over mean-based features that are more sensitive to changes in FAR and FAM. 379 

4.3 Model development 380 

After feature selection, a multivariate statistical model can be developed to extract the patterns of 381 
normal cycles by examining the correlations among all features. This model enables the 382 
determination of a boundary or threshold for process monitoring. In this work, we assume that under 383 
normal operations, the features form a multivariate normal distribution. Since all features are the 384 
averages of some functions of multiple measurements in a step/cycle, their distributions are 385 
asymptotically Gaussian.(Pène, 2005) Similar to (He & Wang, 2011), here we choose PCA to capture 386 
the directions of maximum covariances among all the features. Other SPM methods, such as 387 
independent component analysis (ICA), can be applied as well.  388 

Because the features in FSM are usually different types, it is reasonable to scale the training feature 389 
matrix 𝑭𝑭𝑇𝑇𝑇𝑇 to zero mean and unit variance for correlation based PCA as follows. 390 

𝑭𝑭𝑇𝑇𝑇𝑇 = 𝑻𝑻𝑷𝑷T + 𝑭𝑭�𝑇𝑇𝑇𝑇 = 𝑻𝑻𝑷𝑷T + 𝑻𝑻�𝑷𝑷�T (17) 391 

where 𝑷𝑷 ∈ ℜ𝐹𝐹×𝑃𝑃 is the loading matrix with its columns containing the directions of the first 𝑃𝑃 (i.e., 392 
the number of principal components) maximum correlations among all features in descending order. 393 
𝑻𝑻 ∈ ℜ𝑀𝑀×𝑃𝑃 is the score matrix with its columns containing the projections of 𝑭𝑭𝑇𝑇𝑇𝑇 onto 𝑷𝑷.  𝑷𝑷� and 𝑻𝑻� 394 
are the residual loading and score matrices, respectively. The principal component subspace (PCS) is 395 
𝒮𝒮𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑷𝑷} , which captures the systematic variations of the normal process operation, including 396 
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measured and unmeasured disturbance, as well as set-point changes. The residual subspace (RS) is 397 
𝒮𝒮𝑅𝑅 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑷𝑷��, which captures the remaining variations after subtracting the systematic variations. 398 
They are the random variations of the process, including measurement noise under normal 399 
operations. 400 

4.4 Fault detection 401 

PCA based fault detection is well established for monitoring multivariate processes at steady state, 402 
where Hotelling's T2 can be employed for monitoring variations in the PCS while SPE or Q statistic 403 
can be employed for monitoring variations in the RS. By monitoring features of individual cycles, we 404 
can straightforwardly extend PCA for monitoring cyclic processes which are inherently non-steady 405 
state. Similar to PCA-based monitoring of a continuous process, T2 can capture faults that shift away 406 
from the normal operation region without violating the covariance among measured/monitored 407 
process variables. These faults are usually large operational changes such as a change of feedstock or 408 
raw material. On the other hand, SPE are sensitive to the process faults that violate the collinear 409 
relationships among the monitored features. The control limits of T2 and SPE can be defined 410 
theoretically based on the Gaussian assumption of the features. They can also be determined 411 
empirically, e.g., by kernel density estimation (KDE). The latter is used in this work.  412 

By design, PSA processes are tightly controlled to operate in a targeted optimal region. Therefore, we 413 
expect there are few process changes that could violate the threshold in PCS and are detectable by T2. 414 
In addition, as multiple features included in the FS are closely related to each other, such as the same 415 
features from different steps, there could be significant collinearities among features. Therefore, we 416 
expect SPE to be sensitive to the process faults with small magnitude but violating the collinearities 417 
among features, and enable early detection of potentially catastrophic faults. As shown in Section 418 
5.2, both the traditional multi-way PCA (MPCA) and the proposed FSM detected the faults largely 419 
through SPE, as expected. 420 

4.5 Fault diagnosis 421 

Once a fault is detected by SPE statistic, the contribution plot can be used for fault diagnosis. In this 422 
work, we propose a hierarchical fault diagnosis using SPE to first determine in which step the fault 423 
occurred based on the step-wise contribution plot, then postulate what type of fault occurred based on 424 
the feature-wise contribution plot.  425 

At the step level (i.e., step-wise diagnosis), SPE statistic is broken down by step: 426 

𝑆𝑆𝑃𝑃𝑃𝑃 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑇𝑇
𝑗𝑗=1 = ∑ �𝒇𝒇�𝑗𝑗�

2𝑇𝑇
𝑗𝑗=1  (18) 427 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = �𝒇𝒇�𝑗𝑗�
2

= ∑ 𝑓𝑓𝑘𝑘2
𝑄𝑄𝑗𝑗
𝑘𝑘=1  is the contribution from the 𝑗𝑗𝑡𝑡ℎ step. 𝑓𝑓𝑘𝑘2 is the residual (row) vector 428 

of features extracted from step 𝑗𝑗. The bar chart of 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
𝑆𝑆𝑆𝑆𝑆𝑆

× 100% (𝑗𝑗 = 1⋯𝑇𝑇) provides information for 429 
the step-wise diagnosis for the faulty cycle. The step(s) with the highest contribution(s) are identified 430 
as the root cause(s). Note that if different number of features are used for different steps, a 431 
normalization (e.g., dividing by number of features) can be applied. Once the faulty step is identified, 432 
a feature-wise diagnosis is performed to identify the nature of the fault. The bar chart of 433 
𝑓̃𝑓𝑘𝑘
2

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
× 100% (𝑘𝑘 = 1,⋯𝑄𝑄𝑗𝑗) provides information for the feature-wise diagnose for step j. For 434 

example, if mean contributed significantly to 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗, then more likely there were step change(s) in the 435 
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pressure profile during step 𝑗𝑗. Similar diagnosis can be made for other features. It is worth noting that 436 
the features proposed in this work specifically target the PSA process. For other processes, other 437 
features, including auto- and cross-correlation coefficients and higher-order statistics (HOS), could 438 
and have been utilized for quantifying process dynamics and nonlinearity (J. Wang & He, 2010), (He 439 
& Wang, 2011). 440 

5 An Industrial Case Study 441 

5.1 Fault description and methods studied 442 

In this section, we use an industrial PSA case study to demonstrate the performance of the proposed 443 
FSM method, and compare it to the traditional MPCA method. Note that the method proposed by 444 
Wang et al. (2017) is not applicable because pressure measurements are the only available 445 
measurements for process monitoring in this study. The patented method by Arslan et al. (2014) 446 
cannot be implemented either, because there are no details as how the peaks are defined or classified 447 
as "relevant", and the criteria used for peak selection and control limits determination are unknown. 448 
The state space modeling approach by Pan et al. (2004) is not applicable due to the absence of cycle-449 
to-cycle dynamics of the PSA processes and the lack of quality-relevant measurement for the PSA 450 
process studied in this work. Because MPCA requires that each step across all cycles has the same 451 
duration, two different data preprocessing techniques are studied: one with simple cut denoted as 452 
MPCASC and the other with dynamic time warping (DTW) denoted as MPCADTW. For MPCASC, the 453 
shortest step durations across all cycles are used as the reference while the last few measurements of 454 
any cycle with longer step duration are simply removed to match the shortest, which resulted in 438 455 
variables for the whole cycle. For MPCADTW, the number of variables after unfolding is 705. The 456 
significant difference in the number of variables for MPCASC and MPCADTW reflects the significant 457 
variation of step durations across different cycles. For FSM, four features are used for each of the 15 458 
steps, which resulted in 60 variables. To ensure that enough number of samples are available for all 459 
methods, 2,070 cycles under normal operations are used as the training set, which is about three 460 
times the number of variables for MPCADTW. The first 1,449 cycles (70% of 2,070 cycles) are used 461 
for model training and the remaining 621 cycles for model validation.  462 

Six fault scenarios of a PSA process are studied in this work, which are listed in Table 1. The first 463 
four are simulated faults while the last two are from real industrial data. For the simulated faults, 464 
similar faulty process behaviours have been observed in actual operations. They are reproduced 465 
based on historical plots of those faults because the historical data are no longer available. All faults 466 
are related to valve malfunctions. For example, an internally leaky valve could result in higher or 467 
lower pressure in one vessel depending on whether the vessel serves as a pressure provider or 468 
receiver, such as the fault scenarios 1, 3 and 5. A sticky valve could result in higher pressure 469 
variation, such as the fault scenario 2, sudden pressure increase or drop, such as the fault scenario 4, 470 
or a non-smooth (e.g., zig-zag) pressure profile, such as the fault scenario 6. As discussed in the 471 
Introduction section, due to the very high frequency of open and close operations of valves, it has 472 
been found that the process faults are most often caused by valve-related problems. 473 

For each fault scenario, totally 16 cycles are used as the test set and among which 3 (deliberately 474 
arranged as cycle 4, 9 and 14 for better comparison across all scenarios) are faulty cycles. In these 475 
cases, the simulated faults are introduced by modifying a normal cycle randomly selected from the 476 
industrial data set. The pressure trajectories of the test set for fault scenarios 1 (simulated fault) and 5 477 
(real fault) are shown in Figure 4. 478 

[Table 1 here] 479 



  Running Title 

 
13 

[Figure 4 here] 480 

For all fault detection methods, the number of principal component (PCs) is selected to cover 90% of 481 
the variance of their corresponding full feature space. The control limits on Hoteling's T2 and squared 482 
prediction error (SPE) are calculated empirically based on the kernel density estimation of the 483 
corresponding statistics (i.e., T2 or SPE) of the training dataset at confidence level 99%. The number 484 
of PCs and other information discussed above are listed in Table 2. 485 

[Table 2 here] 486 

5.2 Fault detection results 487 

By considering faults detected in both residual subspace using SPE and principal subspace using T2, 488 
the overall fault detection results are shown in Table 3. Specifically, the table lists faulty cycles 489 
detected by either SPE, or T2, or both. The fault detection rate (FDR) and false alarm rate (FAR) of 490 
each method are also summarized in Table 3. These results show that FSM detects all faulty cycles 491 
under all fault scenarios without generating false alarms. In comparison, MPCASC has missed 492 
detection under fault scenario 1, while MPCADTW has missed detection under fault scenario 5. In 493 
addition, both MPCASC and MPCADTW have false alarms. More details of the fault detection results 494 
by T2 and SPE are shown in Table 4. It can be seen that SPE statistic in general is more effective in 495 
detecting faults, although it also generates false alarms in the cases of MPCASC and MPCADTW. In 496 
comparison, T2 does not generate false alarms for all methods. However, it misses several faults in 497 
MPCASC and performs even worse in MPCADTW. Overall, FSM performs robustly with both T2 and 498 
SPE and is significantly better than MPCASC and MPCADTW.  499 

To provide additional details on the performance of different methods, we visualized some fault 500 
detection results. Due to limited space, only the detection results of fault scenarios 1 and 5 in the 501 
residual subspace (i.e., using SPE statistic) are visualized in Figure 5 and Figure 6 and discussed in 502 
detail below. Figure 5 shows that for fault scenario 1, MPCASC has difficulty in detecting Fault 1: 503 
missing two out of three faulty cycles. MPCADCW detects all three faulty cycles but also generates a 504 
false alarm. Only FSM detects all three faulty cycles without generating false alarms. Figure 6 shows 505 
that for fault scenario 5, MPCASC detects all three faulty cycles while generating a false alarm. 506 
MPCADCW failed to detect two out of three faulty cycles while generating a false alarm. Again, only 507 
FSM successfully detects all faulty cycles without generating false alarms. It is worth noting that 508 
FSM results in linear models, which have low risk of overfitting. This is demonstrated in Fig. 5 (C) 509 
and Fig. 6 (C) where the normal test samples have similar SPE values as those of the normal training 510 
samples. 511 

[Figure 5 here] 512 

[Figure 6 here] 513 

We further investigated the false alarms (i.e., cycle 10 for MPCASC and cycle 15 for MPCADTW) to 514 
understand why those two cycles generate false alarms. Figure 7 plots the trajectory of all test cycles 515 
for the fault scenario 5. All true faulty cycles are plotted in red dashed lines, and all normal test 516 
cycles are plotted in black solid lines – except cycle 10 in the cyan dash-dotted line, and cycle 15 in 517 
the green dotted line. As described in Table 1, the pressure profiles of the faulty cycles do not follow 518 
the normal cycle pressure trajectory during the re-pressurization step (highlighted in the blue dashed-519 
line box). It can be seen that cycles 10 and 15 both behave normally during the re-pressurization step. 520 
However, if we zoom in to visualize the pressure profile in other steps (e.g., the insert in Figure 7, 521 



  Pressure Swing Adsorption Process Monitoring 

 
14 

which is the zoom-in view of the adsorption step), it can be seen that cycles 10 and 15 are at the 522 
lower boundary of all normal cycles, suggesting that the MPCA based approaches may be more 523 
sensitive to mean shift. Although the mean shift in this case is within the normal operation range, the 524 
cumulative effect (i.e., the persistent small shift that lasts for a period of time) would likely be 525 
captured by MPCA as a fault. 526 

[Figure 7 here] 527 

The normal samples (i.e., cycles) in the test data are industrial data collected from the same PSA 528 
process and used for all the fault scenarios. For each faulty cycle, the fault occurred during different 529 
steps for different fault scenarios as defined in Table 1. As a result, the false alarms for a specific 530 
method across different fault scenarios are the same (e.g., cycle 15 for MPCASC and cycle 10 for 531 
MPCADTW) since they are the same normal cycles used in all fault scenarios. Clearly, the value of 532 
FAR in Table 1 would be affected by the normal cycles included in the test data. In this study, the 533 
normal testing samples were selected randomly to avoid any potential bias.  534 

Further investigation is conducted to understand the reason for MPCADCW's failure in detecting true 535 
faulty cycles under fault scenario 5 (a real fault), for which only one out of three faulty cycles is 536 
detected. Since MPCASC is able to detect all faulty cycles, we suspect that the failure is related to 537 
data preprocessing by DTW. Therefore, we plot the original pressure profiles of the 16 test cycles, 538 
which are shown in Figure 8 (A) and compare them to the pressure profiles after DTW as shown in 539 
Figure 8 (B). A zoom-in view of the faulty step is included for both figures. The comparison clearly 540 
indicates that the irregular discrepancies of the faulty cycles shown in the original pressure profiles 541 
diminished after trajectory synchronization by DTW. This case suggests that DTW could cause 542 
severe information loss or distortion, which in turns affects the fault detection performance. This is 543 
consistent with our previous findings that data manipulations during preprocessing, including DTW, 544 
could cause information loss or distortion and should be avoided if possible (He & Wang, 2011). 545 
This example further raises the alarm that the widely used DTW for batch trajectory warping or 546 
alignment in process monitoring applications could potentially be a problematic practice that may 547 
lead to missed detections of process faults. 548 

[Figure 8 here] 549 

5.3 Fault diagnosis results 550 

After fault detection, fault diagnosis is performed for the detected faulty cycles. For FSM, the 551 
procedure outlined in Sec. 4 is followed to construct step-wise and feature-wise contribution plots. 552 
For MPCASC and MPCADTW, since pressure is the only measured process variable, only step-wise 553 
contribution plot is applicable. Again, we use fault scenarios 1 and 5 as examples. For fault scenario 554 
1, test cycle 4 is used for illustration as the fault is detected by all methods. For the same reason, test 555 
cycle 9 is used for fault scenario 5. Figure 9 (A)-(C) show the step-wise contribution plots for fault 556 
diagnosis of test cycle 4 in fault scenario 1. From Table 1, we know that this is a fault occurring 557 
during the adsorption step (i.e., step 1), and the faulty cycles have lower pressure than normal cycles. 558 
Figure 9 shows that MPCASC incorrectly attributes this fault to step 10, while MPCADTW and FSM 559 
correctly identify the faulty step, with FSM providing the strongest conviction. For FSM, once the 560 
faulty step is identified, the faulty step contribution is further broken down to the feature level 561 
following the procedure outlined in Sec. 4, as shown in Figure 9(D). In this figure, MAE and the 562 
mean (𝜇𝜇) are identified as the most significant contributor to the fault, indicating that there might be a 563 
mean shift in pressure profile during step 1 of the faulty cycles. It is worth noting that MAE usually 564 
contributes the most to the fault detection indices as it captures the absolute deviation of a faulty 565 
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trajectory from the nominal behavior, which includes the effects of both mean and spread (e.g., 566 
standard deviation) of the samples.  567 

[Figure 9 here] 568 

The fault diagnosis for cycle 9 of fault scenario 5 is conducted similarly and the results are shown in 569 
Figure 10. Here the true fault is a deviation of the pressure profile from the normal trajectories during 570 
the last step of the cycle. In this care, both MPCASC and FSM correctly identify the faulty step, while 571 
MPCADTW misidentifies the step 10 as the faulty step. FSM also shows the clearest diagnosis among 572 
all methods. Feature-wise diagnosis from FSM identifies MAE and the standard deviation (s) as the 573 
most significant contributors to the fault, indicating that there could be an increased variation in 574 
pressure profile during the last step of the faulty cycle. The misdiagnosis of this fault by MPCADTW 575 
can be at least partially attributed to the pressure profile distortion during the DTW preprocessing 576 
step as discussed earlier and illustrated in Figure 8. 577 

[Figure 10 here] 578 

The overall fault diagnosis results are shown in Table 5. It can be seen that FSM correctly diagnoses 579 
all fault scenarios (i.e., correctly identifies all faulty steps). MPCASC has two misdiagnoses (fault 580 
scenarios 3 and 6) and one inconsistent diagnosis from T2 and SPE (fault scenario 1). MPCADTW has 581 
two misdiagnoses (fault scenarios 5 and 6). In addition, FSM provides meaningful diagnoses at the 582 
feature level for all fault scenarios.  583 

[Table 5 here] 584 

6 Conclusions and Discussions 585 

In this work, we present a simple yet effective fault detection and diagnosis method, namely feature 586 
space monitoring or FSM, for PSA and other cyclic/periodic processes. Different from the 587 
conventional MSPM methods, FSM characterizes the normal operation cycle behavior with various 588 
statistical and shape/morphological features for each step. FSM naturally handles the challenges in 589 
monitoring cyclic processes without any preprocessing steps, which include variable cycle/step 590 
duration, wide range of normal cycle/step trajectories, and/or limited measurements – for PSA, bed 591 
pressure is often the only measured variable for process monitoring. To be able to detect subtle faults 592 
from a wide range of normal cycle trajectories, FSM relies on feature engineering and selection to 593 
balance the robustness and sensitivity of the fault detection performance. Finally, through a 594 
hierarchical fault diagnosis framework, once a fault is detected, the proposed FSM approach first 595 
identifies the step where the fault occurred using a step-wise contribution plot, then postulates the 596 
type of fault based on a feature-wise contribution plot. 597 

Using an industrial case study, we demonstrate that FSM outperforms MPCA with simple cut 598 
(MPCASC) or dynamic time warping (MPCADTW) in six fault scenarios. Specifically, FSM 599 
successfully detected all three faulty cycles in every fault scenario without generating false alarms. In 600 
comparison, both MPCASC and MPCADTW had missed detections in some fault scenarios, and both 601 
had false alarms in all fault scenarios. In addition, the hierarchical fault diagnosis framework based 602 
on FSM correctly identified the faulty steps under all scenarios studied in this work. In comparison, 603 
MPCASC and MPCADTW based contribution plots all had misdiagnosis under some fault scenarios. 604 
Finally, FSM provides the feature-wise diagnosis capability, which enables a plant engineer to 605 
further determine the nature of a fault, such as whether it is a simple mean shift or an increase in 606 
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variation or a complex fault of both. These fault detection and diagnosis results demonstrate that the 607 
FSM-based linear models have a low risk of overfitting and are easy to interpret.  608 

The proposed FSM framework can be applied to other periodic or cyclic processes. In terms of 609 
implementation, what FSM features to be included has a big impact on the fault detection and 610 
diagnosis performance. In general, the features that should be included for process monitoring 611 
depend on the process behavior, and the domain knowledge plays an important role. In addition, 612 
depending on the noise level of the process data, it may be necessary to evaluate different versions of 613 
the same features that have different degrees of sensitivity to extreme points or outliers. There is 614 
usually a trade-off between robustness and sensitivity of the monitoring performance. In this work, 615 
the list of features we evaluated were generated based on PSA process behavior and discussions with 616 
process engineers. In addition, we proposed an approach to select the relevant features using normal 617 
process data only. The variable selection for unsupervised learning was achieved based on the 618 
assumption that the truly relevant features should provide consistent monitoring performance, 619 
regardless of the training data used. In this work, feature selection was done through a manual search. 620 
It is desirable to have a systematic and automated approach for feature engineering and feature 621 
selection, which is the area that we are currently working on. 622 

Finally, this work suggested that the widely used DTW for batch trajectory warping or alignment in 623 
process monitoring applications could potentially be a problematic practice that may lead to missed 624 
fault detections. Specifically, this work demonstrated that DTW could cause severe batch/cycle 625 
trajectory distortion, which in turns negatively affected the fault detection performance. Therefore, 626 
data preprocessing in process monitoring, including DTW, should be avoided if possible, or 627 
conducted with caution and verification if unavoidable.  628 
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Tables 718 

Table 1. Fault scenarios studied in this work 

Fault # Description 
1 During adsorption step, the faulty cycles have lower pressure than normal cycles. 

2 During adsorption step, the faulty cycles have higher pressure variations than normal 
cycles 

3 During a hold step, the pressure of the faulty cycles decreases instead of being held 
steady 

4 During an equalization step, the pressure of the faulty cycles was held steady followed 
by a sudden drop instead of smooth decrease 

5 During re-pressurization, the pressure of the faulty cycles does not follow the normal 
cycle trajectory 

6 During an equalization step, the pressure of the faulty cycles follows a zig-zag or stair-
like profile instead of a smooth increase 

 719 

 720 

Table 2. Training, testing datasets and model parameters 

 MPCASC MPCADTW FSM 
# of features/variables 438 705 60 
# of PC's 24 32 20 
Training 2,070 normal cycles 
Testing 16 cycles (13 normal, 3 fault: cycle 4, 9, 

16) 
Confidence level 99% 

 721 

 722 

Table 3. Fault detection results (true faulty cycles: 4, 9 & 14; FDR: fault detection rate; FAR: 
false alarm rate). Correctly detected cycles are in bold black. Incorrectly detected cycles are 

in red. 

Fault 
Scenario 

MPCASC  MPCADTW  FSM 

Cycle 
detected FDR FAR  Cycle 

detected FDR FAR  Cycle 
detected FDR FAR 

1 4,     14, 15 66.7% 7.7%  4, 9, 10, 14 100% 7.7%  4, 9, 14 100% 0% 

2 4, 9, 14, 15 100% 7.7%  4, 9, 10, 14 100% 7.7%  4, 9, 14 100% 0% 

3 4, 9, 14, 15 100% 7.7%  4, 9, 10, 14 100% 7.7%  4, 9, 14 100% 0% 

4 4, 9, 14, 15 100% 7.7%  4, 9, 10, 14 100% 7.7%  4, 9, 14 100% 0% 

5 4, 9, 14, 15 100% 7.7%  9, 10 33.3% 7.7%  4, 9, 14 100% 0% 

6 4, 9, 14, 15 100% 7.7%  4, 9, 10, 14 100% 7.7%  4, 9, 14 100% 0% 

 723 
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Table 4. Details of the fault detection results by T2 and SPE. Correctly detected cycles are in 
bold black. Incorrectly detected cycles are in red. 

Fault 
Scenario 

MPCASC  MPCADTW  FSM 

T2 SPE  T2 SPE  T2 SPE 

1 4,     14 4,           15  4, 9, 14 4, 9, 10, 14  4, 9, 14 4, 9, 14 

2     9 4, 9, 14, 15  None 4, 9, 10, 14  4, 9, 14 4, 9, 14 

3     9, 14 4, 9, 14, 15  None 4, 9, 10, 14      9, 14 4, 9, 14 

4 4, 9, 14 4, 9, 14, 15  None 4, 9, 10, 14  4, 9, 14 4, 9, 14 

5 4, 9, 14 4, 9, 14, 15  None   9, 10  4, 9, 14 4, 9, 14 

6     9 4, 9, 14, 15  None 4, 9, 10, 14      9, 14 4, 9, 14 

 724 

 725 

Table 5. Details of the fault diagnosis results by T2 and SPE. One faulty cycle detected by all 
methods is selected for each fault scenario. If the faulty step is correctly identified, it is 
marked as "Yes", otherwise marked as "No". If the faulty cycle is not detected as a fault, its 
diagnosis is marked as "NA". 

Fault 
Scenario 
(cycle for 
diagnosis) 

MPCASC  MPCADTW  FSM 

T2 SPE  T2 SPE  T2 SPE 

1 (4) Yes No  Yes Yes  Yes Yes 

2 (9) Yes Yes  NA Yes  Yes Yes 

3 (9) No No  NA Yes  Yes Yes 

4 (4) Yes Yes  NA Yes  Yes Yes 

5 (9) Yes Yes  NA No  Yes Yes 

6 (9) No No  NA No  Yes Yes 

 726 

  727 
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Figure Captions 728 

Figure 1: Schematic illustration of the major steps involved in a PSA process: (A) Adsorption; (B) 729 
Regeneration 730 

Figure 2: Visualization of pressure trajectories in a multi-bed PSA process: (A) A sample time-series 731 
pressure profiles of three beds in a multi-bed PSA process; (B) Overlaid pressure profiles of a single 732 
bed over multiple cycles, which illustrates the variable durations from different cycles 733 

Figure 3: Illustrations of the variable cycle and step durations: (A) Cycle durations vary significantly 734 
from cycle to cycle; (B) Durations of the adsorption step follow a similar trend as the cycle durations; 735 
(C) durations of the equalization steps are close to constant 736 

Figure 4: Pressure trajectories of the selected test sets: (A) Fault scenario 1; (B) Fault scenario 5. 737 
Normal cycles are plotted in black while faulty cycles are in red. The steps in which the fault 738 
occurred are marked by blue dashed-line rectangles and shown in the zoom-in views. 739 

Figure 5: Fault scenario 1: fault detection in residual subspace (SPE) from (A) MPCASC, (B) 740 
MPCADTW and (C) FSM. Blue circles are normal training cycles; black squares are normal testing 741 
cycles; black triangles are faulty testing cycles; horizontal red dashed lines are fault detection 742 
thresholds; vertical black dash-dotted lines separate training from testing. 743 

Figure 6: Fault scenario 5: fault detection in residual subspace (SPE) from (A) MPCASC, (B) 744 
MPCADTW and (C) FSM. Blue circles are normal training cycles; black squares are normal testing 745 
cycles; black triangles are faulty testing cycles; horizontal red dashed lines are fault detection 746 
thresholds; vertical black dash-dotted lines separate training from testing. 747 

Figure 7: The false alarm cycles 10 (in cyan) and 15 (in green) behave normally during the re-748 
pressurization step in which the true fault occurred (highlighted in the blue dashed-line rectangle with 749 
faulty cycles plotted as red dashed lines). The zoom-in view of the adsorption step indicates that 750 
cycles 10 and 15 are at the lower, but normal, boundary of all cycles. 751 

Figure 8: Comparison between the pressure profiles of (A) the original 16 test cycles and (B) the test 752 
cycles after DTW. The normal testing cycles are plotted in black solid lines while the faulty testing 753 
cycles are plotted in red dashed lined. The irregular discrepancies among cycles shown in the original 754 
profiles (highlighted in the blue dashed-line rectangles and the zoom-in views) have diminished after 755 
DTW, indicating that DTW causes significant information loss or distortion. 756 

Figure 9: Step-wise fault diagnosis for cycle 4 of fault scenario 1: (A) MPCASC, (B) MPCADTW, and 757 
(C) FSM, and (D) feature-wise fault diagnosis from FSM. MPCASC wrongly attributes the fault to 758 
step 10, while both MPCADTW and FSM correctly attribute the fault to step 1. FSM also shows the 759 
clearest diagnosis among all methods. FSM can also further drill down the fault to the feature level 760 
where the mean (𝜇𝜇) and MAE are identified as the most significant contributor to the fault, correctly 761 
indicating that there might be a significant shift in pressure profile during step 1 of the faulty cycles. 762 

Figure 10: Step-wise fault diagnosis for cycle 9 of fault scenario 5: (A) MPCASC, (B) MPCADTW, and 763 
(C) FSM, and (D) feature-wise fault diagnosis from FSM. Both MPCASC and FSM correctly attribute 764 
the fault to the last step of the cycle, while MPCADTW wrongly attributes the fault to step 10. FSM 765 
also shows the clearest diagnosis among all methods. FSM can also further drill down the fault to the 766 
feature level where the standard deviation and MAE are identified as the most significant contributor 767 
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to the fault, correctly indicating that there is an increased variation in pressure profile during the last 768 
step of the faulty cycles. 769 
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