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Abstract—Sensor-powered devices offer safe global connections; cloud scalability and flexibility, and
new business value driven by data. The constraints that have historically obstructed major
innovations in technology can be addressed by advancements in Artificial Intelligence (AI) and
Machine Learning (ML), cloud, quantum computing, and the ubiquitous availability of data. Edge AI
(Edge Artificial Intelligence) refers to the deployment of AI applications on the edge device near the
data source rather than in a cloud computing environment. Although edge data has been utilized to
make inferences in real-time through predictive models, real-time machine learning has not yet been
fully adopted. Real-time machine learning utilizes real-time data to learn on the go, which helps in
faster and more accurate real-time predictions and eliminates the need to store data eradicating
privacy issues. In this article, we present the practical prospect of developing a physical threat
detection system using real-time edge data from security cameras/sensors to improve the accuracy,
efficiency, reliability, security, and privacy of the real-time inference model.

ANY SYSTEM OF PHYSICAL hardware or devices
that receive and transmit data via networks without hu-
man involvement is referred to as an Internet of Things
(IoT) system [8]. Some examples of IoT applications
include smart cities, healthcare, smart farming, retail
and logistics, and smart homes. IoT devices are widely
utilized to automate processes, improve performance,
and save energy. 11.7 billion (54%) of the 21.7 billion
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connected devices in use in 2021 were Internet of
Things (IoT) devices. According to [1], there will be
30 billion (or 75%) active IoT devices by 2025, or an
average of 4 devices per person. IoT and sensor devices
are generating data exponentially, which can be used
to predict trends. Edge computing is the architecture in
which the processing and storing of data happens close
to the data source. Real-time processing at the edge is
more efficient, accurate, and necessary as the majority
of the data is created there. The three components of
the edge computing architecture are the cloud layer,
the boundary layer, and the terminal layer [2].
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Edge AI deploys AI applications on edge devices
near the data source, enabling deployment of AI in
resource-constrained environments with real-time in-
sights, reduced latency, cost, and increased privacy
[10]. YOLO (You Only Look Once), a state-of-the-
art object detection system, provides high accuracy
and real-time object detection at up to 45 fps, making
it useful for Edge AI applications in autonomous
vehicles and surveillance systems [4]. Edge AI can
be used to process real-time data from IoT sensors to
detect potential security systems threats. YOLO object
detection algorithms can identify physical threats on
the edge and take immediate action. Few physical
security systems in the market can perform real-time
detection using visual, night vision, and thermal video
frames [9]. Current real-time AI detection systems
require batch-trained models, which are costly and
time-consuming to update, and deploying the detec-
tion model on the cloud causes data transfer latency.
Deploying AI at the edge with real-time learning
can improve accuracy, efficiency, security, and privacy
in security systems, while addressing dynamic and
evolving threats.

In this article, we propose a real-time physical
threat detection framework that combines edge-based
object detection AI with online learning to improve
accuracy, efficiency, reliability, security, and privacy.
Edge deployment leads to a fast and efficient sys-
tem with minimal resources required. Online learning
allows the model to learn from new data in real-
time, with fast and affordable learning steps [3]. The
proposed edge-based model ensures privacy protection
by immediately utilizing and discarding data, while
also being capable of offline operation, making it
dependable and trustworthy. Additionally, the model’s
ability to operate through visible and thermal images
further enhances its reliability. Our solution enhances
physical security systems through the combination of
edge computing and incremental online learning.

BACKGROUND AND RELATED
WORK
Overview of Object Detection (OD)

Object Detection (OD) is a computer vision tech-
nique for detecting, locating, and classifying objects
in images. Two main types of OD algorithms are
two-shot detection and single-shot detection. YOLO
[4] takes an image and splits it into S x S grid,
where each grid will have parameters defining an

object as [Pc, bx, by, bw, bh, c], where, Pc denotes the
confidence score for the object in the box, (bx, by)
represents the center of the box relative to the grid
cell, (bw, bh) represents the width and height relative
to the whole image, and c denotes the presence of
each class in the cell. YOLO is fast, accurate, and
the best option for real-time object detection, utilizing
anchor boxes and non-maximal suppression to improve
performance [4].

Overview of Online Learning (OL)
ML has flourished with the availability of data,

storage, and processors, but data generation surpasses
its usage rate. Online learning trains models in real-
time by incrementally learning from continuous data
input, eliminating the need for data storage [3]. How-
ever, faulty data could negatively impact performance,
so proper data governance is required.

Related Work and Objectives
In airport security, deep learning approaches have

been utilized to detect potential threats in X-ray and
Thermal Infrared (TIR) images [5]. The effectiveness
of different versions of YOLO models is evaluated
using Teledyne Forward-looking Infrared (FLIR) Ther-
mal Dataset in [6]. Another study utilized YOLOv3
and demonstrated its performance using a combina-
tion of pre-training on Imagenet and a custom gun
dataset [7]. Edge YOLO is a lightweight version of the
YOLOv4 object detection algorithm that has been opti-
mized for edge computing [11]. The algorithm features
a trimmed-down backbone using CSPNet, enhanced
feature fusion, and a connection to a cloud-based
GPU workstation for model training. Edge YOLO out-
performs other popular algorithms, such as YOLOv3
and MobileNetv3 SSD, in terms of both speed and
accuracy on the edge.

Although research has experimented to make real-
time inferences with image and video frames with
object detection and edge computing as a single do-
main, none of the approaches focuses on utilizing the
real-time data to keep the model up-to-date. Real-time
training of threat detection models on edge devices is
cost-effective, power-efficient, and privacy-preserving.
It allows for continuous adaptation to changing data,
improving the model’s performance. Online learning
is well-suited for edge devices as it requires minimal
storage, is maintainable, and fast [3]. The proposed
solution utilizes a low-power edge processor to process
visual and thermal video frames in real-time. The
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cloud environment label annotates input data and up-
dates the online feature store to update the weights of
the local model copy (online model) in real-time. The
edge model is updated by pulling weight parameters
from the online model through set triggers, improving
the physical security system’s speed, accuracy, and
reliability. This approach combines edge object detec-
tion and online learning methods to create a scalable,
secure, and fast physical threat detection model that
trains and predicts on real-time data. The features of
the proposed approach are as follows:

• Proposed approach uses a lightweight version of the
object detection algorithm on the edge to make a
real-time inference contributing to faster inference
time and offline availability of the service.

• Visual and Thermal Infrared (TIR) images are used
to train the model to ensure the availability of
service at different weather conditions, and different
time of the day.

• Online learning is utilized to train the model incre-
mentally in real-time improving the performance of
the model, and purging the need for data storage.

• Creates privacy-preserved model learning environ-
ment with no stored data.

REQUIREMENTS FOR PHYSICAL
THREAT DETECTION MODEL

Selecting the proper dataset, model, and evaluation
metrics are of key importance for any AI system to
succeed. This section elaborates on these major com-
ponents required to create the online physical threat
detection system on the edge.

The Teledyne FLIR ADAS Dataset offers labeled
thermal and visible images to train object detection
systems using CNNs that recognize threats in both
image types. The dataset includes images in various
weather conditions to improve the detection system’s
adaptability. Common benchmark datasets such as
ImageNet and COCO are often insufficient due to the
limited availability of annotated data with diverse ob-
ject labels. There are few labeled datasets that identify
objects as threats, requiring custom images and videos
with threat objects and proper label annotations to
design the proposed online physical threat detection
system. Pre-trained models on large datasets are fre-
quently used and then retrained on custom datasets.

Although Faster R-CNN and RetinaNet are more
accurate than YOLO, YOLO’s real-time detection ca-
pability outshines other detection algorithms. In [6],

YOLOv3-SPP was identified as having high mAP and
precision, but not ideal for edge deployment due to its
low speed and high storage requirements. YOLOv5-s
is recommended for edge deployment with a compact
size of 14 MB, fast speed of 41 FPS, and high mAP
and precision of 0.803 and 0.638 respectively, outper-
forming YOLOv3-SPP. GhostNet [12] and coordinate
attention (CA) [13] methods can make YOLOv5-s
even more lightweight but equally efficient. Using both
techniques, [14] generated reduced boundary box loss,
classification loss, and object confidence loss in self-
constructed data. [11] demonstrated better performance
of the YOLOv4 version with a trimmed-down CSP-
darknet53 and a modified backbone neck with Spatial
Pyramid Pooling (SPP) and Feature Pyramid Network
(FPN) for cost-effective small object detection.

The modified GhostNet and CA backbone of
YOLOv5-s can be improved with the same lightweight
neck structure used in YOLOv4 to enhance our physi-
cal threat detection model performance. YOLOv5 uses
batch normalization, leaky ReLU activation, Stochastic
Gradient Descent optimization, binary cross-entropy
for classification loss, and mean squared error for
coordinate regression. Mean Average Precision (mAP),
Intersection over Union (IoU), Precision, Recall, and
Frames Per Second (FPS) are used to evaluate the
proposed system.

DESIGN OF THE PROPOSED
FRAMEWORK

The proposed real-time physical threat detection
framework with online learning is presented in Figure
1. It is composed of two parts: learning and imple-
mentation phases, which are explained in detail in this
section.

Learning Phase
The learning phase consists of the process of

preprocessing the dataset, using the data to train the
YOLO model, and using the validation dataset to test
the model.

To improve the algorithm’s ability to predict im-
ages, data augmentation is necessary for both the
training and validation datasets. This includes random
crop, rotation, flips, saturation, and exposure shifts.
Manual labeling is required for the augmented images
and newly captured images containing threat labels.
A minimum of 1500 images per class and 10000
labeled objects per class are recommended, and adding
background images with no objects can help reduce
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Figure 1. Real-time Physical Threat Detection framework utilizing Online Learning.

false positives.
To make the object detection model operational,

the proposed YOLO model is fed with annotated
thermal and visual images. Pre-trained weights are
suggested for small or medium datasets. The YOLOv5
model’s default settings obtain good results on large
and well-labeled datasets with 300 epochs recom-
mended. Overfitting can occur if the model is too
complex. Regularization techniques such as L1 (Lasso)
and L2 (Ridge) regularization can be used in such
cases. Cross-validation can also be used to avoid
overfitting. The batch size should always be as large
as the hardware allows as a lower batch size gen-
erates poor batch normalization statistics. YOLOv5
has approximately 30 hyperparameters for training.
A Genetic Algorithm (GA) is provided to optimize
these hyperparameters, producing an optimal value by
repeatedly mutating parent hyperparameters. For best
results, 300 generation cycles are recommended, and
the hyperparameters from the best-performing cycle
are chosen for the model.

The performance of the YOLO model on the
test image dataset can be evaluated using the valida-
tion dataset. This evaluation involves estimating the
model’s localization and classification errors, using the
evaluation metrics discussed previously. The resulting
Average Precision (AP) of each class, along with the
mAP0.5:0.95 score, provides valuable insights into the

model’s performance, thereby helping to identify any
overfitting or underperforming issues.

Implementation Phase
The implementation phase comprises of the edge

application and the cloud application. The layers are
discussed in detail below.

Edge Application Edge computing devices such as
System on Chip (SoC), Field Programmable Gate Ar-
rays (FPGA), Application Specific Integrated Circuits
(ASIC), Central Processing Units (CPU), and Graphic
Processing Units (GPU) are available for deployment.
SoC is particularly notable due to its energy efficiency,
small size, and high throughput. It can also use migra-
tion tools to convert deep learning frameworks into
TensorRT for accelerated model inference. Among the
NVIDIA Jetson series, Jetson TX2 NX and Jetson
Nano are the most cost-effective.

Given adequate CUDA cores and storage capacity,
Kafka is an appropriate option for the edge detection
model which can operate without connecting to the
cloud. Kafka provides real-time edge processing, low
latency, and cost-efficient data processing in a reliable,
scalable, and fault-tolerant way. Kafka clusters can
be configured as a single node or a cluster with
multiple brokers depending on the need for availability
and resource constraints of the edge hardware. Data
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retention in Kafka is configurable, and cluster linking
enables connections between small Kafka clusters at
the edge and bigger Kafka clusters in the cloud using
the Kafka protocol.

OpenCV converts the video stream into frames
and resizes if necessary. Producers populate frames
into the Kafka topic, while consumers collect data to
feed into the batch-trained and validated YOLO model
initially deployed on the edge. The threat detection
model makes real-time inferences, and if an object
meets the confidence threshold for a threat, the GUI
Interface is notified and the sound system triggers
an alarm. The input image should match the trained
dataset for optimal results. The local model updates
itself by pulling new weights from the real-time model
deployed in the cloud, resulting in accurate predictions.

Cloud Application The cloud application utilizes a
Kafka cluster, active learning, an online feature store,
and a copy of the initial YOLO model deployed at
the edge. AWS offers suitable infrastructure to host
clusters, create data labeling pipelines, and store online
models. The replicated data streams from the edge are
held in larger Kafka clusters in the cloud. The data
in the Kafka cluster is partitioned into train and test
topics. The data stream from the train and test topic is
sent to the data labeling pipeline. A streaming labeling
job is created, where human workers label the data in
real-time. Streaming jobs work in a sliding window
manner, and any jobs that pile up are stored in a
queuing service. The labeled jobs are output through
a stream channel.

Labeled data is utilized to build a feature pipeline
that captures real-time features and stores them in an
online feature store. The pipeline ensures thorough
processing, validation, and transformation of the data
into a usable format for inference or training. The
in-memory database is used for the feature store to
attain high throughput and low latency. The features
are updated continuously in a streaming fashion to
keep up with real-time data and also provide context.

The feature store employs automated stateful train-
ing to continuously train the YOLO model with real-
time data and updates the online model in the model
store accordingly. At the edge, the local model pulls
updated model parameters based on user-defined trig-
gers. The feature store can track the model’s lineage,
but evaluation of the online model using test stream
data is not yet possible. Incorporating explore-exploit
strategies from bandit algorithms into the feature store

can be a data-efficient solution, compared to traditional
A/B testing.

Our proposed approach theoretically ensures fast
and accurate real-time inference at the edge by lever-
aging privacy-aware stateful learning. The edge device
can run a lightweight threat detection model inde-
pendently, providing efficiency, accuracy, security, and
reliability without needing to connect to the cloud.

DISCUSSION
This article proposes an online learning-enabled

real-time edge threat detection model for fast, accurate,
reliable, and privacy-aware detection. However, further
experimentation and validation are needed to fully
realize the potential of the proposed framework. In this
section, we provide insights into expected outcomes.

The study in [6] evaluates multiple versions of
YOLO for multi-object detection and finds YOLOv5-
s to have the best overall performance in terms
of mAP, precision, speed, and storage when tested
on the FLIR ADAS thermal dataset, with values of
0.803, 0.638, 41 FPS, and 14MB respectively. [14]
supports the improved performance of the YOLOv5-
s Ghost CA model for facial expression detection,
with a boost in mAP0.5 from 98.4 to 98.8 and main-
tained mAP0.5:0.95. This results in reduced weights
(15.4 MB to 8 MB), parameters (7.02 M to 3.70 M),
and computation cost (15.8 to 8.1 GFLOPs), with im-
proved inference time (115 FPS to 123 FPS). EdgeY-
OLO [11] improved FPS to 26.6 from 4.9 on YOLOv4,
with COCO2017 dataset, powered on Jetson Xavier.
With the KITTI dataset, EdgeYOLO improved FPS to
40.6 from 5.2 on YOLOv4, powered on Jetson Xavier.
Jetson Nano, with its lower memory and computation
power, showed lower FPS than Jetson Xavier, but still
demonstrated improved speed between YOLOv4 and
EdgeYOLO. Our framework utilizes backbone of the
YOLOv5-s Ghost CA model [14] with modified neck
from EdgeYOLO [11] combined with online learning.
The proposed model combining lightweight YOLOv5-
s with real-time stateful learning, has the potential to
optimize weights, parameters, and computation costs
while maintaining a high mAP score. Moreover, it can
improve latency and reduce energy consumption, based
on the promising results of these approaches.

CONCLUSION
This article proposes a real-time online physical

threat detection model using edge AI computing and
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online learning. The experimental nature of real-time
machine learning, manual data generation, and mul-
tiple parameters pose a challenge in achieving opti-
mal results. Repeated experimentation using optimized
models and advanced edge hardware could soon realize
this vision, enhancing speed, accuracy, reliability, and
privacy in computing technology.
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