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Kernel Robust Hypothesis Testing
Zhongchang Sun and Shaofeng Zou

Abstract—The problem of robust hypothesis testing is studied,
where under the null and the alternative hypotheses, the data-
generating distributions are assumed to be in some uncertainty
sets, and the goal is to design a test that performs well under
the worst-case distributions over the uncertainty sets. In this
paper, uncertainty sets are constructed in a data-driven manner
using kernel method, i.e., they are centered around empirical
distributions of training samples from the null and alternative
hypotheses, respectively; and are constrained via the distance
between kernel mean embeddings of distributions in the repro-
ducing kernel Hilbert space, i.e., maximum mean discrepancy
(MMD). The Bayesian setting and the Neyman-Pearson setting
are investigated. For the Bayesian setting where the goal is to
minimize the worst-case error probability, an optimal test is
firstly obtained when the alphabet is finite. When the alphabet
is infinite, a tractable approximation is proposed to quantify the
worst-case average error probability, and a kernel smoothing
method is further applied to design test that generalizes to unseen
samples. A direct robust kernel test is also proposed and proved
to be exponentially consistent. For the Neyman-Pearson setting,
where the goal is to minimize the worst-case probability of miss
detection subject to a constraint on the worst-case probability
of false alarm, an efficient robust kernel test is proposed and
is shown to be asymptotically optimal. Numerical results are
provided to demonstrate the performance of the proposed robust
tests.

Index Terms—Kernel robust test, Bayesian setting, asymp-
totic Neyman-Pearson setting, tractable approximation, kernel
smoothing

I. INTRODUCTION

HYPOTHESIS testing is a fundamental problem in statis-
tical inference where the goal is to distinguish among

different hypotheses with a small probability of error [3]–[5].
The likelihood ratio test is known to be optimal under different
settings, e.g., the Neyman-Pearson setting and the Bayesian
setting [3], [5]. For example, for binary hypothesis testing,
we compare the likelihood ratio between the two hypotheses
with a pre-specified threshold to make the decision. Therefore,
the data-generating distributions under different hypotheses are
needed. In practice, these distributions are usually estimated
from historical data or designed using domain knowledge, and
thus may deviate from the true data-generating distributions.
When the distributions applied in the likelihood ratio test
deviate from the true data-generating distributions, the perfor-
mance of the test may degrade significantly. To address this
problem, the approach of robust hypothesis testing is proposed,
e.g., [6]–[21], where uncertainty sets are introduced to model
the uncertainty in the underlying distributions. Generally, the
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uncertainty sets are constructed as collections of distributions
that lie in the neighborhood of nominal distributions based
on some distance measure. The goal is to design a test that
performs well under the worst-case distributions over the
uncertainty sets.

The robust hypothesis testing problem has been widely
studied and various ways of constructing uncertainty sets have
been introduced (see, e.g., [8], [21] for a review). The ε-
contamination uncertainty sets and the total variation uncer-
tainty sets were investigated in [6] and a censored likelihood
ratio test was constructed and shown to be minimax optimal.
The problem with uncertainty sets defined via the Kullback-
Leibler (KL) divergence was investigated in [7], [8]. The least-
favorable distributions (LFDs) were identified under some
conditions, and the robust likelihood ratio test based on the
LFDs were constructed. In [12], the robust hypothesis testing
problem under the Bernoulli distribution was investigated.
In [13], the uncertainty sets were constructed via distortion
constraints. In those works, nominal distributions are usually
estimated from historical data. However, when it comes to
the high-dimensional data, which is common in the big data
era, it is in general difficult to obtain an accurate estimate of
the data-generating distributions. Existing studies are mostly
limited to the 1-dimensional case, and a generalization to
high-dimensional data, e.g., finding the LFDs, is still an open
problem in the literature.

In this paper, we employ a data-driven approach [9], [10]
to construct the nominal distributions, and extend the robust
hypothesis testing problem to the high-dimensional setting.
Specifically, a number of training samples are available from
the null and alternative hypotheses, respectively, and their
empirical distributions are used as the nominal distributions
to design the uncertainty sets. We note that in this case,
the uncertainty sets defined via the KL divergence [7], [8]
are not applicable, since such uncertainty sets only contain
distributions supported on the training samples, which may be
problematic if the alphabet is actually infinite.

In [9], [10], the robust hypothesis testing problem was inves-
tigated where uncertainty sets are centered around empirical
distributions via the Wasserstein distance. In [9], the original
0-1 loss, i.e., the error probability, was firstly smoothed. Then,
this relaxed formulation can be solved efficiently, and the
LFDs and the nearly-optimal robust detector were identified.
In [10], the minimax problem with the 0-1 loss, i.e., the exact
probability of error, was considered, where a computationally
tractable reformulation and the optimal robust test were char-
acterized. In [11], the data-driven robust hypothesis testing
problem with the Sinkhorn distance, which is a variant of
Wasserstein distance with entropic regularization, was studied.
The original 0-1 loss, i.e., the error probability, was smoothed
as in [9]. Then, a finite-dimensional convex optimization
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problem was proposed to approximate the smoothed problem.
The solutions were further used to approximate the LFDs, and
design the robust test. However, Wasserstein distance based
approach has certain drawbacks. First, the Wasserstein distance
between the empirical distribution with m samples and its
data-generating distribution is bounded by O(m−1/d) [22],
which depends on the dimension d of the data. Therefore,
when choosing radii of uncertainty sets to guarantee that the
true data-generating distributions lie in the uncertainty sets
with high probability, it is too pessimistic when d is large.
Moreover, coefficients in such a concentration bound depend
on the true distribution which is unknown, and thus makes
it difficult to use in practice. Second, Wasserstein distance is
computationally expensive, especially in the high-dimensional
setting.

Moment information, such as mean and variance, is usually
used to measure the difference between distributions. In [23],
the uncertainty sets are constructed using moment classes,
where a finite alphabet was considered, and an asymptotically
optimal test was designed. Specifically, the moment uncer-
tainty sets in [23] are defined as {P : EP [f ] ≤ θ}, where f is a
real-valued function, EP [f ] denotes the expectation of f under
P , and θ is a constant. In this paper, we generalize the moment
classes to the reproducing kernel Hilbert space (RKHS) [24]–
[26] and construct uncertainty sets using the maximum mean
discrepancy (MMD). Specifically, let f = g − EP̂ [g], where
P̂ is the empirical distribution of samples from P , g is
any function in the RKHS. We then consider the worst-
case and take the supremum of g with bounded norm over
the RKHS. This leads to uncertainty sets centered at P̂ and
defined by MMD (see more details in Section II). Compared
with the Wasserstein distance, the kernel MMD between the
empirical distribution with m samples and its data-generating
distribution can be bounded by O(1/

√
m) [27], [28], which

is dimension-free and also this bound does not depend on
the data-generating distribution. This makes it much easier to
choose the radii of the uncertainty sets. Moreover, the kernel
MMD is computationally efficient to evaluate.

The MMD-based test statistic has been widely used in
statistical signal processing and machine learning. For the one-
sample testing problem, where the goal is to distinguish if a
sequence of samples come from a certain distribution, and the
two-sample testing problem, where the goal is to distinguish
if two sequences of samples come from the same distribution,
the MMD-based methods and some variants are proposed in
[29]–[37]. In [38] and [39], MMD-based tests are proposed
to detect anomalous data streams and anomalous network
structures, respectively, where the anomalous samples gener-
ated from a different distribution from the normal samples. In
[40], an MMD-based M-statistic is proposed for data-driven
quickest change detection. In our paper, we apply MMD to
design robust tests which perform well under the worst-case
distributions over the uncertainty sets.

A. Main Contributions

In this paper, we develop a data-driven approach with the
kernel method to design uncertainty sets for the problem of

robust hypothesis testing. Specifically, empirical distributions
are used directly as the nominal distributions, which avoids
the estimation error when fitting the data into a parametric
family of distributions. We then use the kernel MMD as the
distance metric, which can be viewed as a generalization of
the moment classes [23]. The advantage of the kernel method
is that it scales well for high-dimensional data, and choosing
radii of the uncertainty set does not require the knowledge
of the underlying true distribution. More importantly, our
designed uncertainty sets contain continuous distributions (not
only distributions supported on the training data), and our
robust kernel test generalizes with guaranteed out-of-sample
performance.

We first focus on the Bayesian setting where the goal is to
minimize the worst-case error probability. We first study the
case with a finite alphabet, and reformulate the original prob-
lem equivalently to a finite-dimensional convex optimization
problem via the strong duality of kernel robust optimization
[41] and then derive the optimal robust test. For the case with
an infinite alphabet, we propose a tractable approximation to
quantify the worst-case error probability. The basic idea is
to generate a finite number of samples randomly, and reduce
the uncertainty set to be supported on these samples. We then
rewrite equivalently the original problem as a convex optimiza-
tion problem, and approximate the original objective function
value using the approximated uncertainty set supported on
these randomly generated samples. This approximation is
tractable since it is a finite-dimensional convex optimization,
and it builds connection between the finite-alphabet case and
the infinite-alphabet case. We then show that the solutions
to the approximation converge almost surely to the solutions
to the original infinite-alphabet problem as the number of
randomly generated samples goes to infinity. The LFDs (for
the approximation) can be recovered, which are also supported
on these randomly generated samples. To generalize to unseen
data, we further apply the kernel smoothing method on the
LFDs, and design a robust test that is the likelihood ratio
test between the smoothed LFDs. The computational com-
plexity lies in solving a finite-dimensional convex optimization
problem the complexity of which depends on the number of
randomly generated samples, and implementing the test using
kernel smoothed LFDs the complexity of which is quadratic
in the number of randomly generated samples and testing
samples. We also propose a direct robust kernel test that can
be implemented with a quadratic complexity in the number
of samples, and show that it is exponentially consistent. The
basic idea is to compare the closest MMD distance between
the empirical distribution of samples and the two uncertainty
sets.

We then study the Neyman-Pearson setting, where the goal
is to minimize the worst-case probability of miss detection
subject to a constraint on the worst-case probability of false
alarm. We first develop the universal upper bound on the error
exponent of miss detection under the Neyman-Pearson setting.
The analysis is based on a generalization of the Chernoff-Stein
lemma [4], [42]. We then design a novel robust kernel test,
which is to compare the closest distance between the empirical
distribution of the test samples and the uncertainty set with
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a threshold. We further demonstrate that it is asymptotically
optimal under the Neyman-Pearson setting. Our proposed
robust kernel test does not need to solve for the LFDs, which
might be computationally intractable in practice. We also show
that our test can be implemented efficiently with a quadratic
complexity in the number of samples.

B. Paper Organization

In Section II, we present the preliminaries on MMD and the
problem formulation. In Section III, we focus the Bayesian
setting, and derive the optimal test for the case with a finite
alphabet. For the case with an infinite alphabet, we provide a
tractable approximation to quantify the worst-case error prob-
ability and propose a kernel smoothing robust test. We also
propose an exponentially consistent direct robust kernel test.
In Section IV, we study the robust hypothesis testing under
the Neyman-Pearson setting, and propose an asymptotically
optimal robust kernel test. In Section V, we provide numerical
results to validate our theoretical analysis. In Section VI, we
present some concluding remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let X ⊂ Rd be a compact set where samples are taken
from. Denote by P the set of all probability measures on X .

A. Maximum Mean Discrepancy (MMD)

We first give a brief introduction to the kernel mean
embedding and the MMD [24], [25]. Let H denote the
RKHS associated with a kernel k(·, ·) : X × X → R.
Specifically, k(x, ·) denotes the feature map: X → H, and
k(x, y) = 〈k(x, ·), k(y, ·)〉H defines an inner product on H. In
this paper, we consider the bounded kernel: 0 ≤ k(x, x′) ≤ K,
∀x, x′ ∈ X , where K > 0 is some positive constant. The
kernel mean embedding of a distribution is a mapping from
P to H defined as µP =

∫
k(x, ·)dP . Let EP [f ] denote the

expectation of a function f ∈ H. Denote by ‖ · ‖H the norm
on H. Define the MMD between two distributions P0 and P1

as:

dMMD(P0, P1) = sup
f∈H:‖f‖H≤1

EP0 [f(x)]− EP1 [f(x)]. (1)

With the reproducing property of the RKHS, we have that
EP [f ] = 〈f, µP 〉H. The MMD between P0 and P1 can be
equivalently written as the distance between µP0 and µP1 in
the RKHS [26]:

dMMD(P0, P1) =
∥∥µP0

− µP1

∥∥
H

=
(
Ex∼P0,x′∼P0

[k(x, x′)] + Ey∼P1,y′∼P1
[k(y, y′)]

− 2Ex∼P0,y∼P1
[k(x, y)]

)1/2

. (2)

Given samples xn = (x1, x2, · · · , xn) ∼ P0 and ym =
(y1, y2, · · · , ym) ∼ P1, an unbiased estimate of the squared
MMD [26] between P0 and P1 is

d̂2
MMD(P0, P1) =

1

n(n− 1)

n∑

i=1

∑

j 6=i
k(xi, xj)

+
1

m(m− 1)

m∑

i=1

∑

j 6=i
k(yi, yj)−

2

nm

n∑

i=1

m∑

j=1

k(xi, yj). (3)

If a kernel k is characteristic [43], the kernel mean embedding
is injective, and then dMMD(·, ·) is a metric on P [26], [44]. In
this paper, we consider kernels such that the weak convergence
on P is metrized by MMD [45], [46], e.g., Gaussian kernels
and Laplacian kernels.

B. Problem Setup

Let P0,P1 ⊆ P denote the uncertainty sets under the
null and alternative hypotheses, respectively. We propose a
data-driven approach to construct the uncertainty sets. Instead
of fitting nominal probability distributions in a parametric
form, we have two sequence of training samples: x̂m0 =
(x̂0,1, x̂0,2, · · · , x̂0,m) and x̂m1 = (x̂1,1, x̂1,2, · · · , x̂1,m) from
the two hypotheses, respectively. Let Q̂lm = 1

m

∑m
i=1 δx̂l,i , be

the empirical distribution of x̂ml , l = 0, 1, where δx̂l,i denotes
the Dirac measure on x̂l,i. The nominal distributions are then
the empirical distributions of data from the two hypotheses,
respectively. The uncertainty sets P0,P1 are defined via the
MMD:

Pl =
{
P ∈ P : dMMD(P, Q̂lm) ≤ θ

}
, l = 0, 1, (4)

where θ is the pre-specified radius of the uncertainty sets, and
shall be chosen to guarantee that the population distribution
falls into the uncertainty sets with high probability. It is
assumed that P0,P1 do not overlap, i.e., θ <

‖µQ̂1
m
−µQ̂0

m
‖H

2 .
Otherwise, the problem is trivial.

In [23], the moment class is defined as {P ∈ P : EP [f ] ≤
θ}, where f is real-value function on X . In the definition
of moment class, if we let f = g − EQ̂lm

[g] and take the
supremum over g with ‖g‖H ≤ 1 in the RKHS, it is then the
MMD between P and Q̂lm. Therefore, the MMD uncertainty
sets can be viewed as a generalization of moment classes to
the RKHS.

In this paper, we focus on the robust hypothesis testing
problem with MMD uncertainty sets under the Bayesian
setting and the Neyman-Pearson setting.

1) Bayesian Setting. Given a sample x following an un-
known distribution Q, the goal is to distinguish between the
null hypothesis H0 : Q ∈ P0 and the alternative hypothesis
H1 : Q ∈ P1. For a randomized test φ : X → [0, 1], it accepts
the null hypothesis H0 with probability 1− φ(x) and accepts
the alternative hypothesis H1 with probability φ(x). Let

PF (φ) , sup
P0∈P0

EP0 [φ(x)],

PM (φ) , sup
P1∈P1

EP1 [1− φ(x)] (5)
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denote the worst-case probability of false alarm (type-I error
probability) and the worst-case probability of miss detection
(type-II error probability) for the test φ.

For the simple hypothesis testing with equal priors on the
two hypotheses, the error probability in the Bayesian setting
is given by

PE(φ) , 1

2
EP0

[φ(x)] +
1

2
EP1

[1− φ(x)]

=
1

2

∫
φ(x)dP0(x) +

1

2

∫ (
1− φ(x)

)
dP1(x), (6)

where P0 and P1 denote the distributions under the null and
alternative hypotheses, respectively. For the Bayesian robust
hypothesis testing, the goal is to solve the following problem:

inf
φ

sup
P0∈P0,P1∈P1

PE(φ). (7)

The results in this paper can be easily generalized to the case
with non-equal priors.

Denote a sequence of independent and identically dis-
tributed (i.i.d.) samples by xn = (x1, x2, · · · , xn). The worst-
case type-I error exponent eF and the worst-case type-II error
exponent eM are defined as follows:

eF (φ) = inf
P0∈P0

lim
n→∞

− 1

n
logEP0 [φ(xn)],

eM (φ) = inf
P1∈P1

lim
n→∞

− 1

n
logEP1

[1− φ(xn)]. (8)

Definition 1. A test φ is said to be exponentially consistent if
eF (φ) > 0 and eM (φ) > 0.

2) Neyman-Pearson Setting. In this paper, we focus on the
asymptotic Neyman-Pearson setting, where the goal is to solve
the following problem:

sup
φ:PF (φ)≤α

inf
P1∈P1

lim
n→∞

− 1

n
logEP1 [1− φ(xn)], (9)

where α ∈ (0, 1] is a pre-specified constraint on the worst-
case false alarm probability. Specifically, among the tests that
satisfy the false alarm constraint PF (φ) ≤ α, we aim to find
one that maximizes the worst-case type-II error exponent.

In this paper, any distributions P0, P1 are assumed to admit
probability density functions (PDFs) p0, p1, since we can
always choose a reference measure µ such that both P0 and P1

are absolutely continuous with respect to µ. In general, µ can
be chosen as µ = P0 + P1. For the continuous distributions
and the discrete distributions, µ can be chosen as the Lebesgue
measure and the counting measure, respectively.

III. ROBUST HYPOTHESIS TESTING UNDER BAYESIAN
SETTING

In this section, we focus on the Bayesian setting. We aim
to solve the minimax problem for the average probability of
error in (7).

A. Finite-Alphabet Case

Consider the case with a finite alphabet, i.e., N , |X | <∞.
Let X = {z1, z2, · · · , zN}. Then, x̂l,j ∈ {zi}Ni=1 for l =
0, 1, j = 1, · · · ,m. In this case,

PE(φ) =
N∑

i=1

(1− φN (zi))P
N
1 (zi) + φN (zi)P

N
0 (zi), (10)

where we introduce the superscript N on P0 and P1 to
emphasize its dependence on N . Therefore, (7) can be written
as

inf
φN∈[0,1]⊗N

sup
PN0 ∈P0,PN1 ∈P1

N∑

i=1

(
(1− φN (zi))P

N
1 (zi)

+ φN (zi)P
N
0 (zi)

)
. (11)

Note that (11) is a minimax problem. We then provide the
following strong duality result for (11), which is a finite-
dimensional convex optimization problem.

Lemma 1. The minimax problem in (11) has the following
strong dual formulation:

inf
φN∈[0,1]⊗N ,
f0,g0,αj ,βj∈R

f0 + g0 +
1

m

m∑

i=1

N∑

j=1

αjk(zj , x̂1,i)

+
1

m

m∑

i=1

N∑

j=1

βjk(zj , x̂0,i) + θ
∥∥∥

N∑

j=1

αjk(zj , ·)
∥∥∥
H

+ θ
∥∥∥

N∑

j=1

βjk(zj , ·)
∥∥∥
H

subject to 1− φN (zi) ≤ f0 +

N∑

j=1

αjk(zj , zi), i = 1, · · · , N

φN (zi) ≤ g0 +
N∑

j=1

βjk(zj , zi), i = 1, · · · , N

0 ≤ φN (zi) ≤ 1, i = 1, · · · , N, (12)

which is a finite-dimensional convex optimization problem.

Proof. From the strong duality of kernel robust optimization
[41, Theorem 3.1], we have that (11) has the following dual
problem and the strong duality holds.

inf
φN∈[0,1]⊗N ,

f0,g0∈R,f1,g1∈H

f0 + g0 +
1

m

m∑

i=1

f1(x̂1,i) +
1

m

m∑

i=1

g1(x̂0,i)

+ θ‖f1‖H + θ‖g1‖H
subject to 1− φN (zi) ≤ f0 + f1(zi), i = 1, · · · , N

φN (zi) ≤ g0 + g1(zi), i = 1, · · · , N
0 ≤ φN (zi) ≤ 1, i = 1, · · · , N, (13)

From the robust representer theorem [41], the functions
f1, g1 admit the finite expansions f1(·) =

∑N
j=1 αjk(zj , ·)

and g1(·) =
∑N
j=1 βjk(zj , ·). Therefore, the optimization

problem in (11) can be reformulated as a finite-dimensional
convex optimization problem thus can be solved efficiently in
practice.
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Note that (12) is a convex optimization problem with linear
constraints, and thus can be solved using standard optimization
tools [47]. By solving (12), we obtain the optimal robust
test φ∗N and can also find the optimal solutions P ∗,N0 , P ∗,N1

for the inner problem in (11) by plugging φ∗N back to (11).
When φ∗N is known, (11) reduces to a finite-dimensional
convex optimization problem and can be solved efficiently.
In the following section, we also show that the results in the
finite-alphabet case can be used to provide an asymptotically
accurate approximation for the infinite-alphabet case.

B. Infinite-Alphabet Case

Consider the case where X is infinite. Then, (12) is infinite-
dimensional, and is not directly solvable. To simplify the anal-
ysis of (7), we first interchange the sup and inf operators in (7)
based on the following proposition. Since the likelihood ratio
test is optimal for the binary hypothesis testing problem, the
inner problem can be solved by applying the likelihood ratio
test. The original problem is then converted to a maximization
problem.

Proposition 1. The minimax problem in (7) has the following
reformulation:

inf
φ

sup
P0∈P0,P1∈P1

PE(φ) = sup
P0∈P0,P1∈P1

inf
φ
PE(φ)

=
1

2
sup

P0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx. (14)

Proof. The error probability PE(φ) is continuous, real-valued
and linear in φ, P0 and P1. For any distributions Q1, Q2 ∈
Pl, l = 0, 1, from the triangle inequality of MMD [26], the
convex combination λQ1 + (1− λ)Q2, 0 < λ < 1, lies in Pl.
Therefore, the uncertainty set P0 and P1 are convex sets and
P0×P1 is also convex. Denote by Φ the collection of all φ. We
have that Φ is the product of uncountably many compact sets
of [0, 1]. Since X is compact, from the Tychonoff’s theorem
[48], [49], Φ is compact with respect to the product topology.
Moreover, for any φ1, φ2 ∈ Φ, the convex combination λφ1 +
(1−λ)φ2, 0 < λ < 1, also lies in Φ. Therefore, Φ is convex.
From the Sion’s minimax theorem [50], we have that

inf
φ

sup
P0∈P0,P1∈P1

PE(φ)

= sup
P0∈P0,P1∈P1

inf
φ
PE(φ)

= sup
P0∈P0,P1∈P1

1

2

∫
I{ p1(x)

p0(x)
≥1
}p0(x)dx

+
1

2

∫
I{ p1(x)

p0(x)
<1
}p1(x)dx

=
1

2
sup

P0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx, (15)

where I denotes the indicator function and the second equality
is due to the fact that the likelihood ratio test is optimal for
the binary hypothesis testing problem [3], [5].

Observe that the problem in (14) is an infinite-dimensional
optimization problem and the closed-form optimal solutions
P ∗0 , P

∗
1 are difficult to derive. In the following, we propose a

tractable approximation for the minimax error probability in
(14). With this approximation, the worst-case error probability
in (14) can be quantified. The optimal solutions of this
tractable approximation can be further used to design a robust
test that generalizes to unseen samples.

Let P be an arbitrary distribution supported on the whole
space X , and is absolutely continuous w.r.t. a uniform distri-
bution on X . Let {zi}Ni=1 be N i.i.d. samples generated from
P . We then propose the following approximation of (14) by
restricting to distributions supported on the N samples:

1

2
sup

PN0 ∈PN0 ,PN1 ∈PN1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
, (16)

where PNl (l = 0, 1) denotes the collection of distributions that
are supported on {zi}Ni=1 and satisfy

∥∥µPNl − µQ̂lm
∥∥
H ≤ θ.

We note that (16) is a finite-dimensional convex optimization
problem which can be solved by standard optimization tools.
Let

f(P0,P1) =
1

2
sup

P0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx,

f(PN0 ,PN1 ) =
1

2
sup

PN0 ∈PN0 ,PN1 ∈PN1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
.

(17)

Clearly, (16) is a lower bound of (14), i.e., f(PN0 ,PN1 ) ≤
f(P0,P1). The following theorem demonstrates that as N →
∞, the value of (16) converges to the value of (14) almost
surely.

Theorem 1. As N →∞, f(PN0 ,PN1 ) converges to f(P0,P1)
almost surely.

Before we prove Theorem 1, we will first show that∫
min

{
p0(x), p1(x)

}
dx is upper semi-continuous in P0, P1

with respect to the weak convergence in the following lemma.

Lemma 2.
∫

min
{
p0(x), p1(x)

}
dx is upper semi-continuous

in P0, P1 with respect to the weak convergence.

Proof. The proof of Lemma 2 can be found in Appendix C.

With Lemma 2, we are ready to prove Theorem 1.

Proof sketch. We first show that the solutions to
supP0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx exist and let

P ∗0 , P
∗
1 denote the optimal solutions. We then show that there

exist distributions P s0 , P
s
1 supported on s samples converging

weakly to P ∗0 , P
∗
1 respectively, as s → ∞. Thirdly, for a

fixed s, we show that there exist distributions P s,N0 , P s,N1

supported on {zi}Ni=1 converging weakly to P s0 , P
s
1 almost

surely as N →∞ and

N∑

i=1

min
{
P s,N0 (zi), P

s,N
1 (zi)

}
≥
∫

min{p∗0(x), p∗1(x)}dx.

(18)

Moreover, we show that for any ε > 0, there exists large s
and N such that the MMD between P s,N0 , P s,N1 and Q̂0

m, Q̂
1
m
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can be bounded by θ+ ε. Finally, by letting ε→ 0, we prove
the convergence result in Theorem 1.

The full proof of Theorem 1 can be found in Appendix
D.

Though the optimal solutions P ∗0 , P
∗
1 for (14) is difficult to

derive, (16) provides a lower bound on the worst-case error
probability, and is asymptotically accurate as N →∞.

C. Convergence Rate

In this section, we characterize the approximation error in
Theorem 1 in terms of N if radial basis function (RBF) kernels
[51] are used, i.e., k(x, y) = exp

(
− ‖x−y‖

ρ
2

2σ2

)
, where ρ > 0 is

some constant. For example, when ρ = 1, k(x, y) is the Lapla-
cian kernel (exponential kernel); and when ρ = 2, k(x, y) is
the Gaussian kernel. A δ-net of X is a set of points {zi}Ni=1 in
X such that for any z ∈ X , there exists some zi that satisfies
‖z − zi‖ρ2 ≤ δ. From classic covering number results, we can
construct a δ-net where δ =

maxz,z′∈X ‖z−z′‖ρ2
N

1
d

with the number

of N points. We use {zi}Ni=1 to construct the support sample
set. There exists a partition AN = {A1

N ,A2
N , · · · ,ANN} based

on the δ-net such that zi ∈ AiN and maxz∈AiN ‖z− zi‖
ρ
2 ≤ δ.

We rewrite f(P0,P1), f(PN0 ,PN1 ) in (17) as a function of θ
and define

g(θ) = sup
P0∈P:

∥∥µP0
−µQ̂0

m

∥∥
H
≤θ

P1∈P:
∥∥µP1

−µQ̂1
m

∥∥
H
≤θ

∫
min

{
p0(x), p1(x)

}
dx,

(19)

and

gN (θ)

= sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
.

(20)

We note that for RBF kernels, 0 ≤ k(x, y) ≤ 1. Therefore,
for any P0 ∈ P0, we have that

∥∥µP0
− µQ̂0

m

∥∥
H =(

Ex∼P0,x′∼P0 [k(x, x′)] + Ey∼Q̂0
m,y
′∼Q̂0

m
[k(y, y′)] −

2Ex∼P0,y∼Q̂0
m

[k(x, y)]
)1/2

≤
√

2. Similarly, we have

that
∥∥µP1

− µQ̂1
m

∥∥
H ≤

√
2 for any P1 ∈ P1. Therefore, it

suffices to consider θ ∈ (0,
√

2]. We then have the following
theorem that bounds the approximation error.

Theorem 2. Let ε =

√
2− 2 exp

(
− δ

2σ2

)
. For any θ ∈

(0,
√

2], the approximation error satisfies |g(θ)−gN (θ)| ≤ Lε,
where L is some constant.

Proof. Denote by PN0 , PN1 discrete distributions with
PN0 (zi) = P ∗0 (AiN ), PN1 (zi) = P ∗1 (AiN ). Consider the MMD
between PN0 and P ∗0 , we then have that

‖µPN0 − µP∗0 ‖H

= sup
h:‖h‖H≤1

∫
hdPN0 −

∫
hdP ∗0

= sup
h:‖h‖H≤1

N∑

i=1

∫

AiN

(
h− h(zi)

)
dP ∗0

≤ sup
h:‖h‖H≤1

N∑

i=1

∫

AiN
max
z∈AiN

(
h(z)− h(zi)

)
dP ∗0

(a)
= sup

h:‖h‖H≤1

N∑

i=1

∫

AiN
max
z∈AiN

〈h, k(z, ·)− k(zi, ·)〉HdP ∗0

(b)

≤ sup
h:‖h‖H≤1

N∑

i=1

∫

AiN
max
z∈AiN

‖h‖H‖k(z, ·)− k(zj , ·)‖HdP ∗0

≤ sup
h:‖h‖H≤1

N∑

i=1

∫

AiN
‖h‖H

× max
z∈AiN

√
k(z, z) + k(zi, zi)− 2k(z, zi)dP

∗
0

=
N∑

i=1

∫

AiN
max
z∈AiN

√
k(z, z) + k(zi, zi)− 2k(z, zi)dP

∗
0

=
N∑

i=1

∫

AiN

√
2− 2 min

z∈AiN
k(z, zi)dP

∗
0

(c)

≤
√

2− 2 exp
(
− δ

2σ2

)
, (21)

where (a) is from the reproducing property of the kernel,
(b) is from the Cauchy-Schwartz inequality and (c) is due
to the fact that minz∈AiN k(z, zi) ≥ exp

(
− δ

2σ2

)
. Let

ε =

√
2− 2 exp

(
− δ

2σ2

)
. We then have that ‖µPN0 −

µQ̂0
m
‖H ≤ θ + ε by the triangle inequality. Therefore, PN0

lies in the uncertainty set centered around Q̂0
m with radius

θ+ ε. Similarly, for PN1 and P ∗1 , we have the same result that
PN1 lies in the uncertainty set centered around Q̂1

m with radius
θ + ε. From Jensen’s inequality [52], we have that
∫

min
{
p∗0(x), p∗1(x)

}
dx ≤

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
.

(22)

Therefore, gN (θ + ε) ≥ g(θ). We then have that

|g(θ)− gN (θ)| ≤ |gN (θ + ε)− g(θ)|+ |gN (θ + ε)− gN (θ)|
≤ |g(θ + ε)− g(θ)|+ |gN (θ + ε)− gN (θ)|,

(23)

where the first inequality is due to the fact that gN (θ + ε) ≥
g(θ) and g(θ + ε) ≥ gN (θ + ε). We will then bound the first
term |g(θ+ε)−g(θ)|. Since g(θ) is concave when θ ∈ (0,∞)
(see (76) in Appendix D for the proof), there exists L1 such
that g(·) is L1-Lipschitz on [θ,

√
2] [53]. Therefore, |g(θ+ε)−

g(θ)| ≤ L1ε. Similarly, there exists L2 such that |gN (θ+ ε)−
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gN (θ)| ≤ L2ε. Therefore, |g(θ) − gN (θ)| ≤ (L1 + L2)ε for
any θ ∈ (0,

√
2]. Note that L1 and L2 may depend on θ.

This result characterizes the convergence rate of the approx-
imation error with respect to the support sample size N . In
practice, we can choose a proper N to control the approxi-
mation error. This result also reveals the relation between the
data dimension d and the number of support sample N . In
high dimensional setting, we need a larger N to achieve the
same approximation error as in the low dimensional setting.
Note that N is the number of artificially generated samples,
and therefore we could generate as many as we like at the
price of increased computational cost for solving (16).

D. Robust Test via Kernel Smoothing

The optimal solutions P ∗0 , P
∗
1 of (14), and thus the like-

lihood ratio test between P ∗0 and P ∗1 are difficult to derive.
Note that P ∗,N0 , P ∗,N1 are optimal solutions to (16). The fol-
lowing proposition shows that the sequence {P ∗,N0 , P ∗,N1 }∞N=1

converges weakly to an optimal solution of (14), i.e., for all
bounded and continuous functions h, limN→∞EP∗,N0

[h] =

EP∗0 [h] and limN→∞EP∗,N1
[h] = EP∗1 [h]. The fact that

P ∗,N0 , P ∗,N1 are reasonable approximations of P ∗0 , P
∗
1 as N →

∞ further motivates our kernel smoothing method to design a
robust test that generalizes to the entire alphabet in this section.

Proposition 2. The sequence {P ∗,N0 , P ∗,N1 }∞N=1 converges
weakly to an optimal solution of (14).

Proof. Observe that for any N , {P ∗,N0 , P ∗,N1 } lies in the
compact set P0×P1. Assume {P ∗,N0 , P ∗,N1 } does not converge
weakly to the optimal solution {P ∗0 , P ∗1 }, then there exists
a subsequence of {P ∗,N0 , P ∗,N1 }∞N=1 converges weakly but
not to {P ∗0 , P ∗1 } [54, Chapter 5.1.1]. Denote the sequence by
{P ∗,N(t)

0 , P
∗,N(t)
1 }∞t=1. Assume {P ∗,N(t)

0 , P
∗,N(t)
1 }∞t=1 con-

verges weakly to {P ′0, P ′1}. Since {P ′0, P ′1} is not an optimal
solution to (14), we have that

∫
min{p′0(x), p′1(x)}dx <

∫
min{p∗0(x), p∗1(x)}dx. (24)

We then have that
∫

min{p∗0(x), p∗1(x)}dx

= lim
t→∞

N∑

i=1

min{P ∗,N(t)
0 (zi), P

∗,N(t)
1 (zi)}

≤
∫

min{p′0(x), p′1(x)}dx, (25)

where the equality is from Theorem 1 and the inequality is
due to the upper semi-continuity of

∫
min{p0(x), p1(x)}dx

in Lemma 2. This leads to a contradiction. Therefore,
{P ∗,N0 , P ∗,N1 }∞N=1 converges weakly an optimal solution of
(14).

Note that P ∗,N0 , P ∗,N1 are convex combinations of Dirac
measures. We then extend them to the whole space via kernel
smoothing to approximate P ∗0 , P

∗
1 , i.e.,

P̃ ∗0 (x) =

N∑

i=1

P ∗,N0 (zi)k(x, zi),

P̃ ∗1 (x) =
N∑

i=1

P ∗,N1 (zi)k(x, zi). (26)

The kernel functions have various choices. For example, the
Gaussian kernel with bandwidth parameter σ: k(x, y) =

1√
2σ

exp
(
− ‖x−y‖

2

2σ2

)
. After kernel smoothing, we define the

likelihood ratio test φ̃ between P̃ ∗1 (x) and P̃ ∗0 (x) over the
whole space X as follows to approximate the optimal test:

φ̃(x) =





1, if log
P̃∗1 (x)

P̃∗0 (x)
≥ 0

0, if log
P̃∗1 (x)

P̃∗0 (x)
< 0.

(27)

When the testing sample size is n, after solving P ∗,N0 , P ∗,N1 ,
the computational complexity for implementing φ̃ is O(nN).
The numerical results in Section V show that φ̃ performs well
in practice, and is robust to model uncertainty.

E. A Direct Robust Kernel Test
In this section, we consider the problem of testing a

sequence of samples xn, where n is the sample size. We
propose a direct robust kernel test and further show that it
is exponentially consistent as n → ∞ under the Bayesian
setting.

Motivated by the facts that the MMD can be used to
measure the distance between distributions when the kernel
k is characteristic, we propose a direct robust kernel test as
follows

φB(xn) =

{
1, if S(xn) ≥ γ
0, if S(xn) < γ,

(28)

where

S(xn) = inf
P∈P0

∥∥µP̂n − µP
∥∥
H − inf

P∈P1

∥∥µP̂n − µP
∥∥
H, (29)

and γ is a pre-specified threshold. In the construction of
S(xn), we use “inf” to tackle the uncertainty of distribu-
tions and compare the closest distance between the empirical
distribution of samples and the two uncertainty sets. The
test statistic involves two infinite-dimensional optimization
problems, and thus is difficult to solve in general. In the
following proposition, we show that it can actually be solved
analytically in closed-form, and the computational complexity
is O(m2 + n2).

Proposition 3. For any l = 0, 1, if
∥∥µP̂n −µQ̂lm

∥∥
H > θ, then

inf
P∈Pl

∥∥µP̂n − µP
∥∥
H =

∥∥µP̂n − µQ̂lm
∥∥
H − θ

=
( 1

n2

n∑

i=1

n∑

j=1

k(xi, xj) +
1

m2

m∑

i=1

m∑

j=1

k(x̂l,i, x̂l,j)

− 2

nm

n∑

i=1

m∑

j=1

k(xi, x̂l,j)
)1/2

− θ; (30)
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and otherwise, infP∈Pl
∥∥µP̂n − µP

∥∥
H = 0.

Proof. The proof of Proposition 3 can be found in Appendix
E.

In the following theorem, we show that with a proper choice
of γ, φB is exponentially consistent.

Theorem 3. 1) If γ ∈
(
−
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H + 2θ,

∥∥µQ̂0
m
−

µQ̂1
m

∥∥
H − 2θ

)
, φB is exponentially consistent.

2) φB can be equivalently written as

φ′B(xn) =

{
1, if

∥∥µP̂n − µQ̂0
m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H ≥ γ

0, if
∥∥µP̂n − µQ̂0

m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H < γ,

(31)

and its computational complexity is O
(
m2 + n2

)
.

Proof. The proof of Theorem 3 can be found in Appendix
F.

It can be seen that the direct test for robust hypothesis
testing naturally reduces to comparing the MMD distance
between the empirical distribution of samples and two centers
of uncertainty sets which is computationally efficient. The ex-
ponential consistency of φB implies that the error probabilities
decay exponentially fast with the sample size n. In practice, we
can choose a proper threshold to balance the trade-off between
the two types of errors.

The error exponent in Theorem 3 is in an asymptotic sense,
and is in the form of an optimization problem without a closed-
form solution. In the following proposition, we consider a
special case with γ = 0 and derive the closed-form upper
bound of the worst-case error probabilities.

Proposition 4. Set γ = 0 in (28). Then, the worst-case type-I
and type-II errors can be bounded as follows,

sup
P0∈P0

EP0
[φB(xn)]

≤ exp

(
−
n
(∥∥µQ̂1

m
− µQ̂0

m

∥∥2

H − 2θ
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H

)2

8K2

)

(32)

and

sup
P1∈P1

EP1 [1− φB(xn)]

≤ exp

(
−
n
(∥∥µQ̂1

m
− µQ̂0

m

∥∥2

H − 2θ
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H

)2

8K2

)
.

(33)

Proof. The proof of Proposition 4 can be found in Appendix
G.

In Proposition 4, we provide an upper bound on the worst-
case error probability of φB when γ = 0. It can be seen
that the error probabilities decay exponentially fast with an

exponent of
(∥∥µQ̂1

m
−µQ̂0

m

∥∥2

H− 2θ
∥∥µQ̂1

m
−µQ̂0

m

∥∥
H

)2

/8K2,
which validates the fact that φB is exponentially consistent.
Moreover, the decay rate is a function of the radius θ and

the MMD distance between centers of two uncertainty sets.
When the centers of two uncertainty sets are fixed, the upper
bound on the error probabilities will increase with the radius
θ. Proposition 4 provides a closed-form non-asymptotic upper
bound on the worst-case error probability. In practice, this
upper bound can be used to evaluate the worst-case risk
of implementing φB for a finite sample size n. Moreover,
combining Theorem 1 and Theorem 3, the performance gap
between φB and the optimal test can be approximated.

IV. ROBUST HYPOTHESIS TESTING UNDER
NEYMAN-PEARSON SETTING

In this section, we focus on the Neyman-Pearson setting. We
propose a robust kernel test, and show that it is asymptotically
optimal under the Neyman-Pearson setting. The results in this
section also hold for X = Rd.

A. Universal Upper Bound on the Worst-Case Error Exponent
In this section, we derive the universal upper bound on

the error exponent for the problem in (9). The following
proposition is a robust version of the Chernoff-Stein lemma
[4], [42].

Proposition 5. Consider the robust hypothesis testing problem
in (9), we have that

sup
φ:PF (φ)≤α

inf
P1∈P1

lim
n→∞

− 1

n
logEP1

[1− φ(xn)]

≤ inf
P0∈P0,P1∈P1

D(P0‖P1). (34)

Proof. For any P0 ∈ P0, P1 ∈ P1, from the Chernoff-Stein
lemma [4], [42], we have that

sup
φ:EP0

[φ(xn)]≤α
lim
n→∞

− 1

n
logEP1 [1− φ(xn)] = D(P0‖P1).

(35)

Since PF (φ) , supP0∈P0
EP0

[φ(xn)], we have that {φ :
PF (φ) ≤ α} ⊆ {φ : EP0 [φ(xn)] ≤ α}. Therefore, for any
P0 ∈ P0, P1 ∈ P1, we have that

sup
φ:PF (φ)≤α

inf
P1∈P1

lim
n→∞

− 1

n
logEP1

[1− φ(xn)]

≤ sup
φ:EP0

[φ(xn)]≤α
lim
n→∞

− 1

n
logEP1

[1− φ(xn)]

= D(P0‖P1). (36)

The solutions to infP0∈P0,P1∈P1
D(P0‖P1) exist since

D(P0‖P1) is lower semi-continuous and lower semi-
continuous functions attain its infimum on a compact set. Since
(36) holds for any P0 ∈ P0, P1 ∈ P1, we then have that

sup
φ:PF (φ)≤α

inf
P1∈P1

lim
n→∞

− 1

n
logEP1

[1− φ(xn)]

≤ inf
P0∈P0,P1∈P1

D(P0‖P1). (37)

Proposition 5 implies that for any test, the achievable error
exponent is no better than infP0∈P0,P1∈P1 D(P0‖P1). This
theorem also applies to robust hypothesis testing problems
with different uncertainty sets.
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B. Asymptotically Optimal Robust Kernel Test

In this section, we propose a robust kernel test for the
problem in (9), and further prove that it is asymptotically
optimal.

Motivated by the fact that when the kernel k is character-
istic, the MMD is a metric and can be used to measure the
distance between distributions and the kernel test is asymptot-
ically optimal under the Neyman-Pearson setting for the two-
sample test problem [35], we design our robust kernel test as
follows:

φN (xn) =

{
1, if infP∈P0

∥∥µP̂n − µP
∥∥
H > γn

0, if infP∈P0

∥∥µP̂n − µP
∥∥
H ≤ γn,

(38)

where γn =
√

2K/n
(
1 +
√− logα

)
is chosen to satisfy

the false alarm constraint that PF (φN ) ≤ α, and P̂n is the
empirical distribution of xn. We use “inf” in the test statistic to
tackle the uncertainty of distributions. A heuristic explanation
of our test is that we use the closest distance between the
empirical distribution of the test samples and the uncertainty
set P0. Our test statistic does not depend on P1, but later we
will show that it is asymptotically optimal under the Neyman-
Pearson setting, i.e., solves the problem in (9).

From Proposition 3, we have that the test statistic of our
robust kernel test can be solved analytically in closed-form
with a computational complexity of O(m2 + n2). We then
show that the kernel robust test in (38) is asymptotically
optimal for the problem in (9) in the following theorem, i.e.,
it achieves the universal upper bound on the worst-case error
exponent in Proposition 5.

Theorem 4. The robust kernel test in (38) is asymptotically
optimal under Neyman-Pearson setting:
1) under H0,

sup
P0∈P0

EP0
[φN (xn)] = sup

P0∈P0

P0

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H > γn

)

≤ α; (39)

and 2) under H1,

inf
P1∈P1

lim
n→∞

− 1

n
logEP1 [1− φN (xn)]

= inf
P1∈P1

lim
n→∞

− 1

n
logP1

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H ≤ γn

)

= sup
φ:PF (φ)≤α

inf
P1∈P1

lim
n→∞

− 1

n
logEP1

[1− φ(xn)]

= inf
P0∈P0,P1∈P1

D(P0‖P1). (40)

Proof. The proof of Theorem 4 can be found in Appendix
H.

The optimality result for the kernel robust test (38) in The-
orem 4 holds for general robust hypothesis testing problems,
i.e., it applies to robust hypothesis testing problems defined
using different uncertainty sets P0,P1 and using any arbitrary
nominal distributions. However, to solve the optimization
problem in the test statistic infP∈P0

∥∥µP̂n − µP
∥∥
H for any

arbitrary uncertainty set P0, it may not always be tractable,
since it is an infinite-dimensional problem.

V. SIMULATION RESULTS

In this section, we provide some numerical results to
demonstrate the performance of our proposed tests.

A. A Toy Example

We first provide a toy example to visualize the impact of
our kernel robust framework. Assume the whole space X =
{1, 2, 3, 4, 5}. Under hypothesis H0, the training samples are
1, 2, 3. Under hypothesis H1, the training samples are 3, 4, 5.
The radius is set to be 0.2. We choose a Gaussian kernel. The
bandwidth for the Gaussian kernel is chosen using the medium
heuristic [26]. We plot the empirical distributions and the least
favorable distributions (LFDs). The supports of the empirical
distributions overlap only at x = 3. Comparing the empirical
distributions and the LFDs, it can be seen from Fig. 1 that
under H0, part of the probability mass is transported from
{1, 2} to {4, 5}, under H1, part of the probability mass is
transported from {4, 5} to {1, 2}. Therefore, the LFDs are
more difficult to distinguish than the empirical distributions.

(a) Empirical Distributions (b) Least Favorable Distributions

Fig. 1. Comparison of the Empirical Distributions and the Least Favorable
Distributions on a Toy Example.

B. Exponential Consistency of the Tests

In this section, we validate the exponential consistency of
the proposed tests. We use 40 samples from N (0, I) and 40
samples from N (0.22e, I) to construct the uncertainty sets
under H0 and H1 respectively, where e is a vector with all
entries equal to 1, and I is the identity matrix. The data
dimension is 20. The radii are chosen such that the uncertainty
sets do not overlap. For the kernel smoothing robust test, we
use training samples as the support of the finite-dimensional
robust optimization problem in (17). When testing the batch
samples, we take the sum of the log-likelihood ratio for
each sample and compare it with a threshold. We choose the
Gaussian kernel and the bandwidth parameter is chosen using
cross-validation. We use the data-generating distributions to
evaluate the performance of the two tests. We plot the log of
the error probability under the Bayesian setting as a function
of testing sample size n. It can be seen from Fig. 1 that
with the increasing of sample size n, the error probabilities of
the direct robust test and kernel smoothing robust test decay
exponentially fast, which validates the theoretical result that
the direct robust test is exponentially consistent. Moreover, our
kernel smoothing robust test has a better performance than the
direct robust kernel test.
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Fig. 2. Exponential Consistency of the Tests.

C. Comparison of the Performance

In this section, we compare our tests with the Wasserstein
robust test [9], [10].

We first compare the performance using synthetic data. We
use 20 samples from N (0, I) and 20 samples from N (e, I) to
construct the uncertainty sets under H0 and H1 respectively.
The data dimension is 4. We use a Gaussian kernel and the
bandwidth parameter is chosen using the cross-validation. For
a fair comparison, and due to the difficulty of obtaining the
coefficients in the Wasserstein distance concentration bound
in [10, Section 4], we compute the distance between the
true distribution and the empirical distribution of the training
samples using Monte Carlo method and use it as the radii
of the uncertainty sets so that the true distributions lie in the
uncertainty sets. We then use the true distributions to evaluate
the performance of the proposed tests. We plot the log of the
error probability as a function of testing sample size n. It can
be seen from Fig. 3 that the kernel smoothing robust test has
the best performance. The performance of the direct robust
test and the Wasserstein robust test are close.

Fig. 3. Comparison of the Kernel Smoothing Robust Test, the Direct Robust
Kernel Test and the Wasserstein Robust Test: Synthetic Data.

We then validate the performance of our robust tests using
real data of human activity detection. The dataset was released
by the Wireless Sensor Data Mining (WISDM) Lab in October
2013, which was collected with the Actitracker system [55]–
[57]. Users carried smartphone and were asked to do different
activities. For each person, the dataset records the user’s name,
activities and the acceleration of the user in three directions.

We use the walking data and the jogging data collected from
four different users to form H0 and H1 respectively. We use
five samples from each user to construct the uncertainty sets.
The radii of the uncertainty sets are chosen by cross-validation
for fair comparison. We plot the log scale error probability as
a function of testing sample size n. In Fig. 4, it can be seen
that the performance of the kernel smoothing robust test is
better than the Wasserstein robust test and the direct robust
kernel test. These results demonstrate the good performance
of our kernel robust framework.

Fig. 4. Comparison of the Kernel Smoothing Robust Test, the Direct Robust
Kernel Test and the Wasserstein Robust Test: Human Activity Dataset.

We then compare the performance of the three algorithms
using MNIST handwritten digits dataset [58]. We first nor-
malize the image data and then select five images from two
different classes to construct the uncertainty sets. The radii
of the uncertainty sets are chosen by cross-validation for
fair comparison. We plot the log scale error probability as
a function of testing sample size n. From Fig. 5, it can be
seen that the performance of the kernel smoothing robust test
and the direct robust kernel test are close. Moreover, both the
kernel smoothing robust test and the direct robust kernel test
outperform the Wasserstein robust test.

Fig. 5. Comparison of the Kernel Smoothing Robust Test, the Direct Robust
Kernel Test and the Wasserstein Robust Test: MNIST Handwritten Digits
Dataset.

D. Comparison under Different Dimensions and Training
Sample Sizes

In this section, we compare the performance of our kernel
smoothing robust test under different data dimensions and
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different training sample sizes.
We evaluate the performance of our kernel smoothing test

when the date dimension is 5, 10, 15 and 20. When the data
dimension is 5, we use 20 samples from N (0, I) and 20 sam-
ples from N (0.48e, I) to construct the uncertainty sets under
H0 and H1 respectively. When the data dimensions are 10, 15
and 20, we scale the mean of the Gaussian distribution under
H1 so that the KL divergence between the true distributions
under H0 and H1 is the same for different data dimensions
[59]. We use a Gaussian kernel and the bandwidth parameter
is chosen using cross-validation. It can be seen from Fig. 6
that the performance of the kernel smoothing test decreases
when the data dimension increases.

Fig. 6. Comparison of the Kernel Smoothing Robust Test under Different
Data Dimensions.

We then examine the impact of the training sample size
on our kernel smoothing test. We use different number of
training samples from N (0, I) and N (0.22e, I) to construct
the uncertainty sets under H0 and H1 respectively. The data
dimension is 20. The radius of the uncertainty set is chosen
such that the true distributions lie in the uncertainty sets with
the same probability for different training sample sizes. From
Fig. 7, it can be seen that the kernel smoothing test performs
better when the training sample size is larger. This validates
the observation that when the training sample size is larger,
we have more information about the true distributions, and the
problem shall be easier to solve.

Fig. 7. Comparison of the Kernel Smoothing Robust Test under Different
Training Sample Sizes.

E. Robust Kernel Test under the Neyman-Pearson Setting

For the Neyman-Pearson setting, we show the good perfor-
mance of our robust kernel test. We first demonstrate the per-
formance of our tests using multivariate Gaussian distributions.
For hypotheses H0, we use 50 samples generated fromN (0, I)
to construct the uncertainty set. For H1, we use 50 samples
generated from N (0.5e, I) to construct the uncertainty set.
The data dimension is 4. The radii are chosen such that the
uncertainty sets do not overlap. To test the robustness of our
tests, we choose an arbitrary pair of distributions P0, P1 that lie
on the boundary of the uncertainty sets P0, P1. Specifically, P0

and P1 are multi-variate Gaussian distributions with mean 0.1e
and 0.4e, respectively, and with the same covariance matrix.

(a) Type-I error v.s. sample size (b) Type-II error v.s. sample size.

Fig. 8. Error Probability of Robust Kernel Test on Synthetic Dataset.

We set the false alarm constraint α = 0.1. With a proper
choice of threshold, in Fig. 8(a), we plot the type-I error
probability as a function of sample size n. We repeat the
experiment for 10000 times. In Fig. 8(b), we plot the the type-
II error probability as a function of sample size n. It can be
seen that the type-II error probability of our robust kernel test
decays exponentially fast with the sample size n while the
type-I error probability satisfies the false alarm constraint.

We then use the real data set as in Section V-C to demon-
strate the performance of our robust kernel test. We use the
walking data collected from the person indexed by 685 and
the walking data collected from the person indexed by 669
to form hypotheses H0 and H1. A small portion of the data
is used to construct the uncertainty sets. The radius θ of the
uncertainty sets is chosen such that the two uncertainty sets
do not overlap.

We set the false alarm constraint α = 0.1. With a proper
choice of threshold, we plot the type-I and type-II error
probability as a function of sample size n. From Fig. 9, it
can be seen that the type-II error probability of our robust
kernel test decays exponentially fast with sample size n while
the type-I error probability satisfies the false alarm constraint.

VI. CONCLUSION

In this paper, we studied the robust hypothesis testing
problem. We proposed a data-driven approach to construct the
uncertainty sets using distance between kernel mean embed-
dings of distributions. Under the Bayesian setting, we first
found the optimal test for the case with a finite alphabet. For
the case with an infinite alphabet, we proposed a tractable
approximation to quantify the worst-case error probability,
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(a) Type-I error v.s. sample size (b) Type-II error v.s. sample size.

Fig. 9. Error Probability of Robust Kernel Test on the Real Dataset.

and we developed a kernel smoothing method to generalize
to unseen data in the alphabet. We also developed a direct
robust kernel test which was further shown to be exponentially
consistent. Under the Neyman-Pearson setting, we constructed
a robust kernel test which can be implemented efficiently and
further proved that the proposed test is asymptotically optimal.
Specifically, we derived an universal upper bound on the type-
II error exponent, and then showed that our robust kernel test
achieved this universal upper bound. We also provided some
numerical results to demonstrate the performance of our tests.
Our approaches provide useful insights for robust hypothesis
testing problems in high-dimensional setting.

In the future, it is of interest to investigate the robust
multiple hypothesis testing problem with kernel uncertainty
sets, where the design of robust detector is significantly more
challenging. Another possible extension is to consider the
kernel robust sequential hypothesis testing. In this case, we
aim to minimize the worst-case probability of errors regarding
the hypothesis using as few samples as possible, for which a
data-driven approach needs to be developed.

APPENDIX A
USEFUL LEMMAS

In this section, we list one useful lemma for our proof.

Lemma 3. [60], [61] For any P1 ∈ P , the KL-divergence
D(·‖P1) is a lower semi-continuous function with respect
to the weak topology of P . That is, for any ε > 0, there
exists a neighborhood U ⊂ P of P0 such that for any
P ′ ∈ U,D(P ′‖P1) ≥ D(P0‖P1)− ε if D(P0‖P1) < ∞, and
D(P ′‖P1)→∞ as P ′ converges to P0 if D(P0‖P1) =∞.

APPENDIX B
RADII SELECTION

We first provide a concentration results for kernel MMD in
the following lemma.

Lemma 4. [27], [28] Assume 0 ≤ k(·, ·) ≤ K. Given samples
xm = (x1, x2, · · · , xm) i.i.d. generated from P0, denote by
P̂m the empirical distribution of xm, we then have that

P0

(∣∣∣∣µP̂m − µP0

∣∣∣∣
H >

(
2K/m

)1/2
+ ε
)
≤ exp

(
− ε2m

2K

)
.

This lemma provides a method to choose the radius of
the uncertainty set so that the true distribution lies in the
uncertainty set with high probability. Let 0 < δ < 1, when

the training sample size in m, to guarantee that the true
distribution lies in the uncertainty set with probability at least
1− δ, the radius of the uncertainty set should be chosen as

θ =

√
2K

m
+

√
2K log 1

δ

m
. (41)

This method in (41) is a straightforward approach to apply, and
usually works very when there is a good number of training
samples. In practice, to avoid being overly conservative, it is
recommended to choose the radii using this method together
with approaches, e.g., cross validation.

APPENDIX C
PROOF OF LEMMA2

Proof. To prove Lemma 2, we will first show that∫
min

{
p0(x), p1(x)

}
dx is concave in p0, p1. Let B be the σ-

field on X . Let A = {A1,A2, · · · ,A|A|} be a finite partition
of X which divides X into a finite number of sets and |A| de-
notes the number of partitions inA. Denote by Π the collection
of all finite B-measurable partitions. Let PAi0 = P0(Ai) and
PAi1 = P1(Ai) for i = 1, 2, · · · , |A|. We will then prove that∫

min
{
p0(x), p1(x)

}
dx = infA∈Π

∑|A|
i=1 min

{
PAi0 , PAi1

}
,

and show the upper semi-continuity.
Step 1. Let f0(p0, p1) = p0 and f1(p0, p1) = p1. Since

f0(p0, p1) and f1(p0, p1) are linear in p0, p1, min{p0, p1}
is the minimum of two linear functions thus is concave.
Therefore,

∫
min

{
p0(x), p1(x)

}
dx is concave in p0, p1.

Step 2. For any partitions A ∈ Π, we have that Ai ∈
B, ∀i ∈ {1, 2, · · · , |A|}. For any A ∈ Π, from the concavity
of min

{
p0(x), p1(x)

}
and Jensen’s inequality [52], we have

that
∫

min
{
p0(x), p1(x)

}
dx ≤

|A|∑

i=1

min
{
PAi0 , PAi1

}
. (42)

We note that 0 ≤ min
{p0(x)
p1(x) , 1

}
≤ 1. Therefore, for

any ε > 0, there exists a partition {A1,A2, · · · ,A|A|}
such that

⋃|A|
i=1Ai = X and h̄i − hi < ε, where h̄i =

supx∈Ai min
{p0(x)
p1(x) , 1

}
, hi = infx∈Ai min

{p0(x)
p1(x) , 1

}
for

i = 1, 2, · · · , |A|. We then have that
∫

Ai
h̄ip1(x)dx ≥

∫

Ai
min

{p0(x)

p1(x)
, 1
}
p1(x)dx

≥
∫

Ai
hip1(x)dx. (43)

It follows that

P1(Ai)h̄i ≥
∫

Ai
min

{p0(x)

p1(x)
, 1
}
p1(x)dx ≥ P1(Ai)hi.

(44)

Moreover,

P1(Ai)h̄i ≥ P1(Ai) min
{P0(Ai)
P1(Ai)

, 1
}
≥ P1(Ai)hi, (45)

where the first inequality is because when h̄i = 1,
min

{P0(Ai)
P1(Ai) , 1

}
≤ 1, and when h̄i = supAi

p0(x)
p1(x) , h̄i =
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h̄i
∫
Ai

p1(x)dx
∫
Ai

p1(x)dx
≥

∫
Ai

p0(x)dx
∫
Ai

p1(x)dx
= P0(Ai)

P1(Ai) . The second inequality
can also be proved similarly.

It then follows from (44) and (45) that
∣∣∣∣P1(Ai) min

{P0(Ai)
P1(Ai)

, 1
}
−
∫

Ai
min

{
p0(x), p1(x)

}
dx

∣∣∣∣
≤ (h̄i − hi)P1(Ai) < εP1(Ai). (46)

Therefore,

∣∣∣∣
|A|∑

i=1

P1(Ai) min
{P0(Ai)
P1(Ai)

, 1
}
−
∫

min
{
p0(x), p1(x)

}
dx

∣∣∣∣

≤ ε. (47)

We then have that

|A|∑

i=1

P1(Ai) min
{P0(Ai)
P1(Ai)

, 1
}

≤
∫

min
{
p0(x), p1(x)

}
dx+ ε. (48)

Let ε→ 0, we have that

inf
A∈Π

|A|∑

i=1

min
{
PAi0 , PAi1

}
≤
∫

min
{
p0(x), p1(x)

}
dx. (49)

Combining (42) and (49), we have that

∫
min

{
p0(x), p1(x)

}
dx = inf

A∈Π

|A|∑

i=1

min
{
PAi0 , PAi1

}
. (50)

Step 3. Let C be the field of Borel sets of X that are sets of
continuity for both P0 and P1. It was shown in [62, Theorem
1] that C generates B in the sense that B is the smallest σ-field
containing C.

Let AC =
{
AC1 ,AC2 , · · · ,AC|A|

}
be a finite partition of

X such that ACi ∈ C, ∀i ∈ {1, 2, · · · , |A|}. Let ΠC be the
collection of all such finite partitions. Since ΠC ⊆ Π, we have
that

inf
AC∈ΠC

|AC |∑

i=1

min
{
P
ACi
0 , P

ACi
1

}
≥ inf
A∈Π

|A|∑

i=1

min
{
PAi0 , PAi1

}
.

(51)

Since C generates B, applying Theorem D of section 13
[63] to the measure ν = P0 + P1, for any ε > 0 and A ∈ Π,
we can find E′i ∈ C such that P0(Ai∆E′i) ≤ ν(Ai∆E′i) ≤ ε
and P1(Ai∆E′i) ≤ ν(Ai∆E′i) ≤ ε, where ∆ denotes the
symmetric difference between two sets. Define

E1 = E′1,

E2 = E′2 − E1, · · · , E|A|−1

= E′|A|−1 − E1 ∪ E2 ∪ · · · ∪ E|A|−2, (52)

and

E|A| = X − E1 ∪ E2 ∪ · · · ∪ E|A|−1. (53)

We have that ν(A1∆E1) = ν(A1∆E′1) ≤ ε. Since
A1,A2, · · · ,A|A| are disjoint, we have that ν(A2 ∩E1) ≤ ε.
It then follows that

ν(A2∆E2) = ν
(
A2∆(E′2 − E1)

)

≤ ν(A2∆E′2) + ν(A2 ∩ E1) ≤ 2ε. (54)

Similarly, we can show that for any 1 ≤ i ≤ |A| − 1,

ν(Ai∆Ei) = ν
(
Ai∆(E′i − E1 ∪ E2 ∪ · · · ∪ Ei−1)

)
≤ iε

(55)

and

ν(A|A|∆E|A|)
= ν

(
(X −A1 ∪ · · · ∪ A|A|−1)∆(X − E1 ∪ · · · ∪ E|A|−1)

)

= ν
(
(A1 ∪ · · · ∪ A|A|−1)∆(E1 ∪ · · · ∪ E|A|−1)

)

≤ |A|(|A| − 1)

2
ε. (56)

Therefore, for any ε > 0 and A ∈ Π, there exists
E1, E2, · · · , E|A| ∈ C such that

P0(Ei) ≤ P0(Ai) +
|A|(|A| − 1)

2
ε,

P1(Ei) ≤ P1(Ai) +
|A|(|A| − 1)

2
ε,∀1 ≤ i ≤ |A|. (57)

It then follows that there exists AC ∈ ΠC such that

|AC |∑

i=1

min
{
P
ACi
0 , P

ACi
1

}

≤ inf
A∈Π

|A|∑

i=1

min
{
PAi0 , PAi1

}
+
|A|2(|A| − 1)

2
ε. (58)

Let ε→ 0 and use (51), we then have that

inf
AC∈ΠC

|AC |∑

i=1

min
{
P
ACi
0 , P

ACi
1

}
= inf
A∈Π

|A|∑

i=1

min
{
PAi0 , PAi1

}
.

(59)

Therefore,

∫
min

{
p0(x), p1(x)

}
dx = inf

AC∈ΠC

|AC |∑

i=1

min
{
P
ACi
0 , P

ACi
1

}
.

(60)

Let P s0 and P s1 be the sequence of probability distribution
such that P s0 converges weakly to P0 and P s1 converges weakly
to P1 as s → ∞. Let AC =

{
AC1 ,AC2 , · · · A|A|

}
∈ ΠC . We

then have that ACi ∈ C for all i ∈ {1, 2, · · · , |A|}. From the
Portmanteau theorem [64] and the fact that ACi is a continuity
set of P0 and P1, the weak convergence implies P s0 (ACi ) →
P0(ACi ) and P s1 (ACi )→ P1(ACi ). It then follows that for any
ε > 0, there exists s0 such that for any s > s0,

P0(ACi ) +
ε

|AC | > P s0 (ACi ), P1(ACi ) +
ε

|AC | > P s1 (ACi ).

(61)
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Therefore, for any ε > 0, there exists AC ∈ ΠC such that
∫

min
{
p0(x), p1(x)

}
dx+ 2ε

≥
|AC |∑

i=1

min
{
P
ACi
0 , P

ACi
1

}
+ ε

=

|AC |∑

i=1

min

{
P
ACi
0 +

ε

|AC | , P
ACi
1 +

ε

|AC |

}

≥ lim
s→∞

|AC |∑

i=1

min
{
P s0 (ACi ), P s1 (ACi )

}

≥ lim
s→∞

∫
min

{
ps0(x), ps1(x)

}
dx, (62)

where the first inequality is from (60), the last inequality is
from (42). Let ε → 0, we have that

∫
min

{
p0(x), p1(x)

}
dx

is upper semi-continuous in P0, P1 with respect to the weak
convergence. This completes the proof.

APPENDIX D
PROOF OF THEOREM 1

Proof. Since X is compact, P is tight, thus is sequen-
tially compact with respect to the topology of weak con-
vergence from the Prokhorov’s theorem [65]. Therefore,
P is compact with respect to weak convergence. There-
fore, P0,P1 are compact since P0,P1 are closed sub-
sets of a compact set. We then have that the solutions
to supP0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx exist because up-

per semi-continuous function attains its supremum on a
compact set. Let P ∗0 , P

∗
1 denote the optimal solutions to

supP0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx.

Let As = {A1
s,A2

s, · · · ,Ass} be a partition of X . We
define the diameter of each partition Ais as dia(Ais) =
maxx,x′∈Ais ‖x−x′‖2. Since X is compact, we can choose the
partition As such that dia(Ais)→ 0 as s→∞ for 1 ≤ i ≤ s.

For any partition Ajs, let xjs be an arbitrary point in
Ajs. Denote by P s0 , P

s
1 discrete distributions with P s0 (xjs) =

P ∗0 (Ajs), P s1 (xjs) = P ∗1 (Ajs). Let h : X → R be an arbi-
trary bounded, continuous function. Let ajs = infx∈Ajs h(x)

and bjs = supx∈Ajs h(x). Since h is continuous and the
diameter of Ajs goes to 0 as s → ∞, we then have that
maxj=1,··· ,s(bjs − ajs)→ 0 as s→∞. It then follows that

∣∣∣
∫
hdP s0 −

∫
hdP ∗0

∣∣∣ =
∣∣∣
s∑

j=1

∫

Ajs

(
h− h(xjs)

)
dP ∗0

∣∣∣

≤ max
j=1,··· ,s

(bjs − ajs)→ 0, as s→∞. (63)

Therefore, P s0 converges weakly to P ∗0 as s→∞. Similarly,
P s1 converges weakly to P ∗1 as s → ∞. Moreover, from
Jensen’s inequality [52], we have that
∫

min
{
p∗0(x), p∗1(x)

}
dx ≤

s∑

j=1

min
{
P ∗0 (Ajs), P ∗1 (Ajs)

}

=
s∑

j=1

min
{
P s0 (xjs), P

s
1 (xjs)

}
. (64)

Since MMD metrizes the weak convergence [45], [46], for
any ε > 0, there exists an integer s0 such that for any s > s0,∥∥µP s0 −µP∗0

∥∥
H ≤

ε
2 and

∥∥µP s1 −µP∗1
∥∥
H ≤

ε
2 . Therefore, from

the triangle inequality [26], we have that for any s > s0,

∥∥µP s0 − µQ̂0
m

∥∥
H ≤

∥∥µP s0 − µP∗0
∥∥
H +

∥∥µP∗0 − µQ̂0
m

∥∥
H

≤ θ +
ε

2
. (65)

Similarly, we have
∥∥µP s1 − µQ̂1

m

∥∥
H ≤ θ + ε

2 .
Rewrite P s0 =

∑s
j=1 αjδxjs , P

s
1 =

∑s
j=1 βjδxjs , where

δxjs denote the Dirac measure on xjs, αj = P ∗0 (Ajs), βj =

P ∗1 (Ajs),∀j = 1, · · · , s, and
∑s
j=1 αj = 1,

∑s
j=1 βj = 1.

Let dis(x, y) denote a distance metric on X between x
and y. Note that {zi}Ni=1 are generated from a distribution
P supported on X . Therefore, for any xjs, we have that
minz∈{zi}Ni=1

dis(z, xjs) → 0 as N → ∞. Therefore, there
exists a sequence {zNsj}∞N=1 such that zNsj ∈ {zi}Ni=1 and
dis(zNsj , x

j
s) → 0 as N → ∞. Assume that zNsj are dis-

tinct for all j. We then construct the following distributions:
P s,N0 =

∑s
j=1 αjδzNsj , P

s,N
1 =

∑s
j=1 βjδzNsj . For any ar-

bitrary bounded, continuous function h : X → R, since
dis(zNsj , x

j
s)→ 0 as N →∞, we have that for a fixed s,

∣∣∣
∫
hdP s,N0 −

∫
hdP s0

∣∣∣ =
∣∣∣
s∑

j=1

αj
(
h(zNsj)− h(xjs)

)∣∣∣

≤ max
j=1,··· ,s

∣∣h(zNsj)− h(xjs)
∣∣→ 0, as N →∞. (66)

Therefore, we have that P s,N0 converges weakly to P s0 as N →
∞. Similarly, P s,N1 converges weakly to P s1 as N → ∞.
Moreover, we have that

s∑

j=1

min
{
P s,N0 (zNsj), P

s,N
1 (zNsj)

}

=

s∑

j=1

min
{
P s0 (xjs), P

s
1 (xjs)

}

=

s∑

j=1

min{αj , βj}. (67)

Since P s0 , P
s
1 converges weakly to P ∗0 , P

∗
1 , respectively, as

s→∞, and P s,N0 , P s,N1 converges weakly to P s0 , P
s
1 , respec-

tively, as N →∞, we have that for any ε > 0, there exists an
integer s0 such that for all s > s0,

∥∥µP s0 − µP∗0
∥∥
H ≤

ε
2 and∥∥µP s1 −µP∗1

∥∥
H ≤

ε
2 . For a fixed s > s0, there exists an integer

N(s) such that for any N > N(s),
∥∥µP s,N0

−µP s0
∥∥
H ≤

ε
2 and∥∥µP s,N1

− µP s1
∥∥
H ≤

ε
2 . Therefore, for a fixed s > s0 and any

N > N(s), from the triangle inequality [26], we have that

∥∥µP s,N0
− µQ̂0

m

∥∥
H

≤
∥∥µP s,N0

− µP s0
∥∥
H +

∥∥µP s0 − µP∗0
∥∥
H +

∥∥µP∗0 − µQ̂0
m

∥∥
H

≤ θ + ε. (68)
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Similarly, we have that
∥∥µP s,N1

− µQ̂1
m

∥∥
H ≤ θ + ε. It then

follows that for large N ,

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ+ε

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ+ε

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}

≥
s∑

j=1

min
{
P s,N0 (zNsj), P

s,N
1 (zNsj)

}

≥
∫

min
{
p∗0(x), p∗1(x)

}
dx, (69)

where the second inequality is from Jensen’s inequality [52].
Therefore, for any ε > 0,

lim
N→∞

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ+ε

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ+ε

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}

≥
∫

min
{
p∗0(x), p∗1(x)

}
dx. (70)

Moreover, we have that for any ε > 0,

sup
P0∈P:

∥∥µP0
−µQ̂0

m

∥∥
H
≤θ+ε

P1∈P:
∥∥µP1

−µQ̂1
m

∥∥
H
≤θ+ε

∫
min

{
p0(x), p1(x)

}
dx

≥ lim
N→∞

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ+ε

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ+ε

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
,

(71)

which is due to the fact that the right-hand side and the left-
hand side of (71) have the same objective function and the
feasible region of the right-hand side is a subset of the feasible
region of the left-hand side. It then follows that

lim
ε→0

sup
P0∈P:

∥∥µP0
−µQ̂0

m

∥∥
H
≤θ+ε

P1∈P:
∥∥µP1

−µQ̂1
m

∥∥
H
≤θ+ε

∫
min

{
p0(x), p1(x)

}
dx

≥ lim
ε→0

lim
N→∞

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ+ε

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ+ε

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}

≥
∫

min
{
p∗0(x), p∗1(x)

}
dx. (72)

We will then show that all the inequality holds with equality
in (72). Recall the definition of g(θ) in (19):

g(θ) = sup
P0∈P:

∥∥µP0
−µQ̂0

m

∥∥
H
≤θ

P1∈P:
∥∥µP1

−µQ̂1
m

∥∥
H
≤θ

∫
min

{
p0(x), p1(x)

}
dx.

(73)

We will show that limε→0 g(θ + ε) = g(θ), thus

lim
ε→0

sup
P0∈P:

∥∥µP0
−µQ̂0

m

∥∥
H
≤θ+ε

P1∈P:
∥∥µP1

−µQ̂1
m

∥∥
H
≤θ+ε

∫
min

{
p0(x), p1(x)

}
dx

=

∫
min

{
p∗0(x), p∗1(x)

}
dx. (74)

It suffices to show that g(θ) is continuous in θ. To show that,
we will show that g(θ) is concave in θ. Let P0,θ1 , P1,θ1 be
the optimal solutions to g(θ1) and P0,θ2 , P1,θ2 be the optimal
solutions to g(θ2). Consider λP0,θ1 + (1 − λ)P0,θ2 , λP1,θ1 +
(1−λ)P1,θ2 for 0 < λ < 1. From the triangle inequality [26],
we have that

‖λµP0,θ1
+ (1− λ)µP0,θ2

− µQ̂0
m
‖H

≤ λ‖µP0,θ1
− µQ̂0

m
‖H + (1− λ)‖µP0,θ2

− µQ̂0
m
‖H

≤ λθ1 + (1− λ)θ2. (75)

Similarly, we have that ‖λµP1,θ1
+ (1−λ)µP1,θ2

−µQ̂1
m
‖H ≤

λθ1 + (1− λ)θ2. Therefore, λP0,θ1 + (1− λ)P0,θ2 , λP1,θ1 +
(1 − λ)P1,θ2 are feasible solutions to g(λθ1 + (1 − λ)θ2). It
then follows that

g(λθ1 + (1− λ)θ2)

≥
∫

min
{
λp0,θ1(x) + (1− λ)p0,θ2(x),

λp1,θ1(x) + (1− λ)p1,θ2(x)
}
dx

≥ λ
∫

min
{
p0,θ1(x), p1,θ1(x)

}
dx

+ (1− λ)

∫
min

{
p0,θ2(x), p1,θ2(x)

}
dx

= λg(θ1) + (1− λ)g(θ2). (76)

Therefore, g(θ) is concave in θ, and thus is continuous in θ.
From (72) and the continuity of g(θ), we have that for any
θ ≥ 0,

lim
ε→0

sup
P0∈P:

∥∥µP0
−µQ̂0

m

∥∥
H
≤θ+ε

P1∈P:
∥∥µP1

−µQ̂1
m

∥∥
H
≤θ+ε

∫
min

{
p0(x), p1(x)

}
dx

= lim
ε→0

lim
N→∞

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ+ε

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ+ε

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}

=

∫
min

{
p∗0(x), p∗1(x)

}
dx. (77)
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We will then show that

lim
N→∞

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}

= lim
ε→0

lim
N→∞

sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ+ε

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ+ε

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
.

(78)

Recall the definition of gN (θ) in (20):

gN (θ)

= sup
PN0 ∈P:

∥∥µ
PN0
−µQ̂0

m

∥∥
H
≤θ

PN1 ∈P:
∥∥µ

PN1
−µQ̂1

m

∥∥
H
≤θ

PN0 ,PN1 are supported on {zi}Ni=1

N∑

i=1

min
{
PN0 (zi), P

N
1 (zi)

}
.

Let g∗(θ) = limN→∞ gN (θ). This limit exists because for
any θ > 0, {gN (θ)}∞N=1 is a non-decreasing sequence and
has upper bound g(θ).

For any N , denote by PN0,θ1 , P
N
1,θ1

the optimal solutions
to gN (θ1) and PN0,θ2 , P

N
1,θ2

the optimal solutions to gN (θ2).
Consider λPN0,θ1 + (1 − λ)PN0,θ2 , λP

N
1,θ1

+ (1 − λ)PN1,θ2 for
0 < λ < 1. We have that

g∗(λθ1 + (1− λ)θ2)

= lim
N→∞

gN (λθ1 + (1− λ)θ2)

≥ lim
N→∞

N∑

i=1

min
{
λPN0,θ1(zi) + (1− λ)P0,θ2(zi),

λPN1,θ1(zi) + (1− λ)P1,θ2(zi)
}

≥ lim
N→∞

λ
N∑

i=1

min
{
PN0,θ1(zi), P

N
1,θ1(zi)

}

+ (1− λ)
N∑

i=1

min
{
PN0,θ2(zi), P

N
1,θ2(zi)

}

= λ lim
N→∞

N∑

i=1

min
{
PN0,θ1(zi), P

N
1,θ1(zi)

}

+ (1− λ) lim
N→∞

N∑

i=1

min
{
PN0,θ2(zi), P

N
1,θ2(zi)

}

= λg∗(θ1) + (1− λ)g∗(θ2), (79)

where the first equality is because the limits
limN→∞

∑N
i=1 min

{
PN0,θ1(zi), P

N
1,θ1

(zi)
}

and
limN→∞

∑N
i=1 min

{
PN0,θ2(zi), P

N
1,θ2

(zi)
}

exist. Therefore,
g∗(θ) is concave in θ, and thus is continuous in θ. From the
continuity of g∗(θ) and (77), we have that (78) holds. This
completes the proof.

APPENDIX E
PROOF OF PROPOSITION 3

Proof. Note that MMD is non-negative. If
∥∥µP̂n −µQ̂0

m

∥∥
H ≤

θ, we have that P̂n ∈ P0. Therefore, infP∈P0

∥∥µP̂n−µP
∥∥
H =

0. We then consider the case that
∥∥µP̂n − µQ̂0

m

∥∥
H > θ. For

any P ∈ P0,
∥∥µP − µQ̂0

m

∥∥
H ≤ θ, and thus by the triangle

inequality [26], we have that
∥∥µP̂n − µP

∥∥
H ≥

∥∥µP̂n − µQ̂0
m

∥∥
H −

∥∥µP − µQ̂0
m

∥∥
H

≥
∥∥µP̂n − µQ̂0

m

∥∥
H − θ. (80)

It then follows that

inf
P∈P0

∥∥µP̂n − µP
∥∥
H ≥

∥∥µP̂n − µQ̂0
m

∥∥
H − θ. (81)

The equality in (81) can be achieved when the following
condition holds for a P ∈ P0:

∥∥µP̂n − µP
∥∥
H =

∥∥µP̂n − µQ̂0
m

∥∥
H − θ. (82)

We then construct such a P . Let λ = θ∥∥µP̂n−µQ̂0
m

∥∥
H

. Since
∥∥µP̂n − µQ̂0

m

∥∥
H > θ, we have that 0 < λ < 1. Let P =

λP̂n+(1−λ)Q̂0
m be a linear combination of two distributions

P̂n and Q̂0
m. We then have that P ∈ P and

µP =

∫
k(x, ·)d

(
λP̂n + (1− λ)Q̂0

m

)

=λ

∫
k(x, ·)dP̂n + (1− λ)

∫
k(x, ·)dQ̂0

m

=λµP̂n + (1− λ)µQ̂0
m
. (83)

It then follows that
∥∥µP̂n − µP

∥∥
H =

∥∥(1− λ)µP̂n − (1− λ)µQ̂0
m

∥∥
H

=(1− λ)
∥∥µP̂n − µQ̂0

m

∥∥
H

=
∥∥µP̂n − µQ̂0

m

∥∥
H − θ. (84)

and
∥∥µP − µQ̂0

m

∥∥
H =

∥∥λµP̂n − λµQ̂0
m

∥∥
H

=λ
∥∥µP̂n − µQ̂0

m

∥∥
H

=θ. (85)

Therefore, P = λP̂n + (1 − λ)Q̂0
m ∈ P0 and achieves the

equality in (81). Therefore, when
∥∥µP̂n − µQ̂0

m

∥∥
H > θ, we

have that

inf
P∈P0

∥∥µP̂n − µP
∥∥
H =

∥∥µP̂n − µQ̂0
m

∥∥
H − θ, (86)

From (2), it follows that

inf
P∈P0

∥∥µP̂n − µP
∥∥
H =

∥∥µP̂n − µQ̂0
m

∥∥
H − θ

=
( 1

n2

n∑

i=1

n∑

j=1

k(xi, xj) +
1

m2

m∑

i=1

m∑

j=1

k(x̂0,i, x̂0,j)

− 2

nm

n∑

i=1

m∑

j=1

k(xi, x̂0,j)
)1/2

− θ. (87)

Following the same idea as in solving infP∈P0

∥∥µP̂n −
µP
∥∥
H, the closed-form solution can also be derived for

infP∈P1

∥∥µP̂n − µP
∥∥
H.
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APPENDIX F
PROOF OF THEOREM 3

Proof. 1) For the type-I error exponent, from the Sanov’s
theorem [4], we have that for any P0 ∈ P0,

lim
n→∞

− 1

n
EP0

[φB(xn)]

= lim
n→∞

− 1

n
logP0

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H

− inf
P∈P1

∥∥µP̂n − µP
∥∥
H ≥ γ

)

≥ inf
P ′∈Γ0

D(P ′‖P0), (88)

where Γ0 =
{
P ′ : infP∈P0

∥∥µP ′ − µP
∥∥
H − infP∈P1

∥∥µP ′ −
µP
∥∥
H ≥ γ

}
and D(P ′‖P0) denotes the KL-divergence

between two distributions P ′ and P0. For any P0 ∈ P0 and
γ ∈

(
−
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H + 2θ,

∥∥µQ̂0
m
− µQ̂1

m

∥∥
H − 2θ

)
, we

have that

inf
P∈P0

∥∥µP0 − µP
∥∥
H − inf

P∈P1

∥∥µP0 − µP
∥∥
H

= − inf
P∈P1

∥∥µP0
− µP

∥∥
H

= −
∥∥µP0 − µQ̂1

m

∥∥
H + θ

≤
∥∥µP0 − µQ̂0

m

∥∥
H −

∥∥µQ̂0
m
− µQ̂1

m

∥∥
H + θ

≤ −
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H + 2θ

< γ, (89)

where the first and second equalities are from Proposition 3,
the first inequality is from the triangle inequality of MMD
[26] and the second inequality is because P0 ∈ P0. We
then have that for any P0 ∈ P0, when γ ∈

(
−
∥∥µQ̂0

m
−

µQ̂1
m

∥∥
H + 2θ,

∥∥µQ̂0
m
− µQ̂1

m

∥∥
H − 2θ

)
, P0 /∈ Γ0. Therefore,

infP ′∈Γ0
D(P ′‖P0) > 0 thus the type-I error probability of

φB decreases exponentially fast with n.

Similarly, for the type-II error exponent, we have that for
any P1 ∈ P1,

lim
n→∞

− 1

n
logEP1 [1− φB(xn)]

= lim
n→∞

− 1

n
logP1

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H

− inf
P∈P1

∥∥µP̂n − µP
∥∥
H < γ

)

≥ inf
P ′∈Γ1

D(P ′‖P1), (90)

where Γ1 =
{
P ′ : infP∈P0

∥∥µP ′ − µP
∥∥
H − infP∈P1

∥∥µP ′ −
µP
∥∥
H ≤ γ

}
. For any P1 ∈ P1 and γ ∈

(
−
∥∥µQ̂0

m
−µQ̂1

m

∥∥
H+

2θ,
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H − 2θ

)
, we have that

inf
P∈P0

∥∥µP1
− µP

∥∥
H − inf

P∈P1

∥∥µP1
− µP

∥∥
H

= inf
P∈P0

∥∥µP1 − µP
∥∥
H

=
∥∥µP1

− µQ̂0
m

∥∥
H − θ

≥
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H −

∥∥µP1
− µQ̂1

m

∥∥
H − θ

≥
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H − 2θ

> γ, (91)

where the first and second equalities are from Proposition 3,
the first inequality is from the triangle inequality of MMD
[26] and the second inequality is because P1 ∈ P1. There-
fore, for any P1 ∈ P1, we have that P1 /∈ Γ1, and thus
infP ′∈Γ1

D(P ′‖P1) > 0 and the type-II error probability of
φB decreases exponentially fast with n. Therefore, the direct
robust kernel test φB is exponentially consistent.

2) We will then prove that with γ ∈
(
−
∥∥µQ̂0

m
−µQ̂1

m

∥∥
H+

2θ,
∥∥µQ̂0

m
−µQ̂1

m

∥∥
H− 2θ

)
, φB and φ′B are equivalent. When∥∥µP̂n − µQ̂0

m

∥∥
H ≤ θ, we have that P̂n ∈ P0. From (89), it

follows that

inf
P∈P0

∥∥µP̂n − µP
∥∥
H − inf

P∈P1

∥∥µP̂n − µP
∥∥
H < γ. (92)

Moreover, from triangle inequality [26], we have that
∥∥µP̂n − µQ̂0

m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H

≤ θ −
∥∥µP̂n − µQ̂1

m

∥∥
H

≤ θ −
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H +

∥∥µP̂n − µQ̂0
m

∥∥
H

≤ −
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H + 2θ

< γ. (93)

Therefore, when
∥∥µP̂n − µQ̂0

m

∥∥
H ≤ θ, φB = φ′B = 0.

When
∥∥µP̂n − µQ̂1

m

∥∥
H ≤ θ, we have that P̂n ∈ P1. From

(91), it follows that

inf
P∈P0

∥∥µP̂n − µP
∥∥
H − inf

P∈P1

∥∥µP̂n − µP
∥∥
H > γ. (94)

From the triangle inequality [26], we have that
∥∥µP̂n − µQ̂0

m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H

≥
∥∥µP̂n − µQ̂0

m

∥∥
H − θ

≥
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H − θ

≥
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H − 2θ

> γ. (95)

Therefore, when
∥∥µP̂n − µQ̂1

m

∥∥
H ≤ θ, φB = φ′B = 1.

When
∥∥µP̂n − µQ̂0

m

∥∥
H > θ and

∥∥µP̂n − µQ̂1
m

∥∥
H > θ, from

Proposition 3, we have that

inf
P∈P0

∥∥µP̂n − µP
∥∥
H − inf

P∈P1

∥∥µP̂n − µP
∥∥
H

=
∥∥µP̂n − µQ̂0

m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H. (96)

Combining the three different cases, we have that φB and
φ′B are equivalent. We note that φ′B only consists of MMD
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between empirical distributions, thus it can be implemented
efficiently. From (2), we have that

∥∥µP̂n − µQ̂0
m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H

=
( 1

n2

n∑

i=1

n∑

j=1

k(xi, xj) +
1

m2

m∑

i=1

m∑

j=1

k(x̂0,i, x̂0,j)

− 2

nm

n∑

i=1

m∑

j=1

k(xi, x̂0,j)
)1/2

−
( 1

n2

n∑

i=1

n∑

j=1

k(xi, xj) +
1

m2

m∑

i=1

m∑

j=1

k(x̂1,i, x̂1,j)

− 2

nm

n∑

i=1

m∑

j=1

k(xi, x̂1,j)
)1/2

. (97)

This completes the proof.

APPENDIX G
PROOF OF PROPOSITION 4

Proof. For any P0 ∈ P0, we have that

EP0
[φB(xn)]

= P0

(∥∥µP̂n − µQ̂0
m

∥∥
H −

∥∥µP̂n − µQ̂1
m

∥∥
H ≥ 0

)

= P0

(∥∥µP̂n − µQ̂0
m

∥∥2

H −
∥∥µP̂n − µQ̂1

m

∥∥2

H ≥ 0
)

= P0

(
Ex∼P̂n,x′∼P̂n [k(x, x′)] + Ey∼Q̂0

m,y
′∼Q̂0

m
[k(y, y′)]

− 2Ex∼P̂n,y∼Q̂0
m

[k(x, y)]− Ex∼P̂n,x′∼P̂n [k(x, x′)]

− Ey∼Q̂1
m,y
′∼Q̂1

m
[k(y, y′)] + 2Ex∼P̂n,y∼Q̂1

m
[k(x, y)] ≥ 0

)

= P0

(
− 2

n

n∑

j=1

1

m

m∑

i=1

k(xj , x̂0,i) +
2

n

n∑

j=1

1

m

m∑

i=1

k(xj , x̂1,i)

+ Ey∼Q̂0
m,y
′∼Q̂0

m
[k(y, y′)]− Ey∼Q̂1

m,y
′∼Q̂1

m
[k(y, y′)] ≥ 0

)
.

(98)

We will then bound the error probability in (98) using the
McDiarmid’s inequality [66]. Define

F (x1, x2, · · · , xn)

= − 2

n

n∑

j=1

1

m

m∑

i=1

k(xj , x̂0,i) +
2

n

n∑

j=1

1

m

m∑

i=1

k(xj , x̂1,i).

(99)

To apply the McDiarmid’s inequality [66], we first need to
bound

sup
x1,··· ,xj ,··· ,xn,x′j∈X

(
F (x1, · · · , xj , · · · , xn)

− F (x1, · · · , x′j , · · · , xn)
)
,∀1 ≤ j ≤ n. (100)

It can be shown that

sup
x1,··· ,xj ,··· ,xn,x′j∈X

(
F (x1, · · · , xj , · · · , xn)

− F (x1, · · · , x′j , · · · , xn)
)

= sup
x1,··· ,xj ,··· ,xn,x′j∈X

2

n

( 1

m

m∑

i=1

(
k(x′j , x̂0,i)− k(xj , x̂0,i)

)

+
1

m

m∑

i=1

(
k(xj , x̂1,i)− k(x′j , x̂1,i)

))

≤ 4K

n
, (101)

where the last inequality is due to the fact that the kernel
k(·, ·) is bounded. We will then consider the expectation of
F (x1, x2, · · · , xn). From similar steps in (98), it follows that

EP0

[
F (x1, x2, · · · , xn)

]
+ Ey∼Q̂0

m,y
′∼Q̂0

m
[k(y, y′)]

− Ey∼Q̂1
m,y
′∼Q̂1

m
[k(y, y′)]

=
∥∥µP0 − µQ̂0

m

∥∥2

H −
∥∥µP0 − µQ̂1

m

∥∥2

H. (102)

Note that for any P0 ∈ P0, we have that
∥∥µP0

− µQ̂0
m

∥∥2

H −∥∥µP0
− µQ̂1

m

∥∥2

H ≤ 0. It then follows that

P0

(
− 2

n

n∑

j=1

1

m

m∑

i=1

k(xj , x̂0,i) +
2

n

n∑

j=1

1

m

m∑

i=1

k(xj , x̂1,i)

+ Ey∼Q̂0
m,y
′∼Q̂0

m
[k(y, y′)]− Ey∼Q̂1

m,y
′∼Q̂1

m
[k(y, y′)] ≥ 0

)

= P0

(
− 2

n

n∑

j=1

1

m

m∑

i=1

(
k(xj , x̂0,i)− k(xj , x̂1,i)

)

− EP0

[
− 2

n

n∑

j=1

1

m

m∑

i=1

(
k(xj , x̂0,i)− k(xj , x̂1,i)

)]

≥ Ey∼Q̂1
m,y
′∼Q̂1

m
[k(y, y′)]− Ey∼Q̂0

m,y
′∼Q̂0

m
[k(y, y′)]

− EP0

[
− 2

n

n∑

j=1

1

m

m∑

i=1

(
k(xj , x̂0,i)− k(xj , x̂1,i)

)])

= P0

(
− 2

n

n∑

j=1

1

m

m∑

i=1

(
k(xj , x̂0,i)− k(xj , x̂1,i)

)

− EP0

[
− 2

n

n∑

j=1

1

m

m∑

i=1

(
k(xj , x̂0,i)− k(xj , x̂1,i)

)]

≥
∥∥µP0

− µQ̂1
m

∥∥2

H −
∥∥µP0

− µQ̂0
m

∥∥2

H

)

≤ exp

(
−
n
(∥∥µP0

− µQ̂1
m

∥∥2

H −
∥∥µP0

− µQ̂0
m

∥∥2

H

)2

8K2

)
,

(103)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3268207

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 28,2023 at 13:14:22 UTC from IEEE Xplore.  Restrictions apply. 



19

where the last inequality is from the McDiarmid’s inequality
[66]. We then have that

sup
P0∈P0

EP0 [φB(xn)]

≤ sup
P0∈P0

exp

(
−
n
(∥∥µP0 − µQ̂1

m

∥∥2

H −
∥∥µP0 − µQ̂0

m

∥∥2

H

)2

8K2

)
.

(104)

Since
∥∥µP0

− µQ̂1
m

∥∥2

H −
∥∥µP0

− µQ̂0
m

∥∥2

H ≥ 0 and the expo-
nential function is monotonically increasing, the optimization
problem on the right-hand side of (104) can be solved by
solving infP0∈P0

∥∥µP0 − µQ̂1
m

∥∥2

H −
∥∥µP0 − µQ̂0

m

∥∥2

H. We then
have that

inf
P0∈P0

∥∥µP0
− µQ̂1

m

∥∥2

H −
∥∥µP0

− µQ̂0
m

∥∥2

H

= inf
P0∈P0

(∥∥µP0
− µQ̂1

m

∥∥
H +

∥∥µP0
− µQ̂0

m

∥∥
H

)

×
(∥∥µP0 − µQ̂1

m

∥∥
H −

∥∥µP0 − µQ̂0
m

∥∥
H

)
. (105)

From the triangle inequality of MMD [26], we have that
∥∥µP0

− µQ̂1
m

∥∥
H +

∥∥µP0
− µQ̂0

m

∥∥
H ≥

∥∥µQ̂1
m
− µQ̂0

m

∥∥
H.
(106)

Moreover, since
∥∥µP0

− µQ̂0
m

∥∥
H ≤ θ, it can be shown that

∥∥µP0
− µQ̂1

m

∥∥
H −

∥∥µP0
− µQ̂0

m

∥∥
H

≥
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H − 2

∥∥µP0
− µQ̂0

m

∥∥
H

≥
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H − 2θ. (107)

It then follows that

inf
P0∈P0

∥∥µP0
− µQ̂1

m

∥∥2

H −
∥∥µP0

− µQ̂0
m

∥∥2

H

≥
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H

(∥∥µQ̂1
m
− µQ̂0

m

∥∥
H − 2θ

)
. (108)

Therefore, we have that

sup
P0∈P0

EP0
[φB(xn)]

≤ exp

(
−
n
(∥∥µQ̂1

m
− µQ̂0

m

∥∥2

H − 2θ
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H

)2

8K2

)
.

(109)

Following the same idea as in the proof of (32), (33) can also
be proved. This completes the proof.

APPENDIX H
PROOF OF THEOREM 4

Proof. For any P0 ∈ P0, we have that

P0

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H > γn

)
≤ P0

(∥∥µP̂n − µP0

∥∥
H > γn

)
.

Set γn =
√

2K/n
(
1 +
√− logα

)
. From Lemma 4 in Ap-

pendix A, we have that for any P0 ∈ P0,

P0

(∥∥µP̂n − µP0

∥∥
H > γn

)
≤ α. (110)

We then have that

sup
P0∈P0

P0

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H > γn

)
≤ α. (111)

Note that γn → 0 as n → ∞. For any γ > 0, there exists
an integer n0 such that γn < γ for all n > n0. We then have
that for large n,

{
P ′ ∈ P : inf

P∈P0

∥∥µP ′ − µP
∥∥
H ≤ γn

}

⊆
{
P ′ ∈ P : inf

P∈P0

∥∥µP ′ − µP
∥∥
H ≤ γ

}
. (112)

It then follows that

inf
P1∈P1

lim
n→∞

− 1

n
logP1

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H ≤ γn

)

≥ inf
P1∈P1

lim
n→∞

− 1

n
logP1

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H ≤ γ

)

≥ inf
P1∈P1

inf{
P ′∈P:infP∈P0

‖µP ′−µP ‖H≤γ
}D(P ′‖P1), (113)

where the last inequality is from the Sanov’s theorem [4] and
the fact that {P ′ ∈ P : infP∈P0

∥∥µP ′ −µP
∥∥
H ≤ γ} is closed

w.r.t. the weak topology. Let

Γ = {P ′ ∈ P : inf
P∈P0

∥∥µP ′ − µP
∥∥
H ≤ γ}. (114)

Since MMD metrizes the weak convergence on P [45], [46],
and KL divergence is lower semi-continuous with respect
to the weak topology of P (see Lemma 3 in Appendix
A), we have that for any ε > 0 and P1 ∈ P1, there
exists a neighborhood U of P0 defined by MMD such that
D(P ′‖P1) ≥ D(P0‖P1)− ε for any P ′ ∈ U .

Specifically, for any P0 ∈ P0, define the neighborhood of P0

with radius γ as U(P0, γ) = {P ∈ P : ‖µP − µP0‖H ≤ γ}.
From the lower semi-continuity of KL divergence, we have
that for any ε > 0 and P1 ∈ P1, there exists γ(ε, P0) > 0 such
that D(P ′‖P1) ≥ D(P0‖P1)−ε for any P ′ ∈ U(P0, γ(ε, P0)).
Therefore, for any P ′ ∈ ⋃P0∈P0

U(P0, γ(ε, P0)), there exists
P0 ∈ P0 such that D(P ′‖P1) ≥ D(P0‖P1)− ε.

For a given ε > 0 and P1 ∈ P1, let γ∗ = minP0∈P0 γ(ε, P0).
Since γ(ε, P0) > 0 holds for any P0 ∈ P0 and P0 is a closed
set, we have that γ∗ > 0. Let

Γ∗ = {P ′ ∈ P : inf
P∈P0

∥∥µP ′ − µP
∥∥
H ≤ γ

∗}. (115)

We then have that

Γ∗ =
⋃

P0∈P0

U(P0, γ
∗) ⊆

⋃

P0∈P0

U(P0, γ(ε, P0)). (116)

We then have that for any P ′ ∈ Γ∗, there exists a P0 ∈ P0

such that

D(P ′‖P1) ≥ D(P0‖P1)− ε. (117)

It then follows that there exists P0 ∈ P0 such that

inf
P ′∈Γ∗

D(P ′‖P1) ≥ D(P0‖P1)− ε. (118)

We then have that for any ε > 0,

inf
P ′∈Γ∗

D(P ′‖P1) ≥ inf
P0∈P0

D(P0‖P1)− ε. (119)
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Since ε can be arbitrarily small, it then follows that

inf
P1∈P1

lim
n→∞

− 1

n
logP1

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H ≤ γn

)

≥ inf
P0∈P0,P1∈P1

D(P0‖P1). (120)

Combining (120) with Proposition 5, we have that

inf
P1∈P1

lim
n→∞

− 1

n
logEP1

[1− φN (xn)]

= inf
P1∈P1

lim
n→∞

− 1

n
logP1

(
inf
P∈P0

∥∥µP̂n − µP
∥∥
H ≤ γn

)

= sup
φ:PF (φ)≤α

inf
P1∈P1

lim
n→∞

− 1

n
logEP1 [1− φ(xn)]

= inf
P0∈P0,P1∈P1

D(P0‖P1). (121)

This completes the proof.
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[61] T. V. Erven and P. Harremos, “Rényi divergence and Kullback-Leibler
divergence,” IEEE Transactions on Information Theory, vol. 60, no. 7,
pp. 3797–3820, 2014.

[62] E. Posner, “Random coding strategies for minimum entropy,” IEEE
Transactions on Information Theory, vol. 21, no. 4, pp. 388–391, 1975.

[63] M. S. Halmos, Measure Theorey. New York, NY, USA: Springer-Verlag,
1950.

[64] A. Klenke, Probability Theory. Springer-Verlag London, 2014.
[65] Y. V. Prokhorov, “Convergence of random processes and limit theorems

in probability theory,” Theory of Probability & Its Applications, vol. 1,
no. 2, pp. 157–214, 1956.

[66] C. McDiarmid, “On the method of bounded differences,” in Surveys in
combinatorics, pp. 148–188, Cambridge University Press, 1989.

Zhongchang Sun (S’20) is a PhD student at the Department of Electrical
Engineering, University at Buffalo, the State University of New York. He

received the B.S. degree from Beijing Institute of Technology, Beijing, China
in 2019. His research interests are on hypothesis testing, quickest change
detection, distributionally robust optimization and reinforcement learning.

Shaofeng Zou (S’14-M’16) is an Assistant Professor, at the Department of
Electrical Engineering, University at Buffalo, the State University of New
York. He received the Ph.D. degree in Electrical and Computer Engineering
from Syracuse University in 2016. He received the B.E. degree (with honors)
from Shanghai Jiao Tong University, Shanghai, China, in 2011. He was a
postdoctoral research associate at the Coordinated Science Lab, University of
Illinois at Urbana-Champaign during 2016-2018. Dr. Zou’s research interests
include reinforcement learning, machine learning, statistical signal processing
and information theory. He received the National Science Foundation CRII
award in 2019 and the 2023 AAAI Distinguished Paper Award.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3268207

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 28,2023 at 13:14:22 UTC from IEEE Xplore.  Restrictions apply. 


