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Figure 1. Mapping result on the KITTI dataset. The bird’s eye view map is shown together with the estimated sensor pose of each
frame. Each pose is represented by an arrow indicating the xy-coordinate and heading (yaw angle) as shown in the bottom examples. The
color indicates the frame index in the trajectory. Challenging regions are zoomed in for a clear view. Best viewed in color.

Abstract

LiDAR mapping is important yet challenging in self-
driving and mobile robotics. To tackle such a global point
cloud registration problem, DeepMapping [ ] converts the
complex map estimation into a self-supervised training of
simple deep networks. Despite its broad convergence range
on small datasets, DeepMapping still cannot produce sat-
isfactory results on large-scale datasets with thousands of
frames. This is due to the lack of loop closures and ex-
act cross-frame point correspondences, and the slow con-
vergence of its global localization network. We propose
DeepMapping?2 by adding two novel techniques to address
these issues: (1) organization of training batch based on
map topology from loop closing, and (2) self-supervised
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local-to-global point consistency loss leveraging pairwise
registration. Our experiments and ablation studies on pub-
lic datasets such as KITTI, NCLT, and Nebula demonstrate
the effectiveness of our method.

1. Introduction

Mapping is a fundamental ability for autonomous mo-
bile agents. It organizes an agent’s local sensor observa-
tions into a map, i.e., a global spatial representation of the
environment. A pre-built map is useful in robotics, self-
driving, and augmented reality for agents to localize them-
selves [2—0]. Various simultaneous localization and map-
ping (SLAM) methods can create maps of new environ-
ments from 2D and/or 3D sensors [7—13]. In particular,
LiDAR-based mapping is often adopted to build large-scale
maps in self-driving and mobile robotics due to LiDAR’s
direct and accurate 3D point cloud sensing capability.
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Similar to visual SLAM, LiDAR SLAM methods typ-
ically contain front-end and back-end modules [14—17].
The front-end module tracks sensor movements by Li-
DAR/inertial/wheel odometry and provides constraints be-
tween sequential frames of point clouds by either iterative
closest point (ICP) or 3D feature detection and correspon-
dence matching algorithms. The back-end uses those con-
straints in a pose/pose-landmark graph optimization [18,19]
to minimize the odometry drift, similar to the bundle adjust-
ment in visual SLAM and Structure-from-Motion (SfM).

However, without accurate GNSS/IMU as odometry,
large-scale LiDAR mapping results could be unsatisfactory
(see Fig. 1), due to errors in LiDAR odometry and diffi-
culties in correspondence matching and loop closing, es-
pecially outdoors. To tackle these issues, researchers start
to explore deep learning methods. Some of them focus
on replacing sub-tasks in LIDAR mapping with deep net-
works [20-23], following the common machine learning
paradigm: train-then-test. Yet such methods could
face generalization issues when the training dataset domain
is different than the testing one.

Differently, DeepMapping [ | ] proposes a new paradigm:
training-as—-optimization for point cloud map-
ping. It encapsulates the global registration in a point-
cloud-based PoseNet [24] (L-Net), and evaluates the map
quality using another binary occupancy network (M-Net)
with a binary cross-entropy (BCE) loss. This converts the
continuous map optimization into a self-supervised training
of binary classifications. Since no testing is needed, it does
not face any generalization issues because mapping is done
once training is finished.

However, despite its superior performance on small-
scale datasets, we found DeepMapping often fails on large-
scale datasets due to the following challenges:

(1) No-explicit-loop-closure: DeepMapping gradually
optimizes L-Net using frames in each mini-batch that are
temporal neighbors, and only relies on M-Net to control the
global map consistency. This is like incremental registra-
tion that is doomed to drift when the number of frames is
large. SLAM solves this by loop closing, which is not yet
clear how to be incorporated into DeepMapping.

(2) No-local-registration: Although previous works have
shown local registration to be locally accurate [25-28],
DeepMapping only uses it in the ICP-based pose initializa-
tion but not in the optimization. This is due to a common
problem faced by all LiDAR registration methods, the lack
of point correspondences in LiDAR point clouds: the same
3D point rarely appears again in another scan, because of
the sparse sensor resolution and long-range sensing.

(3) Slow-convergence-in-global-registration: L-Net re-
gresses a single frame of point cloud into its global pose,
which is supervised only by the M-Net and BCE loss.
Unlike pairwise registration, this global registration lacks

enough inference cues to output correct poses, thus leading
to slow convergence when the dataset is large.

We propose DeepMapping?2 that is able to effectively
optimize maps on large-scale LiDAR datasets. It extends
DeepMapping with two novel techniques. The first one ad-
dresses challenge (1) by organizing data frames into train-
ing batches based on map topology from loop closing. This
allows a frame with its topological/spatial neighbors to be
grouped into the same batch. We find this to be the best
way of adding loop closing into DeepMapping which uses
free-space inconsistencies via M-Net and BCE loss to gen-
erate self-supervision, because such inconsistencies happen
mostly between unregistered neighboring frames.

The second technique is a novel self-supervised local-
to-global point consistency loss that leverages precomputed
pairwise registration. For each point in a frame, we can
compute this new consistency as the L2 distance between
different versions of its global coordinate calculated using
a neighboring frame’s global pose and the relative pose be-
tween the two frames from the pairwise registration. This
allows us to address challenge (2) without relying on point
correspondences between different frames: even if two
neighboring frames do not have enough common points as
correspondences for pairwise local registration, we can still
incorporate the local registration’s results during training. It
also addresses the challenge (3) because now L-Net is su-
pervised by stronger gradients from not only the BCE loss,
but also the new consistency loss.

Our contributions are summarized as follows:

e QOur DeepMapping? is the first self-supervised large-
scale LiDAR map optimization method as far as we
know, and this generic method achieves state-of-the-
art mapping results on various indoor/outdoor public
datasets, including KITTI [29], NCLT [30], and the
challenging underground dataset Nebula [31].

* Our analysis reveals why DeepMapping fails to scale
up and leads to the two novel techniques—batch orga-
nization and local-to-global point consistency loss—to
incorporate loop closing and local registration in the
DeepMapping framework. Their necessity and effec-
tiveness are further validated in our ablation study.

2. Related Work

Pairwise registration. Pairwise registration computes
the transformation from a source point cloud to a target
point cloud. A global pose of each point cloud can be
obtained by incrementing the pairwise transformation se-
quentially. Iterative closest point (ICP) [32] and its vari-
ants [25, 33] are widely-used pairwise registration meth-
ods by iteratively estimating and minimizing closest point
correspondence. More recently, learning-based algorithms
use a pre-trained model to predict pairwise transforma-



tion [27, 28]. However, all these methods suffer from ag-
gregation errors when the registration is done incrementally
to solve a mapping problem. Though DeepMapping?2 relies
on pairwise registration for consistency loss, it only bene-
fits from the relatively accurate pairwise transformation but
does not suffer aggregation errors because registration is not
done incrementally.

Multiple registration. In addition to pairwise registra-
tion, several methods for multiple point cloud registration
have been proposed [9,34,35]. Global StM [36,37] divides
one scene into smaller partitions and iteratively does mo-
tion averaging until convergence. [38] transforms the prob-
lem into pose-graph optimization and uses partitioning to
reduce computation. [39] follows a similar practice but with
a supervised end-to-end learnable algorithm. On the other
hand, DeepMapping [1] does not require any scene parti-
tioning or supervised training. Instead, it approaches the
problem by transforming global map optimization into self-
supervised training of deep networks. DeepMapping2 fol-
lows the same line of thought and inherits the general frame-
work of DeepMapping. It improves the mapping result of
DeepMapping, especially in large-scale scenes, and over-
comes challenges faced by DeepMapping by the two pro-
posed novel techniques.

Loop closure. Loop closure is a significant component
in SLAM algorithms. It aims to decide whether a place has
been visited before by the agent. Most classical loop clo-
sure methods [40] rely on hand-crafted features and descrip-
tors to compare different frames. Deep learning approaches
like PointNetVLAD [41] combine the feature extraction
from PointNet [42] and the supervised contrastive loss from
NetVLAD [43]. In contrast, TF-VPR [44] trains a similar
deep-learning based network without supervision by mining
the information between temporal and feature neighbors. It
is a challenge, however, to incorporate loop closing in the
training of DeepMapping because the detected loop closure
cannot be described in a differentiable manner. DeepMap-
ping?2 solves this problem by organizing the training batches
with spatially adjacent frames and incorporating loop clo-
sure information into the self-supervised training process.

Simultaneous Localization and Mapping. SLAM is
the computational problem of building a map while keep-
ing track of an agent’s location. Both visual [45-47] and
LiDAR SLAM [14, 15,32, 48, 49] are well-studied in this
domain. Particularly, LIDAR SLAM provides relatively
accurate geometric information and can be classified into
train-then-test and train-as-optimization. The majority of
methods fall into the train-then-test category. Such LiDAR
SLAM methods perform point-level matching [32], feature-
level matching [48, 49], and point feature to edge/plane
matching [14, 15] to find correspondences between scans.
However, existing LIDAR SLAM algorithms are prone to
large errors, particularly in estimating the sensor rotation

of each frame. DeepMapping [1], on the other hand, be-
longs to the train-as-optimization category, and the network
trained does not generalize in other scenes because the self-
supervised loss functions in DeepMapping2 are designed
for same scene optimization.

3. Method
3.1. Overview

Problem setup. We aim to solve the problem of regis-
tering multiple point clouds into a single global frame. For-
mally, the input point cloud is denoted as S = {S;}X,
where K is the total number of point clouds. Each point
cloud S; is represented by a IV; X 3 matrix where N; is the
number of points in S;, i.e. S; € RYNi*3. The goal is to
estimate the sensor pose 7 = {T;}X, for each S;, where

Common ground with DeepMapping. Inspired by
DeepMapping [!], we use deep neural networks, repre-
sented as a function f with learnable parameters, to esti-
mate sensor poses 7 . The registration problem is then trans-
formed into finding the optimal network parameters that
minimize the objective function

(0%, 97) Zargal(;flin%(fe(c?),s), (1

where fy : S; — T; is a localization network (L-Net)
that estimates the global pose for each point cloud, and ¢ is
the parameter of a map network (M-Net) m that maps from
a global coordinate to its corresponding occupancy proba-
bility. L, is the self-supervised binary cross entropy loss to
measure the global registration quality:

K
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where the global point cloud G; is a function of L-Net pa-
rameters 6, and SFGZ-) is a set of points sampled from the

free space in G;. B[p,y] in Eq. (2) is the binary cross en-
tropy between the predicted occupancy probability p and
the self-supervised binary label y:

Blp,y] = —ylog(p) — (1 —y)log(l —p).  (3)

Moreover, Chamfer distance is another loss to help the
network converge faster in DeepMapping [1]. It measures
the distance of two global point clouds X and Y by:

1 .
d(X,Y) = mxezxg}el{}HX—ﬂb
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Difference from DeepMapping. DeepMapping intro-
duces a "warm start” mechanism to transform each raw
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Figure 2. Pipeline of DeepMapping2. The pipeline mainly consists of place-recognition-based batch organization and learning-based
optimization. In batch organization, the input point clouds are organized into mini-batches by topological map attained from place recog-
nition. Each batch contains an anchor frame A and several spatially closed neighbor frames N. The transformation between the anchor
frame and each neighbor frame T’ is obtained by pairwise registration. In optimization, each batch is fed into L-Net to estimate the global
pose. The transformed global anchor frame is then obtained in two ways: A’ directly from the global pose of the anchor frame (7'S) and
A" from the global pose of the neighbor frame (7'$) and the pairwise registration (T%%). The consistency loss penalizes the differences
between A’ and A”. The global frames are also fed into M-Net for computing DeepMapping loss. Best viewed in color.

point cloud to a sub-optimal global pose via existing reg-
istration methods like ICP. This optional step will accel-
erate the convergence of DeepMapping in the small-scale
dataset. However, a reasonable initialization is required in
our method for large-scale datasets, because it would be dif-
ficult to converge if starting from scratch.

Limitation of DeepMapping. Despite its success in
small datasets, DeepMapping cannot scale up to large
datasets because of the aforementioned challenges: (1)
no-explicit-loop-closure, (2) no-local-registration, and (3)
slow-convergence-in-global-registration.

In Sec. 3.2, we will introduce the pipeline of our method.
We will introduce the solution to challenge (1) in Sec. 3.3,
and the solution to challenges (2) and (3) in Sec. 3.4

3.2. Pipeline

Batch organization. The pipeline of DeepMapping2
has two main stages as shown in yellow and blue blocks in
Fig. 2. The first stage is the organization of training batches
based on map topology from place recognition. The input
is a sequence of point clouds that is initially registered to
an intermediate state between scratch and the ground truth.
Each anchor frame A is organized with its neighbor frame
N into one batch using the map topology from off-the-shelf
place recognition algorithms [ ] (A and N are formally
defined in Sec. 3.3).

Pairwise registration. Before the optimization in the
second stage, pairwise registration is calculated between

s

the anchor frame and the neighbor frames in each batch by
finding the transformation from the neighbors to the anchor.
This can also be achieved by any off-the-shelf pairwise reg-
istration algorithms.

Training as optimization. The second stage of the
pipeline is learning-based optimization. Besides those im-
portant components that have been introduced in Sec. 3.1,
the consistency loss is another key component of DeepMap-
ping2. The loss function is designed with the following
idea: for each point in the anchor frame A, we can com-
pute its consistency as the L2 difference between different
versions (A’ and A”) of its global coordinates. These ver-
sions are calculated from the global pose of each neighbor-
ing frame N and the relative transformation between the
anchor and the neighbor. A more detailed explanation of
the loss function will be given in Sec. 3.4.

3.3. Batch organization

Due to the lack of loop closure in DeepMapping, extend-
ing the method to a large-scale environment is challenging.
Though loop closure can be easily integrated into a SLAM
system (e.g. through bundle adjustment), it is hard to imple-
ment in deep-learning-based mapping methods because of
its non-differentiability.

Effect of different batch organization. Dividing the
whole trajectory into multiple mini-batches is inevitable.
Then what is the correct way of such division? We tested
several batch arrangements to split the dataset as shown
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Figure 3. Illustration of various batch organization methods. We
show the mapping results and the trajectories in a large-scale toy
dataset [1]. Using a spatial group would produce the best mapping
results compared to other mapping methods. Other methods fail
because the network wrongly registers frames from different areas
together. Note that (b) is adopted in DeepMapping [1].

in Fig. 3. In Fig. 3a, a random organization of batches
leads to an inferior mapping result because the network
tends to pull random pairs of frames together and register
them. In Fig. 3b, the batches are organized sequentially,
as in DeepMapping. They can be registered well locally,
but the global mapping quality is still inferior. Not surpris-
ingly, in Fig. 3c, using spatially adjacent neighbors to form
a batch would yield the best result. The reason is that M-
Net would pull together the frames in a batch and register
them together. Meanwhile, loop closure is incorporated into
the training process because the loop is closed when all spa-
tially adjacent frames are registered correctly in the loop.

Loop-closure-based batch organization. We construct
a batch that contains spatially adjacent neighbors (A and
N's) using map topology from off-the-shelf place recogni-
tion algorithms. The map topology is a connected graph
where each node represents a frame, and each edge con-
nects two spatially adjacent nodes. To construct the batches,
given an anchor frame A, we find the top k closest frames
connected to the anchor frame in map topology and orga-
nize them into one batch. By doing so, we can include loop
closure information in the training process by letting M-Net
register those spatially adjacent frames. This also makes it
possible to construct the pairwise constraint in the local-to-
global point consistency loss explained in Sec. 3.4.

3.4. Local-to-global point consistency loss

Slow convergence. Even with the new batch organiza-
tion, DeepMapping can still converge slowly, especially in
large-scale scenes. Although initialization can give a ’warm
start” to the network, this information becomes decrepit as
the training gets farther away from the initialization because
it does not provide enough constraint on global pose esti-
mation. Therefore, we want to incorporate the information
from the initialization into the training process to provide
a global inference cue for the networks. This can be done
by constraining the pairwise relations of two adjacent point
clouds to minimize their distance in the global frame.

Point correspondence. However, point-level correspon-
dence is needed to compute the distance between points.
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Figure 4. Example of LiDAR point clouds lacking point-to-
point correspondence. We select two consecutive frames from
the KITTI [29] dataset and register them with ground truth trans-
formation. The distance between the two sensor poses is 1.09 m.
For each point in the point cloud, we compute its distance to the
closest point after registration. The color-coded distance is shown
in (a) and the histogram in (b). The place where points have a
distance smaller than 0.05 m is marked by red circles.

This correspondence is rare in large-scale and/or outdoor
scenarios where mapping algorithms are often applied. As
shown in Fig. 4, most points are about 0.25 m away from
their closest points in the real-world dataset. Although al-
ternative distance can be calculated by finding the clos-
est points or abstractly described by hand-crafted descrip-
tors [50] or learning-based features [27], they can be inac-
curate because point-to-point correspondence may not exist
in the first place. When two point clouds are scanned at dif-
ferent sensor poses, it is very unlikely that the same point
would exist in both point clouds due to the sparsity of Li-
DAR scanning. This makes the correspondence found by
the methods above inaccurate. Thus, we ask the question:
How can we constrain the pairwise relations of globally reg-
istered point clouds while not relying on inaccurate point-
to-point correspondence?

Distance metric. We approach the question by consid-
ering the points in a single point cloud. When the point
cloud S is transformed by different transformation matrices
T, the point-to-point correspondence is preserved because
they are from the same local point cloud. After transforma-
tion, the distance between the two point clouds can be easily
calculated by averaging the L2 distance between each cor-
responding point. The metric can be defined as a function
of two transformations 7', 7" and one single point cloud S:

1
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Note that Eq. (5) not only measures the distance between
the two point clouds after transformation but also reflects
the difference (inconsistency) between the two transforma-
tions. This is desired in our problem because a relatively ac-
curate pairwise transformation is available from each neigh-
bor frame to the anchor frame. We want to constrain the
estimation of L-Net so that the pairwise relations are pre-
served in the global sensor poses.
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Figure 5. Illustration of consistency loss. Red puzzle represents
different versions of anchor frames and blue puzzle represents the
neighbor frames. The loss measures the euclidean distance of all
the corresponding points of different versions of anchor frames
that transformed from different poses, as indicated by the two-
way arrows. Red points in the figure show one of the points for
illustration.

Fig. 5 depicts the idea of this metric. Two versions of an-
chor frames are shown. A’ is transformed by the global pose
estimated by L-Net. A” is transformed by each neighbor
frame’s global pose and relative transformation. In Fig. 5a,
the point clouds are poorly registered so the distances in-
dicated by the arrows are large. In Fig. 5b, however, all
corresponding points overlap so the distance is zero.

Consistency loss. Following this line of thought, we de-
sign the local-to-global consistency loss to measure the in-
consistency between the local and global registrations. We
denote the pairwise transformation between S; and S; as
Tij , and the global pose of S; as T~ Also, recall that neigh-
bor N; is defined as the indices of neighbor frames of .S;.
We formulate the consistency loss as

K
1 )
Lo=—— Y Y dT7T],TE,S). (6)
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It is worth noting that loss in Eq. (6) solves the two chal-
lenges mentioned above altogether. Global inference cue
is provided while avoiding point-to-point correspondence.
Because each Tj is computed pairwisely and is considered
more accurate than pairwise relations in the global estima-
tion, by minimizing L, the network can get more informa-
tion from the initialization and have a faster convergence.

4. Experiment

Dataset. We use three datasets for a comprehensive eval-
uation: (1) KITTI dataset [29] for evaluations in outdoor
scenarios, (2) NeBula odometry dataset [3 1] for evaluations
in indoor environments where GPS signal is not available,
and (3) NCLT dataset [30] for evaluations in both scenarios.

Metrics. For quantitative evaluations, we use the ab-
solute trajectory error (ATE) [51] following DeepMap-
ping [1]. For qualitative evaluations, we visualize both the
registered map and the trajectory in the bird’s eye view.

Baselines. We compare our method with baselines that
fall into three different categories: (1) multiway registra-
tion [38] is a multiple registration method, (2) ICP [32],
DGR [28], HRegNet [52], GeoTransformer [53], and KISS-
ICP [54] are pairwise registration algorithms that can run
incrementally to obtain the global pose estimation, and (3)
LeGO-LOAM [15] is a SLAM method. We also do abla-
tion studies to compare the effectiveness of each proposed
technique in Sec. 4.4.

Warm start. Following DeepMapping [ ], this step has
the same function as the front-end initialization in SfM be-
fore bundle adjustment (BA). In fact, DeepMapping2 can
be seen as the deep learning version of BA for LiDAR map-
ping. Note that just like BA in SfM is affected by the ini-
tial solution’s quality, DeepMapping?2 is also affected by
the “warm start” quality. Nonetheless, DeepMapping2 can
be seamlessly integrated into almost any mapping front-end
such as ICP, KISS-ICP, and Lego-LOAM described in the
following sections, and always improves ATE without man-
ual hyperparameter tuning.

4.1. KITTI dataset

KITTT [29] is a widely-used authoritative benchmark
to evaluate SLAM-based algorithms [55]. We employ the
two most complex and challenging scenes from the dataset,
where lots of places are revisited multiple times and the ex-
plored area is relatively large. Meanwhile, there are dy-
namic objects on the road, further increasing the difficulties.

Quantitative comparisons. From Tab. 1, we see that
DeepMapping?2 can perform well even with very trivial map
initialization, like incremental ICP. There are significant im-
provements in the map quality when comparing the opti-
mized map and the initialization, e.g., DeepMapping2 im-
proves LeGO-LOAM by 16.6% in terms of translation on
drive_0018. In general, our method is robust to initializa-
tion. No matter what category of methods is used to initial-
ize the map, the performance of our method is consistent.

Qualitative comparisons. As shown in Fig. 1, although
multiway registration and DGR perform well at the start of
the trajectory, the error is accumulated as the number of
frames increases, leading to a noticeable drift. While the
loop closure module in LeGO-LOAM is supposed to cor-
rect the drift, we can still see the errors on the trajectory, es-
pecially when the number of frames in drive_0027 exceeds
4,000. On the other hand, the qualitative results produced
by our approach do not have a noticeable difference from
those provided by the GPS sensor.

4.2. NCLT dataset

NCLT [30] is a large-scale dataset collected at the Uni-
versity of Michigan’s North Campus. The point clouds are
collected using a Velodyne HDL-32E 3D LiDAR mounted
on a Segway robot. In total, the NCLT dataset has a robot
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Figure 6. Mapping results on NCLT dataset. The red boxes indicate the places where our method has a better mapping quality than
LeGO-LOAM. The ATEs are also listed. Other labels and legends follow Fig. 1. Best viewed in color.

Table 1. Quantitative result on the KITTI dataset. The quality
of the predicted trajectory is measured by absolute trajectory error
(ATE) compared with the GPS trajectory. Results on two trajec-
tories are listed. “T-ATE” means translation ATE (m) “R-ATE”
means rotation ATE (deg). The last two rows are our results.

Method Drive_ 0018 Drive_0027
T-ATE (m)] R-ATE (°); T-ATE (m)|] R-ATE (°)]

Incremental ICP 4.38 4.61 3.53 2.67
Multiway [38] 224 1.75 4.70 5.93
DGR [28] 3.15 4.09 4.12 1.59
LeGO-LOAM [15] 1.90 1.36 2.96 2.36
HRegNet [52] 30.61 94.90 45.49 85.36
GeoTransformer [53] 4.03 3.02 10.15 15.34
ICP+DM [1] 3.42 1.66 3.39 2.70
KISS-ICP [54] 2.10 0.68 6.25 1.21
ICP+DM2 1.81 0.72 2.29 1.57
KISS-ICP+DM2 1.78 0.68 2.30 1.17
LeGO-LOAM+DM2 1.63 1.18 2.59 2.27

trajectory with a length of 147.4 km and maintains 27 dis-
crete mapping sessions over the year. Each mapping session
includes both indoor and outdoor environments. We select
an interval of the trajectory for better illustration.
Qualitative results As shown in Fig. 6, although LeGO-
LOAM can produce a relatively satisfactory map, it still
misaligns point clouds in some areas of the trajectory. In
the red boxes in Fig. 6, the optimized map by DeepMap-
ping2 has better alignment than that from LeGO-LOAM,
which is also proved by the ATEs reported under the maps.
Quantitative results The translation and rotation ATEs
of different methods on NCLT are reported in Tab. 2. Incre-
mental ICP does not have good map quality. Hence, when
using it as initialization, our method does not have a better
map than LeGO-LOAM, despite the fact that it reduces the
errors by nearly one-half. Nevertheless, our method can still
improve the map from LeGO-LOAM and have lower ATEs.

It is worth noting that the slightly better map quality by
[15] mainly results from the smaller area and more frames
in the trajectories (shown by the scale in Fig. 6). However,
this is not always expected in all implementations. Compar-

Table 2. Quantitative results on the NCLT dataset. The notation
is the same as in Tab. 1. The last two rows are our results.

Method T-ATE (m)| R-ATE (°))
Incremental ICP 6.20 12.95
Multiway [38] 6.56 12.6
DGR [28] 8.89 42.9
LeGO-LOAM [15] 2.25 2.18
ICP+DM2 3.73 6.27
LeGO-LOAM+DM2 2.02 1.87

ing the results in KITTI and NCLT, we find our method hav-
ing a consistent improvement to the initialization regardless
of the sampling density of the environment.

4.3. NeBula dataset

NeBula odometry [31] dataset is provided by Team
CoSTAR. The dataset is used to test the multi-robot sys-
tem in real-world environments such as the DARPA Sub-
terranean Challenge [56]. In each scene of the dataset, a
ground-truth survey-grade map is provided by DARPA and
the trajectory is produced by running LOCUS 2.0 [57]. Vi-
sual odometry and kinematic odometry are also included.
We test different methods on the data collected in Lava Beds
National Monument. The whole trajectory is 590.85 meters
long and contains 37,949 LiDAR scans in total.

Improvement to the odometry. Nebula is very chal-
lenging because it contains a long indoor trajectory with-
out any marker for loop closure detection. We first run ini-
tialization on the dataset with incremental ICP and LeGO-
LOAM. However, the mapping result is very poor (see
Fig. 7) and cannot be used as a "warm start” for DeepMap-
ping2. We find, however, the provided kinematic odome-
try gives a good mapping result but can still be optimized.
Hence, we run DeepMapping2 with the initialization from
the kinematic odometry. As shown in Fig. 7, the optimized
map corrects the large misalignments at the two ends of
the tunnel. It is very accurate qualitatively compared to the
survey-grade map. This dataset does not provide the com-
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Figure 7. Mapping result on NeBula dataset. Several parts of the map are zoomed in for a clearer demonstration. As far as we know, we
are the first to show this quality of mapping result of the trajectory in the Nebula dataset. Other labels and legends follow Fig. 1.
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Figure 8. ATE versus training epoch on drive_0027 in KITTIL.
The legend indicates the ATEs with different components in Tab. 3.

plete trajectory so we cannot do a quantitative analysis.

4.4. Ablation study

We do experiments on the KITTI dataset to analyze how
the proposed techniques influence the mapping quality. We
compare the quantitative results when one or two of the
components are missing from the pipeline.

Batch organization As shown in Tab. 3, batch organiza-
tion plays an important role in mapping. The first version
of DeepMapping (DM) constructs a map with batches or-
ganized sequentially. Drifts will occur when encountering
large-scale scenarios with many revisits. On the other hand,
our method can have a better mapping quality with batch
organization due to implicit loop closure.

Consistency loss. Despite the benefits of local-to-global
consistency loss mentioned in Sec. 3.4, it requires accurate
pairwise registrations to work. Row 1 and row 3 in Tab. 3
show that adding consistency loss alone to DeepMapping
loss does not lead to a significant improvement. This is be-
cause the pairwise registration from off-the-shelf algorithms
is prone to errors for non-adjacent point clouds. Compar-
ing row 2 to row 5 in Tab. 3, only when batch organization
groups spatially adjacent frames together, can consistency
loss work ideally and have the best mapping quality. It can
also be seen from Fig. 8 that consistency loss speed-ups the
convergence.

Table 3. Ablation study on the KITTI dataset. The experi-
ment is done by combining different components in the pipeline of
DeepMapping2. All the results reported are from the 50th epoch
of the training. The method without DeepMapping loss fails to
converge so its result is not reported.

Components

o
DM loss Batch org. Con. loss T-ATE (m)., R-ATE ()}
v 1.88 4.72
v v 1.65 2.07
v v 1.88 4.70
v _ _
v v v 1.63 1.81

5. Conclusion

Limitation. DeepMapping2 requires good loop closure
to arrange batches. However, sometimes in large-scale envi-
ronments, using a self-supervised loop closing method such
as TF-VPR [44] is time-comsuming. One alternative is to
use pretrained PointNetVLAD [41] with some geometric
verification, such as ICP. Another option is to obtain loop
closure from the pre-built map used in the warm-start step.

Also, although our convergence rate is improved by the
consistency loss, the computation time of our method is
still longer than other state-of-the-art methods like LeGO-
LOAM. However, our framework allows GPU-based paral-
lel optimization for speed boosting via distributed data par-
allel training [58] as in the supplementary.

Summary. DeepMapping2 adds loop closure-based
batch organization and self-supervised consistency loss to
DeepMapping, which can achieve excellent mapping per-
formance in large-scale scenes. We believe our work can
motivate more research in self-supervised LiDAR map op-
timization. The current pipeline can be used as a generic
learning-based map optimization method in the back-end of
almost any point cloud SLAM methods. Future works in-
clude adopting ideas like keyframe-based SLAM, and gen-
eralizing DeepMapping2 to multi-agent SLAM.
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Appendix

We provide in this supplementary more ablation studies,
method analysis, and additional visualizations that could not fit
in the paper. In particular, we include (1) the accuracy of various
place recognition algorithms, (2) analysis of the computation time
of our method and all baselines, (3) more visualizations including
heat map and clearer mapping result, (4) and (5) video visualiza-
tions of trajectory estimation throughout the training processes.

A. Robustness on map topology

As mentioned in Sec. 3.2, the map topology used for organizing
training batches can be obtained by any off-the-shelf algorithms.
All results reported in Sec. 4 are based on TF-VPR [44], which is
a self-supervised place recognition algorithm. In this supplemen-
tary, we compare the mapping accuracy of DeepMapping2 when
different approaches are used to provide map topology.

We compute the map topology from a pre-trained Point-

NetVLAD [41] model and GPS. The mapping results are shown in
Tab. L. For drive_0018, there is no significant difference between
the mapping results from TF-VPR and PointNetVLAD. Also, us-
ing GPS provides a marginally better mapping result, but this is
expected given that GPS is used as the ground truth. Due to
PointNetVLAD’s low-quality map topology, PointNetVLAD for
drive_0027 does not produce a good mapping result. In summary,
our method is robust regardless of the map topology used, as
long as it is relatively accurate to reflect the adjacency relation-
ships in the environment.
Table I. Robustness on map topology. The table lists the mapping
result of DeepMapping2 when running with the map topology at-
tained by different place recognition methods. GPS theoretically
provides the most ideal map topology.

PR algo Drive_0018 Drive_0027

80- T-ATE (m)| R-ATE (°)] T-ATE (m)| R-ATE (°){
TF-VPR [44] 1.81 0.72 2.29 1.57
PointNetVLAD [41] 1.82 0.80 4.79 7.80
GPS (ground truth) 1.62 0.62 2.07 1.42

B. Time analysis

Table II. Computation time of different methods. The three
baseline methods are run on CPU. DM2 is run on RTX3090 GPU.
Note that there is no NVLink when 2 GPUs are used.

Time consumption (s)

Method Drive 0018 Drive 0027
Multiway [38] 113 141
DGR [28] (on CPU) 70200 108522
LeGO-LOAM [15] 287 470
DM2 (1 GPU) 21600 29900
DM2 (2 GPUs) 12085 18587

We compare the computation time of different methods on two
trajectories from the KITTI [29] dataset. Due to the nature of

training-as-optimization, as we mentioned in Sec. 5, our method
takes longer to compute than some of the baselines. When we ap-

ply DeepMapping? to larger datasets, we can apply parallel train-
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ing to reduce computation time. In Tab. II, it shows that if two
GPUs are used for training, the training time is almost decreased
by half. It is worth noting that our hardware has no NVLink, which
is frequently used in distributed multi-GPU systems to speed up
data transmission among GPUs. As a result, the theory and the ac-
tual scalability should be very similar. When given sufficient com-
putational resources, the time needed by our method can be signif-
icantly reduced, i.e., the time required is expected to be inversely
proportional to the number of GPUs used. Thus, DeepMapping2
should support a multi-agent setup where the point clouds are
scanned by multiple agents and do not have a sequential order.

C. More experiments

We conduct more tests on the simulated dataset [1]. The origi-
nal DeepMapping pipeline fails on the large-scale dataset, because
the drift cannot be correct as described in Sec. 3.1. DeepMapping2
successfully estimates multiple trajectories with different numbers
of frames on the simulated point dataset as visualized in Fig. V

We also conduct more experiments on other KITTI se-
quences [29]. The detailed result is shown in Tab. III.

Table I1I. Additional results on the KITTI dataset.

Sequence 02 Sequence 08

More sequence

T-ATE (m)] R-ATE (°){ T-ATE (m)] R-ATE (°){
Incremental ICP 8.06 4.57 4.38 4.46
Multiway Registration 4.96 3.37 2.40 0.90
ICP+DM2 2.56 131 1.85 0.81

Figure I. Original DeepMapping results on simulated point
cloud dataset. The black line represents the trajectory, while the
color block represents the occupancy grid.

D. More visualization

In order to clearly demonstrate the optimization capability of
DeepMapping2, we also offer heat map visualization. Results
from drive_0018, drive_0027, and NCLT are included. It
can be shown from Figs. II and III that DeepMapping2 gener-
ally has smaller errors compared to other methods. Also, Fig. IV
demonstrates how DeepMapping2 improves map from LeGO-
LOAM, particularly for the areas indicated by the red box.

We also include a larger and clearer visualization in Fig. VI for
the mapping result on the NeBula dataset. It is clear that kinematic
odometry fails to align the same locations when they are visited at
different times, particularly at two ends of the map. On the other
hand, DeepMapping?2 significantly improves the map’s quality.
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(a) Scenel (1024 frames) (b) Scene2 (1024 frames) (c) Scene3 (1024 frames) (d) Scene4 (2048 frames)

Figure V. Mapping and trajectory plot on Simulated point cloud dataset [1] We include five mapping results including (a)(b)(c)
DeepMapping2 mapping results on three different trajectories with 1024 frames (d) DeepMapping2 mapping results on a trajectory with
2048 frames.
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(b) KO+DeepMapping?2
(a) Kinematic odometry (KO)

Figure VI. Mapping result on NeBula. The color of point indicates the frame index in the trajectory.
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