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Automated apple harvesting has attracted significant research interest in recent years because of its great 
potential to address the issues of labor shortage and rising labor costs. One key challenge to automated harvesting 
is accurate and robust apple detection, due to complex orchard environments that involve varying lighting 
conditions, fruit clustering and foliage/branch occlusions. Apples are often grown in clusters on trees, which may 
be mis-identified as a single apple and thus causes issues in fruit localization for subsequent robotic harvesting 
operations. In this paper, we present the development of a novel deep learning-based apple detection framework, 
called the Occluder-Occludee Relational Network (O2RNet), for robust detection of apples in clustered situations. 
A comprehensive dataset of RGB images were collected for two varieties of apples under different lighting 
conditions (overcast, direct lighting, and back lighting) with varying degrees of apple occlusions, and the images 
were annotated and made available to the public. A novel occlusion-aware network was developed for apple 
detection, in which a feature expansion structure is incorporated into the convolutional neural networks to 
extract additional features generated by the original network for occluded apples. Comprehensive evaluations 
of the developed O2RNet were performed using the collected images, which outperformed 12 other state-of-the-
art models with a higher accuracy of 94% and a higher F1-score of 0.88 on apple detection. O2RNet provides 
an enhanced method for robust detection of clustered apples, which is critical to accurate fruit localization for 
robotic harvesting.
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 Introduction

Driven by rising costs and growing shortages in harvesting labor, 
botic apple harvesting has gained increased research attention over 
e past decade. In the U.S. alone, fruit harvesting requires more than 
 million worker hours annually, attributing to approximately 15% of 
e total apple production cost [17]. Mechanization and automation 
omise next-gen harvesting systems with low operating cost and high 
ciency, as well as the ability to assess individual fruit for quality and 
aturity at the point of harvest [32].
As such, several research groups have been developing robotic har-
sting systems [26,63,43,10,73]. Despite progresses, several important 
allenges in developing a fully functional robotic harvesting system 
main, and no commercially-viable systems are yet available in the 
arket. One key challenge that is pointed out by the existing works is 
cient and robust fruit detection in the presence of varying light con-
tions and fruit/foliage occlusions. Indeed, the perception system pro-
des the robot system with information on target fruits, which are first 
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and foremost for subsequent planning and control tasks. In addition, 
fruit perception techniques have also been used in other applications 
of interest, including yield estimation and crop health status monitor-
ing [42]. Perception in unstructured orchard environments, however, 
is a daunting task as a result of variations in illumination and appear-
ance, noisy backgrounds, and clustered environments with occlusions 
[9]. The goal of this paper is thus to present a novel deep learning-
based detection algorithm to convergently address the aforementioned 
challenges. We show that the developed algorithm is able to achieve 
state-of-the-art performance. Before describing the technical details, we 
review relevant backgrounds and state-of-the-art approaches to put our 
algorithm in better context.

1.1. Image sensing techniques

Vision-based perception schemes can be classified into four cate-
gories based on the sensor used: monocular camera scheme, binocular 
stereovision scheme, laser active visual scheme, and thermal imaging 
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heme, which cover both two-dimension imaging schemes and three-
mension imaging schemes [76]. Specifically, the monocular scheme 
es a single camera to acquire image data, and it is widely used in 
uit harvesting due to its low cost and rich information provided by 
e RGB images. For instance, in [27], the authors proposed a new Led-
et model for apple detection that achieves an accuracy of 85.3%. The 
ain disadvantage of the monocular scheme is that the color images 
e sensitive to fluctuating illumination.
Different from the monocular camera schemes, the binocular stereo-
sion schemes exploit two cameras separated in a certain distance/an-
e to obtain two image data on the same scene. The point cloud of 
uit can then be constructed through triangulation on extracted fea-
res [57]. For instance, [51] used a stereo camera to detect and localize 
ature apples in tree canopies, and achieved an accuracy of 89.5%. In 
7], the authors developed a clustered tomato detection method based 
 a stereo camera, and the recognition accuracy was 87.9%. Although 
e stereovision scheme tends to render better results, it suffers from 
gh complexity, long computation time, and uncertainties in stereo 
atching [20].
On the other hand, the laser active visual schemes obtain three-
mensional features using laser scans, where laser beam reflections are 
ploited to generate a 3D point cloud based on the time-of-flight prin-
ple. The 3D point cloud can then be used to reconstruct the scene. 
r example, [59] utilized infrared laser scanning devices to recognize 
erry on the tree. [71] acquired a total of 200 images for indepen-
nt ‘Fuji’ apples and developed an apple recognition method using the 
ar-infrared linear-array structured light for 3D reconstruction. [62]
oposed a point cloud based apple detection method using a LiDAR 
ser scanner and reached a 88.2% overall accuracy on the defoliated 
ee dataset [62]. Note the defoliated scene is significantly less chal-
nging than the real orchard conditions during the harvest season. 
rthermore, the laser point cloud is generally sparse and it is chal-
nging to be used in real-world orchards with dense backgrounds. The 
gh cost and complexity also limit its practical application in agricul-
ral applications.
Finally, the thermal imaging schemes make use of the distinct ther-
al characteristics of fruit and leaves (e.g., the different temperature 
stributions) to obtain the visualization of infrared radiation [35]. In 
], citruses are successfully segmented using a thermal infrared camera 
cording to the largest temperature difference in both day and night 
nditions. An enhanced approach for fruit detection [6] was devel-
ed using the combination of the thermal image and the color image. 
e results showed a promising performance under weak lighting en-
ronments. However, in the thermal imaging scheme, the accuracy of 
cognition is largely affected by the shadow of the tree canopy [55].
Considering the cost, performance, and real-time constraints, our 

ork focuses on the monocular camera scheme, the state-of-art of which 
ill be discussed next.

2. Recognition approaches

Image-based fruit recognition approaches can be classified into fea-
re analysis approaches and deep learning-based approaches, depending 
 how features are obtained. In feature analysis approaches, hand-
afted features are first extracted based on the fruit characteristics, and 
assification approaches are then developed to recognize fruit. [54,53]
veloped thresholding methods to classify fruit from other background 
jects using smoothing filters that remove irrelevant noises. The large 
gmented regions are then recognized as fruits. This method is capable 
 segmenting fruit regions in simple backgrounds but it is susceptible 
 varying lighting conditions and complex canopies. [64,3] proposed a 
rcular Hough Transform approach to obtain binary edge images and 
en used a voting matrix to identify fruits. This approach is sensitive 
 complex structured environments and it generally fails in a dense 
ene. In [44,7,31,75], they combined the shape and texture of the fruit 
2

 obtain a richer set of feature representations. Then, extracted fea- te
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res between fruit and leaves are compared and contrasted to identify 
e fruits. However, this method is also sensitive to lighting conditions 
d occlusions.
On the other hand, deep learning-based approaches have found 
eat successes in object detection and semantic image segmentation 
9,2], which can learn feature representations automatically with-
t the need of manual feature engineering. Specifically, Convolutional 
eural Networks (CNNs) have showed great advantages in the field of 
ject detection in recent years, making it possible to recognize fruits 
 complex situations due to its deep extraction of high-dimensional 
atures of objects. R-CNN and its variants Fast R-CNN and Faster R-
N [19,18,47] have enjoyed particular successes. For instance, [72]
ployed the fine-tuned Faster R-CNN using the pre-trained network 
G19 [52] and achieved a precision of 82.4% for apple detection. 
odified Inception-ResNet (MI-ResNet) [45] used deep simulated learn-
g for yield estimation to address challenges including the varying 
grees of fruit sizes and natural lighting conditions. You Only Look 
nce (YOLOv3) [46], a representative of the one-stage object detector, 
es logistic regression to predict an objectless score for each bounding 
x. An improved YOLOv3 model [60] was developed to detect ap-
es with a precision of 85.0%. Due to the simple optimization pipeline, 
LO enjoys much faster inference than the aforementioned region-
sed methods. EfficientDet [58], an augmented variant of YOLOv3, 
ploits a pyramid network to enable the detection of scaling targets. In 
8], they evaluated EfficientDet in their customized apple dataset with 
precision of 75.65%, while their proposed model FruitDet reached a 
ecision of 80.78%.
However, the aforementioned deep CNN approaches do not address 
e challenge of fruit/foliage occlusions in real-world orchards. To-
ards that end, Compositional Convolutional Neural Network (Comp-
et) [30] was proposed to detect partially occluded objects. The frame-
ork exploits a differentiable fully compositional model that uses oc-
uder kernels to localize occluders (the occluding objects). Bilayer 
nvolutional Network (BCNet) [29], another model to address the 
clusion challenge, applies two Graph Convolutional Network (GCN) 
yers to separately infer the occluding objects (occluder) and partially 
cluded instance (occludee). Superior performance was reported on 
cluded scenarios. In apple detection, various approaches are devel-
ed to enhance the performance of deep learning-based models in 
mplex orchards. [21] introduced CBL (Convolutional layers, Batch 
rmalization, Leaky-relu activation function [13]) module and CA (co-
dinate attention) module into YOLOv5 [24], and finally increased 
41% in the precision compared to the base model. [68] utlized a cus-
mized YOLOv3 to reach a recall of 93.4% for overlapped apples. These 
o approaches are trying to extract the higher-level features by mod-
ing models to improve the performance. Different from above, [16]
ok advantage of a depth filter to remove background trees with a 
B-D camera and finally improved apple detection precision by 2.5% 
 overlapped apples. This paper will model the relationships among 
erlapped apples and enhance the apple edge features to improve the 
ecision for clustered apples.

3. Our contributions

In this paper, we develop a novel Occluder-Occludee Relational Net-
ork (O2RNet) to enhance apple detection in the presence of occlusions 
 clustered apples that are frequently present in real-world orchards. 
ecifically, we employ ResNet [22] and RPN [47] to extract features of 
rgets and utilize occluder-occludee layers to split candidates into oc-
uder and occludee. Compared to other occlusion models, we only use 
unding boxes as labels instead of pixel-level masks that contain more 

xture and shape information. In addition, we present a new apple 
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taset1 collected in two Michigan apple orchards in multiple harvest-
g seasons. We evaluate the performance against state-of-the-art object 
tection models and demonstrate superior performances. The contri-
tions of this paper are highlighted as follows:

. A comprehensive apple dataset of 1246 images for two varieties of 
apple under different lighting conditions and occlusion levels were 
collected from two orchards during two harvesting seasons.

. A novel Occluder-Occludee Relational Network (O2RNet) was de-
veloped for enhanced apple detection in the presence of occlusions 
due to apple clusters.

. The O2RNet outperformed 12 state-of-the-art deep learning-based 
models for apple detection.

 Materials and data processing

1. Image collection and annotation

In this study, apple images were taken in two orchards: the commer-
al orchard in Sparta, Michigan, USA during the 2019 harvest season 
d the experimental orchard of Michigan State University in East Lans-
g, Michigan, USA during the 2021 harvest season. The apples are 
ainly ‘Gala’ that are generally red over a green/yellow background 
ee Fig. 1). An RGB camera (RealSense D435i) with a resolution of 
80 × 720 was used to take images of apples at a distance of 1 − 2
eters from the tree trunks, which is the typical range of harvesting 
bots [10,73,74]. The images were collected across multiple days to 
ver both cloudy and sunny weather conditions. In a single day, the 
ta were also collected at different times of the day, including 9am, 
on, and 3pm, to cover different lighting angles: front-lighting, back-
hting, side-lighting, and scattered lighting. Furthermore, we also cap-
red clustered apples with different occlusion levels including both 
liage and branches occlusion. When capturing images, the camera was 
aced parallel to the ground and directly facing the trees to mimic the 
rvesting scenario. For training our model, we split the dataset a total 
 1246 images into 934 and 312 as the training sets and the test sets re-
ectively. A few typical sample images for the two varieties of apples 
der three lighting conditions are shown in Fig. 1.
The acquired raw images were then processed into formats that can 

 used to train and evaluate deep networks. Specifically, apples in 
e images were annotated by rectangles using VGG Image Annotator 
4], and the annotations were then compiled into the human-readable 
rmat. Compared to polygon and mask annotations, rectangular anno-
tions used here would accelerate data preparation for our dataset of 
nse images. The annotated dataset was then split into training and 
st subsets with the apple quantities of 10523, and 3995 respectively. 
e processed image database can be accessed publicly at https://
thub .com /pengyuchu /MSUAppleDatasetv2 .git.

2. Transfer learning

We have employed transfer learning to enable faster training and 
proved performance. Transfer learning is a popular scheme that 
arts the model development with a pre-trained model on a large-scale 
taset and then fine-tunes the model on a customized dataset from the 
ecific domain of interest [77]. For apple detection in this study, we 
ed ImageNet [11] to pre-train each model and only replaced the last 
lly-connected layers in each model. Since there are objects of apples 
d alike in ImageNet, the pre-trained models converge faster in our 
stomized apple dataset compared to randomized initial parameters.

The database is open-sourced at https://github .com /pengyuchu /
3

SUAppleDatasetv2 .git. 𝐴
Smart Agricultural Technology 5 (2023) 100284

g. 1. Six sample images from the collected dataset: (a)-(c) ‘Gala’ apples on 
der trees under overcast, back-lighting, and direct lighting conditions, re-
ectively; and (d)-(e) ‘Blondee’ apples on younger trees under overcast, back-
hting, and direct lighting conditions, respectively.

3. Performance metrics

For model development and evaluation, conventionally the apple 
taset is randomly partitioned into training, validation, and test sets 
r model training and evaluation, respectively. To quantitatively eval-
te the detection performance, we use performance metrics including 
ecision, recall, and F1-score for algorithm evaluation. All detection 
tcomes are divided into four types: true positive (𝑇𝑃 ), false positive 
𝑃 ), true negative (𝑇𝑁), and false negative (𝐹𝑁), based on the rela-
n between the true class and predicted class. The precision (𝑃 ) and 
call (𝑅) are defined as follows:

= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (1)

The F1-score is then subsequently defined as:

1 = 2 ⋅ 𝑃 ⋅𝑅
𝑃 +𝑅

. (2)

To better evaluate the precision between the prediction and the 
ound truth, we also employ Microsoft Common Objects in Context 
OCO) dataset [33] evaluation metrics. Specifically, after the calcula-
n of precision and recall, we calculate the average precision (𝐴𝑃 ) and 
erage recall (𝐴𝑅) based on different Intersection over Union (IoU) be-
een the prediction and the ground truth. For example, 𝐴𝑃𝐼𝑜𝑈=.50 or 

𝑃50 denotes that AP is averaged over 𝐼𝑜𝑈 = 0.50 values, which belongs 

https://github.com/pengyuchu/MSUAppleDatasetv2.git
https://github.com/pengyuchu/MSUAppleDatasetv2.git
https://github.com/pengyuchu/MSUAppleDatasetv2.git
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 PASCAL VOC metric [48]. We also use 𝐴𝑃𝐼𝑜𝑈=.75 or 𝐴𝑃75, which is a 
ricter metric for model evaluations. In our study, we use a spectrum 
 10 IoU thresholds ranging 0.50 ∶ 0.05 ∶ 0.95 to average over multiple 
Us to obtain a comprehensive set of results.

4. Data augmentation

Data augmentation is a method that can be adopted to increase data 
versity for achieving robust training and enhanced performance of 
mputer vision models. For example, transformations and rotations are 
equently employed to increase the diversity of images from a single 
urce. It has been shown to be a powerful tool in agriculture applica-
ns [65,56,12] as it generates distinct data from existing orchard data. 
is is especially useful for applications with a limited dataset by de-
cting anomalies in images with different transformations and making 
possible to generate new training examples without actually acquir-
g new data.
Specifically, in the considered application of apple detection in or-
ards, the collected dataset can only cover a limited set of scenarios. 
erefore, we applied several data augmentation techniques [8] on 
e collected and processed data to enhance the data diversity for im-
oving the inference performance of our models. Specifically, besides 
ometric transformations including scaling, translating, rotating, re-
cting, and shearing, we also applied color space augmentations such 
 modifying the brightness and contrast to fit different intensities. In 
dition, we injected Gaussian noises on the collected images by ran-
mly modifying the pixel intensities based on a Gaussian distribution. 
rthermore, we applied Mixup by randomly selecting two images from 
e dataset and blending the intensities of the corresponding voxels of 
e two images [36]. Filtering is another augmentation approach we ap-
ied where we modify the intensities of each pixel using convolution 
0]. Specifically, we exploited sharpening [50] to detect and intensify 
e edges of objects found within the image. We applied these addi-
nal augmentation techniques on our dataset and the benefits of data 
gmentation will be demonstrated in the experiment section.

 Methodology

In this section, we first present the key challenges of object detection 
 clustered environments and an overview of the general object detec-
n framework. Based on those, we describe the proposed Occluder-
ccludee Relational Network (O2RNet) with explicit occluder-occludee 
lation modeling. Finally, we specify the objective functions for the 
tire network optimization, followed by details on the training and 
ference processes as well as performance evaluation metrics.

1. Challenge and main idea

For images with heavy occlusions, multiple overlapping objects cap-
red in the same bounding box can result in confusing object outlines 
om both front objects and occlusion boundaries. In apple orchards, 
ple clusters are quite common (see Fig. 2 for a few examples). How-
er, the prediction head design of Faster R-CNN directly regresses 
e occludee with a fully convolutional network, which neglects both 
e occluding instances and the overlapping relations between objects. 
ith this limitation, Faster R-CNNs will inevitably omit some occludees 
e to Non- maximum Suppression (NMS). On the other hand, with a 
operly tuned threshold, the RPN can propose many candidates after 
eding the target features from CNN (see Fig. 3), but the NMS will sup-
ess the nearby bounding boxes and neglect occludees. Motivated by 
is observation, the proposed O2RNet aims at extending the existing 
o-stage object detection methods by adding an occlusion perception 
anch parallel to the original object prediction pipeline. By explicitly 
odeling the relationship between occluder and occludee, the interac-
ns between objects within the Region of Interest (RoI) region can be 
4

ell incorporated during the bounding box regression stage. ba
Smart Agricultural Technology 5 (2023) 100284

g. 2. Eight sample images from the collected dataset show cascaded apples 
 different occlusion levels: (a)-(d) apples are in the normal occlusion and can 
 identified by most models; (e)-(h) apples are highly cascaded and would be 
sily detected as one apple.

g. 3. Illustration of how RPN works. The RPN selects anchor points on the 
ature map and generates anchor boxes for each point. The anchor boxes are 
nerated based on the two parameters, i.e., scales and aspect ratios.

2. O2RNet workflow

As illustrated in Fig. 4, the O2RNet follows the two-stage archi-
cture used in Faster R-CNN [47] and consists of three main parts. 
rst, we use a Residual Network (ResNet) [22] as the backbone for fea-
re learning/extraction over the entire image. Specifically, the ResNet-
1-FPN [23] is instantiated as its backbone for feature extraction, as 
outperforms other single ConvNets mainly due to its capability of 
aintaining strong semantic features at various resolution scales. Even 
ough ResNet-101 is a deep network, the residual blocks and dropouts 
nction help it avoid gradient vanishing and exploding problems. Sec-
d, an RPN [47] is employed to generate object regions, which is a 
all convolutional network to convert feature maps into scored region 
oposals around which the object lies. The generated proposals with 
certain height and width are called anchors, which are a set of pre-
fined bounding boxes. The anchors are designed to capture the scale 
d aspect ratio of specific object classes and are typically chosen to be 
nsistent with object sizes in the dataset. RPN is mainly used for pre-
cting bounding boxes in Faster R-CNN, but it can also provide enough 
chors with different scales that was further exploited in our network 
 explained in the sequel. Third, an occlusion-aware modeling head 
ith a structure of two classification and regression branches is built for 
e occluder and occludee for decoupling overlapping relations and seg-
ents the instance proposals obtained from the RPN. Compared to the 
nventional class-agnostic classification, this task is divided into two 
mplementary tasks: occluder prediction using the original classifica-
n head and occludee modeling with an additional Feature Expansion 
ructure (FES), where the occluder predictions provide rich foreground 
es like textures and the FES predicts the positions of occluding regions 
 guide occludee object regression.
More specifically, an input image is first processed by the ResNet 

ckbone to extract intermediate convolutional features for down-
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Fig. 4. Network structure of the proposed Occluder-Occludee Relational Network (O2RNet). It consists of a feature learning backbone, RoI feature extraction, and 
object detection heads with occluder and occludee branches. The Feature Expansion Structure (FES) provides expanded RoI features along with features from the 
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cluder branch to facilitate the detection of occludee.

ream processing. The object detection head (i.e., RPN) then predicts 
unding box proposals, which are then consumed by the occlusion 
rception branches into the occluder branch and the occluee branch. 
r the occluder branch, we adopt the object detection head in Faster 
CNN [47] to output positions as well as categories for instance can-
dates and prepare the cropped RoI features for the occludee branch. 
 the occludee branch, the input consists of both cropped RoI features 
om the occluder branch and expanded features from FES, which is 
rgeted for modeling occluded regions by jointly detecting boundaries. 
sentially, the distilled occlusion features are added to the original 
put RoI features and passed to the next module. Finally, the oc-
udee branch, which has a similar structure to the occluder branch, 
edicts the occludee guided by these expanded features and outputs 
asses and bounding boxes for the partially occluded instances. The 
cluder-occludee relational modeling is discussed in more details in 
e following section.

3. Occluder-occludee relationship modeling

For highly overlapped apples, in typical Faster R-CNN-based models, 
e generated region proposals corresponding to the partially occluded 
es may be separated into disjoint subregions by the occluder. As such, 
e employed the FES to obtain boundary features from the occludee, 
here expansion in each direction extends the potential proposals for 
e occludee. In our implementation, we expand 𝑡 steps in 𝑘 (𝑘 = 8 in 
is study) directions from the original RoI proposals, and the expanded 
I proposals contain additional boundary features. The rationale is 
at irregular occlusion boundaries unrelated to the occludee can cause 
nfusion to the network, which in turn provides essential cues for de-
upling occludees from occluders. Therefore, occlusion patterns are 
plicitly modeled by detecting bounding boxes of the occluders using 
e occluder detection branch, and since the occludee detection branch 
intly predicts bounding boxes for the occludee, the overlap between 
e two layers can be directly identified as occlusion boundary that can 
us be distinguished from the real object bounding boxes. In order to 
ach this goal, the occluder modeling module is designed as a sim-
e 3 × 3 convolutional layer followed by one FCN layer, the output of 
hich is fed to the up-sampling layer and one 1 × 1 convolutional layer 
5

 obtain one channel feature map for occludee branch. ch
4. End-to-end learning

As we have two separate detection heads in the occluder and the 
cludee branches, we define two loss functions in the following way. 
r the occluder branch, we adopt the loss function used in Faster R-
N [47], which defines a multi-task loss on each sampled region of 
terest as

𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑟 =𝐿𝑐𝑙𝑠 +𝐿𝑏𝑏𝑜𝑥, (3)

here 𝐿𝑐𝑙𝑠 and 𝐿𝑏𝑏𝑜𝑥 are, respectively, classification loss and bounding 
x loss defined in Faster R-CNN [47].
The final loss 𝐿 is a weighted sum of the loss from occluder branch 
d the loss from occludee branch defined as:

= 𝜆1𝐿𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑟 + 𝜆2𝐿𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑒. (4)

ere 𝐿𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑒 is the occludee branch loss that is the sum of the 𝑘 ex-
nded proposal losses, i.e.,

𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑒 =
𝑘∑

𝑖=0
(𝐿𝑖

𝑐𝑙𝑠
+𝐿𝑖

𝑏𝑏𝑜𝑥
). (5)

ere 𝜆1 and 𝜆2 are two positive linear weights and 𝜆1 +𝑘 ⋅𝜆2 = 1, which 
e tuned to balance the two loss functions. In our study, 𝜆1 was tuned 
 be {1.0, 0.75, 0.5, 0.25, 0} on various trials for cross-validation.

5. Training and inference

During the training process, we filter out parts of the non-occluded 
I proposals to keep occlusion cases taking up 50% for balanced sam-
ing. SGD with momentum is employed to train the model with 60𝐾
rations where it starts with 1𝐾 constant warm-up iterations. The 
tch size is set to 2 and the initial learning rate is 0.01 with a weights 
cay of 0.95. In our study, ResNet-101-FPN is used as the backbone 
d the input images are resized without changing the aspect ratio, i.e., 
 keeping the shorter side and longer side of no more than 1200 pix-
s. For inference, the occludee branch predicts bounding boxes for the 
cluded target object in the high-score box proposals generated by the 
N, while the occluder branch produces occlusion-aware features as 
put for the occludee branch. The one with the highest score is then 

osen as the output.
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Table 1

Performance of O2RNet on the customized apple dataset. The step is from FES, which represents how much features expanded. The evaluation uses AP, AR, and 
F1-score at the different IoUs.
Model Step 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑅 𝐴𝑅50 𝐴𝑅75 F1-Score

O2RNet t=1 0.511 0.945 0.935 0.351 0.938 0.803 0.864

t=2 0.490 0.920 0.900 0.330 0.900 0.770 0.820

t=3 0.490 0.920 0.904 0.328 0.900 0.770 0.820
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ble 2

odel parameters numbers and inference time between the state-of-the-art net-
orks and our proposed Occluder-occludee Relational Network (O2RNet).
Models Parameters Time

(×107) (ms)

FCOS 2.6 80

YOLOv8 4.2 30

Faster R-CNN (ResNet50) 2.6 75

Faster R-CNN (ResNet101) 4.5 100

EfficientDet-b0 0.4 35

EfficientDet-b1 0.7 50

EfficientDet-b2 0.8 70

EfficientDet-b3 1.2 100

EfficientDet-b4 2.1 160

EfficientDet-b5 3.4 250

CompNet via VGG 1.4 90

CompNet via RPN 4.5 100

O2RNet (ResNet50) 2.6 80

O2RNet (ResNet101) 4.5 110

 Results and discussions

1. Experimental setup

In this section, we evaluate the efficacy of the proposed O2RNet 
 the processed data as discussed in Section 2.1. The network hyper-
rameters, including the momentum, learning rate, decay factor, train-
g steps, and batch size, are set as 0.9, 0.001, 0.0005, 934, and 1, re-
ectively, through cross-validation. The input image size is 1280 × 720, 
hich is aligned with the resolution of the camera used in our data col-
ction. To better analyze the training process, we set up 80 epochs for 
aining. We exploit a pre-trained model on the COCO dataset [33], 
here we train on 2017train (115𝑘 images) and evaluate results on 
th 2017val and 2017test-dev to pre-train model parameters. This pre-
ained model generally only takes 50 epochs to converge. By tuning the 
eps 𝑡 in FES, different results are obtained and listed in Table 1, which 
ows that O2RNet with 𝑡 = 1 leads to the best performance.

2. Performance comparison and analysis

To accelerate the model training on our customized dataset, we ini-
lized parameters by transfer learning from ImageNet [11]. ImageNet 
ovides large-scale images in different fields (including apples) and 
rge- scale ground truth annotation. During the transfer learning pro-
ss, our model learned specific characteristics with an effective transfer 
 features from ImageNet. Compared to randomized parameters, the 
sults (see Fig. 5) shows that our model converges faster as benefited 
om the pretraining on a large-scale database.
Furthermore, data augmentation is another useful technique to op-
ize detection performance without increasing inference complexity. 
e applied five augmentation strategies, including geometric transfor-
ations (GTs), color space transformations (CSTs), Gaussian noise injec-
n, mixup and sharpening data augmentation, to extend our dataset. 
e results are summarized in Table 3. It shows that GTs such as rota-
n, flipping and scaling – by changing the pixel position of the image 
d reordering apples in the image – improve the accuracy performance 
 around 1%. Through changing color illumination and intensity of an 
age, CSTs also roughly increases the performance by 1%. Due to the 
6

arsity of apples on some images, mixup helps enlarge apple density on ag
g. 5. Training loss comparison between transfer learning and training from 
ratch on our model (O2RNet). The training loss with transfer learning from 
ageNet apparently decreases and converges faster as compared with training 
m scratch.

e image and enhances the accuracy by 2%. It turns out that Gausian 
ise and sharpening do not help much, as they try to change textures 
d increase complexities on the dataset, which generate confusing data 
d is not suitable for our model. Finally, the augmentation combina-
n of GTs, CSTs and Mixup offers the best enhancement by increasing 
e accuracy of 4% on our dataset.
To better evaluate the performance of our model, we compare 
r O2RNet with the-state-of-art object detection methods on our cus-
mized apple dataset (see Table 2 for a list of benchmark models 
d their number of parameters). The performance of these models 
ere tested on an Ubuntu 20.04 with an AMD 3990X 64-Core CPU 
d a GeForce RTX 3090Ti GPU (24 GB GDDR6X memory). Besides, 
e libraries Pytorch [41] and Detectron2 [66] were also used to per-
rm these deep learning functions over CUDA 10 [39]. In particular, 
OS and YOLOv8 are representatives of one-stage detectors, achiev-
g consistent improvement and demonstrating their effectiveness by 
tperforming the SSD method [34] on several public datasets [61,4]. 
e also evaluate Faster R-CNN and EfficientDet since they are state-
-the-art models with promising performance demonstrated in fruit 
rvesting-related works [37,69]. We also compare O2RNet with the 
ate-of-the-art occlusion-aware network CompNet [15].
We then use the same experimental setup to train each model and 
aluate them on the same apple test dataset. The results are shown 
 Table 4, which compares the detection precision and recall over dif-
rent IoUs among the 14 selected models (including our O2RNet). No-
bly, in addition to FCOS, EfficientDet-b5 and Faster R-CNN achieved 
cent F1-scores of 0.83 and 0.82, respectively. Two occlusion-aware 
tworks, CompNet and our O2RNet clearly outperform all traditional 
odels with F1-scores of 0.86 and 0.88, respectively, and O2RNet clearly 
ows superior performance over CompNet. It can be seen that our 
2RNet can achieve a great detection performance in the precision and 
call and subsequently the F1-score.
In our approach, we focus on advancing the accuracy of detection 
r clustered apples, which shows significant challenges due to oc-
usion. To exactly present how our O2RNet improves the detection 
curacy, we select a total 832 overlapped apples from the test dataset 
 the clustered cases. Our results (see Table 5) are then benchmarked 

ainst those 12 state-of-the-art methods mentioned before. The em-
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Table 3

Performance of O2RNet on the augmented dataset. The geometric transformations consist of rotation, flipping and scaling. The color space transformations consist 
of brightness and contrast shifting. Finally, all of the augmentation methods are integrated to evaluate the O2RNet.
Augmentation 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑅 𝐴𝑅50 𝐴𝑅75 F1-Score

Base 0.51 0.92 0.90 0.35 0.91 0.80 0.84

Geometric transformations (GTs) 0.52 0.93 0.91 0.35 0.91 0.80 0.85

Color space transformations (CSTs) 0.52 0.93 0.91 0.35 0.91 0.81 0.85

Gausian noise 0.48 0.91 0.90 0.34 0.91 0.80 0.83

Mixup 0.52 0.93 0.92 0.35 0.92 0.81 0.85

Sharpening 0.52 0.92 0.90 0.35 0.91 0.80 0.84

GTs+CSTs+Mixup 0.52 0.96 0.94 0.36 0.94 0.83 0.88

All 0.52 0.94 0.92 0.36 0.92 0.83 0.86

Table 4

Performance comparison of our own models and other 12 state-of-the-art deep learning models on the customized apple dataset.
Models 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑅 𝐴𝑅50 𝐴𝑅75 F1-score

FCOS [1] 0.48 0.89 0.87 0.34 0.87 0.78 0.80

YOLOv8 [25] 0.48 0.90 0.87 0.32 0.86 0.77 0.81

Faster R-CNN ResNet50 [38] 0.48 0.89 0.87 0.32 0.87 0.78 0.81

ResNet101 [38] 0.49 0.94 0.93 0.31 0.84 0.75 0.82

EfficientDet EfficientDet-b0 [40] 0.45 0.89 0.85 0.30 0.82 0.71 0.77

EfficientDet-b1 [40] 0.45 0.89 0.86 0.30 0.82 0.72 0.77

EfficientDet-b2 [40] 0.46 0.89 0.87 0.30 0.82 0.73 0.78

EfficientDet-b3 [40] 0.49 0.93 0.91 0.32 0.84 0.75 0.81

EfficientDet-b4 [40] 0.50 0.94 0.92 0.34 0.88 0.78 0.82

EfficientDet-b5 [40] 0.50 0.95 0.93 0.34 0.88 0.78 0.83

CompNet CompNet via VGG [70] 0.50 0.94 0.92 0.36 0.94 0.80 0.85

CompNet via RPN [15] 0.51 0.95 0.94 0.35 0.94 0.80 0.86

O2RNet O2RNet-ResNet50 0.50 0.93 0.91 0.35 0.91 0.80 0.84

O2RNet-ResNet101 0.52 0.96 0.94 0.36 0.94 0.83 0.88

Table 5

Performance comparison of our own models and other 12 state-of-the-art deep learning models on the 832 clustered apples.
Models 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑅 𝐴𝑅50 𝐴𝑅75 F1-score

FCOS [1] 0.29 0.71 0.63 0.22 0.69 0.53 0.57

YOLOv8 [25] 0.36 0.76 0.69 0.22 0.71 0.59 0.64

Faster R-CNN ResNet50 [38] 0.33 0.71 0.65 0.21 0.68 0.59 0.62

ResNet101 [38] 0.36 0.75 0.69 0.23 0.70 0.61 0.65

EfficientDet EfficientDet-b0 [40] 0.30 0.71 0.64 0.30 0.65 0.57 0.60

EfficientDet-b1 [40] 0.30 0.71 0.64 0.21 0.65 0.58 0.61

EfficientDet-b2 [40] 0.32 0.72 0.66 0.21 0.67 0.59 0.62

EfficientDet-b3 [40] 0.34 0.74 0.67 0.21 0.68 0.59 0.63

EfficientDet-b4 [40] 0.36 0.75 0.69 0.23 0.70 0.61 0.65

EfficientDet-b5 [40] 0.36 0.76 0.69 0.24 0.71 0.61 0.65

CompNet CompNet via VGG [70] 0.36 0.75 0.69 0.24 0.69 0.61 0.65

CompNet via RPN [15] 0.38 0.77 0.71 0.26 0.72 0.63 0.67

O2RNet O2RNet-ResNet50 0.44 0.85 0.80 0.31 0.80 0.71 0.75

O2RNet-ResNet101 0.46 0.87 0.82 0.33 0.82 0.72 0.77
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rical results demonstrate that our method outperforms the existing 
ate-of-the-art methods with an increase of 11%, 9% and 10% in terms 
 precision, recall and F1-score. Some representative inference results 
e shown in Fig. 6. This superior performance is indicative of the effi-
cy of O2RNet in dealing with the clustered cases in the complex apple 
chard through enhancing the boundary features of overlapped apples.

 Conclusion

In this study, we collected a comprehensive apple dataset under 
fferent lighting conditions and at various occlusion levels from two 
7

chards. A novel Occluder-Occludee Relational Network (O2RNet) was br
veloped to robustly detect clustered apples from the dataset. Our 
veloped O2RNet significantly reduced false detection and improved 
e detection rate by embedding relationships between the occluder 
d the occludee. As a result, our model consistently outperformed 
other state-of-the-art models when evaluated using our apple im-
e dataset. It was found that transfer learning and data augmentation 
chniques were useful tools to enhance learning efficiency and model 
rformance.

Our future work will include the incorporation of foliage informa-
n in the network design to further improve the detection performance 
nce the current work only focused on clustered apples. Furthermore, 

anch detection will be developed to provide necessary contextual in-
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Fig. 6. Results from six models on the various lighting conditions and occlusions.
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rmation for the robot to maneuver, e.g., avoiding collisions with tree 
anches. Lastly, we will also investigate whether artificial lighting aug-
entation can enhance the detection performance.
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