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Abstract—The problem of quickest change detection in hidden
Markov models (HMMs) is investigated. A sequence of samples
are generated from a HMM, and at some unknown time, the
transition kernel and/or the emission probability of the HMM
changes. The goal is to detect the change as soon as possible
subject to false alarm constraints. The data-driven setting is in-
vestigated, where none of the pre-, post-change Markov transition
kernels or the emission probabilities are known. In this paper, a
kernel based data-driven algorithm is developed. Performance
bounds on its average running length (ARL) to false alarm
and worst-case average detection delay (WADD) are theoretically
characterized, where the WADD is at most of the order of the
logarithm of the ARL. Numerical results are provided to validate
the performance of the proposed algorithm.

Index Terms—Sequential Change Detection, Maximum Mean
Discrepancy, Kernel Method, Non-i.i.d..

I. INTRODUCTION

In the quickest change detection (QCD) [1]-[5] problem, a
sequence of observations is taken from a stochastic process.
At some unknown time (change-point), an event occurs and
changes the data-generating distribution. The goal is to detect
the change as quickly as possible subject to false alarm
constraints. QCD finds a wide range of applications, e.g., fault
detection in DC microgrids [6], early detection of epidemics
[7] and signal processing in genetic area [8].

Existing studies are mostly limited to the setting where
the observations are independent and identically distributed
(i.i.d.) before and after the change, respectively. However, in
a wide range of applications such as speech recognition [9] and
molecular biology [10], samples are not independent. The gen-
eral theory for the non-i.i.d. setting were developed in [11]-
[15], where the normalized log likelihood ratio is assumed
to be asymptotically stable, and the approaches are model-
based. For the non-i.i.d. setting, theoretical contributions on
the cases where samples are generated according to a Markov
model were also developed in, e.g., [16]-[19]. Extensions of
QCD from Markov models to hidden Markov models (HMMs)
where the observed samples are generated from HMMs have
also been investigated [19]-[22]. The above studies focused
on the model-based setting, where the pre- and post-change
distributions were assumed to be known exactly. However, the
information about the pre- and post-change distributions may
not be available in practice, especially when the change is of
an unknown type.
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In this paper, we focus on the data-driven setting of QCD in
HMMs. Specifically, the samples are generated according to a
HMM and at some unknown time, the transition kernel and/or
the emission probability of the HMM change. The goal is to
detect this change as quickly as possible subject to false alarm
constraints. None of the pre-, post-change transition kernels or
the emission probabilities are known, and only a sequence of
observations following the pre-change HMM is available.

The problem of QCD in HMMs with a finite state space
and known pre- and post-change distributions was studied in
[20]. A CuSum procedure was proposed and the basic idea is
to use the Li-norm of products of Markov random matrices to
update the log-likelihood function. Then the ratio of L;-norm
of products of Markov random matrices was shown to con-
verge and the asymptotic optimality of the proposed CuSum
algorithm can be proved. This approach however requires the
state space to be finite so that the theory of Markov random
matrices can be applied. The problem with the same setting
was studied in [21], where a Shiryayev—Roberts—Pollak (SRP)
procedure was proposed and the log-likelihood was written
as the ratio of the L;-norms of products of Markov random
matrices. The asymptotic optimality of the proposed SRP
algorithm was also proved. In [22], a computationally efficient
algorithm was proposed for the same problem. The basic idea
is to design a quasi-generalized likelihood ratio that admits
a recursive update to avoid the infeasible computation of the
likelihood ratio. The Kullback-Leibler divergence between the
pre- and post-change stationary distributions was shown to
converge and the average detection delay (ADD) and the
average run length (ARL) to false alarm were theoretically
characterized. However, the proposed recursive score scheme
only works with HMMs with two states. In [19], the problem
in the Bayesian setting was studied, where the change point
is assumed to follow some prior distribution. The Shiryaev
algorithm was shown to be asymptotically optimal.

All of the above studies focus on finite-state HMMs and
require the knowledge of pre- and post-change transition
kernels and emission probability, which cannot be directly
applied to the data-driven setting in this paper. For the QCD
problem in HMMs under the data-driven setting, the auto-
regressive model with unknown parameters was studied in
[23], where a data-driven method was developed to approxi-
mate the likelihood ratio. However, no theoretical performance
analysis was provided.
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In this paper, we develop a data-driven algorithm for QCD
in HMMs, where none of the pre-, post-change transition
kernels or the pre-, post-change emission probabilities are
known. To the best of the authors’ knowledge, this is the
first data-driven algorithm for QCD in HMMs with theoretical
performance guarantees. More specifically, We theoretically
show that the lower bound on ARL is exponential in the
threshold and the upper bound on WADD is linear in the
threshold. Therefore, the WADD is at most in the logarithm of
the ARL. This matches with the results under the model-based
setting, and is of great practical importance as the number of
samples taken to make a false alarm shall be exponential in
the number of samples taken to detect the change. The major
challenge in our analysis lies in quantifying the correlation
overtime due to the HMM structure. The overall computational
complexity of our algorithm at time ¢ is O(m¢t), where m is the
block size, and thus our algorithm is computationally efficient.
Our simulation results also validate our theoretical finding that
the WADD is in the logarithm of the ARL.

II. PROBLEM STATEMENT

Consider a Markov chain {X;}¢°, defined on a probability
space (X,F,P). Denote by P : X — P(X) its transition
kernel, where P(X’) denotes the probability simplex on X.
The state X, is not directly observable, and instead we observe
a sequence {X,}$2, which is adjoined to the Markov chain
{X:}2, such that { X, X} }22, is a Markov chain and for any
measurable set A C X,

P(X; € A|Xi_1,.... X1, X, ... X}) = P(X, € A|X,_1),
P(X] € A|Xy, ..., X1, X!, ... X}) = P'(X] € AIX,).

Here P’ : X — P(X) denotes an emission probability.

At some unknown time 7, the transition kernel P changes
into @ : X — P(X) and the emission probability P’ changes
into @ : X — P(X). The goal is to detect the change as
quickly as possible subject to false alarm constraints.

Let 7" be a stopping time and denote by P, (E;) the proba-
bility measure (expectation) when the change happens at time
7 and P, (E.) the probability measure (expectation) when
there is no change. In this paper, we focus on the data-driven
setting, where P, P',Q, Q' are unknown. We assume that we
have a reference sequence of observations {Y, }$2, generated
from a HMM with transition kernel P and emission probability
P’. Let Y; be the hidden state. Denote by F; the o-field
generated by {X;, X/, Y;, Y/}._,. The average running length
(ARL) to false alarm and the worst-case average detection
delay (WADD) of T are defined as follows [24]:

ARL(T) = Ex[T], (1)
WADD(T) = sup esssup E,[(T — 7) | F-_1]. 2
T2>1

The goal is to minimize the WADD subject to a constraint on
the ARL:

~ min  WADD(7), (3)
T: ARL(T) >

where ¢ > 0 is some pre-specified constant.
In this paper, we assume that the Markov chains with
transition kernels P and @ are uniformly ergodic.

Assumption 1. The Markov chains with transition kernels P
and ) are uniformly ergodic: for any measurable set A C X

Poo(Xi4i € A|X; =) —7mp(A)| < RpAp, (4
|]P>1(Xt+i S A|Xl = 1‘) — WQ(A)‘ < RQ)\t s ®))

where mp and mg denote the stationary distributions for P
and Q, and 0 < Rp, Rg < 00, 0 < Ap,Ag < L.

It can then be easily shown that under P, the stationary
distribution of {X;, X[}$2; is wp(x)P’'(2'|x), and under Py,
its stationary distribution is 7 (z)Q’(2’|x). We then denote
the marginal distribution of the observation under the station-
ary distribution by 7 and m,, respectively:

T(a') = /X mp(dx)P'(o/|),
ro(a’) = /X ro(dz)Q' (' |2). ®)

A. Maximum Mean Discrepancy

In this section, we briefly introduce the kernel mean embed-
ding and the maximum mean discrepancy (MMD) [25], [26].
Let k: X x X — R be the positive definite kernel function of a
reproducing kernel Hilbert space (RKHS) H;. We use (-, )4,
to denote the inner product in the RKHS. For any z,y € X', we
have k(z,-) € Hy and k(z,y) = (k(x,-), k(y, )2, - Accord-
ing to the reproducing property, given any function f € Hy,
we have f(z) = (f,k(z,-))n,. In this paper, we consider
a bounded kernel function k, ie., 0 < k(z,y) < 1. For a
probability distribution F', denote by pp = Exp[k(X, )] its
kernel mean embedding. For a characteristic kernel k, we have
ur = pg if and only if F' = G [26]. The MMD between F
and G are defined as:

D(F,G) = Ex~r[f(X)] = Ey~c[f(Y)]|. (D

sup
Fillfllae, <1

The squared MMD can be equivalently written as [27]:
DQ(F’ G) = EX,XNF[k(Xv X)] + EY,YNG[]{(YY? Y)}
—2Ex~ry~clk(X,Y)]. (®)

III. HIGHER-ORDER MARKOV CHAIN

For Markov models, even if P # @, wp can still be the
same as 7, making the detection difficult if only using the
first-order statistic [28], [29]. The same issue also appears
in HMMs. Even if P # Q and/or P’ # (@', the stationary
distributions and/or the induced marginal distributions of the
observations may still be the same.

For Markov models, a solution is to consider the 2nd-order
Markov chain, defined as {X;, X;11}72,. As long as P # Q,
then the stationary distribution of the 2nd-order Markov chain
mp - P is not the same as 7q - Q.
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We generalize this idea to the HMMs and consider the
higher-order HMM. Define the ith-order HMM:

{00 XD, (K, X 1), o K, X i0)) |

and the corresponding ith-order observation sequence:

{(X£7X£+17 R ngJrifl)}toil'

It can be easily shown that the ¢th-order HMM is an HMM,
and is also uniformly ergodic. With a slight abuse of notation,
we denote the marginal distribution of the i-th order observa-
tion under the stationary distribution by 7 and 7, (similar
to (6) and also see (9) and (10)).

For notational convenience, we focus on the case ¢ = 2, and
make the following assumption.

[ee]

)
t=1

Assumption 2. There exist A, B C X such that
mp(Xiy1 € A|X{ € B) # mp(X{,, € AlX] € B).

This assumption guarantees that 7% (X/, X/ ;) and
7o (Xi, Xi41) are different, and thus the change is detectable.

We note that using an order higher than 2 will result in a
relaxed assumption than Assumption 2, but will introduce a
higher computational cost. To keep the presentation clean, we
use 2nd-order in this paper. Generalization of our algorithm
and analysis to a higher-order is straightforward.

IV. MAIN RESULTS

Denote by X = X x X the state space of the 2nd-
order HMM and denote the product o-algebra on X by
F@F = ofAx B A € F,B € F}. Denote
by X; = (X/,X/,,) the second-order observation and
)?t = (Xt,XtH) the second-order hidden state. For the
Markov chain {((X;, X}), (XtJrl»Xt/H))}zl’ the observa-
tion’s marginal probability of the stationary distribution can
be written as

F;;(A,B) = /)‘(T(P(dlt)P’(Xt/ S A|Xt = ggt)

/ P(dzis1| X, = 2)P' (X}4y € B X1s1 = 2041)  (9)
x
under P, and

7T/Q(A,B) = /Xﬂ'@(dl't)Q/(th S A|Xt = l't)

/ Qdxi 1| Xy = 2)Q"(X{4 1 € Bl X1 = z441) (10)

under Py, for any A, B C X. From Assumption 2, we have
that WP(X/) # ﬂ'Q(X ).

Denote by Y/ = (Yt,Yt'H) the observation at time ¢ of
the second-order reference sequence. We divide the samples
into non-overlapping blocks and the size of each block is m.
For the t-th observation block, t = 0,1, 2, ..., we have m — 1
second-order samples and the empmcal dlstribution for this
block can be written as Ft =Ly X , where d
is the Dirac measure. Slmllarly, for the t th reference block

t m— 1 _
we have F, = = LS 0
MMD between these two emplrlcal distributions as follows

. We then can calculate the

1 ~ o~
(R, Fy,) = m_l)(mmgn(m) k(X X))
FOY kw2 Y kE)

mt<i,j<m(t+1) mt<i,j<m(t+1)

Here the kernel function is defined to be X2 x X2 — R. Since
the MMD is always non-negative, we define our test statistic
as

Si = D(F%,,

t
Fi;/) — 0—/7
where the offset ¢/ > 0 is some positive constant to be
specified later. We introduce the offset ¢’ to guarantee that
the expectation of the test statistic .S} is negative before the
change and is positive after the change. Then, our stopping

time is defined as
t
. . /
T(c) = inf {mt +t: Ongl?%(t E ‘ Sj > 6}7 (1)
j=i

where ¢ > 0 is a the threshold. This algorithm can be updated

recursively:
! !
52?325 = max {0, f?a&ZS "S-

In addition, the computational complexity for MMD i is O(m?)
for every m samples. For n samples, there are |.-] non-

overlapping blocks in total. Hence the overall computational
complexity at time n is O(mn).
As will be shown later, for large m,

D(FL, FL,) = D (wp(X'), 7p(V)) =
before the change and
D(F;,,F%,) ~D <7T&2(X/),7T}>(Y/)) >0
after the change. Therefore, we choose
77/@(37/)) .
In this way, before the change the statistic has a negative drift

and after the change it has a positive drift.
Define

0<o <D (w;,()?’),

2—2\p +4Rp \/2—2>\Q+4RQ

(M71)(17)\p —1 17)\@)
a=ap+agq, (12)

We then derive the upper bound on the WADD.

d=D( ﬂ’P,ﬂ’Q —a.

Theorem 1. The WADD for the stopping time in (11) can be
bounded as follows:

WADD(T'(c))
2\/>mc (a +d)mce a++Vad
Sla—d2 T amaz Tt gT ™
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=0(mc). (13)

Note that a = O \/%) Therefore, a ~ 0 when m is large.
Then the WADD grows linearly with m.

Proof sketch of Theorem 1. Let 7/ be the index of the last
sample within the block where the change happens. Then,
samples after 7/ follow the transition kernel Q. Let

ap +ag +/(D(xp, ) — o) ap + aq)

D(rp,mg) — o' —ap —aq

¢ =

such that
, &+
&

—‘. Firstly, we have that

D(rp,m) — 0 (ap—i—aQ) > 0.

(¢'+1)c

"
Denote by n, = ’VD(W;:,W' Yo

T(c)—T1 c)—1 .
[T ] <S5 (M 2 ),
By the definition of T'(c), we have that
T
(T s )
mn/,
in
< T(c)—71" _ .
< ! -7 _
<P ( Z Si < o|Fro —o L2 - 1)
i=(j=1n+1 ‘
T e
x PT(L,T >j—1|F). (14)
mn/,
It then suffices to bound IPT( Zz%j_l)n,ﬂ Sl < c‘]-},l,

T(c) T’

mn

>j— 1) and to apply (14) recursively. By the triangle
1nequa11ty and Markov inequality, we have that

jn’
< T(c)—T1 .
PT( Z ~7:T—17(72m,21—1>
C

i=(—1)n,+1

g]P’T< i (D(ﬂg,wé)— D(F;(,, )

i=(j—1)nl+1

S <c

T e
—D(F;,,, )) < cJ-‘T_l,L,T >j— 1)
mn/,
Jn.,
< >
i=(—1)n/+1
7 7 T(c)—1' .
E-[D(FL, mg) + D(FL,mp ) |[Fror, BT > -1
ny(D(mp,mg)) —o') —c
ap+aq

1
1+—=]. 15
/< +§/> (15)

T D(np, ) — 0
The last inequality in (15) follows from Pro(position 1, which

will be given later. Let §' = #gf“/ 1+ %) we can
show that
T .
IP%(L > jIFra) <.
mn/.

c

Then it follows that
(T(c) =)

ET[ o fT_l} <(1-d)"
Then we plug in the values of ¢’ and £’ and this concludes

the proof. O

One key step in the proof of Theorem 1 is to prove the upper
bound on the expectation of the MMD between the marginal
distribution of the stationary distribution 7, and the empirical
probability F& % under P, and the MMD between Wé;) and
FE under ]P’l (Proposition 1). Before that, we first provide
a useful lemma to measure the correlation between samples.
For HMMs, we define the coefficient

oo (20,4, )
= [Boc [ (R(XE:) = e B(X7) = 1y ), 1Ko = 0|
under P, and

P (0,1, 7)
= (B[ (R(X0) =iy k (35) = iy ), 160 = 0|

under IP; to measure the correlation between the ¢-th and j-th
samples conditioned on Xy = xy. We then have the following
lemma.

Lemma 1. Under Py, and P, Vxog € X,j > ¢ > 0, we have

pho(@o,i,§) < 2RpXp 1,

pi(zo,,5) < 2R, . (16)

Based on Lemma 1, the expectation of the MMD between
mp(Tg) and F%L under P, (P;) can be bounded in the
following proposition.

Proposition 1. Vi, € X, Eo [D (F)t( w;;) Xyt = xmt} <
ap and Eq {D(F)?/,W/Q) | Xt = xmt} < ag.

We then will derive a lower bound on the ARL, which
is exponential in the threshold. Before that we provide a
high-probability bound on the sum of two MMDs between
w};(wb) and F)’%,. The main challenge here lies in that the

generalization of the McDiarmid’s inequality [30] cannot be
applied to HMMs directly.

Proposition 2. For any ¢, Yme € X and 6 > 0,

log(})
r,

Poo (D(FL, 7

X/?

») + D(F%

L.mp) <

+ 2QP‘Avat = xmtvymt = ymt) >1- 257 (17)

where T, = >0 and I'p > 0 is a constant.

Tp
(1+\/ 2mrp)2
We then theoretically develop the lower bound on the ARL
for our test in (11). Denote by h = o — 2ap. Since the value
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of ap decreases with m, we can always find a large m so that
h > 0. Define a function

T
o(q) = \/;q exp
1"/
P
For this continuous function, let ¢ > 0 be a constant such
that ¢(¢q) < 3. Such a g always exists since ¢(0) = 0 and
?(q) = oo as g — 0.
Theorem 2. The lower bound on the ARL in (11) is exponen-
tial in the threshold c:

2

)
AT,

(—qh +

ARL(T'(c)) > mexp(qc). (18)
Proof sketch. Define the following stopping times
t
Al :inf{tzzsg <0}
i=0
and .
AL, :inf{t SAal: Y si< 0}.
i=AL41
Let R’ = inf{r > 0 : Al < oo and E*A’+1 Si > ¢ for

some ¢ > A’}. By the definition of 7'(c), we then have that
Eoc[T(¢)] = mEoo[R'] > m Y Pog(R > ). (19)
r=0

Further, we can prove

n
> Si<cFam))
i=Al41
X Poo(R >1r—1).
‘We then show that
n
> /
(s, 3 st
i=Al+1

< Eoo [exp (¢Shs 1) | Farm] / exp(ge).
It then suffices to bound

Poo (R > 1) 2(1 — Poo( max

n>Al+1

Eoo [exp (qS'AH_l) |_7-'A/Tm]/exp(qc).

By Proposition 2, we show that

Eeo [exp (¢S, 1) [Fagm] < 1.

It then follows that
1—Ps ( max

n>Al+1

This further suggests that

Eoo[R] > Poo(R >7) > (1-exp(—qc))”

r=0

i Si<c

i=A7 41

]:A;,m) > 1 —exp(—qc).

— exp(qo).
This concludes the proof. O

Note that g and m are independent of c. Therefore, the lower
bound on ARL is exponentially in the threshold c.

Fig. 1. ADD v.s. ARL: m = 0.15.

Recall that in [12] a universal lower bound on WADD
was developed, which shows that for any stopping time with
ARL > 1), the detection delay is at least O(log(¢))). For our
test to satisfy the ARL constraint in (3), the threshold ¢ should
be set to M. With this threshold, by Theorem 1,
our algorithm achieves a detection delay of O(log(t))) while
satisfying the false alarm constraint. This matches with (order-
level) the universal lower bound in [12] for the general non-
i.i.d. setting.

V. NUMERICAL RESULTS

In this section, we provide some simulation results.
For the Markov chain, let the transition kernel be P =
[0.2,0.7,0.1;0.9,0.0,0.1;0.2,0.8,0.0] T before the change
and Q = [0.5,0.5,0.0;0.0,0.5,0.5;0.2,0.3,0.5] " after
the change. The emission probability density matrix is
[0.8,0.1,0.1;0.2,().670.2;0.3,0.3,0.4]T and doesn’t change.
We use the Gaussian kernel

k(z,y) =exp (- Bz —y)?),

where [ is the bandwidth parameter. We pick 8 = ﬁ that
achieves the best ADD and ARL tradeoff. We set m = 15,
and use the offset 0 = 0.35,0.4 and 0.45 respectively. To
compare the ADD and the ARL, in Fig 1, we plot the ADD
as a function of the log of ARL by varying the threshold. From
Fig 1, we can see that for all o, the ADD grows with the log
of ARL linearly, which matches with our theoretical results.

VI. CONCLUSION

In this paper, we developed a data-driven approach to detect
a change in the transition kernel and/or emission probability in
HMMs. We theoretically characterize its ARL and WADD, and
show that the ADD is at most in the logarithm of the ARL,
which matches with (order-level) the universal lower bound
for the general non-i.i.d. problem in [12]. We also provide
simulation results to validate the performance of our algorithm.
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