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Nonconvex, Fully Distributed Optimization
Based CAV Platooning Control Under

Nonlinear Vehicle Dynamics
Jinglai Shen , Senior Member, IEEE, Eswar Kumar Hathibelagal Kammara , and Lili Du , Member, IEEE

Abstract— CAV platooning technology has received consider-
able attention, driven by the next generation smart transportation
systems. This paper considers nonlinear vehicle dynamics and
develops fully distributed optimization based CAV platooning
control schemes via the platoon centered MPC approach for
a possibly heterogeneous CAV platoon. The nonlinear vehicle
dynamics leads to major difficulties in distributed algorithm
development and control analysis. Specifically, the underlying
MPC optimization problem is nonconvex and densely coupled.
Further, the closed loop dynamics becomes a time-varying non-
linear system with non-vanishing external perturbations, making
stability analysis rather complicated. To overcome these diffi-
culties, we formulate the underlying MPC optimization problem
as a locally coupled, albeit nonconvex, optimization problem and
develop a sequential convex programming based fully distributed
scheme for a general MPC horizon. Such a scheme can be
effectively implemented for real-time computing using operator
splitting methods. To analyze the closed loop stability, we apply
various tools from global implicit function theorems, stability of
linear time-varying systems, and Lyapunov theory for input-to-
state stability to show that the closed loop system is locally input-
to-state stable uniformly in all small coefficients pertaining to the
nonlinear dynamic effects. Numerical tests on a heterogeneous
CAV platoon in a real traffic condition illustrate the effectiveness
of the proposed method.

Index Terms— Connected and autonomous vehicle, car fol-
lowing control, distributed algorithm, nonconvex optimization,
input-to-state stability, Lyapunov stability theory.

I. INTRODUCTION

INSPIRED by the next generation smart transportation
systems, connected and autonomous vehicle (CAV) tech-

nologies emerge and offer tremendous opportunities to reduce
traffic congestion and improve road safety and traffic effi-
ciency, through innovative traffic flow control and operations.
Particularly, vehicle platooning technology links a group of
CAVs through cooperative acceleration or speed control to
improve system efficiency and safety. This technology allows
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adjacent group members of a CAV platoon to travel safely
at a higher speed with smaller spacing. It will increase lane
capacity, improve traffic flow efficiency, and reduce conges-
tion, emission, and fuel consumption [1], [13].
Extensive research on CAV platooning control has been

conducted, and many approaches have been proposed, e.g.,
adaptive cruise control (ACC) [14], [16], [18], [29], [36], coop-
erative adaptive cruise control (CACC) [25], [26], [28], [33],
and platoon centered vehicle platooning control [5], [6],
[30], [31]. The ACC and CACC approaches aim to improve
an individual vehicle’s safety and mobility as well as string
stability instead of system performance of the entire platoon.
On the other hand, the recently developed platoon centered
approach seeks to optimize the platoon’s transient traffic
dynamics for a smooth traffic flow and to achieve stability and
other desired long-time dynamical behaviors. This approach
can significantly improve system performance and efficiency
of the entire platoon [6], [30]. Despite this advantage, the pla-
toon centered platooning approach often encounters large-scale
optimization or optimal control problems that require efficient
numerical solvers for real-time computation [30]. Distributed
optimization techniques provide a favorable solution for the
platoon centered approach. Supported by portable computing
capability of each vehicle and vehicle-to-vehicle communica-
tion [32], distributed computation can handle high computation
load efficiently, is more flexible to communication network
topologies, and is more robust to communication delays or
network malfunctions [32]. In this paper, we focus on platoon
centered CAV platooning via distributed optimization. It is
worth noting that a platoon centered CAV platooing control
is a centralized control method although its computation is
distributed, i.e., each CAV computes its own control input in
a distributed manner [23]. Hence, this method is different from
decentralized control in control engineering [2], [3], [34], [37].
Especially, the platoon centered method focuses on stability of
the entire platoon instead of stability of individual vehicles and
their interactions, e.g., string stability [2], [37].
Various distributed control or optimization schemes have

been proposed for CAV platooning [30], [32], [33], [37]. These
schemes can be classified into two types: partially distributed
schemes, and fully distributed schemes. Partially distributed
schemes are referred to as those schemes that either require
all vehicles to exchange information with a central component
for centralized data processing or perform centralized com-
putation in at least one step [15], whereas fully distributed
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schemes do not require centralized data processing or carry out
centralized computation through the entire schemes [23]. The
former type includes [5], [6]. The second type includes the
recent paper [23], which develops fully distributed schemes
for CAV platooning under the linear vehicle dynamics.
Compared with partially distributed schemes, fully distributed
schemes impose less restrictions on vehicle communication
networks and can be easily implemented on a wide range of
networks [23].
In spite of the abovementioned progress, most of the exist-

ing research in the platoon centered approach considers the
linear vehicle dynamics [5], [6], [23], [30]. Although the linear
vehicle dynamics is suitable for small vehicles, nonlinear
dynamic effects, e.g, aerodynamic drag, friction, and rolling
resistance, play a non-negligible role in trucks, heavy duty
vehicles, and other types of CAVs. Motivated by the lack
of research for nonlinear vehicle dynamics in the platoon
centered approach, this paper aims to develop fully distributed
optimization based, platoon centered CAV platooning under
nonlinear vehicle dynamics over a general vehicle communi-
cation network. To achieve this goal, we propose a p-horizon
MPC model subject to the nonlinear vehicle dynamics of the
CAVs and various physical or safety constraints. Several new
challenges arise for the MPC horizon p ≥ 2 when the nonlin-
ear vehicle dynamics is considered. First, the underlying MPC
model gives rise to a densely coupled, nonconvex optimization
problem, where both the objective function and constraints
are nonconvex. This is very different from the linear vehicle
dynamics treated in [23], for which a convex MPC model
is obtained so that various convex distributed optimization
schemes can be used. Second, a local optimal solution to
the MPC is characterized by a highly sophisticated nonlinear
equation and does not attain a closed form expression. Hence,
the closed loop system is defined by a time-varying nonlinear
dynamical system, whose right-hand side has no closed form
expression, subject to non-vanishing external disturbances.
These pose a difficulty in closed loop stability analysis and
design. To address these challenges, we exploit various new
techniques for distributed algorithm development and control
analysis and design.
The major novelties and main contributions of this paper

are summarized as follows:
(1) Distributed algorithm development. To develop fully dis-

tributed schemes for the nonconvex MPC optimization prob-
lem when p ≥ 2, we first formulate the underlying densely
coupled MPC optimization problem as a locally coupled,
albeit nonconvex, optimization problem using a decomposition
method recently developed for the linear CAV dynamics [23].
Furthermore, we propose a sequential convex programming
(SCP) [17] based distributed scheme to solve the locally
coupled optimization problem. This SCP based scheme solves
a sequence of convex, quadratically constrained quadratic
programs (QCQPs) that approximate the original nonconvex
program at each iteration; such a convex QCQP can be effi-
ciently solved using (generalized) Douglas-Rachford method
or other operator splitting methods [4] in the fully distributed
manner. The SCP based distributed scheme converges to

a stationary point, which often coincides or is close to an
optimal solution, under mild assumptions.
(2) Closed loop stability analysis. To analyze the closed

loop dynamics, we first formulate the closed loop system as a
tracking system defined by a time-varying, nonlinear dynami-
cal system subject to non-vanishing external disturbances. The
right-hand side of this nonlinear dynamical system depends on
a local optimal solution to the underlying MPC optimization
problem, which does not attain a closed-form expression.
By exploiting global implicit function theorems, we show that
this (local) optimal solution is an implicit smooth function of
state variables for all sufficiently small parameters pertaining
to the nonlinear dynamic effects. We then apply stability
theory of linear time-varying systems and Lyapunov theory for
input-to-state stability to show that for all sufficiently small
parameters pertaining to the nonlinear dynamic effects, the
closed loop system is locally input-to-state stable provided that
the corresponding linear closed loop dynamics under the linear
vehicle dynamics (or equivalently when the abovementioned
parameters are zero) is Schur stable.
(3) Numerical implementation for real-time computation.

For real-time implementation of the proposed fully distributed
schemes, initial guess warm-up techniques are developed.
Besides, a further analysis shows that steady state errors of
spacing exist in the close loop dynamics but can be made small
by choosing suitable weights in the MPC model while ensuring
the input-to-state stability and satisfactory performance of
transient dynamics. Numerical tests have been carried out for
a heterogeneous CAV platoon in a real traffic condition. The
numerical results illustrate the effectiveness of the proposed
distributed scheme and CAV platooning control under the
nonlinear vehicle dynamics.
The paper is organized as follows. Section II introduces

the nonlinear vehicle dynamics and constraints, and vehicle
communication networks. Sequential feasibility and the con-
straint sets are discussed in Section III. A MPC model is
proposed in Section IV and is formulated as a nonconvex
constrained optimization problem. Section V develops sequen-
tially convex programming based fully distributed schemes for
the densely coupled nonconvex MPC optimization problem.
Control design and closed loop stability analysis is carried out
in Section VI, and numerical results are given in Section VII
with conclusions made in Section VIII. Due to the paper length
limit, most of the proofs and some technical details are omitted
and can be found in the online version [22] of the paper.

II. VEHICLE DYNAMICS, CONSTRAINTS, AND

COMMUNICATION TOPOLOGY

Consider a platoon consisting of heterogeneous vehicles
(e.g., cars and trucks) on a roadway, where the (uncontrolled)
leading vehicle is labeled by the index 0 and its n following
CAVs are labeled by the indices i = 1, . . . , n, respectively.
Let xi , vi denote the longitudinal position and speed of the
i th vehicle, respectively. Let τ > 0 be the sampling time, and
each time interval is [kτ, (k+1)τ ) for k ∈ Z+ := {0, 1, 2, . . .}.

We first introduce the following nonlinear vehicle dynamical
model which captures aerodynamic drag, friction, and rolling
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resistance [34]:

xi (k + 1) = xi (k) + τvi (k) + τ 2

2
ai (k), (1a)

vi (k + 1) = vi (k) + τai (k), (1b)

where ai (k) := ui (k) − c2,i · v2i (k) − c3,i · g, ui (k) denotes
the desired driving/braking acceleration treated as the control
input, c2,i ·v2i (k) characterizes the deceleration due to aerody-
namic drag with the coefficient c2,i > 0, and c3,i ·g character-
izes friction and rolling resistance with g = 9.8m/s2 being the
gravitational constant and c3,i > 0 being the rolling friction
coefficient. For different vehicles, the coefficients c2,i , c3,i can
be different.
The coefficients c2,i and c3,i in model (1) are usually small

for certain types of vehicles or road conditions. For example,
c2,i typically ranges from 2.5×10−4/m to 4.5×10−4/m, and
c3,i typically ranges from 0.006 to 0.015 [34]. Since these
coefficients are small, the nonlinear terms in (1) are often
neglected. This yields the following double-integrator model
for the linear vehicle dynamics:

xi (k + 1) = xi (k) + τvi (k) + τ 2

2
ui (k), (2)

vi (k + 1) = vi (k) + τui (k).

The model (2) is suitable for small-size passenger cars, while
model (1) can be used for medium-size or large-size vehicles,
e.g., trucks and heavy-duty vehicles.

State and control constraints. Each vehicle is subject to
important state and control constraints. For any i = 1, . . . , n,

(i) Control constraint: ai,min ≤ ui ≤ ai,max, where ai,min < 0
and ai,max > 0 are pre-specified acceleration or deceler-
ation bounds for the i th vehicle;

(ii) Speed constraint: vmin ≤ vi ≤ vmax, where 0 ≤ vmin <
vmax are pre-specified bounds on longitudinal speed for
the i th vehicle;

(iii) Safety distance constraint: this constraint guarantees suf-
ficient spacing between neighboring vehicles to avoid
collision. The safety distance constraint is given by:

xi−1 − xi ≥ Li + ri · vi − (vi − vmin)
2

2ai,min
, (3)

where Li > 0 is a constant depending on vehicle length,
and ri > 0 is the reaction time of vehicle i .

In the above constraints, the acceleration/decelerations bounds
as well as the vehicle length Li and the reaction time ri can be
different for different types of vehicles. Note that constraints
(i) and (ii) are decoupled across the vehicles, whereas the
safety distance constraint (iii) is state-control coupled. This
yields challenges to distributed computation. Further, the lead-
ing vehicle is subject to the similar acceleration and speed
constraints, i.e., a0,min ≤ u0 ≤ a0,max and vmin ≤ v0 ≤ vmax,
where a0,min < 0 < a0,max.

Communication network topology. We consider a general
communication network whose topology is modeled by a
graph G(V, E), where V = {1, 2, . . . , n} is the set of nodes
with the i th node corresponding to the i th CAV, and E is the
set of edges connecting two nodes in V . Let Ni denote the

set of neighbors of node i , i.e., Ni = { j | (i, j) ∈ E}. The
following assumption is made throughout the paper:
A.1 The graph G(V, E) is undirected and connected. Further,

two neighboring vehicles form a bidirectional edge of the
graph, i.e., (1, 2), (2, 3), . . . , (n − 1, n) ∈ E .

The setting given by A.1 includes many widely
used communication networks of CAV platoons, e.g.,
immediate-preceding, multiple-preceding, and preceding-and-
following [34]. We also assume that the first CAV can receive
x0, v0 and u0 from the leading vehicle.

III. SEQUENTIAL FEASIBILITY AND

PROPERTIES OF CONSTRAINT SETS

The constraint set of the underlying MPC optimization
problem at time k (cf. Section IV) depends on the position and
speed of the vehicles at times 0, 1, . . . , k − 1. A fundamental
question is whether the constraint set is nonempty at each k
along a system trajectory for any feasible initial condition,
provided that the leading vehicle satisfies the acceleration
and speed constraints for all k ∈ Z+. If the answer is
affirmative, the system is sequentially feasible [6], which has
been established for the linear vehicle dynamics [6]. We show
it for the nonlinear vehicle dynamics (1) below.
Given (xi , vi )

n
i=0 and u0, we introduce the following con-

straint set on the control u subject to the nonlinear vehicle
dynamics and the state and control constraints:
W((xi , vi )

n
i=0, u0) :=

{
u ∈ R

n | ai,min ≤ ui ≤ ai,max,

vmin ≤ vi + τai (ui ) ≤ vmax, hi (u) ≤ 0, i = 1, . . . , n
}
,

where the function hi is given by

hi (u) := Li + ri (vi + τai (ui )) − (vi + τai (ui ) − vmin)
2

2ai,min

+(xi − xi−1) + τ (vi − vi−1) + τ 2

2
[ai (ui ) − ai−1(ui−1)],

and ai (ui ) := ui − c2,iv2i − c3,i g for each i = 0, 1, . . . , n. The
sequential feasibility holds if W((xi , vi )

n
i=0, u0) is nonempty

for any feasible (xi , vi )
n
i=0 and u0, i.e., a0,min ≤ u0 ≤ a0,max,

vmin ≤ v0 ≤ vmax, vmin ≤ v0 + τu0 ≤ vmax, vmin ≤ vi ≤ vmax

and pi((xi , vi )
n
i=0) := Li+rivi− (vi−vmin)

2

2ai,min
+(xi−xi−1) ≤ 0 for

each i = 1, . . . , n.
Proposition 1: [22, Proposition 3.1] Consider the nonlin-

ear vehicle dynamics given by (1). Suppose the nonnegative
constants c2,i , c3,i are such that c2,iv2max + c3,i g ≤ ai,max and
ri ≥ τ for each i = 1, . . . , n. Then the system is sequentially
feasible for an arbitrary feasible initial condition.
It is also shown in [22, Proposition 3.2] that under mild

assumptions, the constraint set has nonempty interior. This
property is critical for the Slater’s constraint qualification in
optimization. In light of this result, we make the following
assumption throughout the rest of the paper:
A.2 For each i = 1, . . . , n, the nonnegative constants c2,i , c3,i

satisfy c2,iv2max + c3,i g < ai,max and the reaction time ri

satisfies ri ≥ τ . Further, (v0(k), u0(k)) is feasible with
v0(k) > vmin for all k ∈ Z+.

Under this assumption, the constraint set of a p-horizon MPC
model has nonempty interior; see Corollary 1.
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IV. MODEL PREDICTIVE CONTROL

FOR CAV PLATOONING

We consider the model predictive control (MPC)
[23, Section 3] approach for CAV platooning under the
nonlinear vehicle dynamics. Let � be the desired constant
spacing between two adjacent vehicles, and (x0, v0, u0) be
the position, speed, and control input of the leading vehicle,
respectively. Define (i) the relative spacing error z(k) :=(
x0 − x1 − �, . . . , xn−1 − xn − �

)
(k) ∈ R

n ; (ii) the relative
speed between adjacent vehicles z′(k) := (

v0 − v1, . . . ,
vn−1 − vn

)
(k) ∈ R

n; and (iii) the control input u(k) :=(
u1, . . . , un

)
(k) ∈ R

n . Further, let wi (k) := ui−1(k) − ui (k)
for each i = 1, . . . , n, and w(k) := (

w1, . . . , wn
)
(k) ∈ R

n ,
representing the difference of control input between adjacent
vehicles. Hence, for any k ∈ Z+, u(k) = −Snw(k)+u0(k) ·1,
where 1 is the vector of ones, and Sn is an n × n lower
triangular matrix with (Sn)i, j = 1 for all i ≤ j . Hence
S−1

n is such that (S−1
n )i,i = 1,∀ i , (S−1

n )i,i+1 = −1 for all
i = 1, . . . , n − 1, and the other elements of S−1

n are zero.
Given p ∈ N, the p-horizon MPC control is determined

by solving the following constrained optimization problem at
each k ∈ Z+, involving all vehicles’ control inputs for given
feasible state (xi(k), vi (k))n

i=1 and (v0(k), u0(k)) at time k
subject to the nonlinear vehicle dynamics (1):

minimize J (u(k), . . . , u(k + p − 1)) := (4)

1

2

p∑
s=1

(
τ 2uT (k + s − 1)S−T

n Qw,s S−1
n u(k + s − 1)

+zT (k + s)Qz,s z(k + s) + (z′(k + s))T Qz′,sz′(k + s)
)

subject to: for each i = 1, . . . , n and s = 1, . . . , p, ai,min ≤
ui (k + s − 1) ≤ ai,max, vmin ≤ vi (k + s) ≤ vmax, and

xi−1(k + s) − xi (k + s) ≥ Li + ri · vi (k + s)

− (vi (k + s) − vmin)
2

2ai,min
,

where Qz,s , Qz′,s and Qw,s are n × n symmetric positive
semidefinite weight matrices. We assume that u0(k + s) =
u0(k) for all s = 1, . . . , p − 1 and use these u0(k + s)’s and
the vehicle dynamics model (1) to predict (x0(k+s+1), v0(k+
s + 1)) for s = 1, . . . , p − 1. See [23, Remark 3.1] for the
interpretation of the three terms in the objective function J .
To develop fully distributed schemes for general vehicle net-

work topologies and to facilitate control design and analysis,
we make the following assumption on the weight matrices
Qz,s , Qz′,s , and Qw,s through the rest of the paper:
A.3 For each s = 1, . . . , p, Qz,s and Qz′,s are diagonal and

positive semidefinite (PSD), and Qw,s is diagonal and
positive definite (PD).

It is shown below that the constraint set of the p-horizon
MPC model has nonempty interior at each k for any p.

Corollary 1: [22, Corollary 4.1] Suppose A.2 holds. Then
for any p ∈ N, the constraint set of the p-horizon MPC
optimization problem (4) has nonempty interior at each k.

A. Constrained Optimization Model Under the Nonlinear
Vehicle Dynamics

We discuss the MPC model (4) under the nonlinear vehicle
dynamics (1) with the parameters c2,i and c3,i . Define the
parameter vectors ϕd := (c2,1, . . . , c2,n) ∈ R

n+ and ϕ f :=
(c3,1, . . . , c3,n) ∈ R

n+, where the subscripts d and f denote
the drag and friction respectively. Let ϕ := (ϕd ,ϕ f ) ∈ R

2n+ .
We set c2,0 = c3,0 = 0 as u0(k) is the actual acceleration of
the leading vehicle.
Consider the MPC model (4) at a fixed time k ∈ Z+.

Let u(k) := (u1(k), . . . , un(k)) ∈ R
np with ui (k) :=

(ui (k), . . . , ui (k + p − 1)) ∈ R
p . Recall that for each i =

1, . . . , n and j = 0, . . . , p − 1,

ai
(
k + j, ui(k), . . . , ui (k + j)

) = ui (k + j) − c2,iv
2
i (k + j)

−c3,i g,

where we note that vi (k + j) depends on ui (k), . . . ,
ui (k + j − 1) for j ≥ 1. Specifically, for p > 1,

ai (k, ui (k)) = ui (k) − c2,iv
2
i (k) − c3,i g,

ai (k + 1, ui (k), ui (k + 1)) = ui (k + 1)

−c2,i
[
vi (k) + τai (k, ui (k))

]2 − c3,i g,

...
...

...

ai
(
k + p − 1, ui (k), . . . , ui (k + p − 1)

) = ui (k + p − 1)

−c2,i
[
vi (k) + τ

p−2∑
s=0

ai (k + s, ui (k), . . . , ui (k + s))
]2

−c3,i g.

By slightly abusing the notation, we may denote each
ai
(
k + j, ui(k), . . . , ui (k + j)

)
by ai (k + j, ui(k)).

Define for each i = 1, . . . , n and j = 0, 1, . . . , p − 1,

bi (k + j, ui−1(k), ui (k)) := ai−1(k + j, ui−1(k))

−ai (k + j, ui (k)),

where a0(k+ j, u0(k)) := u0(k) for all j = 0, 1, . . . , p−1 due
to u0(k) := u0(k) · 1. It follows from the nonlinear vehicle
dynamics (1) that for each i = 1, . . . , n and j = 1, . . . , p,

zi (k + j) = zi (k) + jτ z′
i(k) (5)

+τ 2
j−1∑
s=0

2( j − s) − 1

2
bi(k + s, ui−1(k), ui (k)),

z′
i (k + j) = z′

i (k) + τ

j−1∑
s=0

bi (k + s, ui−1(k), ui (k)). (6)

For a fixed k ∈ Z+, define for each i =
1, . . . , n, ai (ui (k)) := (

ai
(
k, ui (k)

)
, ai

(
k + 1, ui (k), ui (k +

1)
)
, . . . , ai

(
k + p − 1, ui (k), . . . , ui (k + p − 1)

))
. In what

follow, we often omit k in ui (k) when k is fixed. Further, define
the function a : Rnp → R

np as a(u) := (
a1(u1), . . . , an(un)

)
.

Note that if ϕ = (ϕd ,ϕ f ) = (c2,i , c3,i )n
i=1 = 0, then a(u) = u

for all u ∈ R
np . We introduce more notation. Define the

following matrices: Qw := diag
(

Qw,1, . . . Qw,p
) ∈ R

np×np ,
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and S−1 := diag
(

S−1
n , . . . , S−1

n︸ ︷︷ ︸
p−copies

) ∈ R
np×np . Further, let

E ∈ R
np×np be the permutation matrix such that⎡

⎢⎢⎢⎣
u(k)

u(k + 1)
...

u(k + p − 1)

⎤
⎥⎥⎥⎦ = E

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ = Eu.

Using these matrices, it is easy to verify that the fol-
lowing term in the objective function J in (4) satisfies⎛
⎜⎝S−1

⎡
⎢⎣

u(k)
...

u(k + p − 1)

⎤
⎥⎦
⎞
⎟⎠

T

Qw

⎛
⎜⎝S−1

⎡
⎢⎣

u(k)
...

u(k + p − 1)

⎤
⎥⎦
⎞
⎟⎠ =

uT � u, where � := ET S−T QwS−1E ∈ R
np×np is symmetric

PD under A.3. Thus the objective function J becomes

J (u) = τ 2

2
uT � u

+1

2

[ p∑
s=1

zT (k + s)Qz,s z(k + s)

+(z′(k + s))T Qz′,s z′(k + s)
]

= τ 2

2
aT (u)� a(u) + τ 2

2

(
uT �u − aT (u)�a(u)

)
+1

2

[ p∑
s=1

zT (k + s)Qz,s z(k + s)

+(z′(k + s))T Qz′,s z′(k + s)
]
.

In light of the expressions for z(k + j) and z′(k + j) in
(5)-(6), we have, via the similar argument in [23, Section 3.1],

J (u) = 1

2
aT (u)Wa(u) + cT a(u) + γ

+τ 2

2

(
uT �u − aT (u)�a(u)

)
,

where W ∈ R
np×np , c ∈ R

np , and γ ∈ R. In fact, W =
ET S−T �S−1E for a symmetric PSD matrix � whose blocks
are diagonal, and W is PD under A.3; see [23, Section 3.1]
for details. Besides, the linear term in J (u) can be written as
cT a(u) = ∑n

i=1 cT
Ii

ai (ui ), where cIi is the subvector of c
corresponding to ai (ui ). By [23, Lemma 3.2], the subvector
cIi depends only on zi (k), z′

i (k), zi+1(k), z′
i+1(k)’s for i =

1, . . . , n − 1, cIn depends only on zn(k), z′
n(k), and only

cI1 depends on u0(k). These properties are important for
developing fully distributed schemes later on.
To characterize the constraints, let the matrix Sp ∈ R

p×p

be defined in the same way as is Sn with n replaced by p,
and (Spui )0 := 0. Recall that for each i = 1, . . . , n and j =
1, . . . , p, vi (k+ j) = vi (k)+τ

∑ j−1
s=0 ai (k+s, ui (k)) = vi (k)+

τ
(
Sp ai (ui )

)
j . Further, xi−1(k + j)−xi(k + j) = zi (k + j)+�

depends only on ui (k) and ui−1(k) as shown in (5). Hence,
we see that for each i = 1, . . . , n and each j = 1, . . . , p, the

safety distance constraint is given by:(
Hi(ui−1(k), ui (k))

)
j := Li + ri · vi (k + j)

− (vi (k + j) − vmin)
2

2 ai,min
− [xi−1(k + j) − xi (k + j)] ≤ 0.

Note that H1(·) depends only on u1(k) although it is written
in the above form for notational convenience. Combining the
above results and setting γ ≡ 0, the MPC model (4) is
formulated as the following optimization problem:

minJ (u)= 1

2
aT (u)

(
W − τ 2�

)
a(u)+ cTa(u)+ τ 2

2
uT�u,

s.t. ui ∈ Xi , vmin ≤ vi (k) + τ
(
Spai (ui )

)
s ≤ vmax,

(Hi(ui−1,ui ))s ≤ 0,∀ i = 1, . . . , n, s = 1, . . . , p,

(7)

where Xi := {ui ∈ R
p | ai,min1 ≤ ui ≤ ai,max1} for each

i = 1, . . . , n. It can be shown via the expressions of W and
� given in [23, Section 3.1] that W − τ 2� is PSD. When
p = 1, (7) is a convex optimization problem. whereas when
p > 1, (7) yields a nonconvex optimization problem. Since J
is continuous, each Xi is compact, and the other constraints are
defined by continuous functions, (7) has a solution. Moreover,
the objective function J is densely coupled, and the safety
distance constraint function

(
Hi(ui−1, ui )

)
j is locally coupled

with its neighboring vehicles. This coupling structure, together
with the nonconvexity of (7), leads to many challenges in
developing fully distributed schemes.

V. FULLY DISTRIBUTED ALGORITHMS FOR COUPLED

NONCONVEX MPC OPTIMIZATION PROBLEM

In this section, we develop fully distributed algorithms
for solving the underlying coupled, nonconvex optimization
problem (7) at each time k ∈ Z+ when p > 1. To achieve this
goal, various new techniques are exploited: the formulation
of locally coupled, albeit nonconvex, optimization, sequential
convex programming, and operator splitting methods.

A. Formulation of MPC Optimization Problem as a Locally
Coupled Optimization Problem

Since the safety distance constraint of each vehicle i is
coupled with its neighboring vehicle (i − 1) whereas the
acceleration and velocity constraints are decoupled, the con-
straints of the optimization problem (7) are locally coupled [8].
Motivated by distributed computation for locally coupled con-
vex optimization [8], [23], we show that (7) can be formulated
as a locally coupled nonconvex optimization problem.
The framework of a locally coupled optimization problem

requires that both its objective function and constraints are
expressed in a locally coupled manner satisfying the commu-
nication network topology constraint. However, the objective
function in the underlying optimization problem (7) is densely
coupled. As indicated in [23, Section 4] for convex optimiza-
tion, this difficulty is overcome via certain matrix decomposi-
tion techniques. It is shown in [23, Lemma 4.1] that under A.3,
the PSD or PD matrix W ∈ R

np×np in (7) can be decomposed
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as W = ∑n
s=1 W̃ s , where all W̃ s ∈ R

np×np are PSD and sat-

isfy the following conditions: W̃ 1 =
[

Ŵ 1

0(n−2)p×(n−2)p

]
,

W̃ n =
[

0(n−2)p×(n−2)p

Ŵ n

]
, and for each s = 2, . . . , n−1,

W̃ s =
⎡
⎣0(s−2)p×(s−2)p

Ŵ s

0(n−s−1)p×(n−s−1)p

⎤
⎦ , where

Ŵ 1 :=
[
(W̃ 1)1,1 (W̃ 1)1,2
(W̃ 1)2,1 (W̃ 1)2,2

]
∈ R

2p×2p , Ŵ n :=[
(W̃ n)n−1,n−1 (W̃ n)n−1,n

(W̃ n)n,n−1 (W̃ n)n,n

]
∈ R

2p×2p , and Ŵ s :=⎡
⎣(W̃ s)s−1,s−1 (W̃ s )s−1,s 0

(W̃ s)s,s−1 (W̃ s )s,s (W̃ s )s,s+1

0 (W̃ s )s+1,s (W̃ s )s+1,s+1

⎤
⎦ ∈ R

3p×3p, and each

(W̃ n)i, j ∈ R
p×p . When W is PD, it is shown in

[23, Lemma 4.1] that there exist W̃ s ’s such that each Ŵ s is PD.
Since Qw is diagonal and PD, it follows from the similar

argument in [23, Lemma 4.1] that the PD matrix � ∈ R
np×np

can be decomposed in the similarly way. Specifically, there
exist matrices �̃s such that � = ∑n

s=1 �̃s , where �̃s’s satisfy
the abovementioned conditions with W̃ s (resp. Ŵ s ) replaced
by �̃s (resp. �̂s). Hence, the objective function J (u) in (7)
can be decomposed as

J (u) = J1(u1, u2) +
n−1∑
i=2

Ji (ui−1, ui , ui+1) + Jn(un−1, un),

where the functions Ji ’s on the right hand side are given by

J1(u1, u2) := 1

2

[
aT
1 (u1)aT

2 (u2)
] (

Ŵ 1 − τ 2�̂1
) [a1(u1)

a2(u2)

]

+ cT
I1a1(u1) + τ 2

2

[
uT
1 uT

2

]
�̂1
[

u1
u2

]
,

and for i = 2, . . . , n − 1,

Ji (ui−1, ui , ui+1) := τ 2

2

[
uT

i−1 uT
i uT

i+1

]
�̂ i

⎡
⎣ui−1

ui

ui+1

⎤
⎦

+cT
Ii

ai (ui )

+1

2

[
aT

i−1(ui−1) aT
i (ui ) aT

i+1(ui+1)
]

×
(

Ŵ i − τ 2�̂ i
)

×
⎡
⎣ai−1(ui−1)

ai (ui )
ai+1(ui+1)

⎤
⎦ , (8)

and

Jn(un−1, un) := cT
In

an(un) + τ 2

2

[
uT

n−1 uT
n

]
�̂n
[

un−1
un

]

+1

2

[
aT

n−1(un−1) aT
n (un)

] (
Ŵ n − τ 2�̂n

)
×
[

an−1(un−1)
an(un)

]
.

By A.1, the above decomposition of J satisfies the communi-
cation network topology constraint.
We use the above decomposition to formulate a locally

coupled optimization problem by introducing copies of

local variables. We consider the cyclic like network topology
through this subsection, although the proposed formulation and
schemes can be easily extended to other network topologies
satisfying the assumption A.1. In this case, N1 = {2}, Nn =
{n − 1}, and Ni = {i − 1, i + 1} for i = 2, . . . , n − 1.
Hence, each Ji in the decomposition of J can be written as
Ji (ui , (u j ) j∈Ni ).
Recall that for each i = 1, . . . , n, Xi := {ui ∈

R
p | ai,min1 ≤ ui ≤ ai,max1}. Further, define
Yi := {ui ∈ R

p
∣∣ vmin ≤ vi (k) + τ

(
Sp ai (ui )

)
s ≤ vmax,

∀ s = 1, . . . , p }, (9)

Zi := { (ui−1, ui ) ∈ R
p × R

p
∣∣ (Hi(ui−1, ui ))s ≤ 0,

∀ s = 1, . . . , p }. (10)

As indicated before, Z1 depends only on u1 although it is
written in the above form for notational convenience. Let δS

denote the indicator function of a closed set S. Define, for
each i = 1, . . . , n, Ĵi (ui , (u j ) j∈Ni ) := Ji (ui , (u j ) j∈Ni ) +
δXi (ui )+δYi (ui )+δZi (ui−1, ui ). For each i = 1, . . . , n, define
ûi := (

ui , (ui, j ) j∈Ni

)
, where the new variables ui, j represent

the predicted values of u j of vehicle j in the neighbor Ni

of vehicle i , and let û := (̂u1, . . . , ûn) ∈ R
N . Define the

consensus subspace

A :=
{

û ∈ R
N
∣∣ ui, j = u j , ∀ (i, j) ∈ E

}
.

Then the underlying problem (7) can be equivalently written
as the following locally coupled optimization problem:

min
û

n∑
i=1

Ĵi (̂ui ), subject to û ∈ A, (11)

where the functions Ĵi ’s are decoupled, and the consensus
constraintA gives rise to the only coupling in this formulation.

B. Sequential Convex Programming and Operator Splitting
Method Based Fully Distributed Algorithms for the MPC
Optimization Problem

When the MPC horizon p = 1, the underlying MPC
optimization problem (7) or (11) is a convex quadratically
constrained quadratic program (QCQP), for which the fully
distributed schemes developed in [23] can be applied. We con-
sider p > 1 from now on. In this case, the underlying MPC
optimization problem (7) or (11) yields a non-convex min-
imization problem whose objective function and constraints
are non-convex, whereas the coefficients c2,i > 0 and c3,i > 0
defining the nonlinearities are small. Therefore, it is expected
that an optimal solution under the nonlinear vehicle dynamics
is “close” to that under the linear vehicle dynamics. The
latter solution, which can be obtained using fully distributed
schemes [23], can be used as an initial guess for a distributed
scheme for the nonlinear vehicle dynamics. We formally
discuss this observation as follows.
Let f : R

n × R
q → R and gi : R

n × R
q → R with

i = 1, . . . , m be all continuous functions. Let � ⊂ R
n be a

compact set, and � ⊆ R
q be a set of parameter vectors that

contains the zero vector. Given θ ∈ �, define the parameter
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dependent constraint set Wθ := {
x ∈ R

n
∣∣ gi(x, θ) ≤ 0, ∀ i =

1, . . . , m
}
. We assume that for each parameter vector θ ∈ �,

the set � ∩ Wθ is nonempty. Since gi(·, θ) is continuous for
a given θ , � ∩Wθ is a nonempty compact set such that for a
fixed θ ∈ �, the minimization problem

Pθ : min
x∈�∩Wθ

f (x, θ)

has a nonempty closed solution set denoted by Sθ . For each
x ∈ �∩W0, define the index set I(x) := {i | gi (x, 0) = 0} ⊆
{1, . . . , m} corresponding to the index set of active inequality
constraints. We introduce the following assumption on �∩W0.

A.4 For any x� ∈ � ∩ W0 whose corresponding I(x�) is
nonempty, there exists a sequence (w	) in � ∩ W0 such
that: (i) for each 	, gi(w

	, 0) < 0 for all i = 1, . . . , m;
and (ii) (w	) converges to x�.

The following result, whose proof is given in
[22, Proposition 5.1], establishes the closeness of optimization
solutions under perturbed parameters.

Proposition 2: Suppose P0 has the unique minimizer x∗,
i.e., S0 = {x∗}. Then under the abovementioned assumptions
(including A.4), for any ε > 0, there exists η > 0 such that
for all θ ∈ � with ‖θ‖ ≤ η, supz∈Sθ

‖z − x∗‖ < ε.
We apply this proposition to the optimization prob-

lem (7). Recall that the parameter vector ϕ = (ϕd ,ϕ f ) =
(c2,i , c3,i )n

i=1 ∈ R
2n+ . To emphasize the dependence of the

objective function J on ϕ, we write it as J (u,ϕ). Further,
the constraints in (7) can be written as X ∩ Y ∩ Z , where
X = X1 × · · · × Xn is convex and compact, and Y ∩
Z = {u | gi(u,ϕ) ≤ 0, i = 1, . . . , m} for some real-valued
functions gi depending on ϕ. When ϕ = 0, J (u, 0) is strongly
convex, and each gi(u, 0) is an affine or a convex quadratic
function [23] such that (7) becomes a convex problem with
a unique solution u∗,0. Further, when ri ≥ τ for all i and
v0(k) > vmin, this convex problem has non-empty interior
[23, Corollary 3.1] such that A.4 holds. Letting Sϕ be the
solution set of (7) corresponding to the parameter vector ϕ,
we obtain the following corollary from Proposition 2.

Corollary 2: Consider the optimization problem (7) with
the parameter vector ϕ ∈ R

2n+ at time k. Suppose ri ≥ τ
for all i and v0(k) > vmin. Then for any ε > 0, there
exists η > 0 such that for all ϕ ∈ R

2n+ with ‖ϕ‖ ≤ η,
supu∈Sϕ

‖u − u∗,0‖ < ε.
To solve the coupled non-convex optimization problem (7)

or (11) with ϕ �= 0, we exploit the sequential convex pro-
gramming (SCP) method [17]. We provide a brief description
of the SCP method below. Consider the nonlinear program

(P ′) : min
x∈Rn

f (x), s.t.x ∈ P, gi(x) − ri (x) ≤ 0, i = 1, . . . , 	,

(12)

where P ⊆ R
n is a closed convex set, f and each gi

are C1 (but not necessarily convex) functions, and each ri

is a convex C1-function. We assume that ∇ f and ∇gi are
Lipschitz on P , i.e. there exist constants L f > 0 and
Lgi > 0 such that ‖∇ f (x) − ∇ f (x ′)‖2 ≤ L f ‖x − x ′‖2 and
‖∇gi (x) − ∇gi (x ′)‖2 ≤ Lgi ‖x − x ′‖2 for all x, x ′ ∈ P
and i = 1, . . . , 	. Let x̂ be a feasible point of (P ′), i.e.,

x̂ ∈ P ′ and gi (̂x) − ri (̂x) ≤ 0, i = 1, . . . , 	. Consider an
approximation of the constraint set of (P ′) at x̂ :

C (̂x, {∇gi (̂x)}	i=1, {∇ri (̂x)}	i=1)

:=
{

z ∈ P | gi (̂x) + ∇gi (̂x)T (z − x̂) + Lgi

2
‖z − x̂‖22

−[ri (̂x) + ∇ri (̂x)T (z − x̂)] ≤ 0, i = 1, . . . , 	
}
,

which is a nonempty closed convex set [17, Lemma 3.3]. The
next lemma gives a simple sufficient condition for the Slater’s
condition to hold for the approximated constraint set.

Lemma 1: [22, Lemma 5.2] Given a feasible point
x̂ of (P ′), suppose C (̂x, {∇gi (̂x)}	i=1, {∇ri (̂x)}	i=1) is
not singleton. Then the Slater’s condition holds for
C (̂x, {∇gi (̂x)}	i=1, {∇ri (̂x)}	i=1), i.e., there exists ẑ ∈ P
such that gi (̂x) + ∇gi (̂x)T (̂z − x̂) + Lgi

2 ‖̂z − x̂‖22 − [ri (̂x) +
∇ri (̂x)T (̂z − x̂)] < 0,∀ i = 1, . . . , 	.
The SCP scheme solves (P ′) in (12) as follows [17]: let an

approximation of the objective function f for a given feasible
point x̂ be f̃ (z; x̂) := f (̂x)+[∇ f (̂x)]T (z − x̂)+ L f

2 ‖z − x̂‖22,
which is strongly convex in z. At each step, the SCP scheme
solves the convex problem at xk using f̃ (·; xk) over the convex
constraint set C(xk, {∇gi(xk)}	i=1, {∇ri (xk)}	i=1) to generate a
unique solution xk+1. It then updates the gradients ∇ f , ∇gi ,
and ∇ri using xk+1, and formulates another convex problem
and solves it again. It is shown in [17, Theorem 3.4] that any
accumulation point x∗ of the sequence (xk) generated by the
SCP scheme is a KKT point of (P ′), provided that x∗ satisfies
the Slater’s condition for C(x∗, {∇gi (x∗)}	i=1, {∇ri (x∗)}	i=1).

We now apply the SCP scheme to develop a fully distributed
scheme for the locally coupled formulation (11) of the MPC
optimization problem (7). Recall that ûi := (

ui , (ui, j ) j∈Ni

)
,

and û := (̂u1, . . . , ûn). For each i = 1, . . . , n, it follows from
the velocity constraint Yi in (9) and the safety distance con-
straint Zi in (10) that there are real-valued smooth functions
gi,s and convex quadratic functions ri,s for s = 1, . . . , 3p such
that ûi ∈ Yi ∩ Zi if and only if gi,s (̂ui ) − ri,s (̂ui ) ≤ 0 for
s = 1, . . . , 3p; specific choices of gi,s and ri,s are given
in Section VII-B. In view of the objective function J (̂u) =∑n

i=1 Ji (̂ui ), the problem (11) becomes

min
n∑

i=1

Ji (̂ui ), s.t. û ∈ A, ûi ∈ Xi , gi,s (̂ui ) − ri,s (̂ui ) ≤ 0,

∀ i = 1, . . . , n, s = 1, . . . , 3p.

Recall that X = X1 ×· · ·×Xn is a convex compact set. Since
X is compact and A is the consensus subspace, it is easy
to show that there are positive Lipschitz constants L Ji and
Lgi,s for the gradients of Ji and gi,s on A ∩ X , i.e., for all
û, û′ ∈ A ∩ X , all i = 1, . . . , n, and s = 1, . . . , 3p,

‖∇ Ji (̂ui ) − ∇ Ji (̂u′
i )‖2 ≤ L Ji · ‖̂ui − û′

i‖2,
‖∇gi,s (̂ui ) − ∇gi,s (̂u′

i )‖2 ≤ Lgi,s · ‖̂ui − û′
i‖2.

To develop a SCP based fully distributed scheme, we
introduce more notation. Given any û = (̂ui )

n
i=1 ∈ X and any

vectors dJi , dgi,s , and dri,s for i = 1, . . . , n and s = 1, . . . , 3p,
let the following function be a convex approximation of the
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original nonconvex J , where y = (y1, . . . , yn) ∈ R
N with

each yi being a suitable subvector of y:

f (y; û, {dJi }n
i=1)

:=
n∑

i=1

(
Ji (̂ui ) + dT

Ji
(̂ui )(yi − ûi ) + L Ji

2
‖yi − ûi‖22

)
,

and the following sets as convex approximations of the original
nonconvex constraint sets Y ∩ Z:

C (̂u, {dgi,s , dri,s , i = 1, . . . , n, s = 1, . . . , 3p} )
:=
{

y ∈ X | gi,s (̂ui ) + dT
gi,s

(yi − ûi ) + Lgi,s

2
‖yi − ûi‖22

−[ri,s (̂ui ) + dT
ri,s

(yi − ûi )
]

≤ 0, i = 1, . . . , n, s = 1, . . . , 3p
}
.

Clearly, f is strongly convex in y and decoupled in yi ’s, and
the convex set C (̂u, {dgi,s , dri,s , i = 1, . . . , n, s = 1, . . . , p})
is the Cartesian product of Ci ’s for i = 1, . . . , n, where each
Ci
(̂
ui , {dgi,s }3p

s=1, {dri,s }3p
s=1

) := {
yi ∈ Xi | gi,s (̂ui ) + dT

gi,s
(yi −

ûi ) + Lgi,s
2 ‖yi − ûi‖22 − [

ri,s (̂ui ) + dT
ri,s

(yi − ûi )
] ≤ 0, s =

1, . . . , 3p
}
.

Using the above notation, the iterative scheme of the SCP
method is: for a feasible initial guess û0,

ûk+1 = argmin
y

{
f (y; ûk, {∇ Ji (̂uk

i )}n
i=1)

∣∣ y ∈ A, and

y ∈ C (̂uk, {∇gi,s (̂uk
i ),∇ri,s (̂uk

i ), i = 1, . . . , n,

s = 1, . . . , 3 p})}. (13)

By virtue of Corollary 2, the initial û0 can be chosen as a
solution to the problem (11) with ϕ = 0. An efficient fully
distributed scheme has been developed in [23] to compute
such û0. It is shown in [17, Theorem 4.3] that if û0 is feasible,
then ûk is feasible for all k and the constraint set in each step
k is a nonempty closed convex set [17, Lemma 3.3].
The convex minimization problem (13) at each step k can

be solved via operator splitting method based fully distributed
schemes. Fix ûk = (̂uk

i )
n
i=1 and the related gradients evaluated

at ûk . We write the objective function f (y; û, {dJi }n
i=1) as

f (y) and the constraint sets Ci
(̂
uk

i , {∇gi,s (̂uk
i ),∇ri,s (̂uk

i ), s =
1, . . . , 3 p}) as Ci ’s for notational simplicity. Clearly, ûk

i ∈ Ci

for each i . If Ci is singleton for some i , i.e., Ci = {̂uk
i }, then

we have ûk+1
i = ûk

i such that the optimization problem can
be reduced to a simpler problem. When Ci is non-singleton,
it follows from Lemma 1 that the Slater’s condition holds for
that Ci . Let F(y) := f (y; ûk, {∇ Ji (̂uk

i )}n
i=1)+δC(y)+δA(y).

By [19, Corollary 23.8.1], ∂ F(y) = {∇ f (y)} + NC(y) +
NA(y). Hence, several operator splitting method based fully
distributed algorithms [4], [8] can be applied to solve (13).
Motivated by [23], we consider the (generalized) Douglas-

Rachford splitting method based distributed scheme. Specif-
ically, define for each i = 1, . . . , n, fi (yi ) := Ji (̂uk

i ) +
dT

Ji
(̂uk

i )(yi −ûi )+ L Ji
2 ‖yi −ûk

i ‖22, and f̂i (y) := fi (yi )+δCi (yi).
Hence, the objective function f (y) = ∑n

i=1 fi (yi ). For any
constant 0 < α < 1 and ρ > 0, the Douglas-Rachford splitting

method based scheme is given by: for t ∈ Z+,

wt+1 = �A(zt ),

zt+1 = zt + 2α ·
[
Proxρ f̂1+···+ρ f̂n

(
2wt+1 − zt)− wt+1

]
,

where Proxh denotes the proximal operator of a proper
lower semicontinuous convex function h, and �A denotes
the Euclidean projection onto A. Since A is the consensus
subspace, it is shown that [8, Section IV] that for any û :=
(̂u1, . . . , ûn) where ûi := (

ui , (ui j ) j∈Ni

)
, u := �A(̂u) is

given by:
u j = ui j = 1

1 + |N j |
(̂

u j +
∑

k∈N j

ûkj

)
,∀ (i, j) ∈ E . (14)

Furthermore, since f̂i ’s are decoupled, a distributed version of
the above algorithm is given by: for each i = 1, . . . , n,

wt+1
i = zt

i , (15a)

zt+1
i = zt

i + 2α ·
[
Proxρ f̂i

(
2 wt+1

i − zt
i

)− wt+1
i

]
.

(15b)

Note that the proximal operator in the 2nd equation of (15) is
given by Proxρ f̂i

(2 wt+1
i −zt

i ) = argmin yi∈Ci
fi (yi )+ 1

2ρ ‖yi −
(2wt+1

i − zt
i )‖22, where Ci is the intersection of the polyhedral

set Xi and a quadratically constrained convex set. Since fi

is a convex quadratic function, Proxρ f̂i
(2 wt+1

i − zt
i ) can be

formulated as a second-order cone program or QCQP and
solved by SeDuMi [27]. See Algorithm 1 for its pseudo-code.

Algorithm 1 Sequential Convex Programming (SCP) and
Douglas-Rachford Splitting Method Based Fully Distributed
Algorithm for p ≥ 2
1: Choose constants 0 < α < 1 and ρ > 0
2: Solve the problem (11) with ϕ = 0 via a fully distributed

scheme and obtain a solution ûlin

3: Initialize k = 0, and set an initial point û0 = ûlin

4: while the stopping criteria is not met do
5: Compute ∇ Ji (̂uk

i ), ∇gi,s (̂uk
i ), ∇ri,s (̂uk

i ), and set z0 = ûk

and t = 0.
6: repeat
7: for i = 1, . . . , n do
8: Compute zt

i using (14), and let wt+1
i ← zt

i
9: end for
10: for i = 1, . . . , n do
11: zt+1

i ← zt
i + 2α ·

[
Proxρ f̂i

(
2 wt+1

i − zt
i

)− wt+1
i

]
12: end for
13: t ← t + 1
14: until an accumulation point is achieved
15: Set ûk+1 = wt and k ← k + 1
16: end while
17: return û∗ = ûk

Since X is a compact set, the numerical sequence (̂uk)
generated by Algorithm 1 always has an accumulation point
denoted by û∗. It follows from [17, Theorem 3.4] that under
very mild conditions, û∗ is feasible and is a KKT point of (7).
Our numerical experiences show that (̂uk) converges to û∗
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which is a local minimizer of (7). This coincides with the
observation made in Corollary 2 when c2,i and c3,i are small.

Remark 1: When p > 1, the underlying MPC optimization
problem (7) and its locally coupled formulation (11) yield
non-convex optimization problems with complicated objective
functions and constraints due to highly sophisticated closed-
form expressions for ai (ui )’s. Since c2,i ’s and c3,i ’s are small,
we use suitable approximations, which still lead to a non-
convex programming, are accurate enough for transportation
applications and facilitate numerical computation. The details
of these approximations can be found in [22, Section 5.3].

VI. CONTROL DESIGN AND STABILITY ANALYSIS

OF CLOSED LOOP DYNAMICS

In this section, we discuss the design of the weight
matrices Qz,s , Qz′,s and Qw,s to achieve the closed loop
stability. We focus on the constraint free case in view of
[6, Section 5]. Recall that ϕ := (ϕd ,ϕ f ) ∈ R

2n+ , where
ϕd := (c2,1, . . . , c2,n) ∈ R

n+ and ϕ f := (c3,1, . . . , c3,n) ∈ R
n+.

Further, c2,0 = c3,0 = 0 as indicated before.

A. Review of the Closed Loop Stability Analysis Under
Linear Vehicle Dynamics

When ϕ = 0, the nonlinear vehicle dynamics reduces to
the linear vehicle dynamics given by (2), for which the closed
loop stability of the MPC based platooning control has been
analyzed [23, Section 5]. We present a brief review of these
stability results as they pave a way for studying closed loop
stability under nonlinear vehicle dynamics when ‖ϕ‖ is small.
Let w(k) := (w(k), . . . , w(k + p − 1)). As before, we omit

k when k is fixed. It is shown that under the linear vehicle
dynamics, the objective function is [23, Section 5]

J (w) = 1

2
wT Hw + wT

(
G
[

z(k)
z′(k)

]
− u0(k)g

)
+ γ̃ ,

where γ̃ ∈ R, and the symmetric PD matrix H, the matrix
G and the vector g are given in [23, Section 5]. Define the
matrix K and the vector d as

K := − [In 0 · · · 0]H−1G ∈ R
n×2n, (16)

d := [
In 0 · · · 0]H−1g ∈ R

n.

The closed loop dynamics becomes[
z(k + 1)
z′(k + 1)

]
=
{[

In τ In

0 In

]
+
[

τ 2

2 In

τ In

]
K
}

︸ ︷︷ ︸
Ac

[
z(k)
z′(k)

]

+
[

τ 2

2 In

τ In

]
u0(k) · d, (17)

where Ac represents the closed loop dynamics matrix for
the linear vehicle dynamics. Conditions on Qz,s, Qz′,s and
Qw,s are given in [23, Section 5] such that Ac is Schur
stable. Throughout this section, we assume that for each p,
Qz,s, Qz′,s and Qw,s satisfying A.3 are such that Ac is Schur
stable.

B. Reformulation of the Closed Loop Dynamics

Consider the nonlinear vehicle dynamics (1). It follows from
the definitions of z(k), z′(k) and w(k) that for i = 1, . . . , n,

zi (k + 1) = zi (k) + τ z′
i (k) + τ 2

2
wa,i(k), (18a)

z′
i (k + 1) = z′

i (k) + τwa,i (k) (18b)

where wa,i (k) := wi (k)−[c2,i−1v
2
i−1(k)−c2,iv2i (k)]−[c3,i−1−

c3,i ]g. For given (v0(k), u0(k)), k ∈ Z+, the equilibrium of
the above discrete-time system is (ze, z′

e) = (0, 0) such that
ve,i (k) = v0(k) for all i = 1, . . . , n. Hence, let we,i (k) =
[c2,i−1 − c2,i ]v20(k) + [c3,i−1 − c3,i ]g,∀ i = 1, . . . , n, and
we(k) := (we,1(k), . . . , we,n(k))T . By shifting w(k) from the
time-varying we(k), we define ŵ(k) := w(k)−we(k). Further,
define the following functions:

D(ϕd) :=

⎡
⎢⎢⎢⎣

−c2,1
c2,1 − c2,2

. . .

c2,n−1 − c2,n

⎤
⎥⎥⎥⎦ Sn,

(19)

h̃(z′) := D̃(ϕd )
[(

Snz′) ◦ (Snz′)], (20)

where D̃(ϕd) := S−1
n diag(ϕd ), and ◦ denotes the Hadamard

product of two vectors in R
n . Note that D(ϕd ) = D̃(ϕd) =

0 when ϕd = 0. It is shown in [22, Section 6.2] that the
nonlinear vehicle dynamics (1) is described by:[

z(k + 1)
z′(k + 1)

]
=
{[

In τ In

0 In

]
+ v0(k) ·

[
τ 2

2 In

τ In

] [
0 D(ϕd )

]}

×
[

z(k)
z′(k)

]
+
[

τ 2

2 In

τ In

] (
ŵ(k) + h̃(z′(k))

)
.

We also write h̃ as h̃ϕd
(z′) to emphasize its dependence on

ϕd . Note that h̃0(z′) ≡ 0 for any given z′ ∈ R
n .

Define the following matrices:

A :=
[

In τ In

0 In

]
, B :=

[
τ 2

2 In

τ In

]
,�A(ϕd) := B

[
0 D(ϕd )

]
,

Â(k) := A + v0(k) · �A(ϕd ). (21)

We often write Â(k) as Â(v0(k),ϕd) to stress its dependence
on v0(k) and ϕd . Let z := (z, z′) ∈ R

n × R
n . We obtain

z(k + 1) = Â(k)z(k) + B
(
ŵ∗(k) + h̃ϕd

(z′(k))
)
, (22)

where ŵ∗(k) is an optimal solution to the unconstrained
MPC optimization problem (7) which implicitly depends on
z(k), v0(k) and u0(k). For any fixed ϕd , the closed loop
system given by (22) yields a time-varying nonlinear dynam-
ical system, since h̃ is nonlinear in z′ and v0(k) is time
varying.
When p = 1, the a closed form expression of ŵ∗(k) is

derived in [22, Section 6.2]. When p > 1, recall that for any
fixed k ∈ Z+, u0(k + s) = u0(k) for all s = 1, . . . , p − 1 in
the MPC model. Hence, v0(k + s) = v0(k) + τ su0(k) for all
s = 1, . . . , p−1. Define Â(k+s) := A+v0(k+s)·�A(ϕd) for
all s = 0, 1, . . . , p −1. Given Â(k + s) with s = 0, . . . , p −1,
define the state transition matrix for any s, s′ ∈ {0, . . . , p}
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with s ≤ s′, � Â(k + s, k + s) := I , and � Â(k + s′, k + s) :=
Â(k + s′ − 1) × · · · × Â(k + s),∀ s′ > s. Based upon these
results, we obtain, for any k ∈ Z+ and s = 1, . . . , p,

z(k + s) = � Â(k + s, k)z(k) +
s−1∑
i=0

� Â(k + s, k + i + 1)

×Bŵ(k + i) +
s−1∑
i=0

� Â(k + s, k + i + 1)

× Bh̃ϕd
(z′(k + i)). (23)

In light of (20) and (23), the following lemma can be
established via an induction argument on s; its proof is
omitted.

Lemma 2: Fix an arbitrary k ∈ Z+. For each
s = 1, . . . , p, h̃ϕd (z

′(k + s)) is a vector-valued func-
tion whose each entry is a multivariate polynomial in
(z′(k), u0(k), v0(k), ŵ(k), . . . , ŵ(k + s − 1)) and ϕd .
Further, in view of u0(k + s) = u0(k) for any s ≥ 0 and

a fixed k ∈ Z+, we have for each s = 0, . . . , p − 1, w̃(k +
s) = w(k + s) − u0(k + s)e1 = ŵ(k + s) + we(k + s) −
u0(k)e1 = ŵ(k +s)+d(k +s), where d(k +s) := we(k +s)−
u0(k)e1. Here we recall that we,i (k+s) = [c2,i−1−c2,i ]v20(k+
s) + [c3,i−1 − c3,i ]g, for each i , where v0(k + s) = v0(k) +
sτu0(k).
Consider the unconstrained MPC model. Define the follow-

ing augmented matrices and vector: for s = 1, . . . , p,

Qz,s :=
[

Qz,s

Qz′,s

]
; Qw :=

⎡
⎢⎣

Qw,1
. . .

Qw,p

⎤
⎥⎦ ;

and d̃(k) :=
⎡
⎢⎣

d(k)
...

d(k + p − 1)

⎤
⎥⎦ . For any fixed k ∈ Z+, the

objective function in the MPC model is written as

J (ŵ(k), . . . , ŵ(k + p − 1)︸ ︷︷ ︸
:=ŵ(k)

)

= 1

2

( p∑
s=1

z(k + s)T Qz,sz(k + s)
)

+τ 2

2
[ŵ(k) + d̃(k)]T Qw[ŵ(k) + d̃(k)].

Substituting the expression for z(k + s) given by (23) into
the objective function J , we obtain the objective function
written as J (ŵ) for a fixed k. It follows from the previous
development and Lemma 2 that J is a polynomial function
in (ŵ, z(k), v0(k), u0(k),ϕ). Moreover, the Hessian of the
objective function J with respect to ŵ is given by

H J (ŵ) =
[

∂ J 2(ŵ)

∂ŵi∂ŵ j

]
i, j

:= Ĥ(ŵ, z(k), v0(k), u0(k),ϕ).

For a fixed k, we write this Hessian as Ĥ(ŵ, z, v0, u0,ϕ) to
emphasize its dependence on these variables. Clearly, Ĥ is an
analytic, thus a smooth, function, and for any (ŵ, z, v0, u0),

Ĥ(ŵ, z, v0, u0,ϕ)|ϕ=0 = H, where H is the constant PD
matrix given in Section VI-A. If ϕ = 0, the objective function
J reduces to that for the linear vehicle dynamics whose
corresponding optimal solution is given in Section VI-A as

ŵ∗(z, v0, u0,ϕ)|ϕ=0 = −H−1(G · z − u0 · g
)
.

However, the closed form expression of a critical point or
a local minimizer ŵ∗ is unavailable for p > 1. Hence,
we consider non-local (or global) implicit functions to express
ŵ∗ in term of z, v0, u0 and ϕ, since the variables z, v0, u0 can
be non-local. Toward this end, we exploit global implicit
function theorems [9], [21]. Easily verified conditions are
given in the following theorem; its proof, resembling that
of [9, Theorem 5], exploits the covering map argument
[22, Theorem 6.2].

Theorem 1: Let U ⊆ R
n be a connected set, and V ⊆ R

m

be a closed set. Let f : U ′ × V ′ → R
m be a Cr -function with

r ≥ 1, where U ′ ⊆ R
n and V ′ ⊆ R

m are open sets containing
U and V respectively. Suppose the following hold:
(i) For some x∗ ∈ U , there exists exactly one y∗ ∈ V such

that f (x∗, y∗) = 0;
(ii) For any (x, y) ∈ G′

f := {(x, y) ∈ U ′ × V ′ : f (x, y) = 0},
Dy f (x, y) is invertible;

(iii) There is a positive constant ρ such that ‖(Dy f (x, y))−1‖·
‖Dx f (x, y)‖ ≤ ρ for all (x, y) ∈ G′

f .

Then there exists a unique Cr function g : U → V such that
f (x, g(x)) = 0,∀ x ∈ U .
Using the above theorem and [22, Proposition 6.1],

we establish a result on global implication function for ŵ∗
below.

Proposition 3: [22, Proposition 6.2] Let Uz be a bounded
open convex set in R

2n, let U0 be a bounded open convex
set containing [a0,min, a0,max], and let V0 be a bounded open
convex set containing [vmin, vmax]. Let Uŵ be a compact set
in R

np containing all ŵ∗(z, v0, u0, 0) for all z ∈ Uz, v0 ∈ V0,
and u0 ∈ U0. Then there exist a positive constant μ2 > 0 and
a unique smooth function h : Uz×V0×U0×B∞(0, μ2) → Uŵ
such that ŵ∗ = h(z, v0, u0,ϕ) for all (z, v0, u0,ϕ) ∈ Uz ×
V0 × U0 × B∞(0, μ2).
The above proposition implies that the nonconvex opti-

mization problem min J (ŵ) has a unique local minimizer
ŵ∗ in Uŵ for any given (z, v0, u0,ϕ) ∈ Uz × V0 × U0 ×
B∞(0, μ2). Hence, for any (z(k), v0(k), u0(k),ϕ) ∈ Uz ×
V0 × U0 at each k, ŵ∗(k) = h(z(k), v0(k), u0(k),ϕ), and
ŵ∗(k) = [

In 0 · · · 0]h(z(k), v0(k), u0(k),ϕ). Moreover, note
that h(z, v0, u0, 0) = −H−1

(
G · z − u0g

)
for any fixed

(z, v0, u0) ∈ Uz × V × U0. Define �ĥ(z, v0, u0,ϕ) :=[
In 0 · · · 0] (h(z, v0, u0,ϕ) − h(z, v0, u0, 0)

)
. Since Uz ×

V0 × U0 × B∞(0, μ2) is an open convex set, it fol-
lows from the Mean-value Theorem that for any fixed
(z, v0, u0,ϕ) ∈ Uz ×V0×U0×B∞(0, μ2), �ĥ(z, v0, u0,ϕ) =∫ 1

0
Dϕ ĥ(z, v0, u0, tϕ)dt · ϕ. Thus there is a constant

� > 0 such that ‖�ĥ(z, v0, u0,ϕ)‖ ≤ �‖ϕ‖∞ for all
(z, v0, u0,ϕ) ∈ Uz × V0 × U0 × B∞(0, μ2). Substituting the
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above results to (22), we obtain

z(k + 1) = Â(k)z(k) + B
(
ŵ∗(k) + h̃ϕd

(z′(k))
)

=
[ (

A + BK)︸ ︷︷ ︸
Ac

+v0(k) · �A(ϕd)
]
z(k)

+B
(

u0(k) · d + �ĥ(z, v0, u0,ϕ) + h̃ϕd (z
′(k))

)
,

where K and d are given by (16), and Ac is given by (17).
This leads to the closed loop dynamics for p > 1:

z(k + 1) =
(

Ac + v0(k) · �A(ϕd )
)

z(k) (24)

+B
[
u0(k)d + �ĥ(z(k), v0(k), u0(k),ϕ)

]
+ Bh̃ϕd

(z′(k))

for all (z, v0, u0,ϕ) ∈ Uz × V0 × U0 × B∞(0, μ2), where Uz
is a bounded open convex set in R

2n , U0 is a bounded open
convex set containing [a0,min, a0,max], and V0 is a bounded
open convex set containing [vmin, vmax].

C. Local Input-to-State Stability of the Closed Loop System

We first give a brief overview of (local) input-to-state
stability. Consider the discrete-time system on R

n:

x(k + 1) = f (x(k), u(k), k), ∀ k ∈ Z+, (25)

where f : Rn × R
m × Z+ → R

n , and f (·, ·, k) is continuous
for any fixed k ∈ Z+. Let u := (u(0), u(1), . . .) be a sequence
of vectors in R

m that represents an input on Z+. Assume
that f (0, 0, k) = 0 for all k ∈ Z+ such that xe = 0 is
an equilibrium of (25) under the 0-input, i.e., u = 0. Let
‖u‖∞ := sup{‖u(k)‖ : k ∈ Z+}. Hence, for any u ∈ 	m∞,
‖u‖∞ < ∞. For a given initial condition ξ ∈ R

n and an
input function u, let x(k, ξ, u) denote the trajectory of the
system (25).

Definition 1: The time-varying discrete-time system (25) is
locally input-to-state stable (ISS) if there exist a KL-function
β : R+ × R+ → R+, a K-function γ : R+ → R+, and two
positive constants θx , θu such that for all ξ with ‖ξ‖ ≤ θx and
u ∈ 	m∞ with ‖u‖∞ ≤ θu , the following holds:

‖x(k, ξ, u)‖ ≤ β(‖ξ‖, k) + γ (‖u‖∞), ∀ k ∈ Z+.

The above definition follows from [11, Definition 3.1] for
global ISS of discrete-time systems. Also see [7], [24]. The
following result establishes local input-to-state stability (ISS)
for the time-varying system (25) [10, Lemma 2.3], which is
extended from the Lyapunov approach for global ISS [12].

Theorem 2: Consider the time-varying discrete-time sys-
tem (25) defined by f : Rn ×R

m × Z+ → R
n. Suppose there

exists a local ISS-Lyapunov function V : R
n × Z+ → R+

for the system (25), i.e., there exist two sets Dx := {x ∈
R

n | ‖x‖ ≤ r} and Du := {u ∈ R
m | ‖u‖ ≤ ru} for some

positive constants r and ru, where ru can be +∞, such that:
(i) There exist two K∞-functions α1 and α2 such that

α1(t) ≤ α2(t),∀ t ≥ 0 and α1(‖x‖) ≤ V (x, k) ≤
α2(‖x‖) for all x ∈ Dx and all k ∈ Z+;

(ii) There exist a K∞-function α3 and a K-function σ such
that V ( f (x, u, k), k +1)−V (x, k) ≤ −α3(‖x‖)+σ(‖u‖)
for all x ∈ Dx and u ∈ Du and all k ∈ Z+.

Then there exist positive constants θx and θu such that:
(i) For any ξ with ‖ξ‖ ≤ θx and u = (u(k))k∈Z+ ∈ 	m∞ with

‖u‖∞ ≤ θu, x(k, ξ, u) ∈ Dx for all k ∈ Z+;
(ii) The system (25) is locally input-to-state stable in terms

of the positive constants θx and θu given in Definition 1.

We show local input-to-state stability of the closed loop
dynamics (24) for p > 1 below, assuming that the matrix Ac
given in (17) is Schur stable. The case of p = 1 is treated in
the similar way; see [22, Theorem 6.4] for details.

Theorem 3: [22, Theorem 6.4] Let p > 1. Suppose the
weight matrices Qz,s, Qz′,s and Qw,s satisfying A.1 are such
that Ac given in (17) is Schur stable. Then there exist positive
constants μ and ν such that for all ϕ with ‖ϕ‖∞ ≤ μ, any
v0(k) ∈ [vmin, vmax] and any u0(k) with |u0(k)| ≤ ν for all
k ∈ Z+, the closed loop dynamics given by (24) is locally
input-to-state stable.

Proof: For the given bounded open sets Uz containing the
zero vector, U0 containing [a0,min, a0,max], and V0 containing
[vmin, vmax], the closed loop dynamics is given by (24) as
shown by Proposition 3. Since Ac is Schur stable, there exist
constants κc > 0 and r ∈ (0, 1) such that ‖(Ac)k‖ ≤ κc ·rk for
all k ∈ Z+. Consider the time-varying discrete linear system
on R

2n:

z(k + 1) =
(

Ac + v0(k) · �A(ϕd)
)

z(k), ∀ k ∈ Z+. (26)

In view of the expressions of �A(ϕd ) given by (21)
and D(ϕd) by (19) and 0 ≤ vmin ≤ v0(k) ≤
vmax for all k ∈ Z+, we deduce that there exists
a positive constant κ�A such that ‖v0 · �A(ϕd)‖2 ≤
κ�A · vmax · ‖ϕd‖∞,∀ v0 ∈ [vmin, vmax]. Define the

positive constant μ̃3 := − r

κc · κ�A · vmax
ln(r) > 0.

Hence, for all ϕd with ‖ϕd‖∞ < μ̃3, we have κ�A · vmax ·
‖ϕd‖∞ ≤ − r

κc ln(r). Then it follows from [35, Theorem 3]
that the discrete linear system (26) is uniformly exponentially
stable for any v0(k) ∈ [vmin, vmax],∀ k ∈ Z+ and all ϕd
with ‖ϕd‖∞ < μ̃3. Define Âc(k) := Ac + v0(k)�A(ϕd)
for all k ∈ Z+. (Rigorously speaking, it should be written
as Âc(v0(k),ϕd). For notational simplicity, we write it in this
way.) By [20, Theorem 23.3], there exist a matrix sequence
{P(k)}k∈Z+ with P(k) = PT (k) ∈ R

2n×2n for each k and
positive constants θ2 ≥ θ1 > 0 and θ3 > 0 such that for all
v0(k) ∈ [vmin, vmax],∀ k ∈ Z+ and all ϕd with ‖ϕd‖∞ < μ̃3,
θ1 I2n � P(k) � θ2 I2n and ÂT

c (k)P(k + 1) Âc(k) − P(k) �
−θ3 I2n for all k ∈ Z+, where � denotes the positive semi-
definite order. Clearly, ‖P(k)‖2 ≤ θ2 for all k ∈ Z+.

Given any v0(k) ∈ [vmin, vmax],∀ k ∈ Z+ and any ϕd
satisfying ‖ϕd‖∞ < μ̃3, define the function fϕd

: R2n ×R
n ×

Z+ → R
2n as: fϕd

(z, d, k) := Âc(k)z + Bd + Bh̃ϕd
(z′),

where z = (z, z′) ∈ R
2n . Consider the time-varying Lyapunov

function V : R2n × Z+ → R+ given by

V (z, k) := zT P(k)z, k ∈ Z+. (27)
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TABLE I

PHYSICAL PARAMETERS FOR A HETEROGENEOUS CAV PLATOON WITH � = 60 m

In light of ÂT
c (k)P(k + 1) Âc(k) − P(k) � −θ3 I2n , we have

that for any k ∈ Z+,

V ( fϕd
(z, d, k), k + 1) − V (z, k)

≤ −θ3‖z‖22 + 2
[

Âc(k) z
]T

P(k + 1)B
[
d + h̃ϕd

(z′)
]

+
[
d + h̃ϕd

(z′)
]T

BT P(k + 1)B
[
d + h̃ϕd

(z′)
]
.

Let η1 := sup‖ϕd‖∞≤μ̃3

(
‖Ac‖2 + vmax · ‖�A(ϕd)‖2

)
> 0.

Hence, ‖ Âc(k)‖ ≤ η1 for all k ∈ Z+. Moreover, it follows
from (20) that there exists a positive constant η2 such that
‖h̃ϕd

(z′)‖2 ≤ η2 · ‖ϕd‖∞ ·‖z′‖22 ≤ η2 · ‖ϕd‖∞ ·‖z‖22 for all ϕd
and z. Let η̃2 := η2

(
supz∈Uz ‖z‖). Therefore, for all z ∈ Uz,

we have

‖h̃ϕd
(z′)‖2 ≤ η2

(
sup

z∈Uz
‖z‖) · ‖ϕd‖∞ · ‖z‖= η̃2 · ‖ϕd‖∞· ‖z‖.

Consequently, for all z ∈ Uz, v0(k) ∈ [vmin, vmax],∀ k ∈ Z+,
ϕd ∈ B(0, μ̃3), and d ∈ R

n , we have,[
Âc(k) z

]T
P(k + 1)B

[
d + h̃ϕd

(z′)
]

≤ θ2‖ Âc(k) z‖2 · ‖B‖2
(‖d‖2 + ‖h̃ϕd

(z′)‖2
)

≤ θ2η1‖B‖2 · ‖z‖2 · (‖d‖2 + η̃2‖ϕd‖∞ · ‖z‖2
)
,

and[
d + h̃ϕd

(z′)
]T

BT P(k + 1)B
[
d + h̃ϕd

(z′)
]

≤ θ2 · ‖B‖22 · ∥∥d + h̃ϕd
(z′)
∥∥2
2

≤ 2θ2 · ‖B‖22 ·
(
‖d‖22 + (̃η2‖ϕd‖∞

)2 · ‖z‖22
)
.

Combining the above results, we deduce that there exists a
constant μ3 with 0 < μ3 ≤ min(μ̃3, μ2), where μ2 is given
in Proposition 3, such that for all ‖ϕ‖∞ ≤ μ3, z ∈ Uz, v0(k) ∈
[vmin, vmax],∀ k ∈ Z+, and d ∈ R

n , V ( fϕd
(z, d, k), k +

1) − V (z, k) ≤ − 2θ3
3 ‖z‖22 + 2η3‖d‖2 · ‖z‖2 + η4‖d‖22, where

η3 := θ2η1‖B‖2/2, and η4 := 2θ2‖B‖22. Consequently, for all‖ϕ‖∞ ≤ μ3, z ∈ Uz, v0(k) ∈ [vmin, vmax],∀ k ∈ Z+, and
d ∈ R

n , we have, for all k ∈ Z+,
V ( fϕd

(z, d, k), k + 1) − V (z, k)

≤ −2θ3
3

‖z‖22 + 2η3 · ‖d‖2 · ‖z‖2 + η4 · ‖d‖22
= −θ3

6
‖z‖22 − θ3

2
‖z‖22 + 2η3‖d‖2 · ‖z‖2 + η4‖d‖22

= −θ3

6
‖z‖22 − θ3

2

(
‖z‖2 − 2η3

θ3
‖d‖2

)2 +
(2η23

θ3
+ η4

)
‖d‖22

≤ −θ3

6
‖z‖22 +

(2η23
θ3

+ η4

)
‖d‖22.

Define the functions σ1(t) := θ1t2, σ2(t) := θ2t2, σ3(t) :=
θ3
6 t2, and σ(t) :=

(
2η23
θ3

+ η4

)
t2. Clearly, these function are

K∞-functions. Let Dz be the largest closed ball centered
at the origin that is contained in Uz (such the closed ball
exists since Uz is a bounded open set containing 0), and
Dd = R

n . Hence, the function V given in (27) is a local ISS-
Lyapunov function on Dz × Dd for the discrete time system
z(k + 1) = fϕd

(z(k), d(k), k), for all ϕd ∈ B∞(0, μ3) and
all v0(k) ∈ [vmin, vmax],∀ k ∈ Z+. It follows from Theorem 2
that there exist two positive constants νz and νd such that
for any ξ with ‖ξ‖ ≤ νz and d = (d(k))k∈Z+ ∈ 	m∞ with
‖d‖∞ ≤ νd , z(k, ξ, d) ∈ Uz for all k ∈ Z+. In view of the
right-hand side of the closed loop dynamics given by (24),
we see that d(k) = u0(k) · d + �ĥ(z(k), v0(k), u0(k),ϕ) for
all k ∈ Z+, where d is the constant vector given by (16),
and ‖�ĥ(z, v0, u0,ϕ)‖ ≤ �‖ϕ‖∞ for all (z, v0, u0,ϕ) ∈
Uz × V0 × U0 × B∞(0, μ2). For an arbitrary but fixed ε ∈
(0, 1), define the positive constants μ4 := min

(
μ3,

ε·νd
�

)
,

and νu := min
(
|a0,min|, a0,max,

(1 − ε)νd

‖d‖
)
. Hence, u0 ∈

[−a0,min, a0,max] ⊂ U0 and ‖u0d‖ ≤ (1 − ε)νd for any
u0 with |u0| ≤ νu . (The condition u0 ∈ U0 is needed to
derive the closed loop dynamics as shown in Proposition 3.)
Further, for all ϕ with ‖ϕ‖∞ ≤ μ4, u0 with |u0| ≤ νu ,
v0 ∈ [vmin, vmax] and z ∈ Uz, it is easy to show that
‖u0d + �ĥ(z, v0, u0,ϕ)‖ ≤ νd . It can be further shown via
induction on k that for all ϕ with ‖ϕ‖∞ ≤ μ4, u0(k) with
|u0(k)| ≤ νu,∀ k ∈ Z+, v0(k) ∈ [vmin, vmax],∀ k ∈ Z+,
and any ξ with ‖ξ‖ ≤ νz, z(k, ξ, d) ∈ Uz and ‖d(k)‖ =
‖u0(k) · d + �ĥ(z(k), v0(k), u0(k),ϕ)‖ ≤ νd for all k ∈ Z+.
In view of Theorem 2 again, we deduce that the closed loop
dynamics given by (24) is locally input-to-state stable for all
ϕ with ‖ϕ‖∞ ≤ μ4, v0(k) ∈ [vmin, vmax],∀ k ∈ Z+, and u0(k)
with |u0(k)| ≤ νu ,∀ k ∈ Z+. �

Remark 2: The above theorem establishes the input-to-state
stability of the entire platoon under the proposed platoon
centered MPC scheme via new techniques that are different
from distributed MPC [34], [37].

VII. NUMERICAL RESULTS

A. Numerical Experiment Setup and Weight Matrix Design

Numerical tests are carried out to evaluate the performance
of the proposed fully distributed schemes and the platooning
control for a possibly heterogeneous CAV platoon. Consider a
heterogeneous CAV platoon of an uncontrolled leading vehicle
labeled by the index 0 and ten CAVs, i.e., n = 10. The sample
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time τ = 1 s, and the speed limits vmax = 27.78m/s and
vmin = 10m/s. The inhomogeneous values of c2,i ’s and c3,i ’s,
and other parameters [6], [34], i.e., the vehicle length Li , the
reaction time ri , the acceleration and deceleration limits ai,max
and ai,min, and the desired spacing �, are given in Table I.

The initial state of each CAV platoon is z(0) = z′(0) = 0
and vi (0) = 25m/s for all i = 0, 1, . . . , n. The cyclic-
like graph is considered for the vehicle communication
network, i.e., the bidirectional edges of the graph are
(1, 2), (2, 3), . . . , (n − 1, n) ∈ E . Following the discussions in
[23, Section 6], we choose the MPC horizon p as 1 ≤ p ≤ 5.
The weight matrices are chosen as follows. Let

α̃ := (
38.85, 40.2, 41.55, 42.90, 44.25, 45.60, 46.95, 48.30,

49.65, 51.00
) ∈ R

10,

β̃ := (
130.61, 136.21, 141.82, 147.42, 153.03, 158.64, 164.24,

169.85, 175.46, 181.06
) ∈ R

10,

ζ̃ := (
62, 74, 90, 92, 106, 194, 298, 402, 454, 480

) ∈ R
10.

Further, let α1 = 6α̃, β1 = β̃ , and ζ 1 = 0.5̃ζ when p = 1.
When p = 2, 3, α1 = 9(̃α − 1), β1 = β̃ − 1, ζ 1 = 0.5(̃ζ − 1),

and αs = 0.1368

(s − 1)4
× α̃, βs = 0.044

(s − 1)4
× β̃, ζ s = 0.0013

(s − 1)4
×

ζ̃ , s = 2, . . . ,min(p, 3). When p = 4, 5, αs = 0.0228

(s − 1)4
×

α̃, βs = 0.044

(s − 1)4
× β̃, ζ s = 0.0026

(s − 1)4
× ζ̃ , s = 4, . . . , p.

The diagonal matrices Qz,s, Qz′,s and Qw,s are written as
Qz,s = diag(αs), Qz′,s = diag(βs), and Qw,s = diag(ζ s),
where αs,βs ∈ R

n+ and ζ s ∈ R
n++ for all s = 1, . . . , p This

yields the Schur stabel matrix Ac for each p = 1, . . . , 5.
We consider a real-world traffic condition to test the perfor-

mance of the proposed distributed algorithm and platooning
control in a real traffic environment when the leading vehicle
undergoes traffic oscillations. Specifically, we consider Next
Generation Simulation (NGSIM) data on eastbound I-80 in
San Francisco Bay area in California, and the data of position
and speed of a real vehicle, which is treated as a leading vehi-
cle, is used to generate its control input at each k. The length
of the time window is 45s. In addition, to further evaluate
the proposed platooning control in a more realistic setting,
random noise is added to each CAV to simulate dynamical
disturbances, model mismatch, signal noise, communication
delay, and road condition perturbations. In particular, at each
k, the random noise with the normal distribution 0.2×N (0, 1)
is added to the first CAV, and the noise with the normal
distribution 0.1 × N (0, 1) is added to each of the rest of the
CAVs. Here a larger noise is added to the first CAV since there
are more disturbances between the leading vehicle and the first
CAV. See [22, Section 7] for additional numerical results for
other scenarios and different CAV platoons.

B. Performance of the Proposed Fully Distributed Scheme

As indicated in Section V-B, when p = 1, the underlying
MPC optimization problem (11) is a convex QCQP, for which
the fully distributed algorithm developed in [23] is used.

When p > 1, the optimization problem (11) is noncon-
vex, and the SCP based fully distributed scheme is applied
(cf. Algorithm 1). To apply this algorithm, we discuss the
choices of the smooth functions gi,s and the convex function
ri,s for the (approximate) nonconvex constraint sets Yi and
Zi , where i = 1, . . . , n; see Remark 1. For j = 1, . . . , p,
define the function qi, j (ui ) := vi (k) + τ

((
Spui

)
j − j ·

c3,i g − c2,i
∑ j−1

s=0

[
vi (k) + τ (Spui

)
s

]2)
. The approximate Yi

is given by Yi = {ui | vmin − qi, j (ui ) ≤ 0, qi, j (ui ) −
vmax ≤ 0, j = 1, . . . , p}. Define gi,s(ui ) := vmin − qi, j (ui ),
and ri,s (ui ) :≡ 0 for s = 1, . . . , p; gi,s(ui ) :≡ 0, and
ri,s (ui ) := −qi, j (ui ) + vmax for s = p + 1, . . . , 2p. Then
Yi = {ui | gi,s(ui ) − ri,s (ui ) ≤ 0, s = 1, . . . , 2p}. Similarly,
for each i = 1, . . . , n and s = 1, . . . , p, Zi = {̂ui | g′

i,s (̂ui ) −
r ′

i,s (̂ui ) ≤ 0, s = 1, . . . , p}, where r ′
i,s (ui−1, ui ) ≡ 0, and

g′
i,s(ui−1, ui ) := (

Hi(ui−1, ui )
)

s ≈ Li + ri · qi,s(ui )

− 1

2ai,min

[
qi,s (ui ) − vmin

]2 −
{

zi (k) + � + jτ z′
i(k)

+τ 2
s−1∑
t=0

2( j − t) − 1

2

[
ui−1(k + t) − ui (k + t)

−
(

c2,i−1
[
vi−1(k) + τ

(
Spui−1

)
t

]2
−c2,i

[
vi (k) + τ

(
Spui

)
t

]2)− (c3,i−1 − c3,i
)
g
] }

.

Furthermore, the Lipschitz constants L Ji ’s and Lgi,s ’s are
given by νp‖H Ji (̂ui )‖2 and 0.9‖Hgi,s (̂ui )‖2, where νp =
0.8 for p = 2, 3 and νp = 0.9 for p = 4, 5 respectively,
and H f denotes the Hessian of a real-valued smooth func-
tion f . The reasons for each Hessian scaled by these factors
are twofold: (i) the 2-norm of Hessian is conservative; and
(ii) the scaled Hessian leads to faster convergence.

1) Initial Guess Warm-up: For real-time implementation of
Algorithm 1, we exploit the initial guess warm-up technique
for both the linear stage (cf. Line 2) and the inner loop of the
SCP-Douglas-Rachford stage (cf. Lines 6-14). For the former,
see [23, Section 6.2] for its warm-up scheme. We discuss a
warm-up scheme for the latter. Recall that the inner loop solves
the following convex problem: miny=(yi )∈A

∑n
i=1 fi (yi ) +

δCi (yi ), where for each i , fi (yi ) := Ji (̂uk
i ) + dT

Ji
(̂uk

i )(yi −
ûi ) + L Ji

2 ‖yi − ûk
i ‖22, and Ci is the intersection of the box-

constraint set Xi and a quadratically constrained convex set;
see Section V-B for details. In the warm-up scheme, we replace
Ci by Xi . The generalized Douglas-Rachford scheme (15) is
used to solve miny=(yi )∈A

∑n
i=1 fi (yi) + δXi (yi ). Since fi

and the box constraint set Xi are fully decoupled, solving the
proximal operator based optimization problem in this scheme
becomes solving several decoupled univariate problems of the
form: mint∈[c,d] at2+bt+e, where t ∈ R, and a, b, c, d, e ∈ R

are given constants with a > 0. This problem has a simple
closed-form solution, which considerably reduces computation
load. Numerical tests show that the proposed warm-up scheme
significantly improves computation time and solution quality.

2) Performance of Distributed Schemes: We implement
the proposed fully distributed algorithm via MATLAB on a
computer with 4-cores processor: Intel(R) Core(TM) i7-8550U
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Fig. 1. Platooning control with p = 1 and p = 5.

CPU @ 1.80 G H z and RAM: 16.0 G B . This algorithm is
tested for the above-mentioned heterogeneous CAV platoon
for different p’s. The proposed initial guess warm-up schemes
are used with the error tolerance give by 10−7 for all the cases.
Moreover, we choose α = 0.9 and ρ = 0.1 for the prox-
imal operator based Douglas-Rachford scheme. Further, the

Fig. 2. Platooning control subject to noises with p = 1 and p = 5.

stopping criteria are characterized by the minimum of absolute
and relative errors of two neighboring iterates for p = 2, 3,
whereas for p = 4, 5, these criteria are characterized by
absolute errors of two neighboring iterates. The list of error
tolerances for the outer and inner loop at different p’s is
shown in Table II. Note that there is no inner loop for p = 1,
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TABLE II

ERROR TOLERANCES FOR OUTER AND INNER LOOPS AT DIFFERENT MPC HORIZONS

TABLE III

COMPUTATION TIME PER CAV (sec)

TABLE IV

MAXIMUM STEADY STATE ERROR OF SPACING (m)

since its underlying problem is solved via the fully distributed
scheme given in [23]. A summary of mean and variance of
computation time per CAV is displayed in Tables III.
The numerical results show that for each p, the mean

computation time is less than 0.289 s, which is less than the
reaction time ri or sample time τ = 1s, with overall small
variances. We conclude that the proposed distributed scheme
is suitable for real-time computation of a heterogenous CAV
platoon with satisfactory numerical precision.

C. Performance of CAV Platooning Control

We evaluate the closed loop performance of the proposed
CAV platooning control. Toward this end, we consider the
spacing between two neighboring vehicles (i.e., Si−1,i (k) :=
xi−1(k)− xi(k) = zi (k)+�), the vehicle speed vi (k), and the
control input ui (k), i = 1, . . . , n.
When (c2,i , c3,i ) �= 0 and u0(k) = 0 and v0(k) =

v0,∞ > 0 for all large k, it is observed from the numerical
tests that when the CAV platoon reaches its steady state
(zss, z′

ss) ∈ R
n × R

n , i.e., (z(k), z′(k)) becomes the constant
vector (zss, z′

ss) for all large k, zss is nonzero. Physically, the
nonzero steady state is due to nonlinear vehicle dynamics and
the PD-like control structure of the MPC. An analysis for
p = 1 shows that zss = −2Q−1

z Qwwe,∞, where we,∞ �= 0
is defined in the same way as that of we(k) by setting
v0(k) ≡ v0,∞; see [22, Section 7.3] for details. Similar results
are obtained for p ≥ 2.
We display the closed loop performance only for p = 1 and

p = 5 because of the length limit; see Figure 1 for the noise
free case and Figure 2 for the noise case, respectively. Figure 1
shows that S0,1 yields the largest spacing variations with the
maximum magnitude less than or equal to 0.3 m; the other
spacings Si−1,i , i = 2, . . . , 10 demonstrate nearly constant
deviations with maximum magnitude less than 0.14 m, in spite
of the oscillation of S0,1. Further, the spacings Si−1,i , i =
2, . . . , 10 almost reach steady states between 5s and 25s and
after k = 35. The maximum steady state errors are given
in Table IV. It is seen that the maximum steady state
error often appears in S1,2 and the largest relative error
‖zss‖∞

� ≤ 0.37%.

Besides, it is seen from Figure 2 that there are more notice-
able spacing deviations from the desired � for all CAVs due to
the noises. However, the variation of S0,1 is within 1.2 m, and
the maximum deviation of each Si−1,i with i ≥ 2 is less than
0.4 m. Particularly, the deviations of Si−1,i , i = 3, . . . , 10 are
fairly small starting from 5s, and the profiles of the CAV
speed and control show an almost “coordinated” motion. Other
numerical results show that the state or control constraints can
be effectively handled by the proposed platooning control.
Consequently, the proposed platooning control effectively

mitigates traffic oscillations of the spacing and vehicle speed
of the CAV platoon with small steady state errors, even
under external perturbations and state or control constraints.
Additional numerical studies show that the current control
scheme outperforms the linear controller developed in [23] on
CAV platoons with non-negligible nonlinear dynamic effects
and/or inhomogeneities.

VIII. CONCLUSION

This paper develops a nonconvex, fully distributed optimiza-
tion based MPC scheme for platooning control of a hetero-
geneous CAV platoon under the nonlinear vehicle dynamics.
Various new techniques are exploited to address challenges
induced by the nonlinear vehicle dynamics, including distrib-
uted computation for the coupled nonconvex MPC optimiza-
tion problem, and stability analysis of time-varying nonlinear
closed loop dynamics. We apply locally coupled optimiza-
tion and sequential convex programming for distributed algo-
rithm development, and global implicit function theorems and
Lyapunov theory for input-to-state stability are invoked for
stability analysis. Numerical tests illustrate the effectiveness of
the proposed scheme and platooning control. Future research
topics include extensions of the current distributed scheme
and control design to more sophisticated vehicle dynamics
and a possibly time-varying or non-uniform communication
topology subject to communication delays or missing data.
Moreover, directed networks will be considered for distributed
scheme development.
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