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ABSTRACT

In recent years, computer vision has made significant strides in enabling machines to perform a wide range of
tasks, from image classification and segmentation to image generation and video analysis. It is a rapidly evolving
field that aims to enable machines to interpret and understand visual information from the environment. One
key task in computer vision is image classification, where algorithms identify and categorize objects in images
based on their visual features. Image classification has a wide range of applications, from image search and
recommendation systems to autonomous driving and medical diagnosis. However, recent research has highlighted
the presence of bias in image classification algorithms, particularly with respect to human-sensitive attributes
such as gender, race, and ethnicity. Some examples are computer programmers being predicted better in the
context of men in images compared to women, and the accuracy of the algorithm being better on greyscale
images compared to colored images. This discrepancy in identifying objects is developed through correlation
the algorithm learns from the objects in context known as contextual bias. This bias can result in inaccurate
decisions, with potential consequences in areas such as hiring, healthcare, and security. In this paper, we conduct
an empirical study to investigate bias in the image classification domain based on sensitive attribute gender
using deep convolutional neural networks (CNN) through transfer learning and minimize bias within the image
context using data augmentation to improve overall model performance. In addition, cross-data generalization
experiments are conducted to evaluate model robustness across popular open-source image datasets.

Keywords: Convolutional Neural Network, Image Classification, Transfer Learning, Equitable AI, Trustworthy
AI, Fairness, Ethics

1. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) are rapidly evolving fields that have gained a lot of
attention in recent years. AI refers to the development of machines that can perform tasks that typically require
human intelligence, such as reasoning, learning, and problem-solving.1,2 Machine learning, a subset of AI,
involves the development of algorithms that can learn from data and make predictions or decisions based on that
learning.3,4 These technologies have been made possible by advances in computing power, data storage, and the
availability of vast amounts of data.5 Among various fields of AI/ML, Computer Vision (CV) has emerged as
a highly impactful and compelling subfield with numerous applications in the modern world. Computer vision
is a field of study that focuses on enabling machines to interpret and understand visual information from the
environment. It involves the use of algorithms and mathematical models to analyze and interpret digital images
and videos, in order to extract meaningful information and enable automated decision-making.6 The ultimate
goal of computer vision is to enable machines to see and understand the world as humans do. Computer vision
has numerous practical applications in areas such as healthcare, transportation, surveillance, entertainment,
manufacturing, construction, retail, agriculture, and more.

Computer vision has come a long way since its early days when the task required a significant amount of
manual work from developers and human operators. With the pioneering work of LeCun in 1998, the use of
deep neural networks on image recognition tasks became a turning point in computer vision. LeCun introduced
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the concept of Convolutional Neural Networks (CNN), which mimics the human visual cortex .7 CNN is a
deep learning algorithm that assigns importance to various objects in an image and differentiates between them.
The algorithm works in four steps: image pre-processing, feature extraction, feature selection, and prediction
and recognition.8 Compared to other classification algorithms, CNN requires much lower pre-processing while
having the ability to self-learn the filter/characteristics from an image. CNN consists of three essential parts: the
convolutional layer, the pooling layer, and the fully-connected layer.9 The convolutional layer extracts feature
maps from the input image to identify critical object shapes and forms using a filter. The pooling layer reduces
the size of the feature maps through downsampling, thereby reducing computational costs. The fully-connected
layer classifies the image using activation functions with the output from the pooling layers.10

Computer Vision is a broad field that encompasses various tasks, including Image classification, Object
detection, Object localization, and Instance segmentation.8 Image classification involves categorizing images into
different classes based on similarities and differences.11 There are two types of image classification techniques:
supervised and unsupervised. In supervised classification, CNN architectures like the one described earlier are
trained using a large labeled image dataset to learn patterns and features for categorizing images into predefined
classes. Thanks to advances in deep learning, image classification accuracy has improved significantly over the
past decade, with models achieving up to 99% accuracy and outperforming humans in quickly processing visual
information.12 Image classification has many practical applications across fields such as healthcare, security and
surveillance, sports, entertainment, and more.

Although CNNs have revolutionized various applications by providing state-of-the-art algorithms with ex-
ceptional speed and accuracy, these models are not immune to the issue of fairness. The problem arises due
to the potential for these models to perpetuate and amplify bias present in the underlying dataset, leading to
incorrect and unfair predictions.13,14 Bias can be observed in speech, visual, and audio data, with visual data
being particularly susceptible to bias based on object, person, and geography dimensions. Underrepresenta-
tion and stereotypical training image datasets aid in predicting images inaccurately and inflicting bias through
them. While the image classification method can better predict images based on their context and co-occurrence
patterns, this can also lead to learning spurious correlations between the objects and making false predictions.
Contextual bias occurs when such patterns are falsely associated with certain characteristics of the image, such
as geography, race, and gender.15

In this article, we present an empirical study that investigates gender bias in image classification using two
popular convolutional neural networks, ResNet-50 and InceptionV3, implemented through transfer learning and
curtails the implications of bias in the performance of the model using data augmentation. The performances
of the models are evaluated through classification accuracy before and after the data augmentation. Further-
more, the study aims to analyze the generalizability of the trained image classification models and assess their
adaptability to other open-source datasets through a cross-dataset generalization technique.

The remainder of the paper is organized as follows. Section II presents the overview of bias in image classifi-
cation and the relevant work on the topic. Section III discusses the research approach including dataset, transfer
learning, hyperparameter tuning, data augmentation, and cross-dataset generalization. Section IV presents the
findings of the experiment and analyzes the result. Finally, conclusions are presented in Section V.

2. BIAS IN IMAGE CLASSIFICATION

2.1 Overview

Artificial Intelligence is becoming increasingly ubiquitous in our daily lives and is increasingly taking over human
decision-making processes. This success has opened up innumerable possibilities in the world of innovation for
the future. However, the key to high-performing algorithms is the availability of large datasets for training these
models. Deep learning methods are heavily reliant on vast amounts of data to learn from. However, this data
is a reflection of us as humans, and thus, the biases we hold are often reflected in these datasets. Consequently,
deep neural networks tend to not just learn but also amplify bias in their results. In image classification, bias
refers to the propensity of the algorithms to be influenced by various factors, such as race, gender, geography,
and other sociocultural factors that may be present in the data. Such biases can lead to inaccurate or unjust
predictions, which can have real-world consequences, such as perpetuating discriminatory practices or harming



marginalized groups.16 However, regulating such systems is challenging since it is difficult to agree on a universal
definition of fairness. Therefore, the need to identify underlying biases in visual datasets and develop methods
to address them is crucial.17

The presence of biases in visual datasets used for computer vision has become increasingly apparent. These
biases are easily recognizable due to the visual nature of the datasets. Torralba et al.18 have identified four types
of biases in visual datasets, which include selection bias, capture bias, category/label bias, and negative set bias.
Selection bias occurs when the dataset is biased towards a certain pattern or representation of the real world.
For instance, the Caltech images dataset is biased toward side views while ImageNet tends to favor racing cars.18

Capture bias, on the other hand, results from the camera operator’s preference in lighting, camera orientation,
positioning, angles, and other factors that may influence how the images are captured. Category/label bias
occurs when different labels are assigned to similar objects in the images. Negative set bias refers to what the
dataset considers as ‘the rest of the world’. If the negative set is unbalanced or unrepresentative, the accuracy of
the results might be affected. In addition, image classifiers tend to leverage co-occurrences between objects and
their context to improve performance. Strongly relying on context can hurt the accuracy and generalizability of
the model when the co-occurrence patterns are absent.15 Although it enables the algorithm to predict objects
more accurately, it introduces false positives and false negatives in the prediction in the absence of a related
object.

Instances of bias in the visual world are becoming increasingly common and well-documented. For example,
in 2015, there were reports of gender bias in Google search results for ‘CEO’ images, with only white men
being shown in top results. In addition, Google showed high-paying executive job ads to male groups 1,852
times compared to only 318 times to female groups.16 In another case, several facial recognition and gender
classification systems from recognizable companies such as IBM and Microsoft were found to be biased as it
revealed that darker-skinned females were the most misclassified group, with error rates as high as 34.7%, while
lighter skin males had an error rate of only 0.8%.19 Similarly, a study found gender and age biases present in
state-of-the-art pedestrian detection algorithms.20

Over the years, researchers have proposed various methods to mitigate bias in image classification models.
These include methods for dataset selection, preprocessing, and augmentation, as well as algorithms that explic-
itly correct for bias during training. Despite these efforts, bias in image classification remains a pressing issue
in computer vision research, and there is a need for ongoing research and the development of new strategies to
address this problem.

2.2 Related Works

Schaaf et al.21 proposed a method to explain the biased decisions made by deep neural networks using the feature
attribution technique. By visualizing the significance of each pixel in the input image for the final prediction,
visualization techniques like attribution maps can help in understanding image classification models like CNNs.
The paper assesses several feature attribution map techniques to determine their effectiveness in identifying bias.
In a separate study, Li et al.22 developed a technique to uncover unknown biased attributes of an image classifier,
where the generative model’s latent space contains an optimizable hyperplane as an unknown biased attribute,
followed by human interpretation.

Singh et al.15 devised a unique approach to address the contextual bias that exists in image classifiers. Their
study proposed a method to improve object prediction in images where the context is missing by separating
the object from the context. The aim was to enhance the accuracy of predictions when the object is not in
its proper context without compromising the performance when the context is available. REVISE13 is a tool
built by Wang et al. that identifies bias in an image based on object, person, and geography domain. In an
experiment conducted by Model et al.,23 the classifier was tested on a small area of a large image that lacked any
interpretable information. The results showed that all classification accuracy was higher than random chance,
despite the images having no significant visual information. This suggests that there is a consistent bias in images
that influences the results. Torralba et al.18 are credited with producing groundbreaking work that aimed to
address the problem of dataset bias. Their research led to a significant shift in the community’s focus toward
reevaluating their algorithms to ensure they are fair and just in the real world. Despite the rapid evolution and
improvement of computer vision performance, the focus has primarily been on developing the best-performing



classifiers, while the underlying motives for creating such models have been overlooked. Through techniques such
as ‘Name that Dataset!’ and cross-dataset generalization, this work exposed the intrinsic bias prevalent in the
large databases used to train vision models.

There has been an increasing interest in identifying and mitigating bias in visual machine learning (ML)
research, however, there is still a need for seminal work in this area. Common mitigation strategies to minimize
bias include undersampling or oversampling, data augmentation, and using large and representative datasets. Our
study aims to empirically investigate bias in image classification based on gender, using two popular Convolutional
Neural Networks ResNet-50 and InceptionV3, through transfer learning. The research aims to identify intrinsic
and contextual bias in images based on gender and to utilize data augmentation techniques to minimize the
effect of implicit bias on the results. Additionally, the paper intends to test the generalizability of the trained
model through cross-dataset generalization tests. The objectives of the research are clearly outlined below.

• Identify the contextual bias prevalent in the image dataset based on sensitive attribute gender.

• Utilize data augmentation to alleviate the effects of bias in the classification performance.

• Conduct a comparison of the model’s performance pre and post-data augmentation.

• Evaluate the generalizability of the models through cross-dataset generalization on open-source image
datasets, including random test set, PASCAL VOC, CelebA, and MSCOCO.

3. METHODOLOGY

3.1 Dataset

The Men/Women classification dataset24 used in our research is a manually curated and cleaned collection
of images featuring 3,354 individuals who are categorized into the Men and Women category. While several
benchmark datasets are available for computer vision research, very few of them include attributes such as
gender, race, or age. Assigning such labels to images raises privacy concerns,25 which is why manual collection
and labeling of such images are necessary for research purposes.

Our research dataset comprises a total of 3309 images, of which 1409 are of men and 1900 are of women.
The images are labeled based on gender, with a value of 1 assigned to men and 0 assigned to women. The
training set for our experiment has an equal distribution of both gender labels to prevent any bias resulting from
imbalanced learning samples. It includes 1,158 images for each gender label. The validation and test sets have
unbalanced target labels, representing real-world data. The validation set has 496 samples, including 364 men
and 132 women labels. The test set includes 378 men and 119 women labels with a total of 497 images. All the
images were resized to a uniform size of 224 x 224.

3.2 Transfer Learning

Transfer learning is a technique that seeks to enhance the performance of a model on a target domain by
leveraging the knowledge learned from a related but different source domain. The idea is to transfer the learned
representations from the source domain to the target domain, allowing the model to adapt more efficiently and
accurately to the new task.26 However, there needs to be a connection between the learning tasks for transfer
learning to be beneficial. For instance, a model trained on animal images would not perform well when applied
to a dataset labeled for humans.

In the computer vision field, pre-trained models are often utilized for transfer learning, as they have already
been trained on large benchmark datasets to solve problems similar to the current task. Since training such
models from scratch can be computationally expensive, using published models is a common practice. Transfer
learning enables building accurate models with minimal labeled training data, saving time and effort.

In our study, we adopted transfer learning by fine-tuning popular open-source Convolutional Neural Networks
pre-trained on ImageNet, a large-scale hierarchical image database.27 ImageNet includes thousands of training,
validation, and test images organized into WordNet hierarchy, where each node contains relevant images based on
the assigned class. We repurposed the pre-trained models by removing their original classifiers and adding a new



classifier to suit the experiment’s goals. The added fully-connected layer contains a sigmoid function for binary
classification, and multiple dropout layers were incorporated to regularize the model and reduce overfitting. The
convolution layer weights of the pre-trained models were not modified. During training, the trainable convolution
layers were fed with the training samples to enable the model to learn about gender differences in the images.

3.2.1 ResNet-50

ResNet, or Residual Network, is CNN introduced in 2016 by Kaiming et al.28 to tackle the vanishing gradient
problem in deep neural networks. Skip connections were added to allow the gradient to take an additional path,
skipping some layers and feeding the output of one layer to the other layer, except only the next one. These
connections are called residual blocks, and they are stacked to form the ResNet architecture.

Figure 1. Residual block.

Figure 1 demonstrates the functioning of ResNet where the input from the previous layer and the layer before
it is added and then fed to the current layer. ResNet architecture follows two primary design principles: first,
the number of filters in each layer is constant and depends on the output feature map’s size; second, the number
of filters are doubled when the feature map size is halved to maintain the layer’s time complexity. For our study,
we utilized the ResNet-50 architecture which is pre-trained on the ImageNet database.

3.2.2 InceptionV3

InceptionV3 is a CNN architecture that addresses overfitting in deep neural networks by using multiple filters
of different sizes on the same level. This widens the layers and allows the network to learn various features at
different scales, making it more robust to input variations.29 InceptionV3 is also computationally efficient due to
techniques such as factorized convolutions, regularization, dimension reduction, and parallelized computations.
InceptionV3 has been pre-trained on the ImageNet database, containing over a million labeled images from 1000
classes, enabling the network to learn general features useful for various computer vision tasks, including gender
classification for our research.

3.3 Hyperparameter Tuning

Hyperparameter tuning is an important step in training a Convolutional Neural Network. It involves finding the
optimal values for hyperparameters that can impact the model’s performance, such as the learning rate, number
of epochs, optimizer, dropout rate, and more.30

Learning rate controls weight updates at each iteration, with a higher rate leading to faster convergence while
a lower rate yielding a more precise solution but slower convergence. Therefore, finding the optimal learning rate
is crucial to achieving the best model performance. The number of epochs determines how often the model sees
training data, and over/underfitting models may need to adjust this. The optimizer controls the update rule for
the model’s parameters. The dropout rate is a regularization technique that randomly drops out some neurons
during training to prevent overfitting, but high rates may reduce accuracy.

We conducted a series of experiments in our study, adjusting different hyperparameters such as learning rate,
epochs, number of dropout layers, and dropout rates. A higher number of epochs led to the overfitting of the
model. We found that the ideal number of epochs was either 10 or 15, with 15 providing better results in terms
of training and validation accuracy and loss. When it came to dropout layers, we observed that a model without



any dropout layer or with only one dropout layer resulted in overfitting, while three dropout layers prevented
this issue by causing the validation loss to stabilize and match the training loss. We tried dropout rates of 0.2
and 0.5 and found that the latter led to an increase in validation loss over epochs. Therefore, we chose a dropout
rate of 0.2 as optimal for our training. Finally, we discovered that a learning rate of 0.0001 was ideal for our
CNN model. The optimization algorithm used in the model is Adam, with binary cross-entropy employed as the
loss function. Mean classification accuracy is adopted as the performance evaluation metric for the model.

Hyperparameter tuning is a crucial step in optimizing the performance of a neural network, and it involves
iteratively adjusting the values of hyperparameters, to find the combination that results in the best performance
on a validation set.

3.4 Data Augmentation

Data augmentation is a technique used in Convolutional Neural Networks for training to artificially increase the
size of the dataset by creating new examples through various transformations of existing data. The goal of data
augmentation is to improve the performance and generalization of the model by exposing it to more diverse
variations of the training data.31

Selecting appropriate augmentation techniques is crucial for improving the performance of the model. In
our study, we employed several techniques such as horizontal and vertical shift, horizontal flip, rotation up to
30°, and zoom in/out by 50%. During training, image augmentation is performed in real-time, resulting in the
generation of 2,304 augmented images per epoch with balanced target labels. Augmentation was only applied
to the training set to enhance the model’s ability to distinguish gender. The validation and test sets were not
augmented to evaluate the performance of the model trained with augmented images on real-world data.

3.5 Cross-dataset Generalization

Cross-dataset generalization refers to the ability of a machine learning model to perform well on datasets that
are different from the dataset it was trained on. In other words, it is the ability of the model to generalize to
unseen data from different sources or domains. This is an important aspect of machine learning as real-world
datasets often contain variations in the data, such as lighting conditions, camera angles, and other factors, that
are not present in the training dataset. A model that has good cross-dataset generalization can handle these
variations and still perform well on the new data. Cross-dataset generalization is often used along with transfer
learning. Torralba et. al18 highlighted that the model trained on the benchmark visual dataset can’t generalize
well when tested across other datasets. To conduct the cross-data generalization test, we randomly selected an
equal number of images as the original test set and labeled them as men and women for PASCAL VOC, CelebA,
and MSCOCO dataset. Below are the benchmark datasets used in our work to evaluate the generalization of
ResNet-50 and InceptionV3 before and after augmentation.

3.5.1 Random Edge

The model’s performance and generalizability are tested using random images collected from the Internet. To
ensure variety, images featuring each gender out of commonly occurring context are chosen, such as men using
beauty products, men with long hair, women in mugshots, and women wearing backward hats.

3.5.2 PASCAL VOC

PASCAL VOC is a widely used dataset for image classification, detection, segmentation, and localization.32 The
PASCAL VOC challenge was organized every year from 2005-2012 enabling the computer vision community an
opportunity to understand the realm better. The dataset and challenge are hosted by PASCAL2 community.

3.5.3 CelebA

The CelebA dataset comprises facial images of famous personalities, often used for facial attribute detection,
and was first collected by researchers at MMLAB, The Chinese University of Hong Kong.33

3.5.4 MSCOCO

Common Objets in Context or COCO is an extensive dataset created by Microsoft Research for object recognition
and classification task.34



4. EXPERIMENTS AND FINDINGS

4.0.1 ResNet-50

Fig. 2 presents examples of misclassified instances from the experiment with ResNet-50, highlighting how the
classification can be context-dependent. The initial image illustrates a woman wearing a backward baseball hat
wrongly identified as a man. In the following image, a woman with her hair tied in a mugshot is labeled as a man.
Lastly, the third image presents a woman engaged in a sports activity incorrectly identified as a man. These
misclassifications exhibit a repeating pattern in the ResNet-50 model, including women wearing formal attire or
glasses being wrongly identified as men, and most topless men being categorized as women. Additionally, women
participating in sports activities are frequently classified as men.

Figure 2. Instances of misclassifications in ResNet-50 model.

The training and validation accuracy pre and post-image augmentation is shown in Fig. 3. To simplify, we
will refer to pre-augmentation and post-augmentation as pre-aug and post-aug, respectively, going forward. Pre-
aug training and validation accuracy appear consistent and gradually improve. Although, validation accuracy
dips initially, it later recovers in subsequent epochs. On the other hand, post-aug validation accuracy improves
significantly compared to pre-aug, indicating better performance due to data augmentation and the inclusion of
dynamic data.

Figure 3. Training and Validation accuracy for ResNet-50 model pre and post-augmentation.

However, it is notable that post-aug training accuracy is lower than pre-aug training accuracy, which seems
counterintuitive. This can be attributed to the fact that deep learning models tend to memorize patterns if they
lack enough data. With the addition of more data through dynamic angles, flips, and rotations, the model learns
more about the patterns and reduces overfitting. Remember, data augmentation is a regularization technique
after all. Therefore, training accuracy may decrease as the model becomes more generalizable.



In addition, the post-aug training accuracy is lower than post-aug validation accuracy because the training set
includes augmented images. This means that the model not only has to classify images into men and women but
also figure out their orientation from the transformed images, making the task more challenging. Meanwhile, the
validation set is not augmented, making classification easier, especially when trained on an augmented training
set.

Figure 4. Training and Validation loss for ResNet-50 model pre and post-augmentation.

Figure 4 illustrates the training and validation loss before and after image augmentation. With the increase
in epochs, the pre-aug training loss is decreasing and the validation loss is following suit. The post-aug validation
loss is improved compared to the pre-aug validation loss. Similar to the accuracy plots, post-aug training loss is
performing less compared to pre-aug training and post-aug validation loss for the reasons explained previously.
Overall, the validation loss of the model has improved, providing us with a glimpse of how data augmentation can
enhance the performance of deep neural networks. Fig. 5 shows instances where the ResNet-50 model corrected
its classification after image augmentation.

Figure 5. Classification results of ResNet-50 model pre and post-augmentation.

Table 1. Cross-dataset generalization. Classification Accuracy for binary class gender on ResNet-50 before and after
augmentation.“Self” refers to training and testing on the same dataset, and “Average” refers to averaging performance
on all except self.
Classifier/Test on: Men/Women Random Edge PASCAL VOC CelebA MSCOCO Self Average % drop
ResNet-50 72.0 43.5 54.9 48.5 47.2 72.0 48.5 23.5
ResNet-50 aug 68.4 41.5 50.6 58.9 50.7 68.4 50.4 18.0
Average 70.2 42.5 52.8 53.7 49.0 70.2 49.4 20.8

Table 1 presents the outcomes of the cross-dataset generalization test, where the average classification ac-
curacy is calculated over 10 experimental runs for each test set. It is observed that the classification accuracy
declines on the Men/Women dataset after augmentation. Although the decrease in accuracy seems counterin-
tuitive, it can be true as augmentation helps eliminate spurious relationships from the image, causing the test



accuracy to decrease. Similarly, a slight drop in test accuracy is observed on the Random Edge dataset and
PASCAL VOC while the model performs better on the CelebA and MSCOCO datasets after augmentation. It
is important to note that the absolute performance numbers may not hold much significance; it is the differ-
ences in performance that are more meaningful. Therefore, it is evident that the average mean classification
over cross-datasets has increased after augmentation from 48.5% to 50.4%. Furthermore, the percentage drop
in the difference between the mean classification on the original test set and the average mean classification on
cross-datasets seems to decrease from 23.5% to 18.0% after augmentation.

4.0.2 InceptionV3

Fig. 6 presents the misclassification results of the InceptionV3 model experiments. The first image exhibits a
man with long hair being identified as a woman. In the second image, a woman working on a computer is wrongly
classified as a man, while in the third image, a woman jumping is labeled as a man. These misclassifications are
attributed to the learned co-occurrence of the object and context by the model.

Figure 6. Instances of misclassifications in InceptionV3 model.

The training and validation accuracy of InceptionV3 before augmentation appear to be quite satisfactory
across epochs, with the validation accuracy reaching a saturation point quite early and the training accuracy
continuing to improve, as shown in Fig. 7. The post-aug validation accuracy also performs well and remains
almost at the same level as the pre-aug validation accuracy. However, the post-aug training accuracy in the
InceptionV3 model also drops down, compared to both pre-aug training accuracy and post-aug validation accu-
racy.

Figure 7. Training and Validation accuracy for InceptionV3 model pre and post-augmentation.

In the same way, Fig.8 demonstrates that the pre-aug validation loss reaches saturation early on, while the
training loss converges smoothly. The validation loss performance after augmentation appears to be comparable



Figure 8. Training and Validation loss for InceptionV3 model pre and post-augmentation.

to the pre-aug validation loss. In addition, the performance of post-aug training loss is similar to the results
obtained for ResNet-50, compared to the pre-aug training and post-aug validation loss. Fig.9 showcases some
instances where the model’s performance has improved after image augmentation.

Figure 9. Classification results of InceptionV3 model pre and post-augmentation.

Table 2. Cross-dataset generalization. Classification Accuracy for binary class gender on InceptionV3 before and after
augmentation.“Self” refers to training and testing on the same dataset, and “Average” refers to averaging performance
on all except self.
Classifier/Test on: Men/Women Random Edge PASCAL VOC CelebA MSCOCO Self Average % drop
InceptionV3 89.3 71.2 61.6 90.4 67.5 89.3 72.7 16.6
InceptionV3 aug 87.8 65.8 63.2 91.5 68.2 87.8 72.2 15.6
Average 88.6 68.5 62.4 91.0 67.9 88.6 72.5 16.1

Table 2 displays the performance of InceptionV3 on cross-datasets. The model exhibits good performance on
all the test sets with a slight decline in mean classification accuracy observed on the Men/Women and Random
Edge test sets, whereas improvements are seen on the PASCAL VOC, CelebA, and MSCOCO test sets. Overall,
the cross-dataset generalization test suggests that the model performs on par after image augmentation, with an
average mean classification over cross-datasets of 72.2%, compared to 72.7% before augmentation. It is worth
mentioning that the percentage drop in the difference between the mean classification on the original test set
and the average mean classification on cross-datasets decreases from 16.6% to 15.6% after augmentation.

5. CONCLUSION

In this paper, we investigated the gender classification performance of the ResNet-50 and InceptionV3 models
trained in ImageNet through transfer learning on a diverse set of images, including those from the original test set
and multiple external datasets - Random test set, PASCAL VOC , CelebA, and MSCOCO. Our results revealed



significant biases and misclassifications in the ResNet-50 model, particularly when it comes to images featuring
women in non-stereotypical contexts. On the other hand, the InceptionV3 model demonstrated a much more
balanced and accurate performance.

We also explored the impact of data augmentation on the classification performance of the models and found
that it can significantly improve the generalizability and accuracy of the models, particularly in the case of
ResNet-50. Overall, our study highlights the importance of diversity and inclusion in training datasets and the
need for ongoing evaluation and improvement of AI models to ensure their fairness and reliability. In conclusion,
our findings have significant implications for the development and deployment of AI models in various domains,
including healthcare, finance, and law enforcement. As AI continues to become an increasingly integral part of
our lives, it is crucial to prioritize fairness, accountability, and transparency in AI development and deployment.
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