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Abstract— CAV platooning technology has received consider-
able attention, driven by the next generation smart transportation
systems. This paper considers nonlinear vehicle dynamics and
develops fully distributed optimization based CAV platooning
control schemes via the platoon centered MPC approach for
a possibly heterogeneous CAV platoon. The nonlinear vehicle
dynamics leads to major difficulties in distributed algorithm
development and control analysis. Specifically, the underlying
MPC optimization problem is nonconvex and densely coupled.
Further, the closed loop dynamics becomes a time-varying non-
linear system with non-vanishing external perturbations, making
stability analysis rather complicated. To overcome these diffi-
culties, we formulate the underlying MPC optimization problem
as a locally coupled, albeit nonconvex, optimization problem and
develop a sequential convex programming based fully distributed
scheme for a general MPC horizon. Such a scheme can be
effectively implemented for real-time computing using operator
splitting methods. To analyze the closed loop stability, we apply
various tools from global implicit function theorems, stability of
linear time-varying systems, and Lyapunov theory for input-to-
state stability to show that the closed loop system is locally input-
to-state stable uniformly in all small coefficients pertaining to the
nonlinear dynamic effects. Numerical tests on a heterogeneous
CAV platoon in a real traffic condition illustrate the effectiveness
of the proposed method.

Index Terms— Connected and autonomous vehicle, car fol-
lowing control, distributed algorithm, nonconvex optimization,
input-to-state stability, Lyapunov stability theory.

I. INTRODUCTION

NSPIRED by the next generation smart transportation

systems, connected and autonomous vehicle (CAV) tech-
nologies emerge and offer tremendous opportunities to reduce
traffic congestion and improve road safety and traffic effi-
ciency, through innovative traffic flow control and operations.
Particularly, vehicle platooning technology links a group of
CAVs through cooperative acceleration or speed control to
improve system efficiency and safety. This technology allows

Manuscript received 26 April 2021; revised 7 November 2021, 13 January
2022, and 12 April 2022; accepted 9 May 2022. Date of publication 24 May
2022; date of current version 7 November 2022. This work was supported by
NSF under Grant CMMI-1902006 and Grant CMMI-1901994. The Associate
Editor for this article was S. Pan. (Corresponding author: Jinglai Shen.)

Jinglai Shen is with the Department of Mathematics and Statistics, Uni-
versity of Maryland Baltimore County, Baltimore, MD 21250 USA (e-mail:
shenj@umbc.edu; eswarl @umbc.edu).

Eswar Kumar Hathibelagal Kammara is with the Walmart Global Tech,
Hoboken, NJ 07030 USA (e-mail: eswarl @umbc.edu).

Lili Du is with the Department of Civil and Coastal Engineering, University
of Florida, Gainesville, FL 32608 USA (e-mail: lilidu@ufl.edu).

Digital Object Identifier 10.1109/TITS.2022.3175668

adjacent group members of a CAV platoon to travel safely
at a higher speed with smaller spacing. It will increase lane
capacity, improve traffic flow efficiency, and reduce conges-
tion, emission, and fuel consumption [1], [13].

Extensive research on CAV platooning control has been
conducted, and many approaches have been proposed, e.g.,
adaptive cruise control (ACC) [14], [16], [18], [29], [36], coop-
erative adaptive cruise control (CACC) [25], [26], [28], [33],
and platoon centered vehicle platooning control [5], [6],
[30], [31]. The ACC and CACC approaches aim to improve
an individual vehicle’s safety and mobility as well as string
stability instead of system performance of the entire platoon.
On the other hand, the recently developed platoon centered
approach seeks to optimize the platoon’s transient traffic
dynamics for a smooth traffic flow and to achieve stability and
other desired long-time dynamical behaviors. This approach
can significantly improve system performance and efficiency
of the entire platoon [6], [30]. Despite this advantage, the pla-
toon centered platooning approach often encounters large-scale
optimization or optimal control problems that require efficient
numerical solvers for real-time computation [30]. Distributed
optimization techniques provide a favorable solution for the
platoon centered approach. Supported by portable computing
capability of each vehicle and vehicle-to-vehicle communica-
tion [32], distributed computation can handle high computation
load efficiently, is more flexible to communication network
topologies, and is more robust to communication delays or
network malfunctions [32]. In this paper, we focus on platoon
centered CAV platooning via distributed optimization. It is
worth noting that a platoon centered CAV platooing control
is a centralized control method although its computation is
distributed, i.e., each CAV computes its own control input in
a distributed manner [23]. Hence, this method is different from
decentralized control in control engineering [2], [3], [34], [37].
Especially, the platoon centered method focuses on stability of
the entire platoon instead of stability of individual vehicles and
their interactions, e.g., string stability [2], [37].

Various distributed control or optimization schemes have
been proposed for CAV platooning [30], [32], [33], [37]. These
schemes can be classified into two types: partially distributed
schemes, and fully distributed schemes. Partially distributed
schemes are referred to as those schemes that either require
all vehicles to exchange information with a central component
for centralized data processing or perform centralized com-
putation in at least one step [15], whereas fully distributed
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schemes do not require centralized data processing or carry out
centralized computation through the entire schemes [23]. The
former type includes [5], [6]. The second type includes the
recent paper [23], which develops fully distributed schemes
for CAV platooning under the linear vehicle dynamics.
Compared with partially distributed schemes, fully distributed
schemes impose less restrictions on vehicle communication
networks and can be easily implemented on a wide range of
networks [23].

In spite of the abovementioned progress, most of the exist-
ing research in the platoon centered approach considers the
linear vehicle dynamics [5], [6], [23], [30]. Although the linear
vehicle dynamics is suitable for small vehicles, nonlinear
dynamic effects, e.g, aerodynamic drag, friction, and rolling
resistance, play a non-negligible role in trucks, heavy duty
vehicles, and other types of CAVs. Motivated by the lack
of research for nonlinear vehicle dynamics in the platoon
centered approach, this paper aims to develop fully distributed
optimization based, platoon centered CAV platooning under
nonlinear vehicle dynamics over a general vehicle communi-
cation network. To achieve this goal, we propose a p-horizon
MPC model subject to the nonlinear vehicle dynamics of the
CAVs and various physical or safety constraints. Several new
challenges arise for the MPC horizon p > 2 when the nonlin-
ear vehicle dynamics is considered. First, the underlying MPC
model gives rise to a densely coupled, nonconvex optimization
problem, where both the objective function and constraints
are nonconvex. This is very different from the linear vehicle
dynamics treated in [23], for which a convex MPC model
is obtained so that various convex distributed optimization
schemes can be used. Second, a local optimal solution to
the MPC is characterized by a highly sophisticated nonlinear
equation and does not attain a closed form expression. Hence,
the closed loop system is defined by a time-varying nonlinear
dynamical system, whose right-hand side has no closed form
expression, subject to non-vanishing external disturbances.
These pose a difficulty in closed loop stability analysis and
design. To address these challenges, we exploit various new
techniques for distributed algorithm development and control
analysis and design.

The major novelties and main contributions of this paper
are summarized as follows:

(1) Distributed algorithm development. To develop fully dis-
tributed schemes for the nonconvex MPC optimization prob-
lem when p > 2, we first formulate the underlying densely
coupled MPC optimization problem as a locally coupled,
albeit nonconvex, optimization problem using a decomposition
method recently developed for the linear CAV dynamics [23].
Furthermore, we propose a sequential convex programming
(SCP) [17] based distributed scheme to solve the locally
coupled optimization problem. This SCP based scheme solves
a sequence of convex, quadratically constrained quadratic
programs (QCQPs) that approximate the original nonconvex
program at each iteration; such a convex QCQP can be effi-
ciently solved using (generalized) Douglas-Rachford method
or other operator splitting methods [4] in the fully distributed
manner. The SCP based distributed scheme converges to
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a stationary point, which often coincides or is close to an
optimal solution, under mild assumptions.

(2) Closed loop stability analysis. To analyze the closed
loop dynamics, we first formulate the closed loop system as a
tracking system defined by a time-varying, nonlinear dynami-
cal system subject to non-vanishing external disturbances. The
right-hand side of this nonlinear dynamical system depends on
a local optimal solution to the underlying MPC optimization
problem, which does not attain a closed-form expression.
By exploiting global implicit function theorems, we show that
this (local) optimal solution is an implicit smooth function of
state variables for all sufficiently small parameters pertaining
to the nonlinear dynamic effects. We then apply stability
theory of linear time-varying systems and Lyapunov theory for
input-to-state stability to show that for all sufficiently small
parameters pertaining to the nonlinear dynamic effects, the
closed loop system is locally input-to-state stable provided that
the corresponding linear closed loop dynamics under the linear
vehicle dynamics (or equivalently when the abovementioned
parameters are zero) is Schur stable.

(3) Numerical implementation for real-time computation.
For real-time implementation of the proposed fully distributed
schemes, initial guess warm-up techniques are developed.
Besides, a further analysis shows that steady state errors of
spacing exist in the close loop dynamics but can be made small
by choosing suitable weights in the MPC model while ensuring
the input-to-state stability and satisfactory performance of
transient dynamics. Numerical tests have been carried out for
a heterogeneous CAV platoon in a real traffic condition. The
numerical results illustrate the effectiveness of the proposed
distributed scheme and CAV platooning control under the
nonlinear vehicle dynamics.

The paper is organized as follows. Section II introduces
the nonlinear vehicle dynamics and constraints, and vehicle
communication networks. Sequential feasibility and the con-
straint sets are discussed in Section III. A MPC model is
proposed in Section IV and is formulated as a nonconvex
constrained optimization problem. Section V develops sequen-
tially convex programming based fully distributed schemes for
the densely coupled nonconvex MPC optimization problem.
Control design and closed loop stability analysis is carried out
in Section VI, and numerical results are given in Section VII
with conclusions made in Section VIII. Due to the paper length
limit, most of the proofs and some technical details are omitted
and can be found in the online version [22] of the paper.

II. VEHICLE DYNAMICS, CONSTRAINTS, AND
COMMUNICATION TOPOLOGY

Consider a platoon consisting of heterogeneous vehicles
(e.g., cars and trucks) on a roadway, where the (uncontrolled)
leading vehicle is labeled by the index O and its n following
CAVs are labeled by the indices i = 1, ..., n, respectively.
Let x;,v; denote the longitudinal position and speed of the
ith vehicle, respectively. Let z > 0 be the sampling time, and
each time interval is [kz, (k+1)7) fork € Z4+ :={0,1,2,...}.

We first introduce the following nonlinear vehicle dynamical
model which captures aerodynamic drag, friction, and rolling
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resistance [34]:

2
xitk+ 1) = xi(k) + toi (k) + %a,-(kx

vi(k +1) = v; (k) + 7a;(k),

(1a)
(1b)

where a;(k) = u;(k) —c2,; - viz(k) —c3,i - &, ui(k) denotes
the desired driving/braking acceleration treated as the control
input, ¢, -viz(k) characterizes the deceleration due to aerody-
namic drag with the coefficient ¢2; > 0, and c¢3; - g character-
izes friction and rolling resistance with g = 9.8 m /s being the
gravitational constant and c3; > 0 being the rolling friction
coefficient. For different vehicles, the coefficients ¢z ;, c3,; can
be different.

The coefficients ¢ ; and c3; in model (1) are usually small
for certain types of vehicles or road conditions. For example,
c2,i typically ranges from 2.5 x 1074 /m to 4.5x 10~*/m, and
c3,; typically ranges from 0.006 to 0.015 [34]. Since these
coefficients are small, the nonlinear terms in (1) are often
neglected. This yields the following double-integrator model
for the linear vehicle dynamics:

2
= Xi(k) + TV; (k) + %ul(k)a

v;i (k) + Tu;(k).

xitk+1)
vi(k+1)

)

The model (2) is suitable for small-size passenger cars, while
model (1) can be used for medium-size or large-size vehicles,
e.g., trucks and heavy-duty vehicles.
State and control constraints. Each vehicle is subject to

important state and control constraints. For any i = 1,...,n,

(i) Control constraint: a; min < #; < @; max, Where a; min <0
and a; max > 0 are pre-specified acceleration or deceler-
ation bounds for the ith vehicle;
Speed constraint: vmin < v; < Vmax, Where 0 < vpip <
vmax are pre-specified bounds on longitudinal speed for
the ith vehicle;
Safety distance constraint: this constraint guarantees suf-
ficient spacing between neighboring vehicles to avoid
collision. The safety distance constraint is given by:

(ii)

(iii)

2
(v; — Omin)
Xi—1—Xx; = Li+r-v; — ———,
2ai,min

3)

where L; > 0 is a constant depending on vehicle length,
and r; > 0 is the reaction time of vehicle i.

In the above constraints, the acceleration/decelerations bounds
as well as the vehicle length L; and the reaction time r; can be
different for different types of vehicles. Note that constraints
(1) and (ii) are decoupled across the vehicles, whereas the
safety distance constraint (iii) is state-control coupled. This
yields challenges to distributed computation. Further, the lead-
ing vehicle is subject to the similar acceleration and speed
constraints, i.e., @o,min < 40 < do,max and Omin < V0 < Umax,
where ag,min < 0 < ao,max-

Communication network topology. We consider a general
communication network whose topology is modeled by a
graph G(V, £), where V = {1,2,...,n} is the set of nodes
with the ith node corresponding to the ith CAV, and £ is the
set of edges connecting two nodes in V. Let A; denote the
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set of neighbors of node i, ie., N; = {j| (i, j) € &}. The

following assumption is made throughout the paper:

A.1 The graph G(V, &) is undirected and connected. Further,
two neighboring vehicles form a bidirectional edge of the
graph, i.e., (1,2),(2,3),...,(n —1,n) € £.

The setting given by A.1 includes many widely

used communication networks of CAV platoons, e.g.,

immediate-preceding, multiple-preceding, and preceding-and-

following [34]. We also assume that the first CAV can receive

X0, vo and ug from the leading vehicle.

III. SEQUENTIAL FEASIBILITY AND
PROPERTIES OF CONSTRAINT SETS

The constraint set of the underlying MPC optimization
problem at time k (cf. Section IV) depends on the position and
speed of the vehicles at times 0, 1,...,k — 1. A fundamental
question is whether the constraint set is nonempty at each k
along a system trajectory for any feasible initial condition,
provided that the leading vehicle satisfies the acceleration
and speed constraints for all k € Z, . If the answer is
affirmative, the system is sequentially feasible [6], which has
been established for the linear vehicle dynamics [6]. We show
it for the nonlinear vehicle dynamics (1) below.

Given (x;,v;)}_, and ug, we introduce the following con-
straint set on the control u subject to the nonlinear vehicle
dynamics and the state and control constraints:

W((x;, Ui)l"l:()» ug) := {” eR" | @imin < Ui < @ max,
Umin < 0; + 74 (ui) < Umax, hi(u) <0, i = ln}
where the function A; is given by

(vi + ta;(u;) — Omin)?

26li,min

hi(u) := Li +ri(v; +7a;(u;)) —

72

+(x; —xi—1) + (v —vi1) + 7[01'(141') —ai—1(ui-1)l,

and a; (u;) := u; —cz,iviz —c3,g foreachi =0,1,...,n. The
sequential feasibility holds if W((x;, v;)!_, o) is nonempty
for any feasible (x;,v;)!_, and uo, i.e., ao,min < 40 < @0,max.
Omin < 00 < Umax> Omin < 00 + TUo < Uniax’ Umin < Uj =< Umax
and p; ((x;, vi)7_,) == Li+rivi—%+(xi—xi—l) < 0for
eachi=1,...,n.

Proposition 1: [22, Proposition 3.1] Consider the nonlin-
ear vehicle dynamics given by (1). Suppose the nonnegative
constants c3;, c3,; are such that Cz,ivrznax +¢3,i8 < aimax and
ri >t for eachi = 1,...,n. Then the system is sequentially
feasible for an arbitrary feasible initial condition.

It is also shown in [22, Proposition 3.2] that under mild
assumptions, the constraint set has nonempty interior. This
property is critical for the Slater’s constraint qualification in
optimization. In light of this result, we make the following
assumption throughout the rest of the paper:

A2 Foreachi =1,...,n, the nonnegative constants ¢z ;, c3,;
satisfy cz,ivz + ¢3,i8 < aimax and the reaction time r;

max

satisfies r; > 7. Further, (vo(k), ug(k)) is feasible with
0o (k) > vmin for all k € Z..

Under this assumption, the constraint set of a p-horizon MPC

model has nonempty interior; see Corollary 1.
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IV. MODEL PREDICTIVE CONTROL
FOR CAV PLATOONING

We consider the model predictive control (MPC)
[23, Section 3] approach for CAV platooning under the
nonlinear vehicle dynamics. Let A be the desired constant
spacing between two adjacent vehicles, and (xg, vg, ug) be
the position, speed, and control input of the leading vehicle,
respectively. Define (i) the relative spacing error z(k) :=
(xo — X1 = A, Xy — Xn — A)(k) € R™; (ii) the relative
speed between adjacent vehicles z'(k) := (vo — Vl,...,
Op—1 — vn)(k) € R"; and (iii) the control input u(k) :=
(u1,...,u,)(k) € R". Further, let w;(k) := u;—1(k) — u;(k)
for each i = 1,...,n, and w(k) := (wi,..., w,)(k) € R,
representing the difference of control input between adjacent
vehicles. Hence, for any k € Z, u(k) = —S,w(k) +uo(k)-1,
where 1 is the vector of ones, and S, is an n x n lower

triangular matrix with (S,);; = 1 for all i < j. Hence
S is such that (S;1);; = 1,Vi, (S 141 = —1 for all
i=1,...,n—1, and the other elements of Sn’1 are zero.

Given p € N, the p-horizon MPC control is determined
by solving the following constrained optimization problem at
each k € Z., involving all vehicles’ control inputs for given
feasible state (x;(k),v;(k))7_; and (vo(k),uo(k)) at time k
subject to the nonlinear vehicle dynamics (1):

minimize J(u(k),...,u(k+p—1)):= 4)
p
% > (rzuT(k +5 =18, T QusS lulk+5—1)
s=1
+27 (k+9) 0zl +9) + (k4 8) Qo (K +5))

subject to: foreachi = 1,...,nand s = 1,..., p, dimin <
uik+s—1) < aj max> Umin = vi(k 4+5) < Omax, and

Xi—1tk+s5)—xij(k+s)>L; +ri-vi(k+5)
_ (vi(k +5)— Umin)z

2ai,min

>

where Q,, Q. and Q. are n X n symmetric positive
semidefinite weight matrices. We assume that ug(k + s5) =
uog(k) forall s =1,..., p — 1 and use these ug(k + s)’s and
the vehicle dynamics model (1) to predict (xo(k+s+1), vo(k+
s+ 1)) fors =1,...,p — 1. See [23, Remark 3.1] for the
interpretation of the three terms in the objective function J.

To develop fully distributed schemes for general vehicle net-
work topologies and to facilitate control design and analysis,
we make the following assumption on the weight matrices
Qz.5, Oy, and Qs through the rest of the paper:

A3 Foreachs=1,...,p, Q;¢ and Qy ¢ are diagonal and
positive semidefinite (PSD), and Q, s is diagonal and
positive definite (PD).

It is shown below that the constraint set of the p-horizon
MPC model has nonempty interior at each k for any p.

Corollary 1: [22, Corollary 4.1] Suppose A.2 holds. Then
for any p € N, the constraint set of the p-horizon MPC
optimization problem (4) has nonempty interior at each k.
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A. Constrained Optimization Model Under the Nonlinear
Vehicle Dynamics

We discuss the MPC model (4) under the nonlinear vehicle
dynamics (1) with the parameters c¢;; and c3;. Define the
parameter vectors @, = (c2,1,...,¢2,) € R and Q=
(c3,1,--.,¢3,) € R, where the subscripts d and f denote
the drag and friction respectively. Let ¢ := (¢4, 9 ¢) € Ri”.
We set ¢2,0 = 3,0 = 0 as ug(k) is the actual acceleration of
the leading vehicle.

Consider the MPC model (4) at a fixed time k € Z..
Let u(k) := (uy(k),...,u,(k)) € R" with u;k) :=
(ui(k),...,ui(k + p — 1)) € RP. Recall that for each i =
I,...,nand j =0,...,p—1,

ai(k + j,ui k), . ui(k + ) = ui(k + j) = 207 (k + )
_63,ig’
where we note that v;(k + j) depends on u;(k),...,
ui(k + j — 1) for j > 1. Specifically, for p > 1,
ai(k, ui (k)) = u; (k) — c2,iv7 (k) — c3,8,
aitk + 1, ujk),uijtk+ 1)) =ujk + 1)
2
—c.i[vitk) + rai(k, ui (k)" — e3.:8,

ai(k+p—1Luik),...,uitk+p—1) =ujk+p—1)
p—2

2
—erifoi ) + 0 Y @itk s w0, ik 4 5)]
s=0
—C3,i8-

By slightly abusing the notation, we may denote each
ai(k+ j,ui(k), ..., ui(k + j)) by ai(k + j, u;i(k)).
Define foreachi =1,...,nand j =0,1,...,p— 1,

bi(k + j,ui—1(k),w;(k)) :=aj—1(k + j,u;—1(k))
—a;(k + j,u;(k)),

where ag(k+j,ug(k)) := ug(k) forall j =0,1,..., p—1due
to ug(k) := ug(k) - 1. It follows from the nonlinear vehicle
dynamics (1) that foreachi =1,...,nand j=1,..., p,
ziltk + j) = zi(k) + jrzj(k) (%)

=1,

2(j—s)—1
+2 U770 g s (), wi (),
s=0 2

j—1

ik + j) = 2j(k) + 1 D _bik + s, 01 (k), u; (k). (6)
s=0
For a fixed k € Zy, define for each i =

1,...,n, a;(u;(k)) := (a,-(k, u,-(k)), a; (k + 1, u;(k), u;(k +
D), ..., ai(k +p— Luik),...,ui(k + p — 1))). In what
follow, we often omit k in w; (k) when k is fixed. Further, define
the function a : R"”? — R as a(u) := (al(ul), R an(u,,)).
Note thatif ¢ = (¢4, ¢ r) = (c2,i, ¢3,i)j_; = 0, then a(u) = u
for all u € R". We introduce more notation. Define the
following matrices: Q,, := diag( Qu,1, ... Qu,p ) € R"P*"P,
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and S™' := diag( S,", ..., S, ') € R">*"_ Further, let
—_————
p—copies

E € R"*"P be the permutation matrix such that

M(k) [18]
uk +1) u

. =E| .| = Eu
utk+p—1) u,

Using these matrices, it is easy to verify that the fol-
lowing term in the objective function J in (4) satisfies

u(k) g u(k)

s~ : 9, s :
utk+p—1) utk+p—1)
u/Wu, where ¥ := ETS™TQ,S™'E € R"*"P is symmetric

PD under A.3. Thus the objective function J becomes

1.2
J(u) = EuT‘I—‘u

p
+%|:§ZT(]€ + S)Qz,sZ(k +5)

+(@ Kk +5)T Qo (6 +9)]
2 2
= %aT (V¥ a(u) + % (uT‘I’u —al (u)‘I’a(u))

p
+%|:S§IZT(/€ + S)Qz,sZ(k +5)
+@ k+5) Qo7 k+9)]

In light of the expressions for z(k + j) and z'(k + j) in
(5)-(6), we have, via the similar argument in [23, Section 3.1],

J(u) = %aT wWa(u) + cTa(u) + y

2
—i—% (uT‘I’u —al (u)‘I’a(u)),
where W € R ¢ € R, and y € R. In fact, W =
ETS~T@S™'E for a symmetric PSD matrix ® whose blocks
are diagonal, and W is PD under A.3; see [23, Section 3.1]
for details. Besides, the linear term in J(u) can be written as
cla(u) = > c%{ai (u;), where cz, is the subvector of ¢
corresponding to a;(u;). By [23, Lemma 3.2], the subvector
cz; depends only on z;(k), z;(k), zi+1(k), zj (k)’s for i =
l,...,n — 1, ¢z, depends only on z,(k),z,(k), and only
cz, depends on ug(k). These properties are important for
developing fully distributed schemes later on.

To characterize the constraints, let the matrix S, € R” xp
be defined in the same way as is S, with n replaced by p,
and (Spu;)o := 0. Recall that foreach i = 1,...,n and j =
Lo povikj) = 0,00+t X2 ai(kets, ui (k) = v (6)+
(S, a,-(u,-))j. Further, x;—1(k+j)—xj(k+j) = zi(k+ j)+ A
depends only on w;(k) and w;_; (k) as shown in (5). Hence,
we see that for eachi =1,...,n and each j =1,..., p, the
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safety distance constraint is given by:
(Hi(wj—y (k), Ui(k)))j =L +ri-vi(k+))

_ ik +j) — Umin)z
2 dj, min

—[xi—1k +j) = xi(k+ j)] < 0.

Note that H{(-) depends only on uj (k) although it is written
in the above form for notational convenience. Combining the
above results and setting y = 0, the MPC model (4) is
formulated as the following optimization problem:

1 2
minJ (u) = EaT(u)(W— *%)a(u)+ c’a(u)+ %uT‘Pu,
s.L. u; € X, vmin < 0;i(k) + T(Spai (ui))s = Umax,
(Hiwi—1,u))s<0,Vi=1,....,n, s=1,...,p,
(7
where X; = {u; € R?|ag;minl < w; < a;max1} for each
i =1,...,n. It can be shown via the expressions of W and

Y given in [23, Section 3.1] that W — 2% is PSD. When
p =1, (7) is a convex optimization problem. whereas when
p > 1, (7) yields a nonconvex optimization problem. Since J
is continuous, each &; is compact, and the other constraints are
defined by continuous functions, (7) has a solution. Moreover,
the objective function J is densely coupled, and the safety
distance constraint function (Hi (w;_1, ui))j is locally coupled
with its neighboring vehicles. This coupling structure, together
with the nonconvexity of (7), leads to many challenges in
developing fully distributed schemes.

V. FULLY DISTRIBUTED ALGORITHMS FOR COUPLED
NONCONVEX MPC OPTIMIZATION PROBLEM

In this section, we develop fully distributed algorithms
for solving the underlying coupled, nonconvex optimization
problem (7) at each time k € Z4 when p > 1. To achieve this
goal, various new techniques are exploited: the formulation
of locally coupled, albeit nonconvex, optimization, sequential
convex programming, and operator splitting methods.

A. Formulation of MPC Optimization Problem as a Locally
Coupled Optimization Problem

Since the safety distance constraint of each vehicle i is
coupled with its neighboring vehicle (i — 1) whereas the
acceleration and velocity constraints are decoupled, the con-
straints of the optimization problem (7) are locally coupled [8].
Motivated by distributed computation for locally coupled con-
vex optimization [8], [23], we show that (7) can be formulated
as a locally coupled nonconvex optimization problem.

The framework of a locally coupled optimization problem
requires that both its objective function and constraints are
expressed in a locally coupled manner satisfying the commu-
nication network topology constraint. However, the objective
function in the underlying optimization problem (7) is densely
coupled. As indicated in [23, Section 4] for convex optimiza-
tion, this difficulty is overcome via certain matrix decomposi-
tion techniques. It is shown in [23, Lemma 4.1] that under A.3,
the PSD or PD matrix W € R">*"P in (7) can be decomposed

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 25,2023 at 15:11:22 UTC from IEEE Xplore. Restrictions apply.



SHEN et al.: NONCONVEX, FULLY DISTRIBUTED OPTIMIZATION BASED CAV PLATOONING CONTROL

as W =>"_, W*, where all W* € R"”*" are PSD and sat-

1
isfy the following conditions: w! = |:W :|,
On—2)px(n-2)p

wn = |:0("_2)px("_2)p o i| ,andforeachs =2,...,n—1,
_ 0G—2)pxs-2p _
ws = w* , where
O(n—s—l)px(n—s—l)p
= WhHi (W )12 =
wh = ( R2PX2P Wn =
N [(W D21 (Whaa
(Wn)n—l n—1 (W )n—l n 2px2 %
~ ’ ~ ’ e RP*P  and W5 =
(Wn)n,n—l (Wn)n,n
(Wj)sfl,sfl (Wj)sfl,s 0
(Ws)s,sfl (Ws)s s (W )s,s5+1 € R3p><3p’ and each
0 Wit (W )st1541
(Wn )i,j € RPXP. When W_is PD, it is shown in

[23, Lemma 4.1] that there exist W$’s such that each W* is PD.

Since Q,, is diagonal and PD, it follows from the similar
argument in [23, Lemma 4.1] that the PD matrix ¥ € R"?*"?
can be decomposed in the similarly way. Specifically, there
exist matrices ¥P* such that ¥ = > P, where ' 575 satisfy
the abovementioned conditions with WS (resp. ws ) replaced
by s (resp. %), Hence, the objective function J(u) in (7)
can be decomposed as

n—1

Jiu,w) + 7 T, u, wi1) 4 Ty (g, ),
i=2

J() =

where the functions J;’s on the right hand side are given by

- 12@1) a(uy)
a(u)

2
T -~ u
+ezan(m) + 7[“{“5]‘}‘1[ 1}’

D w2) = 2 [a] (ual ()] (7'

up
and fori =2,...,n—1,
.2 | uia
Ji(ui—1,0;,041) 1= — [lll 1 lllT uiT+1]‘I’l u;
U1
T
+CI[ai(ui)
1
+3 [a]_ (ui1) af (w;) af | (uiy)]
N N a;—1(ui-1)
X (W’ - 12‘1”) X a; (u;) , (8)
a;+1(wi41)
and
T o2 T 77 Gin | Un—1
Jn (U1, 0,) i= ez an(u,) + 5 [w!_, ul]¥ w,

43 [l ) af )] (77

« a, 1(u,—1) .
a,(u,)
By A.1, the above decomposition of J satisfies the communi-
cation network topology constraint.

We use the above decomposition to formulate a locally
coupled optimization problem by introducing copies of
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local variables. We consider the cyclic like network topology
through this subsection, although the proposed formulation and
schemes can be easily extended to other network topologies
satisfying the assumption A.1. In this case, N7 = {2}, N, =
n—1}, and N; = i — 1,i + 1} fori = 2,....,n — 1.
Hence, each J; in the decomposition of J can be written as
Ji(wi, (W))jen;)-

Recall that for each i = 1,....n, Ay = {u; €
R? | a; minl < W; < a;max1}. Further, define

Vi == {u; € R? | omin < 0; (k) + (S, 2; (), < vmax,

Vs=1,....,p}, )
Zi = {(_1,u) € R” x R” | (H;(u;_1,u;)); <0,
Vs=1,....p) (10)

As indicated before, Z; depends only on uj although it is
written in the above form for notational convenience. Let &g
denote the indicator iunction of a closed set S. Define, for
eachi =1,...,n, Jl(uh(uj)je./\/) = Jz(uz,(uj)jej\/’;) +
6;( (u;)+8y, (u,)+6g (wj—1,u;). Foreachi =1, ..., n, define
u; = (u,, (v ;) je /\/) where the new variables u; ; represent
the predicted values of u; of vehicle j in the neighbor N
of vehicle i, and let W := (Uy,...,u,) € RY. Define the
consensus subspace

.A = {ﬁERN |lli’j =llj, V(i,j) € 5}

Then the underlying problem (7) can be equivalently written
as the following locally coupled optimization problem:

n
min > J(@),
u
i=1

where the functions Z ’s are decoupled, and the consensus
constraint A gives rise to the only coupling in this formulation.

ucA, (11)

subject to

B. Sequential Convex Programming and Operator Splitting
Method Based Fully Distributed Algorithms for the MPC
Optimization Problem

When the MPC horizon p = 1, the underlying MPC
optimization problem (7) or (11) is a convex quadratically
constrained quadratic program (QCQP), for which the fully
distributed schemes developed in [23] can be applied. We con-
sider p > 1 from now on. In this case, the underlying MPC
optimization problem (7) or (11) yields a non-convex min-
imization problem whose objective function and constraints
are non-convex, whereas the coefficients ¢o; > 0 and ¢3; > 0
defining the nonlinearities are small. Therefore, it is expected
that an optimal solution under the nonlinear vehicle dynamics
is “close” to that under the linear vehicle dynamics. The
latter solution, which can be obtained using fully distributed
schemes [23], can be used as an initial guess for a distributed
scheme for the nonlinear vehicle dynamics. We formally
discuss this observation as follows.

Let f : R" xR? — R and g; : R" x R? — R with
i =1,...,m be all continuous functions. Let Q C R” be a
compact set, and ® C R? be a set of parameter vectors that
contains the zero vector. Given 6 € ©, define the parameter
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dependent constraint set Wy := {x eR” ] gi(x,0) <0, Vi=
..., m} We assume that for each parameter vector 6 € O,
the set Q N W)y is nonempty. Since g; (-, 0) is continuous for
a given 6, QN Wy is a nonempty compact set such that for a
fixed # € ®, the minimization problem
Piio s, 10

has a nonempty closed solution set denoted by Sp. For each
x € QNW), define the index set Z(x) :={i | g;(x,0) =0} C
{1, ..., m} corresponding to the index set of active inequality
constraints. We introduce the following assumption on QNW).

A4 For any x® € QN W,y whose corresponding Z(x®) is
nonempty, there exists a sequence (w’) in Q N W) such
that: (i) for each ¢, gi(wf,O) <Oforalli =1,...,m;
and (ii) (w’) converges to x°.

The following result, whose proof is given in
[22, Proposition 5.1], establishes the closeness of optimization
solutions under perturbed parameters.

Proposition 2: Suppose Py has the unique minimizer X,
i.e., So = {x4}. Then under the abovementioned assumptions
(including A.4), for any ¢ > O, there exists n > 0 such that
Jor all 8 € © with ||0]| < n, sup,cs, lz — x«ll <e.

We apply this proposition to the optimization prob-
lem (7). Recall that the parameter vector ¢ = (@4, @) =
(c2,is03,0)l, € Ri”. To emphasize the dependence of the
objective function J on ¢, we write it as J(u, ¢). Further,
the constraints in (7) can be written as X N ) N Z, where
X = A& x -+ x X, is convex and compact, and Y N
Z ={u|gi(u,@) <0,i =1,...,m} for some real-valued
functions g; depending on ¢. When ¢ = 0, J(u, 0) is strongly
convex, and each g;(u, 0) is an affine or a convex quadratic
function [23] such that (7) becomes a convex problem with
a unique solution uy . Further, when r; > ¢ for all i and
vo(k) > omin, this convex problem has non-empty interior
[23, Corollary 3.1] such that A.4 holds. Letting S, be the
solution set of (7) corresponding to the parameter vector ¢,
we obtain the following corollary from Proposition 2.

Corollary 2: Consider the optimization problem (7) with
the parameter vector ¢ € R%r” at time k. Suppose ri > t
Jor all i and vo(k) > omin. Then for any ¢ > 0, there
exists n > 0 such that for all ¢ € R%_” with ||| < n,
supyes, U — w0l <.

To solve the coupled non-convex optimization problem (7)
or (11) with ¢ # 0, we exploit the sequential convex pro-
gramming (SCP) method [17]. We provide a brief description
of the SCP method below. Consider the nonlinear program

(P): mliél f(x),stx €P, gi(x)—ri(x)<0,i=1,...,¢,
XE n
(12)

where P C R” is a closed convex set, f and each g;
are C! (but not necessarily convex) functions, and each r;
is a convex C!-function. We assume that Vf and Vg; are
Lipschitz on P, ie. there exist constants Ly > 0 and
Lg, > 0 such that |V f(x) — Vf(x)2 < Lyllx —x'|2 and
IVei(x) — Vgi(x)l2 < Lgllx — x|z for all x,x" € P
and i = 1,...,{. Let x be a feasible point of (P’), i.e.,
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x € P and gi(x) —ri(xX) <0, i = 1,...,¢. Consider an
approximation of the constraint set of (P’) at x:

CE, (Vi@ (Vri@®)_,
= [ ePla® + Va® @D + e - 713
@ +V® -0 <0, i=1,. f}

which is a nonempty closed convex set [17, Lemma 3.3]. The
next lemma gives a simple sufficient condition for the Slater’s
condition to hold for the approximated constraint set.

Lemma 1: [22, Lemma 5.2] Given a feasible point
X of (P, suppose CQ, (Ve (V@) is
not singleton. Then the Slater’s condition holds for

C(, {Vgi (3?)}{:1, (Vr; (f)}le), i.e., there exists 7 € P
such that gi(®) + Vgi(®) @ — %) + BT - 713 — (@) +
V@' @Z-x]1<0,Vi=1,...,¢

The SCP scheme solves (P’) in (12) as follows [17]: let an
approximation of the objective function f for a given feasible
point ¥ be f(z; %) := f@) + [V, @I (¢ = %) + Iz~ I3,
which is strongly convex in z. At each step, the SCP scheme
solves the convex problem at x* using f(-; x¥) over the convex
constraint set C(x*, {Vg; (xk)}le, {Vr; (xk)}le) to generate a
unique solution x**!. It then updates the gradients V f, Vg;,
and Vr; using xk*1 and formulates another convex problem
and solves it again. It is shown in [17, Theorem 3.4] that any
accumulation point x* of the sequence (x¥) generated by the
SCP scheme is a KKT point of (P’), provided that x* satisfies
the Slater’s condition for C(x*, {Vg; (x*)}f:1 ,AVr; (x*)}le).

We now apply the SCP scheme to develop a fully distributed
scheme for the locally coupled formulation (11) of the MPC
optimization problem (7). Recall that U; := (u;, (u;,;)jen;)
and W := (Uy,...,u,). Foreachi =1,...,n, it follows from
the velocity constraint ); in (9) and the safety distance con-
straint Z; in (10) that there are real-valued smooth functions
gi,s and convex quadratic functions r; s fors =1, ..., 3p such
that w; € Y; N Z; if and only if g; (W) — ri (W) < O for
s = 1,...,3p; specific choices of g; ¢ and r;s are given
in Section VII-B. In view of the objective function J(u) =
>, Ji(u;), the problem (11) becomes

n
min ) Ji(@), st UeA U e X, g (W) —riy (@) <0,
i=1

Vi=1,...,n, s=1,...,3p.

Recall that X = X} x --- x &, is a convex compact set. Since
X is compact and A is the consensus subspace, it is easy
to show that there are positive Lipschitz constants Lj, and
Lyg,, for the gradients of J; and g;s on AN X, i.e., for all
nueAnX,alli=1,...,n,ands =1,...,3p,

IVJi@) = VIE@)ll2 < Ly, - [0 — 2,
IVgis@) — Vgis@)|2 < Lg,, - It — ;|
To develop a SCP based fully distributed scheme, we
introduce more notation. Given any 0 = (u;)?_, € A’ and any

vectors dj;, dg; ,and dy, fori =1,...,nands =1,...,3p,
let the following function be a convex approximation of the
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original nonconvex J, where y = (y1,...,y,) € RV with

each y; being a suitable subvector of y:
FOsu{dy o))
n

oy A Iy Ly, Py
= 2 (@) + @) 0 =) + Sl — W3).
i=1
and the following sets as convex approximations of the original
nonconvex constraint sets Y N Z:
C(ﬁ, {dgiyodpyi=1,...,n,s=1,... ,3p})
L,
8i,s =~ 2
-
5 Iy — il

= {vexlg@ +da] (i -+
—[ris @) +dr€s (i — )]
<0i=1,...,n5s= 1,...,3p}.

Clearly, f is strongly convex in y and decoupled in y;’s, and
the convex set C(ﬁ, {dgisrdpis,i=1,...,n, s =1,..., p})
is the Cartesian product of C;’s for i = 1, ..., n, where each
Ci (8 {dg, 1271 (dr, 120)) = (i € X | gis@) +d], (v —

o~ L is —~ i~ —~
U;) + =2y — w13 — [ris @) + df (v —8)] < 0,5 =
1,..., 3p}.

Using the above notation, the iterative scheme of the SCP

method is: for a feasible initial guess o,

ot = argmin {f(y;ﬁk, (VL@ |y €A, and
y

y € C(ﬁka {Vgi,s(ﬁi'()a Vrl',s(ﬁi'()’i = 19 s

s=1,....3 p})}. (13)

By virtue of Corollary 2, the initial U can be chosen as a
solution to the problem (11) with ¢ = 0. An efficient fully
distributed scheme has been developed in [23] to compute
such @Y. It is shown in [17, Theorem 4.3] that if GV is feasible,
then W is feasible for all k and the constraint set in each step
k is a nonempty closed convex set [17, Lemma 3.3].

The convex minimization problem (13) at each step k can
be solved via operator splitting method based fully distributed
schemes. Fix uf = (’ﬁi.‘)l’.’:l and the related gradients evaluated
at W*. We write the objective function f(y; U, {d JiYiy) as
f(y) and the constraint sets C; (ﬁf, {Vgi,s(ﬁi.‘), Vris (ﬁf), s =
1,...,3 p}) as C;’s for notational simplicity. Clearly, ﬁf‘ eCi
for each i. If C; is singleton for some i, i.e., C; = {ﬁf}, then
we have ’ﬁ;‘“ = ﬁi‘ such that the optimization problem can
be reduced to a simpler problem. When C; is non-singleton,
it follows from Lemma 1 that the Slater’s condition holds for
that C;. Let F(y) := f(y; 0¥, {(VJ;@))_) +8C(y) +8A().
By [19, Corollary 23.8.1], 6F(y) = {Vf(»)} + Ne(y) +
NA(y). Hence, several operator splitting method based fully
distributed algorithms [4], [8] can be applied to solve (13).

Motivated by [23], we consider the (generalized) Douglas-
Rachford splitting method based distributed scheme. Specif-
ically, define for each i = 1,...,n, fi(y;) = Ji(ﬁi.‘) +
d @) (i =)+ 5 Ly — 0413 and £ () == fi (i) +8Ci (v1).
Hence, the objective function f(y) = >, fi(yi). For any
constant 0 < a < 1 and p > 0, the Douglas-Rachford splitting
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method based scheme is given by: for r € Z,

wt+l — H_A(ZI),

) [Proxpfl+»~+pfn (2w’+1 . Zt) B wt+1:|,

where Prox;, denotes the proximal operator of a proper
lower semicontinuous convex function £, and Il 4 denotes
the Euclidean projection onto A. Since A is the consensus
subspace, it is shown that [8, Section IV] that for any U :=
@, ..., d,) where W; := (u;, (W;j)jen;), W = II4W) is
given by:

u; =

L Y v
Wy = ——— (& + X W) VG Hes (4
I\ &

Furthermore, since f;’s are decoupled, a distributed version of

the above algorithm is given by: for each i = 1,...,n,
ot =2, (152)

ZfH =zl +2a- [Proxpﬁ(2 wl'.Jrl —zf) - w,’-“].
(15b)

Note that the proximal operator in the 2nd equation of (15) is
given by ProxpfA’_(Z wl{H —z}) = argmin yee; Ji(yi)+ % lyi —
(2wf i z! )||§, where C; is the intersection of the polyhedral
set X; and a quadratically constrained convex set. Since f;
is a convex quadratic function, Proxp fA’_(Z wl’.“L1 — zl’.) can be
formulated as a second-order cone program or QCQP and
solved by SeDuMi [27]. See Algorithm 1 for its pseudo-code.

Algorithm 1 Sequential Convex Programming (SCP) and

Douglas-Rachford Splitting Method Based Fully Distributed

Algorithm for p > 2

1: Choose constants 0 < a < 1 and p > 0

2: Solve the problem (11) with ¢ = 0 via a fully distributed
scheme and obtain a solution T'™"

3: Initialize kK = 0, and set an initial point =

ﬁhn

4: while the stopping criteria is not met do

5:  Compute VJ; (ﬁ;‘), Vgis (ﬁf), Vris (ﬁf), and set 70 = ¥
and r = 0.

6: repeat

7: fori=1,...,ndo

8 Compute 7/ using (14), and let w! ! < 7!

9: end for

10: fori =1,...,ndo

11: zl'.+1 <~z 42a- [Proxpﬁ(2 wf-“ — zf) — wl&l]

12: end for

13: t<—t+1

14:  until an accumulation point is achieved
150 Setu*t! = w’ and k < k + 1

16: end while

17: return 0* = uf

Since X is a compact set, the numerical sequence ()
generated by Algorithm 1 always has an accumulation point
denoted by u*. It follows from [17, Theorem 3.4] that under
very mild conditions, U* is feasible and is a KKT point of (7).
Our numerical experiences show that (@) converges to u*
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which is a local minimizer of (7). This coincides with the
observation made in Corollary 2 when ¢ ; and c3,; are small.
Remark 1: When p > 1, the underlying MPC optimization
problem (7) and its locally coupled formulation (11) yield
non-convex optimization problems with complicated objective
functions and constraints due to highly sophisticated closed-
form expressions for a;(u;)’s. Since ¢z ;’s and ¢3;’s are small,
we use suitable approximations, which still lead to a non-
convex programming, are accurate enough for transportation
applications and facilitate numerical computation. The details
of these approximations can be found in [22, Section 5.3].

VI. CONTROL DESIGN AND STABILITY ANALYSIS
OF CLOSED LOoOP DYNAMICS

In this section, we discuss the design of the weight
matrices Q;;, Q¢ and Q. to achieve the closed loop
stability. We focus on the constraint free case in view of
[6, Section 5]. Recall that ¢ = (¢4, ¢5) € R2", where
Qg = (6‘251, A ,Czjn) € Ri and (pf = (03’1, ey C3’n) (S] R'J’r.
Further, ¢3,0 = ¢3,0 = 0 as indicated before.

A. Review of the Closed Loop Stability Analysis Under
Linear Vehicle Dynamics

When ¢ = 0, the nonlinear vehicle dynamics reduces to
the linear vehicle dynamics given by (2), for which the closed
loop stability of the MPC based platooning control has been
analyzed [23, Section 5]. We present a brief review of these
stability results as they pave a way for studying closed loop
stability under nonlinear vehicle dynamics when ||| is small.

Let w(k) := (w(k), ..., w(k+ p —1)). As before, we omit
k when k is fixed. It is shown that under the linear vehicle
dynamics, the objective function is [23, Section 5]

J(w) = %WTHW +w! (G [ZZ/((’;))] - uo(k)g) +7,

where y € R, and the symmetric PD matrix H, the matrix
G and the vector g are given in [23, Section 5]. Define the
matrix K and the vector d as

K:=—[,0--0]H'G e R™?, (16)
d:=[[,0---0]H 'geR"
The closed loop dynamics becomes
dk+ D] _[[heh] [50]g] [2®
Z'(k+1) 0 I I, ' (k)
Ac
‘[zI
7w -a a7
tl,

where Ac represents the closed loop dynamics matrix for
the linear vehicle dynamics. Conditions on Q; s, Q. ¢ and
Qu,s are given in [23, Section 5] such that Ac¢ is Schur
stable. Throughout this section, we assume that for each p,
0Oz, Oy and Q, , satisfying A.3 are such that Ac is Schur
stable.
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B. Reformulation of the Closed Loop Dynamics

Consider the nonlinear vehicle dynamics (1). It follows from
the definitions of z(k), z/(k) and w(k) that fori =1, ..., n,
2
T
zilk+1) = Zi(k)+rz§(k)+7wa,i(k), (18a)

zik + 1) = z;(k) + Twq,i (k) (18b)

where wq,; (k) 1= w; (k)—[ca,i—10?_| (k) —c2,i0? (k)] —[c3,i—1—
c3,i1g. For given (vo(k), uo(k)), k € Z, the equilibrium of
the above discrete-time system is (ze,z,) = (0, 0) such that
Ve,i(k) = vo(k) for all i = 1,...,n. Hence, let w, (k) =
[e2.i—1 — c2,i103(k) + [c3i-1 — ¢3.41g,¥ i = 1,...,n, and
we (k) == (we1(k), ..., wen(k)T. By shifting w(k) from the
time-varying w, (k), we define w(k) := w(k) — w, (k). Further,
define the following functions:

—C2,1
21— 22

|
5

D(gy,) :

C2n—1—C2n
(19)

h(@') == D(py)[(Sh2) o ($:2))], (20)

where E(god) =S, !diag(¢,), and o denotes the Hadamard
product of two vectors in R”. Note that D(¢,;) = D(¢,) =
0 when ¢, = 0. It is shown in [22, Section 6.2] that the
nonlinear vehicle dynamics (1) is described by:

2k + 1) I, oI, 21,
L@+J:{BIJ+%®{5JWD@M]

[0 [0 (00 + 1 ().
7' (k) 1,
We also writeﬁ as E(p ,(Z) to emphasize its dependence on
@,. Note that ho(z') = 0 for any given z’ € R".
Define the following matrices:

A= I:% Tli"i| ,B:= I:T?II”:| . AA(py) = B[0 D(p,)],

n

Ak) := A +vo(k) - AA(@,). 1)

We often write Al (k) as A(vo (k), @4) to stress its dependence
on vg(k) and @ . Let z := (z,7') € R” x R"”. We obtain

2(k + 1) = A(k)z(k) + B (w*(k) + Ty, (z/(k))), (22)

where w4 (k) is an optimal solution to the unconstrained
MPC optimization problem (7) which implicitly depends on
z(k),vo(k) and uo(k). For any fixed ¢, , the closed loop
system given by (22) yields a time-varying nonlinear dynam-
ical system, since & is nonlinear in z’ and vg(k) is time
varying.

When p = 1, the a closed form expression of w, (k) is
derived in [22, Section 6.2]. When p > 1, recall that for any
fixed k € Z+, ug(k +s) = ug(k) foralls =1,...,p—11in
the MPC model. Hence, vo(k + s) = vo(k) + tsuo(k) for all

s=1,..., p—1.Define A(k+s) := A+vo(k+s)-AA(g,) for
alls =0,1,..., p—1. Given A(k+s) withs =0,..., p—1,
define the state transition matrix for any s,s” € {0,..., p}
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with s < s/, CD/;(k—i—s,kA—i—s) =1, and O5(k+ s, k+5) :=
Ak +s — 1) x --- x Ak +5),Vs" > 5. Based upon these
results, we obtain, for any k € Zy and s = 1,..., p,

s—1
2k +5) = Og(k +5,0)z(k) + > Dtk +s,k+i+1)
i=0
s—1
xBO(k+i)+ D Ozk+s.k+i+1)
i=0
X Bhg, (z'(k +i)).

In light of (20) and (23), the following lemma can be
established via an induction argument on s; its proof is
omitted.

Lemma 2: Fix an arbitrary k € Zy. For each
s = 1,...,p, hy,Z'(k + 5)) is a vector-valued func-
tion whose each entry is a multivariate polynomial in
(@' k), ug(k), vo(k), W(k), ..., Wk +s — 1)) and @ .

Further, in view of ug(k 4+ s) = uo(k) for any s > 0 and
a fixed k € Zy, we have foreach s =0,...,p— 1, wk +
s) = wk +s5) —upgtk +s)e; = wk + 5) + we(k +5) —
ug(k)e; = w(k+s)+d(k+s), where d(k+s) := we(k+s)—
ug(k)e;. Here we recall that w, ; (k+5) = [c2,i—1 —cz,,-]v%(k—f—
§) + [e3,i—1 — ¢3,i1g, for each i, where vg(k + s) = vo(k) +
stug(k).

Consider the unconstrained MPC model. Define the follow-

(23)

ing augmented matrices and vector: for s = 1, ..., p,
Q Qw,l
Qg5 = [ o Qz/,s:| ; Qu = ;
Qw,p
d (k)
and a(k) = : . For any fixed k € Z4, the
dk+p—1)

objective function in the MPC model is written as

J(@(k),...,wk+p—1))

=W(k)
p
— %(Zz(k + )7 Qg 52k + s))
s=1
2

+% [W(k) +d(k)]7 0, [W(K) + d(k)].

Substituting the expression for z(k + s) given by (23) into
the objective function J, we obtain the objective function
written as J(W) for a fixed k. It follows from the previous
development and Lemma 2 that J is a polynomial function
in (W, z(k), vg(k), ug(k), @). Moreover, the Hessian of the
objective function J with respect to W is given by

o0J (W)

8W,‘6Wj

HIW) = [ } .= HW, z(k), vo(k), ug(k), ).
i,j

For a fixed k, we write this Hessian as fI(W, Z, 00, Uy, @) to
emphasize its dependence on these variables. Clearly, H is an
analytic, thus a smooth, function, and for any (W, z, v, uo),
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fI(W,z, 0o, 40, @)lp=0 = H, where H is the constant PD
matrix given in Section VI-A. If ¢ = 0, the objective function
J reduces to that for the linear vehicle dynamics whose
corresponding optimal solution is given in Section VI-A as

Wa(z, 00, 40, @)lo=0 = —H (G -z —ug - g).

However, the closed form expression of a critical point or
a local minimizer W, is unavailable for p > 1. Hence,
we consider non-local (or global) implicit functions to express
W, in term of z, vg, ug and @, since the variables z, vg, ug can
be non-local. Toward this end, we exploit global implicit
function theorems [9], [21]. Easily verified conditions are
given in the following theorem; its proof, resembling that
of [9, Theorem 5], exploits the covering map argument
[22, Theorem 6.2].

Theorem 1: Let U € R" be a connected set, and V < R™
be a closed set. Let f:U x V' — R™ be a C"-function with
r>1, where !’ CR" and V' C R™ are open sets containing
U and V respectively. Suppose the following hold:

(1) For some x. € U, there exists exactly one y, € V such

that f (x4, ys«) = 0;

(ii) For any (x,y) € g’f ={,y) el xV : f(x,y) =0},
D, f(x,y) is invertible;

(iii) There is a positive constant p such that ||(Dy f (x, y))f1 II-
1D+ f G Y < p for all (x,y) € G}

Then there exists a unique C" function g : U — V such that

flx,g(x))=0,Vx elU.

Using the above theorem and [22, Proposition 6.1],
we establish a result on global implication function for W,
below.

Proposition 3: [22, Proposition 6.2] Let Uz be a bounded
open convex set in R*", let Uy be a bounded open convex
set containing [ao,min, @o,max), and let Vo be a bounded open
convex set containing [Umin, Vmax). Let Uy be a compact set
in R" containing all W, (z, vg, ug, 0) for all Z € Uy, v € V),
and uog € Uy. Then there exist a positive constant uy > 0 and
a unique smooth function h : Uz x Vo x Uy X Boo (0, u2) — Usy
such that W, = h(z, vg, ug, @) for all (z,vo,ug, @) € Uz X
Vo x Uy x Boo(0, p12).

The above proposition implies that the nonconvex opti-
mization problem min J(W) has a unique local minimizer
W, in Uy for any given (z,vq,u0, 9) € Uz x Vo X Uy X
Boso(0, 112). Hence, for any (z(k), vo(k), ug(k), @) € Uz x
Vo x Uy at each k, Wi(k) = h(z(k), vo(k), uo(k), ¢), and
Wy (k) =[1, 0 --- 0] h(z(k), vo(k), uo(k), @). Moreover, note
that h(z, vg, up,0) = —H_l(G -z — uog) for any fixed
(z,v0,u0) € Uz x V x Uy. Define Aﬁ(z, 00, UQ, P) =
[I,, 0--- O] (h(z, 0o, ug, @) — h(z, v, uo,O)). Since Uz x
Vo X Uy X Boo(0, up) is an open convex set, it fol-
lows from the Mean-value Theorem that for any fixed
(Z:IUO, ug, @) € Uz x Vo xUp x Boo (0, u2), Ah(z, vo, ug, @) =

A Dwﬁ(z,vo,uo,tq))dt - ¢@. Thus there is a constant

x > 0 such that ||Ah(z, vo, uo, @) < x|l@lle for all
(z, vg, ug, @) € Uz x Vo x Uy x Boo(0, u2). Substituting the
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above results to (22), we obtain
2k + 1) = A()z(k) + B (@*(k) + g, (z’(k)))
= [ (A + BK) +00(k) - AA(0g)|ath)
[
Ac
+B (uo(k) -d + AB(z. 0, w0, 9) + Ty, (z’(k))),

where K and d are given by (16), and Ac is given by (17).
This leads to the closed loop dynamics for p > 1:

2k + 1) = (Ac+v0(0) - AA(py))2k)

+B[uo()d + AB@®K), v0(0), uo(K), @) + B, /()

(24)

for all (z, v, ug, @) € Uz x Vo x Uy X Boso(0, o), where Uy
is a bounded open convex set in R?", U is a bounded open
convex set containing [ao,min, @0,max], and Vy is a bounded
open convex set containing [0min, Umax |-

C. Local Input-to-State Stability of the Closed Loop System

We first give a brief overview of (local) input-to-state
stability. Consider the discrete-time system on R”":

x(k+1) = fGek),utk), k), VkeZ., (25

where f : R" x R" x Z4 — R", and f(-,-, k) is continuous
for any fixed k € Z4. Let u := (u(0), u(1), ...) be a sequence
of vectors in R™ that represents an input on Z;. Assume
that f(0,0,k) = O for all k € Zy such that x, = 0 is
an equilibrium of (25) under the O-input, i.e., u = 0. Let
lulloo := sup{llu(k)|l : k € Z4}. Hence, for any u € ¢,
lullooc < oo. For a given initial condition ¢ € R" and an
input function u, let x(k, &, u) denote the trajectory of the
system (25).

Definition 1: The time-varying discrete-time system (25) is
locally input-to-state stable (ISS) if there exist a KL-function
p Ry x Ry — Ry, a K-function y : Ry — R4, and two
positive constants 6y, 6, such that for all & with ||| < 6, and
u € {72 with [Julls < 6y, the following holds:

lxk, &, wll < BUCH k) + 7 (lullso), V¥ k € Zy.

The above definition follows from [11, Definition 3.1] for
global ISS of discrete-time systems. Also see [7], [24]. The
following result establishes local input-to-state stability (ISS)
for the time-varying system (25) [10, Lemma 2.3], which is
extended from the Lyapunov approach for global ISS [12].
Theorem 2: Consider the time-varying discrete-time sys-
tem (25) defined by f : R" x R™ x Z — R". Suppose there
exists a local ISS-Lyapunov function V : R" x Z4 — R4
for the system (25), i.e., there exist two sets Dy = {x €
R*||x|| < r} and Dy, = {u € R"||u| < ry} for some
positive constants r and r,, where r, can be 400, such that:
(1) There exist two Koo-functions o) and ap such that
ar(t) < a2(?),Vt = 0 and a1(|x|) < V(x,k) <
o2(|lx|)) for all x € Dy and all k € Z;
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(ii) There exist a Koo-function a3 and a K-function o such
that V(f (x,u, k), k+1)—=V(x, k) < —az(llx[)+o (lul)
for all x € Dy and u € D, and all k € 7.

Then there exist positive constants 0, and 0, such that:

(i) For any & with ||C|| < 0x and u = (u(k))rez, € U5, with
lalloo <0y, x(k,&,u) € Dy for all k € Zy;

(i) The system (25) is locally input-to-state stable in terms
of the positive constants 0, and 6, given in Definition 1.

We show local input-to-state stability of the closed loop
dynamics (24) for p > 1 below, assuming that the matrix Ac
given in (17) is Schur stable. The case of p =1 is treated in
the similar way; see [22, Theorem 6.4] for details.

Theorem 3: [22, Theorem 6.4] Let p > 1. Suppose the
weight matrices Q; s, Q. s and Qs satisfying A.1 are such
that Ac given in (17) is Schur stable. Then there exist positive
constants p and v such that for all ¢ with ||@llco < u, any
vo(k) € [Vmin, Vmax] and any ug(k) with |ug(k)] < v for all
k € Zy, the closed loop dynamics given by (24) is locally
input-to-state stable.

Proof: For the given bounded open sets {/z containing the
zero vector, Uy containing [ao,min, @0,max], and Vy containing
[Omin, ¥max], the closed loop dynamics is given by (24) as
shown by Proposition 3. Since Ac¢ is Schur stable, there exist
constants k¢ > 0 and r € (0, 1) such that || (A¢)¥|| < xc-rk for
all k € Z,. Consider the time-varying discrete linear system
on R?":

2k +1) = (AC + 0o(k) - AA((pd))z(k), VkeZy. (26)

In view of the expressions of AA(@,) given by (21)
and D(g,;) by (19) and 0 < omn =< wolk) <
bmax for all k € Z4, we deduce that there exists
a positive constant xpaa such that |og - AA(gy)l2 <
KAA - Umax * |@g4lloc, Y00 € Define the

positive constant uz = — In(r) > 0.

[Omin, Vmax]-

Kc - KAA * Umax
Hence, for all ¢, with [l@ llcc < H3, wWe have ka4 + Umax -
loglleo < —% In(r). Then it follows from [35, Theorem 3]
that the discrete linear system (26) is uniformly exponentially
stable for any wvg(k) € [vmin/,\vmax],‘v’k € Z4 and all ¢4
with [l@glles < fi3. Define Ac(k) = Ac + vo(k)AA(py)
for all k € Z,. (Rigorously speaking, it should be written
as Ac (vo(k), @,). For notational simplicity, we write it in this
way.) By [20, Theorem 23.3], there exist a matrix sequence
{P(K)}kez, with P(k) = PT (k) € R*?" for each k and
positive constants ¢, > 0; > 0 and 63 > 0 such that for all
00(k) € [Omin, Vmax], Vk € Z4 and all ¢, wiﬁl loglloo < 13,
011y < P(k) < 021y, and AL (k)P (k + 1)Ac(k) — P(k) <
—031, for all k € Z, where < denotes the positive semi-
definite order. Clearly, || P (k)| < 6, for all k € Z.

Given any vo(k) € [Vmin, bmals VA € Zy and any @,
satisfying [|@,llc < 73, define the function fp, : R*" x R" x
Zy — R as: f, (z,d, k) := Ac(k)z + Bd + Bhy,(2),
where z = (z,z') € R*". Consider the time-varying Lyapunoy
function V : R?" x Z, — R, given by

V(z, k) =z P(k)z, ke Zy. (27)
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TABLE I
PHYSICAL PARAMETERS FOR A HETEROGENEOUS CAV PLATOON WITH A = 60 m

i=1]i=2[i=3 ] i=4 [ i=5[i=6 | i=7 | i=8 | i=9 | i=10
L;(m) 7 7 7 7 7 7 7 7 7 7
ri(s) 121 | 1.155 1.0 1.045 | 1.21 | 1.155 1.0 1.045 | 1.155 | 1.045
@i min(m/s?) | =814 | —7.77 | —6.66 | —7.03 | —8.14 | —7.77 | —6.66 | —7.03 | —7.77 | —7.03
a; max(m/s?) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
c2,:(x10~%) 3.85 | 3.675 | 3.15 | 3.325 | 3.85 | 3.675 | 3.15 | 3.325 | 3.675 | 3.325
c3,,(x1072) | 1.155 | 1.103 | 0.945 | 0.998 | 1.155 | 1.103 | 0.945 | 0.998 | 1.103 | 0.998

In light of AL (k)P(k + 1)Ac(k) — P(k) < —0312,, we have
that for any k € Z,

V(fwd(z,d,k),k +1)—=V(z,k)
< 03l +2[ Aek) 2] PG+ 1)B[d + T, ()]
t [d 4T, ()] BT PG+ 1)B[d 4T, )]

Let 71 := SUPy, | <7 (||AC||2 + Omax - ||AA(‘Pd)||2) > 0.
Hence, ||Ac(k)|| < 1 for all k € Zy. Moreover, it follows
from (20) that there exists a positive constant #» such that

g, @)z < m2- 1@ glloo - 1213 < 12+ @4 lloo - 12113 for all @4
and z. Let 7y := nz(supZEuz ||z||). Therefore, for all z € Uy,
we have

g, ()2 < m2( sup l1zl) - @glloo - 12l =72 - ll9glloo- l1zIl.
Zellg,

Consequently, for all z € Uz, vg(k) € [Omin, Vmax], Vk € Z4,
@, € B(0, u3), and d € R", we have,

[Ack) 2]" Pk + 1)B[d + Ty, ()]

O21|Ac(k) zll2 - | Bll2(Idl2 + llhg, (Z)]I2)

Gl Bll2 - llzll2 - (412 + T2 ll@alloo - IZll2),

IATA

and
[d +Trp, ()] BT P(k + 1)B[d + Ty, ()]
02 IBI3 - d + g, ()3
2051813 - (1413 + (2 l9alloc)” - 1213).

Combining the above results, we deduce that there exists a
constant 3 with 0 < w3 < min(us, u2), where o is given
in Proposition 3, such that for all ||@||co < 13, Z € Uz, vo(k) €
[Umin, Umax], Yk € Zy, and d € R", V(fy, (z,d,k), k +
D= V@k) < —2z3 + 2n30dll2 - lzll2 + nalld]3, where
n3 :=6hn1||Bll2/2, and 54 := 292||B||%. Consequently, for all
lollo < u3, z € Uz, vo(k) € [Vmin, Vmax], VK € Zy, and
d € R", we have, for all k € Z,

V(fe,(2,d, k), k+1)—V(z,k)

IA

IA

205
< —Tnzu% + 213 - lldll2 - lzll2 + 74 - 1413
03 03
= —gnzu% — Enzu% +2m3lld 12 - Nzll2 + nalldll3

O3 5 O 23 2 oo 2
— el = 5 (el = 2 1)+ (G + s el

IA

05, o (213 2
e+ (G2 4 )13,

Define the functionszal () := 0112, oa(t) = 0r12, 03(t) :=
%3;2’ and o (1) := (% + 774)t2. Clearly, these function are
Koo-functions. Let Dz be the largest closed ball centered
at the origin that is contained in Uz (such the closed ball
exists since Uz is a bounded open set containing 0), and
Dy = R". Hence, the function V given in (27) is a local ISS-
Lyapunov function on Dz x Dy for the discrete time system
2k + 1) = fo,(2(k),d(k), k), for all ¢; € Boo(0, u3) and
all vo(k) € [omin, Vmax], Yk € Z4. It follows from Theorem 2
that there exist two positive constants vz and vy such that
for any & with ||&]] < vz and d = (d(k))rez, € % with
ldlleo < va, z(k, &, d) € Ug, for all k € Z,. In view of the
right-hand side of the closed loop dynamics given by (24),
we see that d(k) = ug(k) -d + Aﬁ(z(k), vo(k), uo(k), @) for
all k € Zy, where d is the constant vector given by (16),
and || AR(z, vo, uo, @)l < xll@llo for all (2,00, u0,9) €
Uz x Vo X Uy X Boo(0, 2). For an arbitrary but fixed ¢ €

£y

(0, 1), define the positive constants ug := =4

. (1 —¢e)vg
and v, = min <|a0,min|, ag, max» W
[—a0,min, @0,max] C Up and [upd|| < (1 — e)vy for any
ug with |ug| < v,. (The condition ug € Uy is needed to
derive the closed loop dynamics as shown in Proposition 3.)
Further, for all ¢ with ||@|lcc < w4, ug with |ugl < vy,
00 € [VUmin,Omax] and z € Uz, it 1is easy to show that
|luod + Aﬁ(z, 00, 10, @)|| < vg. It can be further shown via
induction on k that for all ¢ with [|@]lcoc < w4, uo(k) with
lup(k)l < vy, Yk € Zy, vo(k) E_[Umin, vmax], Yk € Zy,
and any ¢ with ||| < vz, z(k,&,d) € Uz and ||[d(k)| =
luo(k) - d + Aﬁ(z(k), vo(k), ug(k), @)|| < vg for all k € Z.
In view of Theorem 2 again, we deduce that the closed loop
dynamics given by (24) is locally input-to-state stable for all
@ with ||@|lcc < p4, 00(k) € [Dmin, Vmax], Yk € Z4, and ug(k)
with ug(k)| <v,, Yk € Z,. O
Remark 2: The above theorem establishes the input-to-state
stability of the entire platoon under the proposed platoon
centered MPC scheme via new techniques that are different
from distributed MPC [34], [37].

min (ﬂa,

). Hence, ug €

VII. NUMERICAL RESULTS
A. Numerical Experiment Setup and Weight Matrix Design

Numerical tests are carried out to evaluate the performance
of the proposed fully distributed schemes and the platooning
control for a possibly heterogeneous CAV platoon. Consider a
heterogeneous CAV platoon of an uncontrolled leading vehicle
labeled by the index O and ten CAVs, i.e., n = 10. The sample
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time 7 = ls, and the speed limits vmax = 27.78 m/s and
Omin = 10m/s. The inhomogeneous values of ¢ ;’s and ¢3;’s,
and other parameters [6], [34], i.e., the vehicle length L;, the
reaction time r;, the acceleration and deceleration limits a; max
and a; min, and the desired spacing A, are given in Table I.
The initial state of each CAV platoon is z(0) =z/(0) =0
and v;(0) = 25m/s for all i = 0,1,...,n. The cyclic-
like graph is considered for the vehicle communication
network, i.e., the bidirectional edges of the graph are
(1,2),(2,3),...,(n—1,n) € £. Following the discussions in
[23, Section 6], we choose the MPC horizon p as 1 < p <5.
The weight matrices are chosen as follows. Let

IS}

:= (38.85,40.2,41.55, 42.90, 44.25, 45.60, 46.95, 48.30,
49.65,51.00) € R'0,

B := (130.61, 136.21, 141.82, 147.42, 153.03, 158.64, 164.24,
169.85, 175.46, 181.06) € R',

¢ = (62,74,90,92, 106, 194,298, 402, 454, 480) € R'°.

Further, let ! = 6a&, B! = B, and ¢t = 0.5 when p=1
When p=2,3,a' =9@—1), ' =8 -1,¢' =0.5& - 1),

0.1368 0.044 -~ 0.0013
d § = - o § = — s —
and « (S_1)4xa,ﬁ (s_1)4xﬂ,§ (s_1)4x
= 0.0228
£,s =2,...,min(p,3). When p = 4,5, a' = W x
5 —
i B 0.044 B ¢ 0.0026 E 4
o =7 X = xX&, s =4,...,p.
9 s _ 1 4 2 (s _ 1)4 2 2 2 p

The diagonal matrices Q. s, Qs and Q, s are written as
Q.5 = diag(e®), Qy s = diag(f’), and Q,,s = diag(¢*),
where o®, B* € R’ and ¢* e R forall s = 1,..., p This
yields the Schur stabel matrix A¢ for each p =1,...,5.

We consider a real-world traffic condition to test the perfor-
mance of the proposed distributed algorithm and platooning
control in a real traffic environment when the leading vehicle
undergoes traffic oscillations. Specifically, we consider Next
Generation Simulation (NGSIM) data on eastbound I-80 in
San Francisco Bay area in California, and the data of position
and speed of a real vehicle, which is treated as a leading vehi-
cle, is used to generate its control input at each k. The length
of the time window is 45s. In addition, to further evaluate
the proposed platooning control in a more realistic setting,
random noise is added to each CAV to simulate dynamical
disturbances, model mismatch, signal noise, communication
delay, and road condition perturbations. In particular, at each
k, the random noise with the normal distribution 0.2 x A/ (0, 1)
is added to the first CAV, and the noise with the normal
distribution 0.1 x A(0, 1) is added to each of the rest of the
CAVs. Here a larger noise is added to the first CAV since there
are more disturbances between the leading vehicle and the first
CAV. See [22, Section 7] for additional numerical results for
other scenarios and different CAV platoons.

B. Performance of the Proposed Fully Distributed Scheme

As indicated in Section V-B, when p = 1, the underlying
MPC optimization problem (11) is a convex QCQP, for which
the fully distributed algorithm developed in [23] is used.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

When p > 1, the optimization problem (11) is noncon-
vex, and the SCP based fully distributed scheme is applied
(cf. Algorithm 1). To apply this algorithm, we discuss the
choices of the smooth functions g; ; and the convex function
ris for the (approximate) nonconvex constraint sets ); and
Z;, where i = 1,...,n; see Remark 1. For j = 1,..., p,
define the function ¢;;(u;) = ov;(k) + r((Spui)j —-j-

€3,i8 — €2, Zi;ol [z),- (k) + r(Spu,-)S]z). The approximate )
is given by Vi = {W|[omin — gi,j(w) < 0, gij(w) —
omax < 0, j=1,..., p}. Define gi,s(ui) ‘= Umin — Qi,j(ui)»
and 7;s(w;)) = 0 for s = 1,...,p; gis(uw;)) = 0, and
ris(p) = —q; j(W;) + omax for s = p+1,...,2p. Then
Vi ={u;|gis() —ris(w) <0, s =1,...,2p}. Similarly,
foreachi=1,...,nands=1,...,p, Z; = {ﬁ,-lglfjs(ﬁ,-)—
rig@) <0, s=1,...,p}, where r; (u;—1,u;) =0, and

g s, w) = (Hi(w—1,w)) ~ Li+r-qis(u)

_#[Qi,s (ui) — l)min]2 — {Zi(k) + A+ j‘[zl/.(k)

26li,min
s—1 .
2(j—1)—1
+12§(J+[ui_1(k+t)—ui(k+t)

_(Cz,i—l [vi-1(k) + 7 (Spui—l)t]z
—ca,i[vik) + T(Spui)t]z) — (c3,i—1 — C3,i)g] }

Furthermore, the Lipschitz constants Lj,’s and Lg, s are
given by v, || HJ;(W;)|> and 0.9||Hg;(;)[l2, where v, =
0.8 for p = 2,3 and v, = 0.9 for p = 4,5 respectively,
and Hf denotes the Hessian of a real-valued smooth func-
tion f. The reasons for each Hessian scaled by these factors
are twofold: (i) the 2-norm of Hessian is conservative; and
(ii) the scaled Hessian leads to faster convergence.

1) Initial Guess Warm-up: For real-time implementation of
Algorithm 1, we exploit the initial guess warm-up technique
for both the linear stage (cf. Line 2) and the inner loop of the
SCP-Douglas-Rachford stage (cf. Lines 6-14). For the former,
see [23, Section 6.2] for its warm-up scheme. We discuss a
warm-up scheme for the latter. Recall that the inner loop solves
the following convex problem: miny_(y)eA Sy fili) +
8C; (y;), where for each i, fi(y;) := J; (ﬁf) + d]T’_ (ﬁf)(yi —

u;) + %Ilyi — ﬁfll%, and C; is the intersection of the box-
constraint set X; and a quadratically constrained convex set;
see Section V-B for details. In the warm-up scheme, we replace
Ci by A&;. The generalized Douglas-Rachford scheme (15) is
used to solve miny—(y)eA > i—; fi(yi) + 8Xi(y;). Since f;
and the box constraint set &; are fully decoupled, solving the
proximal operator based optimization problem in this scheme
becomes solving several decoupled univariate problems of the
form: min,e(c,q) at*+bt+e, where r € R, and a, b,c,d,e € R
are given constants with @ > 0. This problem has a simple
closed-form solution, which considerably reduces computation
load. Numerical tests show that the proposed warm-up scheme
significantly improves computation time and solution quality.

2) Performance of Distributed Schemes: We implement
the proposed fully distributed algorithm via MATLAB on a
computer with 4-cores processor: Intel(R) Core(TM) 17-8550U
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Fig. 1. Platooning control with p =1 and p = 5.

CPU @ 1.80 GHz and RAM: 16.0 GB. This algorithm is
tested for the above-mentioned heterogeneous CAV platoon
for different p’s. The proposed initial guess warm-up schemes
are used with the error tolerance give by 10~ for all the cases.
Moreover, we choose o = 0.9 and p = 0.1 for the prox-
imal operator based Douglas-Rachford scheme. Further, the

20519

Spacing (m)

Time (s)

(a) Spacing: p = 1.

Speed (m/s)
I
7

Al

v

-

R
5

10 20 30 40 50
Time (s)

(b) Vehicle speed: p = 1.

2
s )
E 1
£ | ’M&! \
§ | ‘A"”A
gos &[ LN\ ‘Q.'n .)
8 | |
g Of\ 'II ]
505 ‘“l
®
5 A |l
] |
S5 |

2

0 10 20 30

Time (s)

(c) Control input: p = 1.

Spacing (m)

Speed (m/s)

Time (s)

(e) Vehicle speed: p =5

o

°
o

Acceleration/Deceleration (m/s?)

o«

)
o
5
N
S

30
Time (s)

(f) Control input: p = 5.

Fig. 2. Platooning control subject to noises with p =1 and p = 5.

stopping criteria are characterized by the minimum of absolute
and relative errors of two neighboring iterates for p = 2,3,
whereas for p = 4,5, these criteria are characterized by
absolute errors of two neighboring iterates. The list of error
tolerances for the outer and inner loop at different p’s is
shown in Table II. Note that there is no inner loop for p = 1,
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TABLE 11
ERROR TOLERANCES FOR OUTER AND INNER LOOPS AT DIFFERENT MPC HORIZONS

MPC horizon p=1 p=2 p=3 p=4 p=>5
Outer loop 25x 1072 [ 65x 1073 [ 7.5x 1072 | 1.0x 1072 | 1.25 x 10~ 2
Inner loop NA 40x1073 | 5.0x 1073 [ 75 x 1073 | 1.0 x 102
TABLE III
COMPUTATION TIME PER CAV (sec)

MPC horizon p=1 p=2 p=3 p=4 p=>5

Mean 0.1408 0.2528 0.2398 0.2883 0.2882

Variance 4.09x 107% [ 6.3x 1073 | 491 x10~2 | 9.73x 10~° | 0.0135
TABLE 1V Besides, it is seen from Figure 2 that there are more notice-
MAXIMUM STEADY STATE ERROR OF SPACING (m) able spacing deviations from the desired A for all CAVs due to
MPC horizon | p =1 =2 | p=3 | p=42 | p=5 the noises. However, the variation of Sp | is within 1.2 m, and
Error 0.0431 | 0.1277 | 0.1369 | 0.1363 | 0.1538 the maximum deviation of each S;_;; with i > 2 is less than

since its underlying problem is solved via the fully distributed
scheme given in [23]. A summary of mean and variance of
computation time per CAV is displayed in Tables III.

The numerical results show that for each p, the mean
computation time is less than 0.289 s, which is less than the
reaction time r; or sample time 1s, with overall small
variances. We conclude that the proposed distributed scheme
is suitable for real-time computation of a heterogenous CAV
platoon with satisfactory numerical precision.

C. Performance of CAV Platooning Control

We evaluate the closed loop performance of the proposed
CAV platooning control. Toward this end, we consider the
spacing between two neighboring vehicles (i.e., Si—1,;(k) =
xi—1(k) —xi(k) = zi (k) + A), the vehicle speed v; (k), and the
control input u;(k), i =1,...,n.

When (c2,i,¢3,;) # 0 and up(k) = 0 and vp(k)
00,00 > 0 for all large k, it is observed from the numerical
tests that when the CAV platoon reaches its steady state
(zss, 245) € R* x R, ie., (z(k), z/(k)) becomes the constant
vector (zys, 24,) for all large k, zs is nonzero. Physically, the
nonzero steady state is due to nonlinear vehicle dynamics and
the PD-like control structure of the MPC. An analysis for
p = 1 shows that z;; = —2Q;1wae,oo, where w, o0 7# 0
is defined in the same way as that of w,.(k) by setting
vo(k) = 00,00 see [22, Section 7.3] for details. Similar results
are obtained for p > 2.

We display the closed loop performance only for p = 1 and
p =5 because of the length limit; see Figure 1 for the noise
free case and Figure 2 for the noise case, respectively. Figure 1
shows that Sp | yields the largest spacing variations with the
maximum magnitude less than or equal to 0.3 m; the other
spacings S;—1,;, i = 2,...,10 demonstrate nearly constant
deviations with maximum magnitude less than 0.14 m, in spite
of the oscillation of Sp 1. Further, the spacings S;_1;, i =
2, ..., 10 almost reach steady states between 5s and 25s and
after k = 35. The maximum steady state errors are given
in Table IV. It is seen that the maximum steady state
error often appears in Sy and the largest relative error
leslle < 0.379%.

0.4 m. Particularly, the deviations of S;_1;, i =3,...,10 are
fairly small starting from 5s, and the profiles of the CAV
speed and control show an almost “coordinated” motion. Other
numerical results show that the state or control constraints can
be effectively handled by the proposed platooning control.

Consequently, the proposed platooning control effectively
mitigates traffic oscillations of the spacing and vehicle speed
of the CAV platoon with small steady state errors, even
under external perturbations and state or control constraints.
Additional numerical studies show that the current control
scheme outperforms the linear controller developed in [23] on
CAV platoons with non-negligible nonlinear dynamic effects
and/or inhomogeneities.

VIII. CONCLUSION

This paper develops a nonconvex, fully distributed optimiza-
tion based MPC scheme for platooning control of a hetero-
geneous CAV platoon under the nonlinear vehicle dynamics.
Various new techniques are exploited to address challenges
induced by the nonlinear vehicle dynamics, including distrib-
uted computation for the coupled nonconvex MPC optimiza-
tion problem, and stability analysis of time-varying nonlinear
closed loop dynamics. We apply locally coupled optimiza-
tion and sequential convex programming for distributed algo-
rithm development, and global implicit function theorems and
Lyapunov theory for input-to-state stability are invoked for
stability analysis. Numerical tests illustrate the effectiveness of
the proposed scheme and platooning control. Future research
topics include extensions of the current distributed scheme
and control design to more sophisticated vehicle dynamics
and a possibly time-varying or non-uniform communication
topology subject to communication delays or missing data.
Moreover, directed networks will be considered for distributed
scheme development.
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