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ABSTRACT

The problem of robust binary hypothesis testing is studied.
Under both hypotheses, the data-generating distributions are
assumed to belong to uncertainty sets constructed through
moments; in particular, the sets contain distributions whose
moments are centered around the empirical moments ob-
tained from training observations. The goal is to design a test
that performs well under all distributions in the uncertainty
sets, i.e., minimize the worst-case error probability over the
uncertainty sets. In the finite-alphabet case, the optimal test
is obtained. In the infinite-alphabet case, a tractable approx-
imation to the worst-case error is derived that converges to
the optimal value A test is further constructed to generalize
to the entire alphabet. An exponentially consistent test for
testing batch samples is also proposed. Numerical results
are provided to demonstrate the performance of the proposed
robust tests.

Index Terms— Moment robust test, Bayesian setting,
tractable approximation, converge, exponentially consistent.

1. INTRODUCTION

Binary hypothesis testing is a fundamental statistical decision-
making problem in which the goal is to decide between two
given hypotheses based on observed data [1–3]. The two
hypotheses H0 and H1 are generally referred to as the null
and the alternate hypotheses, respectively. The likelihood
ratio between the distributions under the two hypotheses can
be used to construct the optimal test under various settings.
However, in general, these distributions may be unknown and
need to be estimated from historical data. Deviations from
the true distributions can result in significant performance
degradation in likelihood ratio tests. The robust hypothesis
testing framework [4–19] can be used to alleviate this per-
formance degradation. In the robust setting, it is assumed
that the distributions belong to certain uncertainty sets, and
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the goal is to build a detector that performs well under all
distributions in the uncertainty sets.

The uncertainty sets are generally constructed as a collec-
tion of distributions that lie within the neighbourhood (with
respect to some discrepancy measure) of certain nominal dis-
tributions. The epsilon-contaminated uncertainty sets were
studied by Huber [4], and a censored likelihood ratio test
was proposed and proved to be minimax optimal. Moment-
constrained uncertainty sets under the Neyman-Pearson set-
ting were studied in [12]. The above works assume the nom-
inal distributions to be known or estimated from historical
data. More recent works have studied the problem of con-
structing uncertainty sets using a data-driven approach [18,
19], where the nominal distributions are the empirical dis-
tributions derived from training observations. In [18], the
Wasserstein distance was used to construct uncertainty sets.
The minimax problem in the Bayesian setting was considered,
and a computationally tractable reformulation and the opti-
mal robust test were characterized [18]. In [19] the maximum
mean discrepancy (MMD) was used to construct uncertainty
sets. In the Bayesian setting, a tractable approximation to the
minimax problem was proposed, and in the Neyman-Pearson
setting, an asymptotically optimal test was proposed [19].

In this paper, we study the problem of robust hypoth-
esis testing with moment-constrained uncertainty sets, i.e.,
the sets contain distributions whose moments are centered
around the empirical moments. Mean constrained and vari-
ance constrained uncertainty sets can be viewed as special
cases. Moment constrained sets are practical as it is com-
putationally easy to calculate empirical moments. We study
the minimax formulation in the Bayesian setting. First, we
present the results for the case when the distributions under
the two hypotheses are supported on a finite alphabet set X .
We then extend the study to the case when X is infinite (the
infinite-alphabet case contains the continuous-alphabet case
and discrete infinite-alphabet case) and present the optimal
test. In the infinite-alphabet case, we provide a tractable ap-
proximation of the worst-case error that converges to the op-
timal value, and propose a test that generalizes to the entire
alphabet. An exponentially consistent test for testing i.i.d.
batch samples is also proposed. We provide numerical results
to demonstrate the performance of our proposed algorithms.IC
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2. PROBLEM SETUP

Let X ⊂ Rd be a compact set denoting the sample space,
where d is the dimension of the data. Let P denote the set
of all Borel probability measures on X . Let P0,P1 ⊂ P
denote the uncertainty sets under the null and alternate hy-
potheses, respectively. We construct the uncertainty sets
using general moment constraints derived from observa-
tions from the two hypotheses. Let x̂0 = (x̂0,0, . . . , x̂0,m)
and x̂1 = (x̂1,0, . . . , x̂1,n) denote the training sequences
under the two hypotheses. Let Q̂0 = 1

m

∑m
j=1 δx̂0,j and

Q̂1 = 1
n

∑n
j=1 δx̂1,j denote the empirical distributions corre-

sponding to the training observations, where δx corresponds
to the Dirac measure on x. We use the empirical distribu-
tions as the nominal distributions in the construction of the
uncertainty sets. Let

ψk : X → R; k ∈ [K]

denote K real valued, continuous functions defined on the
sample space, where [K] = {1, ...,K}. The uncertainty sets
for i = 0, 1 are defined as follows:

Pθ
i =

{
P ∈ P :

∣∣∣EP [ψk]− EQ̂i
[ψk]

∣∣∣ ≤ θ, k ∈ [K]
}
,

(1)
where θ is the pre-specified radius of the uncertainty sets. It
is assumed that the uncertainty sets do not overlap, i.e.,

θ < max
k∈[K]

∣∣∣EQ̂1
[ψk]− EQ̂0

[ψk]
∣∣∣

2

Given a new sample x ∈ X , the robust hypothesis prob-
lem is defined as follows:

H0 : x ∼ P0, P0 ∈ Pθ
0

H1 : x ∼ P1, P1 ∈ Pθ
1 .

(2)

A test ϕ : X → [0, 1] accepts H0 with probability ϕ(x), and
accepts H1 with probability 1− ϕ(x). Let

PF (ϕ) ≜ sup
P0∈Pθ

0

EP0

[
ϕ(x)

]
,

PM (ϕ) ≜ sup
P1∈Pθ

1

EP1

[
1− ϕ(x)

]
(3)

denote the worst-case probability of false alarm (type-I error
probability) and the worst-case probability of miss detection
(type-II error probability) for the test ϕ. In the Bayesian set-
ting with equal priors, the probability of error is given by:

PE(ϕ) ≜
1

2
EP0

[
ϕ(x)

]
+

1

2
EP1

[
1− ϕ(x)

]
. (4)

The goal in the Bayesian setting is to solve

inf
ϕ

sup
P0∈Pθ

0 ,P1∈Pθ
1

PE(ϕ). (5)

Note that our analysis is easily generalized to unequal priors.
In this paper, we assume that any distributions P0 ∈

Pθ
0 , P1 ∈ Pθ

1 admit probability density functions (PDFs)
p0, p1, with respect to a common reference measure µ.

3. FINITE ALPHABET: OPTIMAL TEST

An important result in arriving at a solution to the minimax
robust hypothesis testing problem involves interchanging the
infimum and supremum in (5).

Theorem 1.

inf
ϕ

sup
P0∈Pθ

0 ,P1∈Pθ
1

PE(ϕ) = sup
P0∈Pθ

0 ,P1∈Pθ
1

inf
ϕ
PE(ϕ). (6)

The advantage of applying the minimax theorem is that
the inner minimization problem in (6) corresponds to the op-
timal Bayes error in classical binary hypothesis testing, and
is achieved by the likelihood ratio test. The problem then re-
duces to a single maximization problem as follows:

inf
ϕ

sup
P0∈Pθ

0 ,P1∈Pθ
1

PE(ϕ) = sup
P0∈Pθ

0 ,P1∈Pθ
1

inf
ϕ
PE(ϕ) (7)

=
1

2
sup

P0∈Pθ
0 ,P1∈Pθ

1

∫

X
min {p0(x), p1(x)} dx (8)

=
1

2
sup

P0∈Pθ
0 ,P1∈Pθ

1

1− TV(P0, P1), (9)

where TV(P0, P1) is the total variation between P0 and P1.
We first consider the case when the alphabet size is finite,

i.e., |X | < ∞. Let X = {z1, . . . , zN}. The following theo-
rem gives the optimal test in this case.

Theorem 2. Let |X | = N <∞. LetP ∗
0 = (p∗0(z1), . . . , p

∗
0(zN )),

P ∗
1 = (p∗1(z1), . . . , p

∗
1(zN )) be the optimal solution to the fol-

lowing optimization problem:

max
P0,P1∈RN

N∑

j=1

min{p0(zj), p1(zj)}

s.t.

∣∣∣∣∣∣

N∑

j=1

pi(zj)ψk(zj)− EQ̂0
[ψk]

∣∣∣∣∣∣
≤ θ, k ∈ [K]

N∑

j=1

pi(zj) = 1

0 ≤ pi(zj) ≤ 1, j = 1, . . . , N, i = 0, 1.

(10)

Then, the likelihood ratio test between P ∗
0 and P ∗

1 achieves
the optimal minimax Bayes risk in (7).

The result in the above theorem follows from using (8)
in the finite alphabet case, which characterizes the minimax
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Bayes error for the likelihood ratio test. Note that the opti-
mization problem in Theorem 2 can be solved effectively us-
ing available solvers for finite dimension convex optimization
problem with linear constraints.

4. INFINITE ALPHABET

In this section, we consider the case when X is infinite. Re-
call that X is a compact set in Rd. For the sake of simplicity,
and without loss of generality, we assume that X ⊆ [0, 1]d.
In this case, the minimax formulation in (8) is in general an
infinite-dimensional optimization problem, and closed form
solutions are difficult to derive. We propose a tractable fi-
nite dimension optimization problem as an approximation to
the minimax problem, and construct a robust detection test
based on the solution to the approximation. In addition, we
also quantify the error arising from the approximation of the
original problem formulation.

First, note that the moment defining functions ψk, k =
1, . . . ,K are continuous functions on a compact set. Thus,
they are Lipschitz functions with constants L1, . . . , LK , and
without loss of generality, we can set L = max

k
Lk = 1. In

addition, we consider values of θ ∈ [0, θ0], where

θ0 < θmax = max
k∈[K]

∣∣∣EQ̂1
[ψk]− EQ̂0

[ψk]
∣∣∣

2
.

Let ϵ > 0 such that θ + ϵ ≤ θ0. Consider a discretization of
the space X through an ϵ-net or a covering set. Indeed we can
consider a simple and efficient construction by considering a
grid of equally spaced N = ⌈ 1

ϵd
⌉ points SN = {z1, . . . , zN}

such that for any x ∈ X ,

min
i=1,...,N

∥zi − x∥ ≤ ϵ. (11)

Here, N depends on ϵ, and we ignore the dependence on ϵ in
the notation for N for readability. Let PN denote all the dis-
tributions that are supported on the set SN . Define the relaxed
uncertainty sets as follows for i = 0, 1:

Pθ+ϵ
i,N =

{
P ∈ PN :

∣∣∣EP [ψk]− EQ̂i
[ψk]

∣∣∣ ≤ θ + ϵ, k ∈ [K]
}
.

(12)
Consider the maximization problem in (8) with the uncer-

tainty sets Pθ+ϵ
0,N ,Pθ+ϵ

1,N :

1

2
sup

P0∈Pθ+ϵ
0,N ,P1∈Pθ+ϵ

1,N

N∑

i=1

min {p0(zi), p1(zi)} , (13)

which can be written as

sup
P0,P1∈RN

N∑

j=1

min{p0(zj), p1(zj)}

s.t.

∣∣∣∣∣∣

N∑

j=1

pi(zj)ψk(zj)− EQ̂0
[ψk]

∣∣∣∣∣∣
≤ θ + ϵ, k ∈ [K],

N∑

j=1

pi(zj) = 1,

0 ≤ p0(zj) ≤ 1, j = 1, . . . , N, i = 0, 1. (14)

This is a finite dimension convex optimization problem with
linear constraints that can be solved efficiently. We first show
that the optimal value of the tractable relaxation in (13) con-
verges to the optimal value of our original problem (8), and
quantify the error introduced by the relaxation. We then pro-
pose a robust detection test for our original problem based on
the solution to (13), and quantify the error due to the approx-
imation. The following lemma will be useful in the proof of
convergence of the approximation in (13).

Lemma 1. Let

g(θ) := sup
P0∈Pθ

0 ,P1∈Pθ
1

∫

X
min {p0(x), p1(x)} dx. (15)

The function g(θ) is continuous in θ.

The proof of the above Lemma follows from showing that
g(θ) is concave in θ. Thus, we have that g(θ) is a concave
function on a open interval (0, θmax), and hence Lipschitz on
a closed interval [0+, θ0]. Let the Lipschitz constant be de-
noted by L0. Define

γ =
1

2
sup

P0∈Pθ
0 ,P1∈Pθ

1

∫

X
min {p0(x), p1(x)} dx, (16)

γϵ =
1

2
sup

P0∈Pθ+ϵ
0,N ,P1∈Pθ+ϵ

1,N

N∑

i=1

min {p0(zi), p1(zi)} . (17)

Theorem 3. With the optimal values of the minimax Bayes
formulation and its approximation denoted as in (16) and (17)
respectively, as ϵ → 0 (equivalently N → ∞), γϵ converges
to γ, with |γϵ − γ| ≤ L0ϵ.

Let P ∗
0,N , P

∗
1,N be the solution to the optimization prob-

lem in (14). Recall the partition {A1, . . . ,AN} defined by
the set SN on X such that for any j = 1, . . . , N , if x ∈ Aj ,
then

∥x− zj∥ ≤ ϵ. (18)

In order to construct a robust detection test, we extend these
discrete distributions defined on SN to the whole space X as
P ∗
0 , P

∗
1 . For i = 0, 1, we distribute the probability mass of the

point zj onto points in the set Aj through a common channel.
For instance, we can distribute the mass p∗i,N (zj) uniformly
on all points in the set Aj for j = 1, . . . , N , i.e., for x ∈ X

p∗i (x) =
N∑

j=1

p∗i,N (zj)1{x∈Aj}∫
Aj
dx

. (19)
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Then, we can define the robust test with ℓ(x) = p∗
1(x)

p∗
0(x)

as:

ϕ∗(x) =

{
1, if log ℓ(x) ≥ 0

0, if log ℓ(x) < 0.
(20)

Let the Bayes error for the test ϕ∗ be denoted by PE(ϕ
∗).

The following theorem quantifies the optimality gap between
PE(ϕ

∗) and the optimal minimax error in (16).

Theorem 4. Let the robust test ϕ∗ be as defined in (20). Then,

|PE(ϕ
∗)− γ| ≤ L0ϵ. (21)

5. DIRECT ROBUST TEST FOR BATCH SAMPLES

Let xs1 = (x1, . . . , xs) be a sequence of i.i.d. observations,
where s is the sample size. One way to test this batch sam-
ple is to extend the log likelihood ratio test proposed in (20).
However, it is difficult to analyze the error exponent of the
test. In this section, we propose a test for testing batch sam-
ples, and show that it is exponentially consistent as s→ ∞ in
the Bayesian setting.

Let P̂s = 1
s

∑s
j=1 δxj

be the empirical distribution of the
batch sample, and consider the test statistic

T (xs1) =

K∑

k=1

∣∣∣EP̂s
[ψk]− EQ̂0

[ψk]
∣∣∣
2

−
K∑

k=1

∣∣∣EP̂s
[ψk]− EQ̂1

[ψk]
∣∣∣
2

. (22)

We propose the following test for sequence of observations:

ϕs(x
s
1) =

{
1, if T (xs1) ≥ 0

0, if T (xs1) < 0.
(23)

Theorem 5. The test in (23) is exponentially consistent.

6. SIMULATION RESULTS

In this section, we provide some numerical results. We first
compare our moment robust test ϕ∗ with the direct robust
test ϕs using synthetic data. For hypothesis H0, the uncer-
tainty set is constructed using 20 observations collected from
a multi-variate Gaussian distribution with mean [0, 0, 0, 0] and
covariance matrix I, where I is the identity matrix. For H1,
the uncertainty set is constructed using 20 observations col-
lected from a multi-variate Gaussian distribution with a differ-
ent mean [0.8, 0.8, 0.8, 0.8] and covariance matrix 0.5I. The
constraint functions are chosen as the mean and variance of
each dimensions. We define the uncertainty sets as the collec-
tions of distributions such that the mean and variance for each
dimensions lie in a certain range centered around the empiri-
cal mean and variance. We use true distributions to generate

the test sample and plot the error probability as a function of
testing sample size n.

From Fig. 1(a), it can be seen that the error probabilities
for the moment robust test and the direct robust test decay ex-
ponentially with the testing sample size, which demonstrates
the exponentially consistency of the direct robust test. More-
over, the moment robust test performs better than the direct
robust test.

(a) Synthetic Data (b) Real Data

Fig. 1. Comparison of the Moment Robust Test and the Direct
Robust Test

We then use the real data to compare our moment robust
test ϕ∗ with the direct robust test ϕs. We use a dataset col-
lected with the Actitracker system [20–22] to form the hy-
potheses. For hypothesis H0, the jogging data of the person
685 is used to construct the uncertainty sets. For hypothesis
H1, the walking data of the person 669 is used to construct
the uncertainty set. The uncertainty sets are defined as in the
synthetic data case. We plot the error probability as a func-
tion of sample size n. In Fig. 1(b), it can be seen that the
moment robust test performs better than the direct robust test
and the error probabilities for the moment robust test and the
direct robust test decay exponentially with the testing sample
size, which demonstrates the exponentially consistency of the
direct robust test.

7. CONCLUSION

In this paper, we studied the robust hypothesis testing prob-
lem, with uncertainty sets constructed through moments. We
focused on the Bayesian setting, where the goal is to minimize
the worst-case error probability over the uncertainty sets. We
proposed the optimal test for the finite-alphabet case, and a
tractable approximation of the worst-case error probability
that converges to the optimal value of the original problem for
the infinite-alphabet case. Based on the tractable approxima-
tion, a moment robust test was constructed. We also proposed
an exponentially consistent test for testing batch samples and
provided numerical results to demonstrate the performance
of the proposed robust tests. The detailed proofs of the re-
sults in this paper can be found in [23]. Extensions of the
results in this paper to uncertainty sets constructed through
matrix-valued moment functions, and results for the asymp-
totic Neyman-Pearson setting are also given in [23].
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