
Execution Dependence Extension (EDE):
ISA Support for Eliminating Fences

Thomas Shull*, Ilias Vougioukas†, Nikos Nikoleris†, Wendy Elsasser†, Josep Torrellas‡

*Oracle Labs§ †Arm Research ‡University of Illinois at Urbana-Champaign
tom.shull@oracle.com, {ilias.vougioukas, nikos.nikoleris, wendy.elsasser}@arm.com, torrella@illinois.edu

Abstract—Fence instructions are a coarse-grained mechanism
to enforce the order of instruction execution in an out-of-order
pipeline. They are an overkill for cases when only one instruction
must wait for the completion of one other instruction. For
example, this is the case when performing undo logging in
Non-Volatile Memory (NVM) systems: while the update of a
variable needs to wait until the corresponding undo log entry is
persisted, all other instructions can be reordered. Unfortunately,
current ISAs do not provide a way to describe such an execution
dependence between two instructions that have no register or
memory dependences. As a result, programmers must place
fences, which unnecessarily serialize many unrelated instructions.

To remedy this limitation, we propose an ISA extension capable
of describing these execution dependences. We call the proposal
Execution Dependence Extension (EDE), and add it to Arm’s
AArch64 ISA. We also present two hardware realizations of
EDE that enforce execution dependences at different stages of
the pipeline: one in the issue queue (IQ) and another in the
write buffer (WB). We implement IQ and WB in a simulator
and test them with several NVM applications. Overall, by using
EDE with IQ and WB rather than fences, we attain average
workload speedups of 18% and 26%, respectively.

Index Terms—Fences, Instruction ordering, ISA extensions.

I. INTRODUCTION

Fence instructions are used to enforce a certain order of
instruction execution in out-of-order pipelines [10], [27], [46].
For example, a full fence stalls the execution of all subse-
quent instructions until all older instructions have completed.
Memory fences have a similar effect for only memory access
instructions, while other types of fences affect other sets of
instructions. In all cases, however, a fence is a coarse-grained
mechanism to order the execution of groups of instructions.

In some cases, however, the requirements of a program
only necessitate that the execution of one instruction wait
for the completion of one other instruction. In this case,
what is needed is a fine-grained mechanism to order the
two instructions, while allowing the execution of all other
instructions to be reordered arbitrarily. Using a fence is an
overkill that results in unnecessary execution stalls.

One example of such environment is when using fences to
order the persist operations in Non-Volatile Memory (NVM)
systems [58]. Consider the case of undo logging, where an
element’s undo log entry needs to be persisted before the
element can be updated. To enforce such ordering, the only
current option is to add a fence between the log persist and

§Work performed while Thomas Shull was affiliated with the University of
Illinois at Urbana-Champaign and Arm Research.

the element update. Unfortunately, this approach unnecessarily
constrains the allowed instruction execution reorderings. For
instance, updates to different log entries should be able to
execute in parallel, but the insertion of fences forces the
serialization of independent instructions.

Ideally, we would like to be able to describe execution
dependences and have the hardware enforce them. We define
an execution dependence as a required ordering between
two individual instructions, where the effects of the sink
instruction (i.e., the consumer) cannot be observed until the
source instruction (i.e., the producer) is complete. In cur-
rent processors, execution dependences are honored by the
underlying hardware if the two instructions have a register
dependence (i.e., they communicate through a register) or
a memory dependence (i.e., they access the same memory
location). However, one cannot make current processors honor
execution dependences between two unrelated instructions –
e.g., the execution dependence that exists in NVM undo
logging between the store to the log entry and the store to
the element.

To reduce the need for fences, in this paper, we propose an
ISA extension capable of describing execution dependences.
We call our new proposal Execution Dependence Extension
(EDE), and have added it to Arm’s AArch64 ISA [10].

With EDE, we create a new class of instructions and a
convention for defining execution dependences. Specifically,
we augment some instruction opcodes with a new key set
called the Execution Dependence Key (EDK) set, which is
used to link together execution dependence producers and
consumers. Via this new key set, an execution dependence can
be defined. The linking of instructions via EDKs is very similar
to how two data dependent instructions are linked together
through registers. With EDE, one can precisely convey a
variety of instruction-level execution orderings, including one
to one, one to many, and many to one instruction orderings.
This description is done without fences, thereby allowing all
other instructions to proceed in any order.

Given the execution orderings conveyed by EDE, it is the
responsibility of the hardware to honor them. In this paper,
we propose two implementations, which we call IQ and WB.
In IQ, EDE’s execution dependences are enforced at the
issue queue: the hardware monitors execution dependences
alongside register and memory dependences to decide when
instructions can be executed.

While IQ achieves significant performance gains, there are

opportunities for further improvement. This is because IQ
stalls instructions early in the pipeline. Hence, we also propose
an aggressive design that enforces execution dependences in
the write buffer after the instructions have retired. We call this
design WB.

To evaluate the performance impact of EDE, we implement
IQ and WB in a simulator that models an Arm A72-like core.
To demonstrate EDE’s utility in NVM environments, we de-
velop NVM kernels and port Persistent Memory Development
Kit (PMDK) [3] applications to use EDE instead of fences.
Overall, by using EDE with IQ and WB, we attain average
workload speedups of 18% and 26%, respectively.

This paper makes the following contributions:

• Identify a type of instruction execution dependence that can
benefit from a mechanism for fine-grained instruction ordering.

• Propose EDE, an ISA extension that allows these instruction
execution dependences to be conveyed to the hardware.

• Propose two practical hardware realizations of EDE.

• Evaluate EDE and observe significant performance improve-
ments.

II. BACKGROUND AND MOTIVATION

A. Non-Volatile Memory: Fences and Atomic Regions

Recently, low-latency byte-addressable Non-Volatile Mem-
ory (NVM) has become commercially available [28]. How-
ever, there are multiple levels of volatile caches between
the processor and NVM. Hence, one needs to ensure that
a processor write to NVM propagates its value beyond the
caches and reaches NVM. For this reason, x86-64 processors
have introduced the CLWB instruction [27], which writes back
a cache line to NVM while also retaining the line in the cache.

In Armv8.2-A [8], Arm introduced new instructions to
propagate writes to the persistence domain. Specifically, Arm
has added the Data or unified Cache line Clean by Virtual
Address to Point-of-Persistence (DC CVAP) [10] instruction
to its AArch64 ISA. Like CLWB, DC CVAP ensures that the
value at the provided virtual address is sent to NVM.

In both x86-64 and AArch64, CLWB and DC CVAP follow
a relaxed memory ordering. This means that, when using these
instructions, the order in which the updates reach NVM is not
deterministic. Hence, to guarantee a given ordering, fences
must be inserted. Specifically, on x86-64, to guarantee that
all older CLWB instructions have completed before younger
writes and younger CLWBs do, one needs to insert a store
fence (SFENCE) [27] instruction.

In Arm systems, fences are called barriers. On AArch64, a
system-wide data synchronization barrier (DSB sy) [10], [50]
is needed to order DC CVAPs relative to other instructions.
DSBs impose an ordering on all instructions: before any in-
struction younger than a DSB can execute, all older instructions
must finish. Note that AArch64 also provides a data memory
barrier (DMB), which only imposes an ordering on memory
instructions. However, this instruction does not currently order
DC CVAPs.

1 p_array[0] = 6;
2 p_array[1] = 9;
3 p_array[2] = 42;

1 void p_uint64::operator=(const uint64_t &new_val) {
2 log_value(&_val);
3 update_value(&_val, new_val);
4 }

(a) Application code.

(b) Framework code to inject persistence operations.

Fig. 1. Updating a persistent array.

1 void log_value(uint64_t *val) {
2 uint64_entry *slot = undo_log->reserve_uint64();
3 slot->addr = val;
4 slot->val = *val;
5 asm volatile(
6 "dc cvap %x0"
7 "dsb sy"
8 : : "r"(slot)
9 : "memory");
10 }

1 void update_value(uint64_t *val, uint64_t new_val) {
2 *val = new_val;
3 asm volatile(
4 "dc cvap %x0"
5 : : "r"(val)
6 : "memory");
7 }

(a) Framework function to log & persist original value.

(b) Framework function to update & persist value.

Fig. 2. Framework implementation of persistence operations.

One of the key features that NVM frameworks provide
to users is failure-atomic support, i.e., the ability to allow
a collection of stores to persist atomically. In a failure-
atomic region [14], [18], [24], [55], [60], either all the stores
persist at the same time, or none of them persist. Frameworks
traditionally support failure-atomic regions with undo logging,
redo logging, or copy-on-write [37]. These operations typically
require the insertion of many fences.

B. Fence Overhead in NVM Applications

To understand how fences negatively affect performance,
let us consider how a persistent application implements undo
logging with fences. In Figure 1(a), we show a code snippet
that updates three elements of a persistent array of 64-bit
values (p_uint64). To minimize the effort needed for a
developer to create a persistent application, it is common for
persistent frameworks to use operator overloading to automat-
ically perform the necessary persistent actions. In Figure 1(b),
we show how a persistent framework overloads the C++
assignment operator used in each of the three statements of
Figure 1(a) to transparently perform the needed persistent
actions. In the figure, the code first logs the original value
(_val) via function log_value and then updates _val to
its new value (new_val) via function update_value.

In Figures 2(a) and (b), we show how the undo logging and
the value update are persistently performed. In log_value,

p_array[0] = 6

p_array[1] = 9

p_array[2] = 42

Application Code

Phase 1

log_value update_value

log_value update_value

log_value update_value

DSB DSB DSBPhase 2 Phase 3 Phase 4

Execution Timeline

Time

Fig. 3. Reordering limitations imposed by DSBs. Time goes from left to right.

1 // x0 contains p_array ptr
2
3 // p_array[0] = 6
4 // x2 contains slot ptr
5 ldr x1, [x0] ; load original value
6 stp x0, x1, [x2] ; store addr & val
7 dc cvap, x2 ; persist slot
8 dsb sy ; wait for slot to persist
9 mov x3, #6 ; load new value
10 str x3, [x0] ; store new value
11 dc cvap, x0 ; persist new value
12
13 // p_array[1] = 9
14 // asm is same as above,
15 // modulo ptr locations/stored value
16
17 // p_array[2] = 42
18 // asm is same as above,
19 // modulo ptr locations/stored value

Fig. 4. AArch64 assembly for Figure 1(a).

a slot within the undo log is first reserved (Line 2). Next, the
address and original value are stored in the log (Lines 3 and
4). Finally, the log entry is persisted (Lines 5-9). Note that,
to ensure that the correct persist instructions are emitted, it
is necessary to write asm volatile code, as is done in
Lines 5-9. As described in Section II-A, on AArch64, one
needs to issue a DC CVAP (Line 6) and DSB (Line 7). The
DSB is necessary to guarantee that the log entry is persisted
before the next update can reach memory. In update_value
(Figure 2(b)), first the new value is stored to the variable’s
location (Line 2) and then a DC CVAP is issued to guarantee
the value reaches NVM (Line 4). Here a DSB is unnecessary,
as the value only needs to become persistent by the end of the
failure-atomic region.

Figure 4 shows the assembly instructions generated by the
compiler for the code shown in Figure 1(a). Line 5 loads the
original value of p_array[0]. On Line 6, both the original
value and its address are stored into the log via AArch64’s
pairwise-store (STP) instruction. On Line 7 a DC CVAP is
issued to persist the log entry. Since STP is 16-byte aligned,
both stored values are on the same cache line; hence, only one
DC CVAP is necessary to persist both values. Line 9 moves
the new value to be stored into a register, while Lines 10 and
11 perform the update and persist of the new value.

While Figure 4 only shows the assembly generated for
p_array[0]=6, the assembly for p_array[1]=9 and

p_array[2]=42 is nearly identical to the first update; the
only difference is that x0 is updated to point to the storage
locations for p_array[1] and p_array[2], and that 9
and 42 are stored to the proper new locations.

1) The Problem with Fences: Unfortunately, fences are a
coarse-grained mechanism to order instructions. They enforce
the order of many unrelated instructions, which can add
a significant performance overhead. To see how, consider
Figure 3, which shows the impact that DSBs have on the
three updates in Figure 1(a). The figure shows a timeline of
when each of the updates’ operations can execute relative to
the DSBs. In the figure, time goes from left to right. For
clarity, we have also colored the operations associated with
each update differently: black for p_array[0]=6, gray for
p_array[1]=9, and white for p_array[2]=42.

In the figure, we label the execution phases created
by the DSBs. During phase 1, only the log_value re-
lated to p_array[0]=6 can execute. This is because
the DSB at the end of log_value prevents the instruc-
tions in p_array[0]=6’s update_value and those in
p_array[1]=9 and p_array[2]=42 from executing.
In Phase 2, both update_value from p_array[0]=6
and log_value from p_array[1]=9 can execute con-
currently. However, the second DSB blocks instructions
from p_array[1]=9’s update_value and also from
p_array[2]=42. As can be seen in the figure, in total four
phases are necessary to complete these three updates.

The three p_array[] updates in the original code are to
different addresses and also reserve different log entry slots.
Since the updates are independent, ideally the processor could
overlap the execution of instructions from the three updates.
Specifically, to execute these instructions should only take two
phases: the log_value of each update could execute in par-
allel, while the update_value of each update should only
wait for its corresponding log_value to complete. However,
because a DSB is needed to enforce the required persistence
orderings, these updates are unnecessarily serialized.

Code patterns such as Figure 3 are commonplace for failure-
atomic regions when using NVM frameworks. Furthermore, it
is usually not possible to reorder the instructions to limit the
fence overhead for two reasons. First, the compiler has no
information about the intention behind the fences inserted by
the framework code and hence is unable to move operations

Register Dependence
Memory Dependence

Execution Dependence

5 ldr x1, [x0]

6 stp x0, x1, [x2]

7 dc cvap x2

8 dsb sy

9 mov x3, #6

10 str x3, [x0]

11 dc cvap x0

Pr
og

ra
m

 O
rd

er

Fig. 5. Dependence graph for the instructions in Figure 4.

around them. Second, because the persistent operations are
often transparently inserted by the framework code, such as in
Figure 1(b), the user is unable to manually reorder operations.

III. MAIN IDEA

A. Inability to Convey Instruction Execution Dependences

The issue pointed out in the previous section is part of a
larger problem: currently, it is not possible to convey arbitrary
instruction dependences within the ISA. Currently, only reg-
ister and memory dependences can be conveyed by the ISA.
Register dependences are communicated by two instructions
referring to the same register, while memory dependences
are conveyed by two instructions accessing the same address.
However, logical ordering dependences also often exist which
are not expressible via a memory location or a register.

In Figure 5, we show the same instructions as in Figure 4,
only now with the register (gray arrows) and memory depen-
dences (dashed arrows) in the code labeled. In the figure,
register dependences go from instructions which define a
register to instructions which use the same register. Memory
dependences, on the other hand, chain together all accesses to
a given address.

This collection of register and memory dependences im-
poses a set of scheduling restrictions on out-of-order proces-
sors. In order to keep the functional units full and throughput
high, processors try to execute instructions as early as possible.
However, processors still must respect all register and memory
dependences within the execution.

In our example, in cases where a DC CVAP must follow an
STP and STR, such as in lines 6→7 and 10→11 of Figure 5,
the memory dependence between the pair of instructions
ensures they are not sent to memory out of order. However, as
explained before, we also need to ensure that the DC CVAP of
Line 7 executes before the STR of Line 10. To convey this in
Figure 5, we introduce the notion of an execution dependence.
In the figure the execution dependence between dc cvap x2
and str x3, [x0] is represented by a red arrow.

An execution dependence denotes a required ordering of
the two instructions. It means that, for correctness, the exe-
cution dependence’s source operation must complete before

the dependence’s sink operation can be observed. Note that
when an instruction “completes” is defined as when the
operation makes observable changes. Section IV-B1 describes
completion in more detail.

Since dc cvap x2 does not produce a register used by
str x3, [x0], nor do these instructions access the same
memory address, the processor does not naturally respect this
execution dependence. Therefore, it is necessary to insert a
DSB in the code, as shown in Figure 5. Unlike register and
memory dependences, the DSB enforces an ordering across all
instructions. Unfortunately, this is presently the only option
one has to ensure our execution dependence is honored by
out-of-order processors.

B. Encoding Execution Dependences within Instructions

Given the above limitations, in this paper we propose to
add new instructions which convey execution dependences.
Execution dependences explicitly enforce the completion or-
dering of the specified instructions. Collectively, we call our
new instructions the Execution Dependence Extension (EDE).

In our new instructions, in addition to the traditional
memory and register dependences, an execution dependence
on an arbitrary prior instruction can also be defined. We
enable this by introducing several new concepts: the Execution
Dependence Key (EDK) set, EDK-producing instructions, and
EDK-consuming instruction. The main idea is that EDE allows
for instructions to be linked so that the sink instruction (EDK
consumer) cannot be observed until the source instruction
(EDK producer) is complete.

The benefit of EDE is that, by explicitly describing execu-
tion dependences between instructions at the ISA level, the
number of fences needed within applications is substantially
reduced. For instance, in Figure 5, by using EDE, it is possible
to convey the required execution dependence between dc
cvap x2 → str x3, [x0] without the need for a DSB
in between the two instructions. By reducing the number of
fences, the processor is able to achieve greater performance
by allowing more instructions to be executed in parallel.

C. Hardware Support for EDE

Via EDE, it is possible to convey instruction execution
dependences to the hardware. However, it is the hardware’s
responsibility to use this provided information to maximize
an application’s performance. While many hardware imple-
mentations of EDE are possible, in this paper we choose to
evaluate two practical options. Our first implementation, called
IQ, enforces execution dependences at the issue queue. The
execution of an EDK-consuming instruction is delayed until
the corresponding EDK-producing instruction has completed.

While IQ is effective, it is possible to achieve further perfor-
mance benefits. Indeed, since stores and cacheline writeback
instructions do not make any observable memory changes until
after they retire, IQ unnecessarily stalls the execution of an
EDK-consuming store or cacheline writeback instruction early
in the pipeline.

To prevent such stalling from happening, we also propose a
more aggressive design which enforces the ordering of store
and cacheline writeback instructions at the write buffer. We
call this design WB. In WB, store and cacheline writeback
instructions are allowed to retire before their execution depen-
dences are satisfied. However, at the point where their changes
might be pushed to memory (i.e., in the write buffer), the ex-
ecution dependences are enforced. Overall, by allowing these
EDK-consuming store and cacheline writeback instructions
to retire, WB enables subsequent independent instructions to
proceed unencumbered.

IV. EDE ISA DEFINITION

In this section, we describe EDE’s specification. First, we
describe the high-level concepts needed to define execution
dependences. Afterwards, we introduce the EDE instructions.

A. EDE Concepts

To allow execution dependences to be conveyed by the
ISA, we provide new abstractions to define a dependence
source, a dependence sink, and the linking together of the
source and sink. We call the dependence source instruction the
dependence producer and the dependence sink instruction the
dependence consumer. We link them together with Execution
Dependence Keys (EDK)s.

1) Execution Dependence Keys: EDKs provide a way to
link two instructions together and, therefore, convey execution
dependences. Like traditional registers, EDKs are directly
encoded into instructions. However, unlike registers, no data is
read or written. Instead, EDKs are used to index an Execution
Dependence Map (EDM). The EDM holds EDK-to-instruction
key-value pairs. After an instruction is decoded, the EDM is
accessed, and the instruction’s EDKs are used to determine
any execution dependences. Specifically, first, the EDM is
searched to check if the instruction is the sink of any execution
dependence. Second, if the instruction is the source of any
execution dependence, the EDM is updated. Section IV-C
shows examples of how EDKs are used.

We define sixteen EDKs (EDK #0 − EDK #15). Throughout
the rest of the paper, we refer to an EDK operand as EDK #,
where # refers to the key being accessed. The EDM map itself
only has to hold fifteen, not sixteen entries. This is because
EDK #0 serves as a zero key. When the zero key is encoded
into an instruction, it means that this field is not being used
and can be ignored. This is needed when a given instruction
is not an execution dependence source or not a sink.

2) Dependence Producers: A dependence producer instruc-
tion is the source of an execution dependence that can be
consumed by one or more dependence consumer instructions.
A dependence producer provides an EDK that is used to access
the EDM. The EDM is updated to store the new EDK-to-
instruction link in the appropriate slot. In this way, subsequent
dependence consumer instructions using the same EDK will
be able to query this EDM entry and be linked to the producer.

3) Dependence Consumers: A dependence consumer in-
struction is dependent on one or more prior dependence
producer instructions. A dependence consumer provides an
EDK that is used to access the EDM. If an entry in the
EDM is found for the provided EDK, then it means that
this dependence consumer must wait for the instruction in
the EDM entry to finish. A dependence consumer merely
queries the EDM, and does not modify it in any way. Note
that multiple dependence consumers can depend on the same
dependence producer.

B. New Instructions

Based on these concepts, we now define the instructions
introduced by EDE. We describe the new memory instruction
variants first, and then the new control instructions.

1) EDE’s New Memory Instruction Variants: We propose
new variants of memory instructions, which take the following
operands:

EDKdef, EDKuse, <original operands>

where EDKdef is the instruction’s dependence producer
key, EDKuse is the instruction’s dependence consumer key,
and <original operands> are the instruction’s original
operands—e.g., <REGval, [REGmem]> for STR. When we
write an instruction, we place a parenthesis before EDKdef and
after EDKuse.

When using this instruction variant, it is possible for an
instruction to be both a source of a dependence (as given by
EDKdef) and a sink of a dependence (as given by EDKuse).
It is also possible for an instruction not to be a source or a
sink of a dependence by using the zero key (EDK #0) in the
appropriate operand field.

In this format, it is only possible for a consumer instruction
to be dependent on one previous instruction. However, as will
be explained in Section IV-B2, this limitation is removed by
using the EDE control instructions.

While this execution dependence format can be added to
many memory instructions, in this paper, we only add it to
AArch64’s stores and cacheline writebacks. In Section VIII,
we discuss applying execution dependence variants to loads
and synchronization primitives.

A key component of these instruction variants is the defini-
tion of when a dependence producer instruction has completed.
Only after the dependence producer has completed is it safe
for the corresponding dependence consumer to be sent to
memory. In our design, store (STR(H,B)) and pairwise-store
(STP) instructions are completed once the stored value(s) are
visible to all processors. Writeback instructions (DC CVAP)
are completed once the corresponding data is guaranteed to
be persisted. These are the same definitions for completion
used by the original AArch64 instructions.

2) EDE’s New Control Instructions: EDE introduces
three new instructions to handle unusual control JOIN
(EDKdef, EDKuse1, EDKuse2), WAIT_KEY (EDK), and
WAIT_ALL_KEYS.

6 inst (0, 1), <ops>
5 inst (0, 3), <ops>
4 inst (0, 3), <ops>

1 inst (1, 0), <ops>
2 inst (2, 0), <ops>

7 inst (1, 0), <ops>

9 inst (0, 2), <ops>
8 inst (0, 1), <ops>

3 inst (3, 0), <ops>

Fig. 6. Example of how EDKs can be used.

JOIN (EDKdef , EDKuse1 , EDKuse2). This instruction can
wait on up to two prior dependence producers and is completed
once both of its producers have completed. Via multiple
JOINs, it is possible for an instruction to have execution
dependences with multiple prior dependence producers. JOIN
is also useful for EDK resolution when multiple control
paths merge. For instance, if an instruction should wait on
EDK #1 from one path and EDK #2 from another, one would
insert a JOIN (EDKdef, EDK #1, EDK #2) before the
instruction to support the desired outcome.
WAIT KEY (EDK) and WAIT ALL KEYS. In the pres-
ence of function calls, without intervention, it is possible for
a callee function to overwrite an EDK key in use by the
caller function and cause incorrect execution dependences to
be linked. To prevent this from happening, EDE introduces
the WAIT_KEY (EDK) instruction. This instruction is both
a dependence producer and a consumer of the same key.
In addition, unlike other instructions, WAIT_KEY (EDK) is
only considered complete once all prior dependence producers
of the matching key have also finished. Therefore, this instruc-
tion can be used after a function call to ensure all necessary
dependences are met. Details about how to define a calling
convention for EDE are presented in Section IX-B.

The WAIT_ALL_KEYS instruction prevents all subsequent
consumer instructions from executing until all prior depen-
dence producers and consumers complete. This instruction can
be useful to ensure that all persistency operations in a large
code section have finished.

C. EDE Example

In Figure 6, we show how EDKs can be used to define
the execution dependences among a series of instructions. In
the figure, the execution dependences are shown with arrows.
There are execution dependences between Instructions 1→6,
2→9, 3→(4,5), and 7→8. Notice how, by using different
EDKs, it is possible to define execution dependences between
multiple instructions concurrently. For example, Instruction
1 stalls the execution of Instruction 6 by using EDK #1,
while not affecting the execution of the other instructions.
In addition, as shown in lines 1→6 and 7→8, EDKs can be
reused to establish new execution dependences.

Figure 7 shows how to apply EDE to the persistence op-
erations described in Figures 2(a) and (b). Remember that, in
the previous log_value, it was necessary to insert a DSB on
Line 7 to ensure that Line 6 in log_value completed before
Line 2 of update_value executed. Now, these instructions
can use our execution dependence format to convey this de-
pendence. Specifically, Line 6 of log_value in Figure 7(a)

1 void log_value(uint64_t *val) {
2 uint64_entry *slot = undo_log->reserve_uint64();
3 slot->addr = val;
4 slot->val = *val;
5 asm volatile(
6 "dc cvap (1,0), %x0"
7 "dsb sy"
8 : : "r"(slot)
9 : "memory");
10 }

(a) Labeling dependence producer with EDK #1.

(b) Labeling dependence consumer with EDK #1.

1 void update_value(uint64_t *val, uint64_t new_val) {
2 asm volatile(
3 "str (0,1), %x1, [%x0]"
4 "dc cvap %x0"
5 : : "r"(val), "r"(new_val)
6 : "memory");
7 }

Fig. 7. Applying EDE to the persistence operations of Figure 2.

is modified to record that DC CVAP is a dependence producer
of EDK #1 and consumes the zero key. Similarly, Line 3 of
update_value in Figure 7(b) is modified to record that
STR is a dependence consumer of EDK #1 and produces the
zero key. By doing so, the DSB is no longer necessary and
can be removed.

V. HARDWARE IMPLEMENTATION

A. Mapping Producer-Consumer Pairs

As described in Section IV-A1, the Execution Depen-
dence Map (EDM) is a fifteen-entry map that holds EDK-to-
instruction key-value pairs. In our implementation, to represent
the dependence producer in an EDM entry, we store the
producer’s in-flight instruction ID.

After an instruction with EDKs is decoded, the hardware
accesses the EDM. If the instruction has a consumer EDK
and the EDM entry for that EDK is empty, then the instruction
does not have any execution dependence. If, instead, the EDM
entry for that EDK is not empty, the instruction is registered
to have an execution dependence on the corresponding in-
flight instruction. Furthermore, if the decoded instruction has
a producer EDK, then the proper EDM entry is updated to
store the instruction’s ID.

Once an instruction has completed from EDE’s perspective,
it is necessary to remove its entry from the EDM. Therefore,
when a dependence-producing instruction completes, the cor-
responding EDM entry is queried. If the hardware finds an ID
that matches that of the completed instruction, then the EDM
entry is cleared.

1) Checkpointing EDM State: In out-of-order processors,
squashes are sometimes needed to flush speculative state out
of the pipeline. In this situation, the EDM must be reverted
to a non-speculative state. To accomplish this, we keep two
copies of the EDM: one at the current non-speculative state
(EDMno−spec) and another at the current speculative state
(EDMspec) – a technique commonly used for register map-
pings [26]. Throughout normal execution, the EDMspec is used
by the front end. However, on a pipeline squash, EDMno−spec

Issue
 Execute

Push to Mem
Retire

inst (1, 0), <ops>

(a) Ideal enforcement of execution dependencies.

(b) Enforcement of execution dependencies with IQ implementation.

inst (0, 1), <ops>

inst (2, 0), <ops>

inst (0, 2), <ops>

inst (1, 0), <ops>

inst (0, 1), <ops>

inst (2, 0), <ops>

inst (0, 2), <ops>

Fig. 8. Comparison between ideal and IQ execution timelines. Time goes from left to right.

is copied into EDMspec before execution restarts. Note that,
due to the similarity between the EDM and a register file, it
is also straightforward to extend this support to maintain a
consistent EDM state when multiple checkpoints are taken.

B. Implementing EDE’s Memory Instructions

Once execution dependences are identified, the processor’s
back end must ensure that all dependences are upheld. While
many strategies are possible, in this paper we propose two
solutions: IQ, which enforces execution dependences in the
issue queue, and WB, which waits until the write buffer to
enforce these dependences. We describe each design below.

1) Enforcing Dependences in the Issue Queue: In IQ,
all required execution dependence orderings are enforced in
the issue queue. This is done by adding an additional step
to instructions’ wakeup logic. Normally, an instruction is
deemed ready to execute once all of its register and memory
dependences have been met. In IQ, we add the extra step of
also monitoring the status of the instruction’s execution depen-
dences. Specifically, we add the execution dependences ready
(eDepReady) flag to each instruction in the issue queue. When
an instruction enters the issue queue, the hardware checks
to see if it has any outstanding execution dependences. If it
does, eDepReady is cleared; otherwise, it is set. If eDepReady
is clear, it will later get set once the instruction’s execution
dependences are satisfied. When eDepReady is set and all the
other dependences are satisfied, the instruction is marked as
ready to execute. The existing issue queue scheduling logic is
otherwise unmodified.

When an instruction completes, IQ sets the eDepReady of
all matching dependence consumer instructions in the issue
queue. This action may cause multiple instructions to become
ready to execute.

2) Drawbacks of IQ: While IQ is effective, its performance
is limited. To see why, note that EDK-consuming stores and
cacheline writebacks do not make any observable memory
changes until after they retire. Hence, it is suboptimal to stall
their execution due to an execution dependence early in the
pipeline as is required by IQ.

To better understand this limitation, consider Figures 8(a)
and (b). Each figure shows a different execution timeline for a
set of four EDE instructions with two execution dependences.

Note that the instructions access different addresses. The
timeline follows an abstract pipeline with Issue, Execute, and
Retire stages. After that, there is a Push to Mem step where
the entry in the write buffer corresponding to the store or
writeback instruction is pushed to the memory system. We
show the Push to Mem step as taking longer than a pipeline
stage because it is subject to memory subsystem latencies.
In the timelines, time goes from left to right. There are gaps
between the stages when an instruction is stalled.

Figure 8(a) shows an ideal timeline that enforces the exe-
cution dependences. As in conventional pipelines, instructions
go through Issue and Retire in order. To enforce the execution
dependence between the first and second instructions, all that
is required is that the second instruction delays its Push to
Mem step (and hence remains invisible to other processors)
until the first instruction completes—i.e., it finishes its own
Push to Mem step.

The third instruction does not have an execution dependence
a prior instruction. Hence, it can proceed to begin its Push to
Mem step immediately after it retires. The fourth instruction is
dependent on the third one. Therefore, it must wait to perform
its Push to Mem step until the third instruction has completed.

In contrast, figure 8(b) shows the timeline with IQ. Since
IQ enforces execution dependence ordering at the issue queue,
the second instruction is unable to proceed to Execute until the
first instruction completes its Push to Mem step. Then, even
though the third instruction is independent of the second one,
it has to order its Retire after the second instruction’s Retire.
Finally, the fourth instruction is dependent on the third one
and, therefore, orders its Execute after the third instruction’s
Push to Mem step. Overall, IQ is unable to unlock the ideal
amount of parallelism between these instructions, and the
execution takes a significantly longer time.

While the code example provided is very simple, this pattern
of pairwise instruction dependences is common in NVM
applications. As described in Section II-B, one motivating
factor for EDE is to allow multiple log updates to proceed
in parallel. Unfortunately, IQ does not enable all the possible
parallelism.

3) Enforcing Dependences in the Write Buffer: To resolve
the performance limitations of IQ, we introduce a second im-

plementation called WB where execution dependences are re-
solved in the write buffer. Instructions that consume execution
dependences are allowed to continue executing as normal until
retirement—irrespective of whether their producer instructions
have completed. After retirement, the hardware controls in
which order instructions in the write buffer are allowed to
push their data to the memory subsystem.

The execution timeline of WB is like the one in Figure 8(a).
By allowing instructions to retire without stalling for execution
dependences, WB has noticeable performance benefits over
IQ. Section V-D describes the design of WB in more depth.

C. Implementing EDE’s Control Instructions

The JOIN (EDKdef,EDKuse1,EDKuse2), WAIT_KEY
(EDK), and WAIT_ALL_KEYS control instructions are
implemented as follows.

JOIN (EDKdef , EDKuse1 , EDKuse2). This instruction mon-
itors two execution dependence sources. In both IQ and WB,
once the two source instructions complete, then the JOIN
instruction can complete.

WAIT KEY (EDK) and WAIT ALL KEYS. These instruc-
tions monitor the completion of many older instructions. Every
time that an EDE instruction completes, younger WAIT in-
structions waiting for a certain EDK (or for all EDKs) perform
a check on whether any older instruction is a dependence
producer or consumer of that EDK (or of any EDK). If none
is, the WAIT instruction can complete.

Section V-D describes the implementation of these instruc-
tions in WB in more depth.

D. WB Implementation

In WB, the write buffer contains logic to enforce the EDE
dependences. Recall that, after a store or writeback instruction
S with EDKs is decoded, the hardware accesses the EDM. If
S is the consumer of an execution dependence, S reads from
the EDM the ID of the in-flight instruction that is the source
of the dependence. S carries this ID in a srcID tag down
the pipeline and into the write buffer. When S retires and its
entry is deposited into the write buffer, the hardware performs
a CAM operation to check if the write buffer contains the entry
corresponding to the srcID instruction. If it does not, S’s entry
clears its srcID field and starts pushing its data to memory.
In addition, every time that an entry S1 in the write buffer is
pushed to memory, the hardware checks if any younger entry
S2 in the write buffer has a srcID tag set to S1. If so, S2’s entry
clears its srcID field and starts pushing its data to memory.

When a JOIN instruction is decoded, it accesses the EDM
and potentially reads two source tags (srcID1 and srcID2). This
special instruction carries these two tags down the pipeline
and into the write buffer. Since the write buffer entry for the
JOIN instruction has no data, one of the srcID tags can use
the entry’s data field. The logic is similar to regular writes and
writebacks, except that the two srcID tags of the JOIN have
to be cleared for the JOIN instruction to be removed from the
write buffer.

Finally, to support WAIT_KEY and WAIT_ALL_KEYS, we
introduce a set of counters to track both the per-EDK and the
overall number of EDE instructions in the write buffer. All
stores, writebacks, and JOIN instructions carry their EDK
tags (EDKdef , EDKuse1 and, for JOIN, EDKuse2) down
the pipeline and into the write buffer. This information is
used to increment the matching counters when the instruction
enters the write buffer, and to decrement the same coun-
ters when the instruction completes. When a WAIT_KEY or
WAIT_ALL_KEYS instruction is ready to retire, it checks
the appropriate counter, and can only retire once the counter
reaches zero.

VI. EXPERIMENTAL SETUP

A. Simulator Environment

To evaluate EDE, we implement both IQ and WB in the
gem5 simulator [11] and run several persistent applications.
We add EDE’s instructions both to gem5’s AArch64 frontend,
and as built-ins in Clang and LLVM [33] version 8.0.

In the simulator, we use an out-of-order (OoO) configuration
that models an Arm A72-like processor [9]. The main simula-
tor architectural parameters are shown in Table I. We have also
modified the simulator to model a hybrid DRAM plus NVM
memory system with Asynchronous DRAM Refresh (ADR)
support. In our setup, both NVM and DRAM requests are sent
to one controller. However, the physical address space is split
so that part of the address space targets NVM while the other
part targets DRAM. The DRAM interface models 2400MHz
DDR4, while the NVM interface has asymmetric read and
write latencies, and includes a persistent 128-slot on-DIMM
buffer. This buffer temporarily buffers updates to the NVM.

TABLE I
ARCHITECTURAL PARAMETERS.

ISA AArch64 + EDE extension
Compiler Clang-LLVM 8.0 + EDE built-ins

Processor Parameters (Arm A72-like core)
Processor OoO core, 3-instr decode width, 3GHz
Ld-St queue 16 entries each
Write buffer 16 entries
L1 I-cache 32KB, 2-way, 2-cycle access latency
L1 D-cache 48KB, 3-way, 1-cycle access latency
L2 cache 256KB, 16-way, 12-cycle access latency
L3 cache 1MB/core, 16-way, 20-cycle access latency

Main-Memory Parameters
Capacity DRAM: 2GB; NVM: 2GB
NVM latency 150ns read; 500ns write
NVM line size 256B
NVM on-DIMM buffer 128 slots
DRAM type 2400MHz DDR4
DRAM ranks per channel 2
DRAM banks per rank 16

B. Applications

To evaluate the performance impact of EDE on persistent
applications, we use a combination of kernel applications and
applications available from the PMDK [3] repository. We list
the applications in Table II. We created two kernel applications
that perform a series of modifications to an array: in update,

an operation consists of updating a random element in the
array, while in swap, an operation is to swap the values of
two random elements in the array. In both applications, undo
logging is used to maintain crash consistency.

We also evaluate EDE on a collection of applications from
PMDK’s pmembench benchmark suite. This is accomplished
by changing the PMDK framework code to leverage EDE
while performing undo logging. As shown in Table II, our
evaluation tests four data structures: btree, ctree, rbtree, and
rtree. In each application, a single operation consists of
inserting a new element into the data structure.

In our applications, multiple operations are grouped into
a transaction. Specifically, in our simulations, we set the
applications to have 100 operations per transaction and to run
1,000 transactions, resulting in each application performing
100,000 operations. In the simulations, we run each applica-
tion to completion while precisely simulating the time spent
performing these operations.

TABLE II
APPLICATIONS EVALUATED.

Kernel Applications
update Perform updates on random elements in an array.
swap Perform pairwise swaps between random array elements.

PMDK Applications
btree B-tree implementation with between 3 and 7 keys per node.
ctree Crit-bit trie [40] implementation.
rbtree Red-black tree implementation with sentinel nodes.
rtree Radix tree implementation with radix 256.

C. Architecture Configurations

We compare the five architecture configurations shown in
Table III. Baseline (B) uses DSBs as needed to ensure a
correct crash-consistent ordering in AArch64. Store Barrier
Unsafe (SU) uses AArch64’s store barrier instruction (DMB
st) to only enforce ordering between store instructions. This
configuration allows the hardware to perform reorderings
that violate AArch64’s crash-consistency requirements. SU is
shown to approximate the overhead of the store fences needed
within NVM applications on x86-64 machines. Both IQ and
WB use EDE instead of DSBs to properly order persists and
stores. Finally, in Unsafe (U), all DSBs from the program are
removed. With U, the hardware may perform reorderings that
violate crash-consistency requirements.

TABLE III
ARCHITECTURE CONFIGURATIONS.

Configuration Description
Baseline (B) Use DSBs to enforce ordering.

Store Barrier
Unsafe (SU)

Use DMB st to only enforce store
ordering. Similar to x86-64 SFENCE.
Allows unsafe reorderings.

IQ Use EDE and target IQ hardware.
WB Use EDE and target WB hardware.
Unsafe (U) No fences. Allows unsafe reorderings.

update swap btree ctree rbtree rtree geomean
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e B SU IQ WB U

Fig. 9. Application execution time.

VII. EVALUATION

A. Execution Time

Figure 9 shows the execution time for the applications and
configurations described in Section VI. For each application,
all execution times are normalized to B. Based on their
geometric mean, SU, IQ, WB, and U reduce the execution
time by 5%, 15%, 20%, and 38%, respectively.

Most applications attain similar amounts of improvement.
SU outperforms B since DMB sts only block store instruc-
tions, not all instructions like DSBs. Across all applications,
IQ outperforms B and SU. This is because EDE uses a fine-
grained mechanism to order dependent instructions, while B
and SU use the course-grained mechanism provided by fences.
Likewise, WB performs better than IQ across all applications.
This is because, as discussed in Section V-B2, since IQ
enforces execution dependences at the issue queue, it is unable
to maximize the amount of parallelism described with EDE.
Since WB enforces execution dependences in the write buffer,
it is able to allow more overlapping of writes.

On average, WB is able to attain 54% of the execution time
reduction of U (i.e., 20% versus 38%). Hence, it recovers a
significant portion of the time spent ensuring that NVM is
updated in a crash-consistent order. Remember that, since U
removes all fences from the code, it allows reorderings that
can prevent data recovery.

Overall, our results show that EDE is able to significantly
speed-up workloads while maintaining a crash-consistent or-
dering. Indeed, by using EDE with IQ and WB rather than
fences, we attain average workload speedups of 18% and 26%,
respectively.

B. Issue Queue Throughput

In Figure 11, we show the distribution of the number of
instructions issued each cycle. In the figure, each pattern
represents the percentage of cycles the processor issued the
labeled number instructions. As shown on the y-axis, cumu-
latively, the bars for each setup stack up to account for 100%
of the simulated cycles. Note that, although our simulated
architecture has a 3-instruction decode width, the issue queue
has a width of 8.

As shown in the figure, all implementations issue 0 in-
structions in the majority of cycles. This is to be expected,
as writes to NVM have a significant latency and can cause the
pipeline to fill. It can be shown that, on average, the IPC of
the applications is 0.40, 0.42, 0.46, 0.49, and 0.64 for the B,
SU, IQ, WB, and U configurations, respectively.

0 20 40 60 80 100 120
update: # Pending Writes to NVM

0
20
40
60
80

100
%

 o
f S

am
pl

es
B SU IQ WB U

0 20 40 60 80 100 120
swap: # Pending Writes to NVM

0
20
40
60
80

%
 o

f S
am

pl
es

B SU IQ WB U

0 20 40 60 80 100 120
btree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B SU IQ WB U

0 20 40 60 80 100 120
ctree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B SU IQ WB U

0 20 40 60 80 100 120
rbtree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B SU IQ WB U

0 20 40 60 80 100 120
rtree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B SU IQ WB U

Fig. 10. Distribution of pending writes to NVM in the persistent 128-slot on-DIMM buffer in the NVM interface.

update swap btree ctree rbtree rtree average
0%

20%

40%

60%

80%

100%

Pe
r-C

yc
le

 Is
su

e
W

id
th

 D
ist

rib
ut

io
n

B SU IQ WB U
8
7
6
5
4
3
2
1
0

Fig. 11. Distribution of the number of instructions issued each cycle.

Across all the applications, IQ and WB spend fewer cycles
being unable to issue instructions than SU and B. On average,
IQ and WB both spend 30% of the cycles issuing instructions.
However, WB in general issues more instructions during these
active cycles. Specifically, when issuing instructions, WB is
able to issue on average 8% more instructions than IQ. This is
because WB does not block execution-dependent instructions
at the issue queue, while IQ forces them to remain there until
the execution dependences are satisfied.

C. Pending Writes to NVM

As described in Section VI, the NVM interface has a
persistent 128-slot on-DIMM buffer that holds pending writes
before they are merged into the NVM. In general, it is
desirable to have a large number of pending writes in the
buffer: it provides more opportunities for write coalescing, and
also enables a higher writeback throughput. However, because
fences in the processor pipeline stall the execution, it can be
hard for crash-consistent applications to issue NVM writes
quick enough to keep the buffer full.

Figure 10 shows, for each application and configuration, the
distribution of the number of pending writes in the persistent
128-slot on-DIMM buffer. Each configuration is represented
by a different type of line. The x axis shows the number of
pending NVM writes in the buffer, while the y axis shows the
percentage of samples with the observed number of pending
NVM writes. A sample is taken each time a store reaches the
NVM media.

Across all the applications, U has the highest number of
pending NVM writes. This is because U does not issue fences,
which stall writes. For the kernel applications, U is able to
keep the buffer full, since the kernels write to NVM at a high
frequency. In the PMDK applications, since other work must

be done to maintain the data structures, the number of pending
NVM writes is lower.

For the other configurations, although it is hard to see, WB
has, on average, slightly more pending writes to NVM than
the other configurations. As discussed in previous sections,
since WB allows faster writebacks to NVM than the other
configurations, this behavior is to be expected.

VIII. FUTURE WORK:
USING EDE IN MULTI-THREADED APPLICATIONS

A. Example of Fence Overhead

While this paper focuses on the overhead of fences in
NVM applications, fences also impose a significant overhead
in many multi-threaded application domains. In such domains,
fences are often used to enforce instruction orderings that
guarantee data integrity.

For example, fences are needed to support memory recla-
mation in lock-free data structures. When many threads are
concurrently viewing and modifying a lock-free data structure,
a well-known problem is deciding when it is safe to reclaim
the memory of an element that has been removed from the data
structure. One popular solution is to use hazard pointers [38]
to ensure that items are not prematurely freed. Hazard pointers
are an efficient way for threads to announce which elements
they are currently using. Before a thread can safely free an
element, it must check all the values in active hazard pointers,
to ensure that no reference to the element exists.

The key operation of hazard pointers is updating, or an-
nouncing, the element that a thread is about to access and
that, hence, must be kept alive. Figure 12 shows how this
announcement operation can be performed using AArch64.
The code starts by moving into registers: (i) the pointer to
the element’s location (assumed in Line 1) and (ii) the hazard
pointer (assumed in Line 2). Then, the element’s location is
retrieved (Line 3). Next, the element’s location is stored in
the hazard pointer to announce that this thread is using the
element (Line 4). Afterwards, the pointer to the element’s
location is read again (Line 6), and checked to make sure
the pointer still points to the original element location (Line
7). If not, this process must be repeated until the thread is able
to successfully announce the element’s location that it is about
to access (Line 8). Note that since the only side effect of the
announcement is to ensure that the announced location is not

1 // x1 contains ptr to element’s location
2 // x2 contains hazard ptr
3 Loop: ldr x3, [x1] ; load element’s location
4 str x3, [x2] ; announce element’s location
5 dmb sy ; full fence: wait for announcement
6 ldr x4, [x1] ; load element’s location again
7 cmp x4, x3 ; compare both locations
8 b.ne Loop ; try again if locations differ

Fig. 12. Hazard pointer announcement in AArch64.

freed, the algorithm is correct even if the thread temporarily
announces an element that it does not end up using.

The key step of the algorithm is validating that the location
announced did not change before the announcement was made.
In order words, it must be guaranteed that the second load
(Line 6) happens after the announcement (Line 4). Unfortu-
nately, on both x86-64 and AArch64, enforcing this load-store
dependence currently requires a full fence—a DMB instruction
in AArch64 (Line 5).

Using EDE, it is possible to remove the full fence on Line 5.
This can be achieved by using str (1, 0), x3, [x2]
in Line 4 and ldr (0,1), x4, [x1] in Line 6.

B. Multi-Threaded Uses of EDE

The need to use fences to enforce orderings in multi-
threaded applications extends well beyond the hazard pointer
example described above. Indeed, all algorithms that rely
on announcement-based solutions (e.g., [7], [12], [29], [39])
likely contain fences that could be eliminated via defining
explicit execution dependences. The benefits of EDE will be
especially pronounced in AArch64, where lock-free algorithms
typically require many fences to guarantee that steps are not
performed out of order.

In Java, EDE could also be used to enforce multi-threaded
orderings required by the Java Memory Model [36], such as
guaranteeing that final object fields are initialized before
they are read by another thread. In addition, Java Virtual
Machine (JVM) implementations traditionally store metadata
alongside object fields, which also must be initialized before
another thread can access the object. This coordination of
small data subsets is an ideal target for EDE.

Another example where multi-threaded coordination of data
is needed is in the kernel’s use of circular buffers. Kernels
often use circular buffers to store tracing and logging data
collected throughout runtime. Ideally, the buffers should han-
dle being read and updated by multiple threads concurrently.
Via EDE, popping and pushing data from circular buffers can
be performed in a lock-free manner without fences.

Finally, concurrent garbage collectors, such as ZGC [4] and
Shenandoah [22] require careful orchestration of the move-
ment of data alongside concurrent updates, class initialization,
and dynamic code loading. In this environment, EDE can be
used to minimize the overheads of garbage collection barriers.

Our future work involves evaluating these multi-threaded
EDE use cases, plus additional important multi-threaded uses
that we may discover.

C. EDE Support for Loads and Synchronization Primitives

This paper only discusses adding new EDE memory in-
struction variants to AArch64’s store and cacheline writeback
instructions. However, to support EDE use cases in multi-
threaded environments, we also need to add new EDE in-
structions and hardware support for loads and synchronization
primitives.

A detailed description of the EDE instruction definition and
hardware support for loads and synchronization primitives can
be found in [56].

IX. FUTURE WORK: COMPILER SUPPORT FOR EDE
A. Integration in a Compiler’s Internal Representation (IR)

As described in Section VI, in this paper we leverage
EDE through the use of new built-in intrinsics added to
Clang and LLVM. However, it is desirable to integrate EDE
into the compiler more fully. Specifically, we believe that
a compiler’s internal representation (IR) can be augmented
to incorporate execution dependences. For instance, in JVM
compilers, a sea-of-nodes [15] representation is commonly
used. Like Figure 5, this representation creates a dependence
graph to record register, memory, and control dependences
between instructions. It is straightforward to also introduce
execution dependences into the representation. Doing so would
allow compilers to perform aggressive optimizations without
illegally reordering instructions with execution dependences.

For many of the use cases described in Section VIII, it
is possible for a compiler to automatically create execution
dependences during its initial IR generation. Similar automatic
support would also be possible for persistent applications once
persistency support is integrated into languages. It is also
possible to expose EDE to framework developers via new
ordering types for C/C++ atomics [1] and Java VarHandles [2],
so that intrinsics are no longer needed.

Finally, by fully integrating EDE into compilers, it is
possible for EDKs to be virtualized and for the compiler
to automatically assign logical EDK values. Existing register
allocation techniques such as graph coloring [13] and linear
scan [62] are straightforward to repurpose for EDK assign-
ments.

B. EDK Calling Convention

Along with integrating support for EDE into a compiler’s
IR, it is also necessary to establish a calling convention for
EDE to ensure library compatibility. Normally, registers not
used to pass parameters are divided into two categories: caller-
saved and callee-saved registers. In a similar manner, for
EDKs we introduce the concept of caller-saved and callee-
saved keys.

For caller-saved keys, the caller must assume that the key
will be overwritten within the callee function. Hence, for
each caller-saved key K, after the function returns and before
the next instruction that consumes K, a WAIT_KEY (K)
instruction must be inserted. This WAIT_KEY ensures that
the consumer of key K after the call return waits for the
completion of the producer of key K before the call.

1 // X is caller-saved, Y is callee-saved
2 inst (X, 0), <ops>
3 inst (Y, 0), <ops>
4 call foo ; may overwrite EDKs
5 WAIT_KEY (X) ; waits on lines #2 & #9
6 inst (0, X), <ops> ; waits on line #5
7 inst (0, Y), <ops> ; waits on line #10

8 // function foo:
9 inst (X, 0), <ops>
10 inst (Y, Y), <ops> ; waits on line #3

Caller function.

Callee function.
Fig. 13. Correct EDK usage across function calls.

For callee-saved keys, the caller function performs no
action. However, within the callee function, for each callee-
saved key K, either (i) a WAIT_KEY (K) is inserted or (ii) all
instructions that are a dependence producer of K must also be
a dependence consumer of K. Once again, these instructions in
the callee ensure that a consumer of key K after the call return
waits for the completion of the producer of key K before the
call.

Figure 13 shows an example of how to correctly maintain
caller- and callee-saved keys across a function call. In the
figure, X is a caller-saved key and Y is a callee-saved key.

X. RELATED WORK

Past research has investigated the reorderings of read and
write instructions that are allowed by different memory consis-
tency models (e.g., [5], [48], [52]). Our work does not change
the memory consistency model: EDE only selectively adds
additional ordering constraints, in a manner that is much finer-
grained than how fences do it.

Prior studies have measured the overhead of fences within
relaxed architectures and found that there is notable oppor-
tunity to ease restrictions and improve performance [20],
[21], [34], [35], [57], [59]. Some proposals [20], [21], [35]
selectively enforce fences based on monitoring coherence
messages. While this leaves the software unchanged, the
hardware cost of tracking coherence messages is high. Other
approaches [34] limit the scope of which subsequent instruc-
tions are affected by the fence. These techniques only cover a
subset of EDE’s behaviors.

Recent works focus on different persistency models
(e.g., [30], [41], [42], [49]), and describe how the underlying
hardware is allowed to reorder writes to NVM. One example
relevant to our work is Strand persistency [25]. Strand persis-
tency can only describe a subset of the orderings describable
via EDE. Indeed, strand persistency is limited in that the
instructions in a strand need to be contiguous in program order.
EDE eliminates this restriction by supporting any instruction-
to-instruction dependence, effectively supporting the equiva-
lent of strands whose code is interleaved with one another.

Other works propagate writes to NVM through a designated
buffer instead of the normal cache hierarchy [32], [41], [43].

EDE is orthogonal to buffered persistency and can complement
systems that use it.

Several works propose to accelerate failure-atomic regions
either in hardware [19], [25], [31], [44], [45], [51], [53],
[54], [64] or software [6], [16], [17], [23], [47], [61], [63].
While many of the above works accelerate NVM logging,
EDE provides a simple mechanism that does not alter the
consistency model and can also be leveraged in uses cases
outside of the persistency domain to accelerate multi-threaded
workloads on AArch64. Hence, given EDE’s multifaceted use
cases, we believe that EDE is a compelling extension.

XI. CONCLUSION

Current ISAs are unable to describe an execution de-
pendence between two instructions that have no register or
memory dependence. Hence, programmers use fences and un-
necessarily slow down execution. To remedy this, we proposed
the Execution Dependence Extension (EDE), which allows for
execution dependences to be encoded in the ISA.

We described two different hardware implementations of
EDE, namely IQ and WB. Each one has different trade-offs
in complexity versus performance potential. To evaluate EDE’s
impact, we implemented both IQ and WB in a simulator and
ran several NVM applications. Overall, by using EDE with
IQ and WB rather than fences, we attained average workload
speedups of 18% and 26%, respectively.

EDE also has high potential to enable more aggressive re-
ordering of memory accesses in multi-threaded codes. Hence,
with EDE, one may be able to fully realize the performance
potential of relaxed memory consistency models and lock-free
algorithms. We are currently exploring these avenues.

ACKNOWLEDGMENT

This work was supported by NSF grant CNS 1763658.

REFERENCES

[1] “C++ atomic types and operations.” [Online]. Available: http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html

[2] “JEP 193: Variable handles.” [Online]. Available: https://openjdk.java.
net/jeps/193

[3] “Persistent Memory Development Kit.” [Online]. Available: http:
//pmem.io/pmdk/

[4] “ZGC - OpenJDK Wiki.” [Online]. Available: https://wiki.openjdk.java.
net/display/zgc/Main

[5] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell,
and F. Z. Nardelli, “The semantics of Power and ARM multiprocessor
machine code,” in Proceedings of the 4th Workshop on Declarative
Aspects of Multicore Programming, ser. DAMP ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 13–24. [Online].
Available: https://doi.org/10.1145/1481839.1481842

[6] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), June 2018, pp. 439–451.

[7] J. H. Anderson and M. Moir, “Universal constructions for multi-object
operations,” in Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing, ser. PODC ’95. New York,
NY, USA: Association for Computing Machinery, 1995, p. 184–193.
[Online]. Available: https://doi.org/10.1145/224964.224985

[8] Arm, “Armv8-A architecture evolution,”
https://community.arm.com/developer/ip-products/processors/b/
processors-ip-blog/posts/armv8-a-architecture-evolution, 2016.

[9] Arm, “Arm Cortex-A72 MPCore processor: Technical reference
manual,”
http://infocenter.arm.com/help/topic/com.arm.doc.100095 0003 06 en/
cortex a72 mpcore trm 100095 0003 06 en.pdf, 2020.

[10] Arm, “Arm architecture reference manual Armv8, for Armv8-A
architecture profile,”
https://static.docs.arm.com/ddi0487/fb/DDI0487F b armv8 arm.pdf,
2021.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug.
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[12] G. E. Blelloch and Y. Wei, “LL/SC and atomic copy: Constant time,
space efficient implementations using only pointer-width CAS,” in
34th International Symposium on Distributed Computing, DISC 2020,
October 12-16, 2020, Virtual Conference, ser. LIPIcs, H. Attiya, Ed., vol.
179. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 5:1–
5:17. [Online]. Available: https://doi.org/10.4230/LIPIcs.DISC.2020.5

[13] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein, “Register allocation via coloring,” Computer
Languages, vol. 6, no. 1, pp. 47 – 57, 1981. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0096055181900485

[14] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’14. New
York, NY, USA: ACM, 2014, pp. 433–452. [Online]. Available:
http://doi.acm.org/10.1145/2660193.2660224

[15] C. Click and M. Paleczny, “A simple graph-based intermediate
representation,” in Papers from the 1995 ACM SIGPLAN Workshop
on Intermediate Representations, ser. IR ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 35–49. [Online].
Available: https://doi.org/10.1145/202529.202534

[16] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-grain
checkpointing with in-cache-line logging,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
441–454. [Online]. Available: https://doi.org/10.1145/3297858.3304046

[17] N. Cohen, M. Friedman, and J. R. Larus, “Efficient logging in
non-volatile memory by exploiting coherency protocols,” Proceedings
of the ACM on Programming Languages (PACMPL), 2017. [Online].
Available: http://infoscience.epfl.ch/record/231400

[18] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” in Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, ser. SOSP ’09. New York,
NY, USA: ACM, 2009, pp. 133–146. [Online]. Available: http:
//doi.acm.org/10.1145/1629575.1629589

[19] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for SCM with
a non-intrusive backend controller,” in 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), March
2016, pp. 77–89.

[20] Y. Duan, N. Honarmand, and J. Torrellas, “Asymmetric memory fences:
Optimizing both performance and implementability,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015.

[21] Y. Duan, A. Muzahid, and J. Torrellas, “WeeFence: Toward making
fences free in TSO,” in International Symposium on Computer Archi-
tecture (ISCA), 2013.

[22] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin,
“Shenandoah: An open-source concurrent compacting garbage collector
for OpenJDK,” in Proceedings of the 13th International Conference
on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools, ser. PPPJ ’16. New
York, NY, USA: ACM, 2016, pp. 13:1–13:9. [Online]. Available:
http://doi.acm.org/10.1145/2972206.2972210

[23] E. Giles, K. Doshi, and P. J. Varman, “Hardware transactional persistent
memory,” CoRR, vol. abs/1806.01108, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01108

[24] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M.
Chen, and T. F. Wenisch, “Persistency for synchronization-free
regions,” in Proceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI 2018.
New York, NY, USA: ACM, 2018, pp. 46–61. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192367

[25] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and
T. F. Wenisch, “Relaxed persist ordering using strand persistency,” in
Proceedings of the 47th Annual International Symposium on Computer
Architecture, ser. ISCA 2020. ACM, 2020.

[26] W. W. Hwu and Y. N. Patt, “Checkpoint repair for high-performance out-
of-order execution machines,” IEEE Transactions on Computers, vol.
C-36, no. 12, pp. 1496–1514, 1987.

[27] Intel, “Intel 64 and IA-32 architectures software developer’s manual,”
https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-\\instruction-set-
reference-manual-325383.pdf, 2016.

[28] Intel, “3D XPoint: A breakthrough in non-volatile memory technology,”
https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html, 2018.

[29] P. Jayanti and S. Petrovic, “Efficient wait-free implementation of mul-
tiword LL/SC variables,” Proceedings - International Conference on
Distributed Computing Systems, pp. 59–68, 07 2005.

[30] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2015, pp. 660–671.

[31] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2017, pp. 361–372.

[32] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated persist ordering,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1–13.

[33] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer
Society, 2004, p. 75.

[34] C. Lin, V. Nagarajan, and R. Gupta, “Fence scoping,” in SC ’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 105–116.

[35] C. Lin, V. Nagarajan, and R. Gupta, “Address-aware fences,”
in Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ser. ICS ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 313–324.
[Online]. Available: https://doi.org/10.1145/2464996.2465015

[36] J. Manson, W. Pugh, and S. V. Adve, “The Java memory model,”
in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’05. New
York, NY, USA: ACM, 2005, pp. 378–391. [Online]. Available:
http://doi.acm.org/10.1145/1040305.1040336

[37] V. J. Marathe, A. Mishra, A. Trivedi, Y. Huang, F. Zaghloul,
S. Kashyap, M. I. Seltzer, T. Harris, S. Byan, B. Bridge, and D. Dice,
“Persistent memory transactions,” CoRR, vol. abs/1804.00701, 2018.
[Online]. Available: http://arxiv.org/abs/1804.00701

[38] M. M. Michael, “Hazard pointers: safe memory reclamation for lock-
free objects,” IEEE Transactions on Parallel and Distributed Systems,
vol. 15, no. 6, pp. 491–504, 2004.

[39] M. Moir, “Practical implementations of non-blocking synchronization
primitives,” in Proceedings of the Sixteenth Annual ACM Symposium
on Principles of Distributed Computing, ser. PODC ’97. New York,
NY, USA: Association for Computing Machinery, 1997, p. 219–228.
[Online]. Available: https://doi.org/10.1145/259380.259442

[40] D. R. Morrison, “Patricia—practical algorithm to retrieve information
coded in alphanumeric,” J. ACM, vol. 15, no. 4, p. 514–534, Oct. 1968.
[Online]. Available: https://doi.org/10.1145/321479.321481

[41] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with WHISPER,” in Proceedings
of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 135–148. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037730

[42] D. Narayanan and O. Hodson, “Whole-system persistence,” in Pro-
ceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XVII. New York, NY, USA: ACM, 2012, pp. 401–410.
[Online]. Available: http://doi.acm.org/10.1145/2150976.2151018

[43] T. M. Nguyen and D. Wentzlaff, “PiCL: A software-transparent, per-
sistent cache log for nonvolatile main memory,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018, pp. 507–519.

[44] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “SSP: Eliminating
redundant writes in failure-atomic NVRAMs via shadow sub-paging,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 836–848. [Online].
Available: https://doi.org/10.1145/3352460.3358326

[45] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Effi-
cient hardware undo+redo logging for persistent memory systems,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 336–349.

[46] Oracle, “Oracle SPARC architecture 2011,”
https://www.oracle.com/technetwork/server-storage/sun-sparc-
enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf,
2016.

[47] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner,
“FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree
for storage class memory,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 371–386. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2915251

[48] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model:
x86-TSO,” in Theorem Proving in Higher Order Logics, S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 391–407.

[49] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press,
2014, pp. 265–276. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2665671.2665712

[50] A. Raad, J. Wickerson, and V. Vafeiadis, “Weak persistency semantics
from the ground up: Formalising the persistency semantics of ARMv8
and transactional models,” Proc. ACM Program. Lang., vol. 3,
no. OOPSLA, Oct. 2019. [Online]. Available: https://doi.org/10.1145/
3360561

[51] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 672–685. [Online]. Available:
https://doi.org/10.1145/2830772.2830802

[52] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
“X86-TSO: A rigorous and usable programmer’s model for X86
multiprocessors,” Commun. ACM, vol. 53, no. 7, p. 89–97, Jul. 2010.
[Online]. Available: https://doi.org/10.1145/1785414.1785443

[53] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A
flexible and fast software supported hardware logging approach for

NVM,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17. New York,
NY, USA: ACM, 2017, pp. 178–190. [Online]. Available: http:
//doi.acm.org/10.1145/3123939.3124539

[54] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
175–186. [Online]. Available: https://doi.org/10.1145/3079856.3080240

[55] T. Shull, J. Huang, and J. Torrellas, “AutoPersist: An easy-to-use Java
NVM framework based on reachability,” in International Conference on
Programming Language Design and Implementation (PLDI), June 2019.

[56] T. Shull and J. Torrellas, “Execution dependence extension (EDE):
Enabling the potential of relaxed memory consistency models,” http://
iacoma.cs.uiuc.edu/iacoma-papers/isca21 2 tr.pdf, May 2021, Technical
Report, University of Illinois at Urbana-Champaign.

[57] M. F. Spear, M. M. Michael, M. L. Scott, and P. Wu, “Reducing
memory ordering overheads in software transactional memory,” in 2009
International Symposium on Code Generation and Optimization, 2009,
pp. 13–24.

[58] Storage Networking Industry Association (SNIA), “NVM programming
model v1.2,”
https://www.snia.org/sites/default/files/technical work/final/
NVMProgrammingModel v1.2.pdf, 2017.

[59] O. Trachsel, C. V. Praun, and T. R. Gross, “On the effectiveness of
speculative and selective memory fences,” in International Parallel and
Distributed Processing Symposium (IPDPS), 2006.

[60] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XVI. New York, NY, USA:
ACM, 2011, pp. 91–104. [Online]. Available: http://doi.acm.org/10.
1145/1950365.1950379

[61] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” Proc. VLDB Endow., vol. 7, no. 10, p. 865–876, Jun.
2014. [Online]. Available: https://doi.org/10.14778/2732951.2732960

[62] C. Wimmer, “Linear scan register allocation for the Java HotSpot Client
Compiler,” Master’s thesis, Johannes Kepler University Linz, 2004.

[63] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He,
“NV-Tree: Reducing consistency cost for NVM-based single level
systems,” in Proceedings of the 13th USENIX Conference on
File and Storage Technologies, ser. FAST’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 167–181. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2750482.2750495

[64] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln:
Closing the performance gap between systems with and without
persistence support,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 421–432. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540744

