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ABSTRACT

Occupant-Centric Control and Operation (OCC) represents a transformative approach to building management, integrating sensing of indoor environmental quality,
occupant presence, and occupant-building interactions. These data are then utilized to optimize both operational efficiency and occupant comfort. This paper
summarizes the findings from the IEA-EBC Annex 79 research program’s subtask on real world implementations of OCC during the past 5 years. First, in Q1 and Q2,
we provide a definition and categorization of OCC. Q3 addresses the role of building operators for OCC, while Q4 describes the implications for designers. Then, Q5
and Q6 discuss the role and possibilities of OCC for load flexibility, and for pandemic induced paradigm shifts in the built environment, respectively. In Q7, we
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provide a taxonomy and selection process of OCC, while Q8 details real world implementation case studies. Finally, Q9 explains the limits of OCC, and Q10 provides a
vision for future research opportunities. Our findings offer valuable insights for researchers, practitioners, and policy makers, contributing to the ongoing discourse

on the future of building operations management.

1. Introduction

Building operations management is a multidisciplinary field that
encompasses a range of activities aimed at ensuring the optimal func-
tioning of building systems [1]. This includes the maintenance and
control of heating, ventilation, and air conditioning (HVAC) systems,
energy management, safety and security systems, and other aspects of
building performance. The ultimate goal is to provide a safe, comfort-
able, and productive environment for occupants while minimizing en-
ergy use and environmental impact. In recent years, the field has been
undergoing a significant transformation, driven by the increasing inte-
gration of technology and the growing focus on sustainability and
occupant comfort. Occupant-centric controls (OCC) have emerged as a
key concept in this transformation, shifting the focus from traditional
building- (or better system-) centric operations to a more
occupant-focused approach.

The OCC approach is underpinned by a rich array of data, encom-
passing occupant behavior, building performance, and environmental
conditions. This data-driven approach enables more precise and
responsive control strategies, which can significantly enhance energy
efficiency, occupant comfort, and overall building performance. OCC
has been extensively studied in the IEA EBC Annex 79 research project
Occupant-Centric Design and Operations of Buildings [2]. This paper re-
ports on some of the key findings from its subtask 4. While many topics
in building design and control could be considered occupant-centric, e.g.,
equity and inclusion, privacy, trust, etc, [3], in this paper we will mainly
focus on Indoor Environmental Quality (IEQ) for our discussion.

2. Questions

This manuscript delves into the core aspects of OCC, addressing ten
critical questions that span the breadth of this field. We begin by
defining OCC (Q1) and its foundational data categories (Q2), followed
by an exploration of the evolving role of building operators in the OCC
context (Q3). We then discuss the simulation of OCC for building con-
trols (Q4) and its potential role in residential demand response programs
(Q5). The manuscript also examines the impact of OCC on the recent
paradigm shift in building occupancy and operations (Q6) and presents a
classification of occupant-centric operations case studies (Q7). We
further delve into the OCC strategies implemented and evaluated in
these case studies (Q8), and discuss the limits of occupant behavior
sensing and strategies to ensure occupant satisfaction (Q9). Finally, we
conclude with a forward-looking discussion on the future directions and
trends in OCC research and development (Q10).

2.1. Question 1: What is occupant-centric controls and operation?

Traditionally, control and operation of buildings’ heating, ventilation,
and air conditioning (HVAC) and lighting systems has been based on
constant or steady-periodic setpoints and schedules [4], which are often
selected conservatively by designers to cater to unrealistically high occu-
pancy and occupied durations. For example, it is commonplace for HVAC
equipment to operate at full or near-full capacity during operating hours
which start and end many hours before and after occupants first arrive or
last depart, respectively -as determined by a static daily or weekly schedule
[5], regardless of when, where, or how many occupants are present, or
what their preferred indoor environmental conditions are. Despite this
traditional one-size-fits-all approach to operations, occupancy and the
preferences of individual occupants in buildings are diverse; workplaces
have been rapidly moving away from rigid ‘nine-to-five’ work schedules

for almost a quarter of a century [6], while occupants have been shown to
have individually preferred indoor air temperatures and illuminance
levels [7,8], for example. Occupant preferences further extend to other
aspects of how occupants experience and interact with the built environ-
ment (e.g., location and type of seating, olfactory sensitivities or prefer-
ences, access to views, flexible working hours, etc.) which ultimately
impact their productivity and well-being. Any attempt to address this di-
versity with conservative setpoints and schedules is to provide services to
buildings blindly, which ultimately wastes energy, affects indoor envi-
ronmental quality (IEQ), and causes occupant discomfort. This problem is
not limited to a single building type (i.e., commercial, or residential) nor to
a single country, culture, or climate zone.

One potential antidote to the problems created by traditional control
and operation strategies that has developed since the early 2000s [9] is
the concept of occupant-centric control. The position paper published by
IEA EBC Annex 79 defines OCC as an approach which involves “sensing
indoor environmental quality, occupants’ presence, and occupants’ in-
teractions with buildings” [2]. These data can then be used in control
algorithms to adapt the sequences of operation in a manner that pro-
vides building services when and where they are needed, and in the
amount that they are needed [10] based on occupancy and occupant
preferences, thus improving energy efficiency, IEQ, and occupant
comfort without impacting usability and perceived control for the oc-
cupants. In parallel, this data could be used to reinforce human-building
interaction by giving feedback to occupants about the IEQ and energy
consequences of their behavior and engaging them to energy efficient
building systems control for a healthy environment. Park et al. [11]
provide a review of over 35 published field studies which document the
viability of various OCCs which attempt to derive setpoints and sched-
ules for HVAC equipment and lighting controls based on occupancy and
occupant preferences. They grouped these OCCs as either occupant
behavior- or occupancy-centric. The former adjusts the indoor envi-
ronment based on occupants’ preferences that are learned either actively
or passively; active preference learning is achieved by soliciting occu-
pants’ feedback explicitly through an interface (e.g., smartphones or
wearables), while passive preference learning is achieved by monitoring
occupants’ interactions with the buildings’ environmental control sys-
tems (e.g., thermostats or lighting switches) and determining their
preferred environmental conditions implicitly. Occupancy-centric con-
trols, on the other hand, adjust the indoor environment based on either
the presence/absence or number of occupants (e.g., turning off equip-
ment or using a setback when spaces are unoccupied). In both cases, the
data needed to inform the controls and the sequences of operation can be
gathered from proprietary sensing technologies, leveraged from existing
sensors already present in the building for other purposes, or determined
using a collection of sensors and data-types via sensor fusion. Addi-
tionally, data regarding occupant satisfaction and overall system per-
formance can be gleaned from qualitative sources such as surveys and,
increasingly, from emerging datasets like computerized maintenance
management systems (CMMS).

Fig. 1 proposes a framework for OCC by illustrating its contextual
processes within the built environment. This model includes four types
of energy, mass, and information transfers that take place between the
indoor and outdoor environments, occupants, and various building
systems, primarily HVAC, windows, and lighting systems, as indicated
by the colored arrows. These systems can actively transport mass, such
as fresh air, and energy in the form of heat or light, or they can passively
regulate the energy exchange between the indoor and outdoor envi-
ronments, as with windows and blinds. In the former scenario, energy
generation is required, while in the latter, the energy expenditure from



Z. Nagy et al.

the occupants is utilized. These processes could lead to energy/fuel
consumption and impact the quality of the indoor environment. Along
with the outdoor conditions, these factors act as stimuli that prompt the
occupants’ actions and perceptions [12]. Additional stimuli for occu-
pants include interactions with other occupants and information
regarding the building’s operation, conveyed via visual displays (either
fixed or app-based). The information necessary for OCC may be derived
from four types of data, represented by the following sensing points:
occupants’ presence, movement, performance (physiological and psy-
chological data), well-being, IEQ variables, human-interface in-
teractions, and energy consumption. Moreover, OCC could benefit from
actively involving the occupants in judicious control, achieved by
sharing relevant information with them through, for instance, visual
displays or well-designed interfaces [13]. This could inspire the occu-
pants to take action themselves by adapting their behaviors, such as
changing their clothing or consuming cold/warm beverages, thereby
expanding the range of thermal comfort conditions and reducing energy
consumption [14].

By this definition, OCC covers a wide swath of interventions with a
range of complexities that can be performed to improve the built envi-
ronment for occupants. For example, it could be argued that an occupant
simply opening a window to mitigate thermal discomfort is an occupant-
centric operation. A ‘smart’ thermostat with integrated motion-
detection capabilities can infer if a home is unoccupied and apply a
temperature setback of several degrees to reduce energy use as a form of
OCC. A single-occupant office may record illuminance readings and an
occupant’s interactions with the light switch to determine what lighting
level results in the lowest rate of interaction with the light switch and,
implicitly, what lighting level the occupant prefers. Alternatively, an
application on a smartwatch could periodically poll the occupant about
their satisfaction with the lighting levels instantaneously to gather the
same data explicitly. This would allow for artificial lighting to be
reduced when natural light can meet or exceed the occupant’s preferred
illuminance, increasing both occupant comfort and energy savings via
this occupant behavior-centric control [15].

While some OCCs have become relatively commonplace (e.g.,
demand-controlled ventilation (DCV)), widespread adoption of OCC at
scale has yet to be realized [16]. However, emerging software and
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hardware for sensing, data-archiving, and control, continued advance-
ments in data mining tools and techniques, and demonstrable savings
from a growing number of case studies have all contributed to an
increased interest in OCC and operation by practitioners. For example,
the ASHRAE Handbook of HVAC Applications now includes a chapter
devoted to OCC [108]. At the same time, enterprise-grade commercial
solutions for OCC applications have begun to emerge. It is likely that the
rate of adoption of technologies and strategies that enable OCC will
increase dramatically as the benefits to occupant comfort, productivity,
and well-being become increasingly clear.

2.2. Question 2: What are the basic categories of OCC data?

As OCC is enabled largely by sensors and data, the categories of OCC
can be related back to quantitative occupant-related data available in a
building. Based on the framework introduced by Melfi et al. [17], data
relating to building occupants can be grouped into the occupant, spatial,
and temporal resolutions. The occupant resolution can be further sub-
divided into four grades: presence, count, activity, and identity. Pres-
ence data enables learning binary patterns of space use, which can be
used for scheduling the availability of building services (e.g., automat-
ically turning lighting or HVAC equipment off when a space is empty
and unlikely to be occupied in the immediate future). Occupant count
data can enable modulation of available building services proportional
to the space use intensity (e.g., occupancy-based demand-controlled
ventilation, whereby ventilation is reduced or increased depending on
how heavily occupied a space is) [18,19]. Occupant activity data (e.g.,
thermostat use behavior, comfort feedback solicited through Web, mo-
bile, or wearable applications) enables customization of the delivery of
building services for each space type (e.g., learned preferred indoor
temperatures for a specific room) [8,11,20-23,104]. Occupant identity
data can be of practical use if an occupants’ location inside a building
frequently changes to ensure that the services delivered at their given
location match their activity and preferences (e.g., learned preferred
indoor temperatures for a specific occupant). The identity grade of
occupant data is not as useful in spaces with transient occupancy char-
acteristics as individual occupants do not occupy these spaces frequently
or long enough to establish individualized occupant behavior-centric

1 outdoor
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Fig. 1. Framework for OCC implementation in built environment. OCC is based on systems control using data from sensing points and could also engage occupants

by presenting them collected data in relevant way.
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controls (e.g., airports, hotels, restaurants). It should be noted that there
are privacy and security related implications associated with explicitly
identifying individual occupants either directly or indirectly. In build-
ings or spaces that are occupied by the same occupant(s) (e.g., a resi-
dence, single- or multi-occupant office spaces with assigned seating,
etc.), OCC can be tailored to individual occupants’ preferences without
the need for explicit identity data. Simply put, monitoring occupants’
activities in such spaces yields individualized controls without the need
for explicitly identifying the occupant or tracking their movements.
These types of data are inherently pseudonymized per GDPR [24]: while
the data in each individual building or space can be attributed to the
same occupant(s), the explicit identity of the occupant(s) is not
collected. For this reason, the identity grade of occupancy data has not
been necessary for OCC in most applications to date [11,21]. These types
of data can, however, still be linked back to the individual occupant(s)
explicitly using additional information (e.g., seating plans, office di-
rectories, etc). Therefore, any OCC which uses the identify grade of
occupant data either directly or indirectly should consider the sensitivity
of the data being collected, best practices (e.g., anonymization, pseu-
donymization, or de-identification), and the prevailing legislation for
the jurisdiction in which the OCC will be conducted. Further work on
this topic as it relates to OCC should parallel the continually evolving
landscape around data and privacy as a whole.

Occupant data grades can be acquired at different spatial resolutions
and can broadly be categorized at the system/building-level and room/
zone-level resolution. Depending on the building considered, system-
level data may not apply to a whole building, but to a subset of zones
that are controlled by a single unifying system (e.g., the zones controlled
by a single air handling unit (AHU) in a building with multiple AHUs,
where the AHU is the ‘system’ in this context). Similarly, it is not un-
common for multiple rooms to be grouped together as a zone (e.g.,
multiple rooms controlled by a single variable air volume (VAV) ter-
minal unit, where the multiple rooms are collectively the ‘zone’ in this
context). Therefore, when considering the spatial resolution of an OCC,
consideration must be given to the granularity of the building’s HVAC
systems and lighting equipment. This is why higher spatial resolution (e.
g., down to the workstation or sub-room level), while a promising
research topic, is not considered in this paper; most buildings do not
have infrastructure to support OCC at resolutions below the room/zone-
level. Generally, because occupants and their preferences are so diverse,
energy savings and occupant comfort increase as the spatial resolution of
OCC becomes more granular [25]. However, occupant data at higher
spatial resolutions requires denser sensing and data-collection/storage
infrastructure, which increases installation and maintenance costs.
The higher burden on controls-integrators that the increasing
complexity of high-resolution OCCs brings cannot be discounted. This
burden will likely decline as OCC and operation become standardized,
such as recent efforts by O’Neill et al. [26], to incorporate OCCs such as
DCV directly into sequences of operation via codes and standards like
ASHRAE Guideline 36 [27].

The temporal resolution at which occupant-related data are collected
can vary. For example, monthly energy use data have been used to
develop virtual meters for system-level equipment which enables the
number of occupants within the system to be estimated [28]. While this
may be used to inform the occupancy-centric operation of these equip-
ment, controls-oriented applications (i.e., those which modulate
equipment in real- or near real-time based on occupancy and occupant
behavior) typically require data at a sub-hourly resolution for OCC.
Similar to the spatial resolution, higher temporal resolution data will
increase the burden on building automation systems (BAS) and building
energy management systems (BEMS) as the sheer volume of data will
increase network traffic and associated infrastructure requirements (e.
g., data-collection and storage). Therefore, the selection of timesteps for
the collection of occupant-related data should be done carefully. When
developing OCCs, especially those that rely on data from multiple sen-
sors or sources, consideration should be given to whether the data are
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collected concurrently, or if they are offset, how this can be accounted
for during controls development.

Considering the above, the following categories can broadly be used
to group OCC:

@ Category 1 relates to presence/absence at the system/building level.

@ Category 2 relates the same to the zone/room level.

@ Categories 3 and 4 represent occupant counts at the system/building
and zone/room levels, respectively.

@ Categories 5 and 6 indicate occupant activities at the system/build-
ing and zone/room levels, respectively.

Even categories (2, 4, and 6) correspond to the higher spatial reso-
lution of the zone/room level, while odd categories (1, 3, and 5)
correspond to the system/building level. Occupant identity grades and
lower spatial resolutions are omitted for the reasons previously dis-
cussed. These categories, summarized in Fig. 2 , are adapted from [2,
29].

2.3. Question 3: How does the role of building operators change when
adopting OCC?

Building operators fulfill various roles and responsibilities covering
crucial areas such as maintenance, efficiency, safety, sustainability, and
satisfaction. For example, operators are responsible for assessing,
scheduling, supervising, and sometimes conducting maintenance activ-
ities, including inspections, repairs, and replacements of systems and
equipment such as HVAC, electrical, plumbing, and fire safety. In
addition, operators strive to optimize energy and water consumption by
monitoring usage, identifying areas of excess waste, and implementing
reduction measures through upgrading equipment or automation.
Furthermore, operators ensure compliance with safety regulations,
conduct regular inspections and coordinate with security personnel to
develop and implement effective security protocols. Increasingly, op-
erators play a vital role in promoting sustainable practices. For example,
they implement recycling programs, reduce waste, monitor water usage,
and explore renewable energy options. More importantly, operators are
responsible for fostering a pleasant environment for occupants by
serving as a point of contact and addressing their needs as necessary.

The climate-adaptive operations movement has already significantly
transformed the role of operators by increasing the focus on efficiency
and sustainability. Implementing OCC will continue to transform the
role by prioritizing customization and personalization of the built
environment to meet occupants’ specific needs and preferences.

A

Identity <«— Unused by most OCCs
|
|
S |
S Activity 5 6 |
- |
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Fig. 2. Categories of occupant-centric controls (OCCs) based on occupant-
related data used and spatial resolution of controls. [2,29]
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Successfully incorporating OCC requires operators to enhance their
expertise in advanced technology integration, effective communication,
and educational strategies. However, like all paradigm shifts, funda-
mentally changing the role of operators will be met with several chal-
lenges [30]. The first major challenge for operators will be balancing
historical quantitative measurements such as standards, cost, and effi-
ciency with modern qualitative measurements, including comfort, pro-
ductivity, and happiness. To prepare for their future as OCC operators,
both tenured and new operators will need adequate training on inte-
grating technology, state-of-the-art communication methods, and
educating occupants. Overcoming these existing knowledge gaps will
foster healthy operator and occupant relationships critical to tran-
sitioning from traditionally managed buildings to OCC buildings[107].

Technologies such as building information modeling (BIM), CMMS
and facility management systems (FMSs) provide operators with a
wealth of fundamental support-related information that can then be
collected, analyzed, and integrated into the larger building systems [31].
However, training and knowledge is necessary to properly apply these
technologies. It is also necessary that organizations value their use and
understand the benefits they present in supporting operators’ work.
Studies show that the opportunity for occupant engagement is either
neglected or hindered by the presence of organizational or structural
factors despite the operational benefits these systems and the informa-
tion provides [32]. Often these factors include operational goals limited
to quantitative metrics such as cost and emissions. When these tech-
nologies are affordable, durable, maintainable, and easily integrated,
they help operators achieve these quantitative goals. Once these goals
are met, operators can overcome structural barriers to dedicate more
time and resources to the human-facing aspects of their job, such as
fostering a healthy relationship with occupants while also meeting
qualitative goals. However, for those technologiesa key component of a
healthy relationship is communication. Unfortunately, existing
communication methods between operators and occupants are poorly
implemented, resulting in broken information feedback loops leading to
both poor building performance and occupant dissatisfaction [33]. For
occupants and operators, advanced communication systems and
methods that promote regular, direct, and electronically tracked feed-
back mechanisms help foster a healthy relationship [34]. These systems
include but are not limited to post-occupancy evaluations [35], occu-
pant voting [36], and occupant wearables [37]. As occupants provide
feedback, operators can make decisions that benefit both occupants and
operation without major detriment to one or the other.

However, communication is not limited to feedback. Operators must
also provide occupants with adequate education by hosting training
sessions and providing resources on technology and their built envi-
ronment to encourage occupant autonomy without negative impacts on
operation. For example, window signaling methods indicate when oc-
cupants can and cannot open windows in mixed-mode ventilation sys-
tems. Occupants who are educated about the window signaling system,
as well as the personal and environmental benefits of following it, are
more likely to participate in using it and using it properly [38]. By
proactively educating occupants on how to interact with the system
positively, operators mitigate instances where occupants negatively
interact with the system where they may cause discomfort to their peers,
excess energy use, or harm to the system. Occupants and operators must
work together for OCC to be successful.

Another challenge in changing the role of operators when adopting
OCC is that there are an insufficient number of operators entering the
field to account for the high rate of retirement that will occur in the next
ten to fifteen years [39]. This can be attributed to the limited number of
formal academic programs and training specifically aimed at training
operators. Expanding access to certifications, training, and education is
a critical component of adopting OCC and preparing operators for the
changes OCC brings to the operator’s role. However, the lack of training
and education opportunities is also associated with a lack of guidelines
and standards developed and tested to effectively help operators to
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implement OCC worldwide. Studies that demonstrate ways of imple-
menting and overcoming barriers need to be expanded to create a
consolidated knowledge base for these reference materials [40].

2.4. Question 4: Why and how to simulate OCC for building controls?

OCC performance is subject to several sources of uncertainty which
include typical culprits, such as weather fluctuations and envelope
performance. However, occupant preferences and OCC configurational
settings, especially the selection of hyperparameter values if machine
learning models are used, can have a more significant effect on OCC
performance [41]. OCC hyperparameter tuning is typically done
through trial-and-error at the expense of occupant comfort and energy
savings potential, leading to loss of stakeholder confidence in OCC so-
lutions [11,21,42]. This is also constrained by other logistical and
cost-related challenges, such as the limited number of rooms with near
identical conditions in which OCC can be tested, as well as concerns and
hesitation from facility operators towards adopting new control strate-
gies [43,44]. These are the main barriers to implement OCC for actual
building systems [11,21].

To this end, building performance simulation offers a flexible envi-
ronment to investigate alternative OCC formulations and assess their
impact on energy performance and indoor environmental quality [45].
However, the integration of OCC in building simulations is not a
straightforward process. While typical building simulation inputs with
regards to building design parameters are relatively straightforward, the
way in which occupancy, occupant behavior and OCC is represented in
building simulation is not trivial. Several approaches have been pre-
sented in the literature to achieve this integration, which are summa-
rized in Fig. 3. In general, OCC simulations can be categorized based on
the way in which occupants and their interactions with building systems
are integrated in the simulation. The first category relies on identifying
occupant-related metrics offline by analyzing historical data which are
then used as inputs for OCC simulations. The second category focuses on
integrating models to represent occupancy and occupancy-building in-
teractions, which influence OCC operations at each simulation
time-step.

The main advantage of the first simulation approach with offline
occupant-related inputs, is its practicality and relatively less compli-
cated workflows. For example Hobson et al. [16], introduced a library of
OCC functions in R, which leverage building sensor data to identify five
different occupancy- and occupant behavior-centric control-oriented
metrics (e.g., presence/absence times at the building and zone levels),
which were integrated into building simulations. This was demonstrated
using BAS data collected from 29 private offices, then several OCC
strategies were simulated, showing that the energy use and thermal
discomfort could be reduced by up to 37% and 65%, respectively, when
OCCs are implemented. An alternative approach for OCC simulation was
also presented by Pang et al. [46], who quantified potential nationwide
energy savings due to implementing occupant presence and occupant
count sensing OCCs for ventilation in large hotels. The authors modified
occupancy schedules in building simulations based on previous data on
hotel occupancy patterns to provide a more realistic representation of
hotel occupancy. Based on simulations in 19 different climate zones,
they showed that HVAC energy savings varied between 24 and 58%,
with occupant presence sensing, which increased by an additional
5-15% when using occupant counting sensors [46].

Since OCCs require human-building interactions, the second OCC
simulation approach relies on coupling detailed occupant behavior
models with building simulations. These models may represent both
adaptive and non-adaptive behaviors; the latter are mainly related to
schedule factors, (e.g., occupancy (absence/presence), and equipment
usage). On the other hand, adaptive behaviors are defined as actual
responses of internal or external stimuli [47,48]. For example, occupants
who are adaptive to their indoor environments can control thermostats,
light switches, and windows to adjust their environment [49]. To the
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Fig. 3. Overview of simulation-based approaches for OCC.

best of our knowledge, few studies entailed coupling such adaptive
occupant behavior models in OCC simulation. Ouf, Park and Gunay [50]
introduced a workflow for such integration, which was tested in a
case-study to simulate OCCs for lighting and heating/cooling setpoint
adjustments in a single office under various occupant types, as well as
OCC settings and design configurations. Zadeh and Ouf [44] leveraged
this workflow to optimize OCC hyperparameters then identify configu-
rational settings and design parameters that minimize energy con-
sumption and maximize occupant comfort under various occupant
scenarios [51]. used a different approach by mapping predicted occu-
pant comfort to sensor measurements, which were represented in a
simulation environment for lighting and blinds control to minimize
glare discomfort as well as energy use. In a different study, Elehwany
et al. [52] used the Python API within EnergyPlus to represent ther-
mostat interactions and implement a reinforcement learning algorithm
that identifies preferred setpoints and adjusts them accordingly, thus
reducing occupant interactions as well as energy use. Overall, these
studies demonstrated the advantages of fully representing OCC opera-
tions in a simulation environment, which allows for exploring their full
potential in ways that may not be feasible in field implementations.

2.5. Question 5: What role can OCC play in current and future residential
demand response programs to improve the reliability and magnitude of
available load flexibility?

Traditional residential demand response (DR) programs aim to shed
peak electric demand on the grid through direct-load control of home
HVAC systems [53]. Despite some residential DR programs resulting in
30% occupant overrides and a 30% reduction in the program’s energy
savings capacity, DR programs currently do not include occupant
behavior or comfort models in their control strategy [54]. This lack of
OCC-integrated DR control results in these programs failing to meet
their peak shaving goals, threatens reliability of the grid, and places
large financial penalties on the DR provider [55,56]. When integrated
with DR, and grid-interactive efficient buildings (GEBs) generally, the
value of OCC is amplified from the scale of a single building to the scale
of an entire regional power grid. This magnified value in turn magnifies
the stakes for getting OCC right.

Recent research has attempted to understand underlying dynamics of
occupant behavior in pursuit of informing future OCC-integrated DR
programs. Current occupant models have looked to understand DR
occupant override behavior based on the accumulation of thermal
frustration, noting the significance of lagged occupant response to
automated DR thermostat setbacks [57]. These data-driven models show
that the time to occupant override is inversely and exponentially related
to the magnitude of the setpoint override. These findings have the po-
tential to improve the reliability of DR programs by aiding in the

prediction of when and by how much occupants will override DR con-
trols. Additionally, these findings can help inform the design of future
DR programs to balance the occupants’ need for a thermally satisfactory
environment and the grid’s need for increased magnitude and duration
of load flexibility. In addition to developing DR behavior models, the
standard ASHRAE Standard 55 thermal comfort models have been
analyzed to explore their potential application in the context of DR. This
research has revealed that the wide spatial temperature variation com-
mon in residential buildings is a major barrier to using these existing
models for DR. It was found that there was an average spatial temper-
ature variation of approximately 2 °C with a standard deviation of 1.2 °C
across the homes studied. Given that indoor temperature is an input
parameter of both the Predicted Mean Vote model and the Adaptive
Thermal Comfort model, this wide temperature range increases the
uncertainty of the models’ predictions as the actual temperature an
occupant is experiencing remains unknown. This research further found
that while the adaptive thermal comfort model is sufficiently good at
predicting thermal satisfaction of occupants, it is not able to accurately
predict thermal dissatisfaction. It was found that 84.8% of the dissatis-
fied votes occurred within the 80% acceptability range. This suggests
that thermal dissatisfaction models, rather than satisfaction models may
better suit the needs of DR controls. Another barrier to using the stan-
dard ASHRAE 55 thermal comfort models is related to the temporal
variation of the temperature during DR. These models do not account for
the psychophysiological phenomena of thermal overshoot and thermal
alliesthesia affecting thermal comfort during the induced dynamic
thermal conditions [58]. As such, they do not provide any indication on
how to better control DR for increasing occupant comfort and pleasure.

Thermal discomfort is not the only reason for unreliable DR pro-
grams. One study found that occupant routines related to thermostat
interactions were the most important drivers of overrides, as occupants
often manually changed their setpoint at the same time of day regardless
of whether it coincided with a DR event or not [59]. However, the study
also showed that the likelihood to override a DR event decreased after
participants had been exposed to several events. Another related study
conducted with the same dataset highlighted the need to study occupant
behavior and OCC not only during the DR event but also before and after
it. In the studied dataset, the occupants received a notification at least a
day ahead informing them that the DR event was occurring. Approxi-
mately one in four users manually adjusted the setpoint temperature
before the DR event, while only 13% of the DR events were interrupted
by a user’s adjustment. Among those DR events, different types of
rebound effects in terms of intensity and durations were observed. These
rebound effects could only be partially explained in terms of physical
thermal aspects [60]. Finally, studies have suggested that participants’
lack of familiarity with DR programs and smart thermostats can result in
program disengagement [59]. At times, this lack of familiarity can also
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lead to diminished energy and financial savings as occupants may
over-correct when manually overriding thermostat controls. These
findings suggest that an important feature of OCC is not just intelligent
control systems, but also the strategic sharing of information about these
systems with building occupants.

While DR programs are inherently motivated by the periodic need for
load reduction, understanding occupant behavior is the key to deploying
reliable DR programs. It has been shown that manual setpoint change
behavior of thermostats can differ significantly between homes in terms
of setpoint change frequency, mean setpoint value and the spread of
setpoint values. These findings suggest that the development of unique
control strategies could be advantageous to the reliability of DR. Recent
studies have suggested that personalized models could be tailored to a
particular occupant behavior pattern by clustering similar behavior
together. This clustering would allow for future DR control strategies to
address the inherent diversity of occupant behavior which is especially
relevant when scaling the implementation of OCC DR at larger district or
regional scales.

2.6. Question 6: What is the role of OCC in the recent paradigm shift in
building occupancy and operations?

At the beginning of 2020, the world was thrust into an unprece-
dented crisis in the form of the global COVID-19 pandemic that has
forever changed how we live, work, and play. Health and well-being
were brought to the forefront of every aspect of life. Building opera-
tions were no exception as buildings - by their very nature - are spaces in
which people congregate, which introduces potential for the spread of
viruses via infectious aerosols. Consequently, indoor air quality (IAQ)
has become pervasive in the minds of the general public in a way that
has not been seen since the rise of sick building syndrome nearly five
decades ago. This paradigm-shift has fundamentally changed the way
buildings are used, with the line between home and work blurring as
flexible work schedules and remote work options become increasingly
prevalent. Although this transition away from rigid work schedules had
been underway for the past two decades[106], the full momentum had
not been realized until the COVID-19 pandemic. For example, over an
eleven-year period between 2006 and 2017, the number of Canadian
office workers who spent less than three days a week in their physical
workplace rose to 47%; during the COVID-19 pandemic, the number of
office workers working fully from home spiked to over 80% in a matter
of weeks [61]. While the return to work has varied across countries and
industries, it is widely regarded that occupancy, especially in office
buildings, will likely never return to pre-pandemic levels.

As a result of these changes in when and where people were working,
the energy use patterns in buildings were expected to change. Intui-
tively, if an office building is unoccupied, energy use should decrease
correspondingly, while residential energy use should increase. While the
latter increase in residential energy use was observed, recent research
has shown that energy use in many commercial buildings remained
relatively unchanged in the early months and even over the course of the
pandemic despite a drastic drop in occupancy in many jurisdictions. For
example, the consumption of electricity and natural gas by the com-
mercial building sector during the initial months of the pandemic in the
United States fell by just 4.7% and 2.0%, respectively, compared to pre-
pandemic levels [105]. This eye-opening experience has highlighted
flaws in the way we traditionally operate our buildings, and many have
adopted a new normal (i.e., hybrid, remote, and in-person work) for
which current operational practices are still unprepared for.

As discussed in Question 1, OCC has revealed itself as a promising
approach for controlling and operating buildings based on occupancy
and occupant preferences. The benefits of such an operational approach
in this new paradigm (i.e., with sparser and less-predictable occupancy)
are self-evident. For example Hobson et al. [62] also found that an office
building with a system-level occupancy-based ventilation OCC scheme
was able to save 43% and 17% on heating and cooling energy,
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respectively, after the building was largely emptied in the initial months
of the pandemic, compared to pre-pandemic energy use. In brief,
buildings with OCC are inherently more adaptable to the variable oc-
cupancy that will be seen in many buildings moving forward as they can
increase or decrease the amount of services delivered to a space based on
occupant-related data.

While few buildings currently have OCC implemented, OCC utilizes
sensors and data that have been available in buildings pre-pandemic and
continue to be available. The data streams that can be leveraged range
from the most basic data available in all buildings (e.g., bulk-metered
energy data for an entire building) to data from the most detailed and
granular sensor networks (e.g., occupant-counting cameras in each
zone), and from implicit sources (e.g., occupants’ impact on data
streams such as COg concentrations, energy use data, thermostat in-
teractions, etc.) to explicit sources (e.g., dedicated occupant counting/
sensing technologies, prompting occupant feedback via wearables, etc.).
OCC can be developed based on a single available data stream, as well as
by combining data streams via various machine learning methods and
sensor fusion [63]. The use of sensor fusion in particular can allow for
occupancy and occupant-preference to be inferred by leveraging the
implicit sources commonly available in existing buildings, allowing for
low- or no-cost ‘opportunistic’ [17] approaches to acquiring these data
for OCC purposes [64]. During the pandemic, these data became
invaluable for estimating building occupancy levels to comply with
public health requirements (e.g., social distancing, minimum ventilation
rates, etc.). This represented perhaps the largest leap in practitioner
interest in the field of sensor fusion and occupant-related data to date.
With the increased knowledge of the potential power that these data
hold, the importance of implementing OCC in buildings moving forward
may begin to be realized. It should be noted that a lack of OCC adoption
during the pandemic (and in general) may not be due to a lack of will-
ingness on the part of building operations personnel, but rather due to
limitations in the systems and/or controls of their buildings which
prohibit such interventions.

Much of the benefit of OCC explored so far relates to saving energy
when buildings are partially or fully unoccupied, however, OCC also
benefits occupant comfort by providing services when, where, and in the
amount that they are needed as tailored to occupants [10]. Such OCCs
may even result in increased energy use where demands for service are
high, such as in instances during the pandemic when increased outdoor
airflow rates were mandated by ASHRAE [65]; this increase in energy
use is undeniably justifiable for the purpose of safeguarding human
health. While occupants have been shown to be satisfied in buildings
with improved IEQ and IAQ [66] as provided by OCC, directly quanti-
fying metrics such as well-being and productivity into the development
and deployment of OCC is an area of research that is actively underway.
The emphasis on this holistic understanding of OCC and operations that
considers well-being explicitly likely represents the future of this topic
within the research community.

2.7. Question 7: How can occupant-centric operations case studies be
classified?

Findings from the literature review conducted as part of the Annex
79 research program and briefly presented in the previous questions
revealed various case studies on OCC in buildings [11,21]. In an effort to
classify the different types of OCC implementations found in the extant
literature, we propose the classification categories illustrated in Fig. 4.
On the first level, a distinction is made between observation and inter-
vention-based studies. An observation-based study is one that collects
data in a case study and seeks to explore those data for general insights.
No comparisons are made “within” the case study, but comparisons
might be made with standards or other studies. An intervention-based
study includes a comparison between a control/test group or a
before/after condition. In both cases, the study can be centered around
humans (occupants and/or operators) or systems (HVAC, sensors,
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lighting, interfaces, etc.).

On the second level, case studies can be human-related or system-
related. In general, human-related observation studies try to understand
human behavior and assess its impact on building performance as well
as the occupants’ own responses, such as their satisfaction. System-
related observation studies evaluate the effectiveness of available systems,
controls, and interfaces. Two approaches are identified for human-
related observation studies. Case studies may analyze either an existing
operation procedure or policy, or an interface or manual control. In
many cases, human interaction with the building happens through
occupant-control interaction. Thus, depending on whether the study is
more focused on the human side or the control side, evaluation and
analysis of an interface or manual control may also be part of a system-
related observation study. Next to this, system-related observation studies
may evaluate the performance of an existing sensor-based automation
control, another type of automation system, or even a manual control
interface.

Intervention studies usually aim to characterize how a specific tech-
nology can improve performance. Human-related intervention studies
commonly try to influence occupant behavior to improve building op-
erations. System-related intervention studies on the other hand, typically
aim to achieve improvements by changing or optimizing the system
(HVACG, lighting, etc.) or system control. Three approaches are identified
for human-related intervention studies. Firstly, to achieve a behavior
change in operators or occupants, the policy or operation procedure may
be changed. For example, control limitations may be imposed, and a
schedule change or a new communication approach may be imple-
mented. A second approach to achieving behavior change is through an
awareness campaign or other educational-based intervention to stimu-
late occupants to change their behavior based on the information pro-
vided, and increase awareness of their impact on building performance
[67]. The third approach is through interface design, be it to provide
information for occupants to make an informed decision, or to suggest
behavioral changes through notifications. Examples are the use of
notification to prompt/nudge occupants the best moment to open the
windows [68] or real-time space distribution of occupants’ thermal
perception within a space to help operators to control the environment
[69].

For system-related interventions, two approaches were identified.
Firstly, performance may be improved by changing the system or type of
manual control implemented. Examples include case studies on

improving a control or interface to make it easier to use, adding controls
for occupants, like a personal conditioning system [70,71], or imposing
constraints on manual control such as resetting setpoint temperatures.
Secondly, system-related intervention studies may opt for an automation
strategy, which may be schedule-based or include sensor feedback. For
example, a lighting system may be installed that regulates the luminance
flux of light bulbs based on available daylight measured through a
daylight sensor [72]. Automation strategies may either be reactive or
predictive. Reactive control implements a change in system control
following an event or sensor measurement. Alternatively, control may
be predictive, and this means that a system control algorithm adapts to a
predicted event or outcome based on sensor information collected in
real-time. Examples include model predictive control algorithms [73].
A variety of approaches to OCC have been evaluated in simulation-
or field-based studies. The impact of such approaches varies depending
on building and occupant characteristics, and the baseline to which they
are compared [11,21]. Knowledge of available systems, interfaces,
procedures and space characteristics is therefore crucial to under-
standing the study conditions. In research, this knowledge is usually
built by analyzing collected data. Observational studies are important in
that sense, as they can help with understanding occupant patterns or
identifying issues related to the implemented system. Therefore,
observation studies can underline improvement opportunities that can
later be tested in an intervention study, showing a behavior or system
diagnostic. The other important application of observation studies is the
development of better models to represent occupant behavior in a space
with OCC, which sometimes differs from ideal simulation conditions or
expected relations. The last branch of Fig. 4 provides an overview of
possible strategies depending on the study focus. Compared to obser-
vation studies, intervention studies are typically more challenging to set
up, as a new system or control may need to be implemented, and oc-
cupants and operators need to agree to the testing conditions, which
may affect building use and the evaluation of the environment. These
types of studies are, however, necessary for the validation of OCC stra-
tegies, as they allow for pre-post performance comparison. Because of
the differences in building and occupant characteristics, baselines used
in the comparisons, and differences in study objectives and results,
determining the best case study approaches is difficult, and
case-dependent. It is not possible to rank the strategies, as each of them
will be applicable to a given situation. Furthermore, the above-noted
approaches may also be combined and emerge as complementary.
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Therefore, the aim of the study should be clearly defined so the appli-
cable approach that will bring the expected outcomes can be identified.
In this sense, with the objective of further providing useful references on
implemented OCC approaches, an online survey was disseminated to
collect case studies and compose a reference library. An overview is
presented in the next question.

2.8. Question 8: Which OCC are implemented and evaluated in case
studies?

An online survey has been designed and distributed among the
research community with the aim of creating a comprehensive library of
case studies that can serve as a reference for future research. A case
study in this context is defined as “a deployment of a single set of
occupant-centric technologies, techniques, and/or policies across a real-
world spatial context (single zone all the way up to a campus of build-
ings) for a certain period of time”. The survey questions were developed
to be able to cover both observation and intervention studies. The in-
formation was grouped by i) building type, occupant demographic,
operators and policies, ii) the building system that is being controlled,
iii) the type of data that is being collected, iv) the type of strategy, which
may be focused on occupant-, operator-, or building automation-based
solutions, v) machine learning deployments, and vi) the degree of
occupant centeredness. Fig. 5 shows the results of four main questions:
Q1) location, Q2) the focus of study and data gathered, Q3) occupant
types and Q4) building type. As of January 2023, the library includes 54
case studies from around the world.

The Q1 listed in Fig. 5 shows the database includes data from
worldwide, which indicates OCC is being researched in field studies all
over the world. The studies that are featured in this survey are mostly
distributed among Europe (31%), Asia (31%) and North America (24%),
with additional studies from Oceania and South America (4% each). The
high amount of Singaporean studies stems from one of the survey
planners being located at the National University of Singapore (NUS).

Q2 listed in Fig. 5 deals with the type of data that is being collected
and the methods that are being implemented in the case studies. The
recorded studies in this survey are evenly split between intervention and
observation studies. Among collected observational studies, 66% can be
classified as human-focused as opposed to only 19% of interventional
studies (a study was classified as human-focused when it did not include
data on either HVAC or lighting systems). Building HVAC systems are
much more commonly researched in interventional studies (81%)
compared to observational studies (26%), revealing that interventional
studies tend to be more system-focused.

User interaction interfaces are featured in 37% of all recorded
studies, while HVAC systems are investigated in 54% of all studies. This
indicates that although most studies collect data on their users (69%),
the user’s actions to influence the IEQ are often not tracked and are
under-represented compared to HVAC systems.

Out of the recorded studies that include residential buildings, only
45% stated that they feature data about the occupant compared to 74%
in non-residential studies. This indicates that occupant data is harder to
obtain in residential contexts than in public/office settings. The most
likely reason for this difference is privacy concerns, which are stricter in
private homes.

Q4 listed in Fig. 5 indicates most of the non-residential studies are
university buildings, therefore, university facilities (including different
space usage) are the most common typology at which OCC case studies
are applied. This probably stems from the ease of access for researchers
and also for allowing the test of not ready to use solutions. Although
having these benefits, the concentration of case studies in an academic
context creates some bias. First, university staff which mostly consists of
Ph.D. candidates, postdocs and students are usually concentrated in a
limited age range, which is relevant for IEQ perception and behavior
[74,75]. Second, university staff and students might be more familiar
with the research topics of these field studies compared to the general
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public. This may affect their attitudes, willingness to participate, and
prior knowledge. These characteristics of the occupants need to be
accounted for when applying research results to different settings.

These initial results highlight some trends in current OCC field study
characteristics worldwide. By the inclusion of additional case studies,
we expect this database to contribute to future studies, allowing com-
parisons and giving examples of possible approaches as it becomes
public.

2.9. Question 9: What are the limits of occupant behavior sensing and
how to make sure OCC strategies do not cause occupant dissatisfaction?

As we continue to advance and advocate for OCC, it is important to
reflect on the intrinsic limits of OCCs in accurately capturing and
addressing occupants’ needs, as well as to consider the way occupants
will understand, perceive, and interact with these new control systems.

2.9.1. The challenges of predicting IEQ perception

IEQ perception does not only depend on environmental variables
which can be easily measured. A number of personal (psychological and
physiological) and contextual factors also have a determining influence
on human perception and needs and are reflected in occupant-building
interaction [12,76]. Examples include availability and accessibility of
control options, occupants’ cultural background, their mental stress
level and their opinion of the building management [12,77]. The
behavioral uncertainty associated with these factors contributes to an
already existing performance gap of modern control systems resulting
from the difficulty of creating reliable models of occupant preferences
and behavior. In a recent study, a framework was developed for
analyzing anecdotes of occupants’ behaviors and experiences from in-
ternational research projects. It was found that occupants’ priorities
related to their comfort and personal control in real buildings were not
always understood by the researchers, building designers or operators,
potentially leading to discomfort and poor energy performance [78].

To advance researchers’ understanding of occupants’ needs, quali-
tative methodologies such as occupant surveys, open-ended questions,
interviews and story collection should be more widely applied in
building and energy research, as they constitute a very useful addition to
quantitative data collection. They enable a deeper understanding of
building occupants and description of the drivers of their behavior,
increasing the chance of success of future occupant-centric building
operation strategies [79,80]. Besides, qualitative data can also be
collected directly for the purposes of building operation. For instance,
such qualitative methodologies have been included in occupant feed-
back systems in real building operation [81,82]. Research has also
shown that incorporating qualitative elements in post-occupancy eval-
uations is essential to improve the building operators’ understanding of
occupants’ preferences and address the discrepancy between intended
purpose of building controls and actual usage [83]. Researchers plan-
ning to implement OCCs in real buildings are encouraged to assess their
performance via a combination of objective measurements and subjec-
tive investigations among occupants and operators.

2.9.2. Automation vs personal control

An important question to be raised when addressing OCCs is whether
occupants actually expect specific personalized environments, which
can be delivered by a self-learning proactive control system, or rather
require more options to reactively control their surroundings in an easy
and effective way [84]. Control systems can be fully automated, based
on a ‘human-in-the-loop’ approach [85], or provide occupants with
control for the purposes of an algorithm tuning process, after which
human-in-the-loop control will be bypassed. In the late 1990s, the
scholars behind the PROBE post-occupancy evaluation studies already
warned researchers and building managers against the temptation of
highly complex automated building control strategies for IEQ optimi-
zation. They argued that “users are satisficers not optimisers” [86] and
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that it was more important for them to retain a degree of control on the
environment than to achieve optimal conditions thanks to advanced
building controls, which according to the study rarely achieved this goal
anyways.

In systems that lean more towards automation, or where occupant
information is used for algorithm tuning rather than direct control, oc-
cupants can also be granted “secondary” control, when they, for
example, provide feedback via an interface or address complaints to the
facility manager [77]. As already mentioned in this article, this requires
good communication and a trust relationship between occupants and
operators. However, such secondary control has the potential to be more
stressful than primary control [87], e.g., an occupant using a thermostat
directly. The reason is the time lag between requested change and suc-
cessful adjustment which is due to the need to rely on others (e.g., fa-
cility manager) or algorithms (e.g., OCC). Therefore, the experience of
success in the control action might be diminished, leading to a lower
level of perceived control and therefore of satisfaction [77].

In addition, it is important to address the challenges in serving a
diversity of occupants in the same space using an OCC approach. As
shown by Schweiker and Wagner [88], higher numbers of people in
rooms decrease perceived control over the indoor environment. On the
other hand, among others, higher perceived control reinforces occu-
pants’ intention to conform to the norms of sharing environmental
control features [31]. Some solutions for this situation seem to be Per-
sonal Comfort Systems (PCS) [89], which provide control diversification
however require additional investment. There is still a need for research
to develop guidance for user control in the built environment, e.g. [90],
and the development of technology for integrating local manual control
to the environment system when they are complementary [70,71]. IEQ
standards include little information about user control requirements, as
for example on operable windows [91]. However, it has been demanded
to include personal control as a design goal into standards [77,92-94].

Personal control over the indoor conditions remains an important
driver of occupant satisfaction [95-97]. It is therefore important that
future OCCs do not fully take this possibility away from occupants. As
stressed in Q1 of this article, OCCs should not aim at removing occu-
pants from the decision loop, but rather at modulating operation around
their inputs to reduce energy waste and dissatisfaction.

2.9.3. Occupant education, control transparency, and the importance of
interfaces

The current literature points to several more areas that are crucial to
the success of advanced control strategies [78], including information,
education and the human-building interface. For instance, providing
training to occupants on building systems and controls was shown to
increase their satisfaction with IEQ, both in offices [98], and in homes
[99]. The transparency of the control algorithm is also an important
factor of occupants’ acceptance: research showed that occupants are
more tolerant of automated controls if they know what to expect from
them [84].

The building interfaces are particularly crucial, as they are the pri-
mary link between users and the building[100]. A framework to criti-
cally analyze building interfaces and controls in a consistent way to
evaluate their design, selection, and operation was developed [101].
These ideas were considered in the context of resiliency, unexpected
events, and equity in which it is argued that designers must think
carefully about interface selection to ensure the health and safety of
occupants under extreme conditions such as rolling blackouts, wildfires,
and more [101].

Well-designed interfaces have the potential to increase transparency
of the control systems in buildings, and can provide users with the in-
formation they need to effectively use their systems [102,103].
Furthermore, Hellwig et al. proposed a design process for adaptive op-
portunities for occupants that approaches building design and operation
planning through the lens of occupants and takes into account how
occupants would want to adapt themselves in case they feel discomfort
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[93,94]. Solutions with redundancy in adaptive opportunities, e.g.,
sensing and communication interfaces and operable windows, serving
diversity among occupants due to their different backgrounds, experi-
ences and capabilities are preferable.

Such human-centric measures could therefore complement sensor-
based OCC strategies in order to take into consideration the agency
required by occupants to feel in control of their environment, thereby
avoiding discomfort and unintended interventions by occupants. This
paper therefore argues in favor of a stronger focus on detailing the
modalities of building operation in the planning phase. Planning for
building operation should not only encompass the design of building
controls but also the definition of operational strategies that ensure the
success of these controls, including training of operators, interface
design and information of occupants [76] as also stressed in Q3 and Q6
in this paper.

2.10. Question 10: What are future directions and trends in OCC research
and development?

The significant growth of Information and Communication Tech-
nologies has been the catalyst for OCC development and pilot deploy-
ment in existing buildings. Therefore, future research trends will focus
on using these advancements to develop more advanced OCC algo-
rithms, especially in applications that enhance buildings’ energy flexi-
bility such as demand response (DR), as well as storage capabilities that
could rely on widespread electric vehicles’ adoption for example. While
OCC developments generally aim to reduce energy consumption while
improving occupant comfort, future research directions will take a more
comprehensive approach to comfort that includes occupants’ health and
well-being, (including mental wellbeing), as well as productivity to
improve occupants’ overall experience within buildings. Other research
trends also investigate different ways of collecting direct occupant
feedback, such as using smart phone or watch applications for contin-
uous and real-time data collection instead of making inferences from
historical building automation systems’ data, which has been the typical
approach.

Nevertheless, previous studies show OCC development is not just a
technical matter, the comprehension of the relationship between
humans and buildings is crucial. The new knowledge from future
research should be based on a multidisciplinary approach, joining at
least engineering, medicine and social science, as OCC is a kind of socio-
technical transition. For successful implementation of promising OCC
technologies appropriate standards and design procedures have to be
developed to make this approach used worldwide efficiently. Finally,
standardized quantitative and qualitative performance metrics should
be developed for evaluating any new OCC developments with respect to
energy efficiency as well as improving occupant comfort, health, well-
being and acceptance of these technologies represents one of the main
research directions on this topic.

3. Conclusion

This paper has provided a comprehensive exploration of Occupant-
Centric Control and Operation (OCC), a transformative approach to
building operations management that aims at balancing occupant
comfort and operational efficiency. Through the lens of ten critical
questions, we have delved into the core aspects of OCC, from its defi-
nition and foundational data categories to its real-world implementa-
tions and future research directions.

Our exploration has underscored the potential of OCC to enhance
both energy efficiency and occupant comfort, highlighting the rich array
of data that underpins OCC strategies. We have also discussed the
evolving role of building operators in the OCC context, emphasizing the
need for operators to manage complex OCC systems and make decisions
based on diverse data inputs. The potential of OCC in residential demand
response programs and its role in addressing pandemic-induced shifts in
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the built environment have been examined. We have presented a tax-
onomy for OCC and detailed case studies of real-world implementations,
providing valuable insights into the practical application of OCC
strategies.

Despite the promise of OCC, we have also acknowledged its limita-
tions, particularly in relation to occupant behavior sensing and the need
to ensure occupant satisfaction. Looking ahead, we have identified
several promising directions for future research in the OCC domain.

In conclusion, this paper contributes to the ongoing discourse on the
future of building operations management, offering valuable insights for
researchers, practitioners, and policy makers. As the field continues to
evolve, OCC is poised to play an increasingly central role, driving ad-
vances in energy efficiency, occupant comfort, and overall building
performance.
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