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ARTICLE INFO ABSTRACT

Editor: Spyros Fountas Automated apple harvesting has attracted significant research interest in recent years because of its great
potential to address the issues of labor shortage and rising labor costs. One key challenge to automated harvesting
is accurate and robust apple detection, due to complex orchard environments that involve varying lighting
conditions, fruit clustering and foliage/branch occlusions. Apples are often grown in clusters on trees, which may
be mis-identified as a single apple and thus causes issues in fruit localization for subsequent robotic harvesting
operations. In this paper, we present the development of a novel deep learning-based apple detection framework,
called the Occluder-Occludee Relational Network (O2RNet), for robust detection of apples in clustered situations.
A comprehensive dataset of RGB images were collected for two varieties of apples under different lighting
conditions (overcast, direct lighting, and back lighting) with varying degrees of apple occlusions, and the images
were annotated and made available to the public. A novel occlusion-aware network was developed for apple
detection, in which a feature expansion structure is incorporated into the convolutional neural networks to
extract additional features generated by the original network for occluded apples. Comprehensive evaluations
of the developed O2RNet were performed using the collected images, which outperformed 12 other state-of-the-
art models with a higher accuracy of 94% and a higher Fl-score of 0.88 on apple detection. O2RNet provides
an enhanced method for robust detection of clustered apples, which is critical to accurate fruit localization for
robotic harvesting.
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and foremost for subsequent planning and control tasks. In addition,
fruit perception techniques have also been used in other applications

1. Introduction

Driven by rising costs and growing shortages in harvesting labor,
robotic apple harvesting has gained increased research attention over
the past decade. In the U.S. alone, fruit harvesting requires more than
10 million worker hours annually, attributing to approximately 15% of
the total apple production cost [17]. Mechanization and automation
promise next-gen harvesting systems with low operating cost and high
efficiency, as well as the ability to assess individual fruit for quality and
maturity at the point of harvest [32].

As such, several research groups have been developing robotic har-
vesting systems [26,63,43,10,73]. Despite progresses, several important
challenges in developing a fully functional robotic harvesting system
remain, and no commercially-viable systems are yet available in the
market. One key challenge that is pointed out by the existing works is
efficient and robust fruit detection in the presence of varying light con-
ditions and fruit/foliage occlusions. Indeed, the perception system pro-
vides the robot system with information on target fruits, which are first
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of interest, including yield estimation and crop health status monitor-
ing [42]. Perception in unstructured orchard environments, however,
is a daunting task as a result of variations in illumination and appear-
ance, noisy backgrounds, and clustered environments with occlusions
[9]. The goal of this paper is thus to present a novel deep learning-
based detection algorithm to convergently address the aforementioned
challenges. We show that the developed algorithm is able to achieve
state-of-the-art performance. Before describing the technical details, we
review relevant backgrounds and state-of-the-art approaches to put our
algorithm in better context.

1.1. Image sensing techniques
Vision-based perception schemes can be classified into four cate-

gories based on the sensor used: monocular camera scheme, binocular
stereovision scheme, laser active visual scheme, and thermal imaging
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scheme, which cover both two-dimension imaging schemes and three-
dimension imaging schemes [76]. Specifically, the monocular scheme
uses a single camera to acquire image data, and it is widely used in
fruit harvesting due to its low cost and rich information provided by
the RGB images. For instance, in [27], the authors proposed a new Led-
Net model for apple detection that achieves an accuracy of 85.3%. The
main disadvantage of the monocular scheme is that the color images
are sensitive to fluctuating illumination.

Different from the monocular camera schemes, the binocular stereo-
vision schemes exploit two cameras separated in a certain distance/an-
gle to obtain two image data on the same scene. The point cloud of
fruit can then be constructed through triangulation on extracted fea-
tures [57]. For instance, [51] used a stereo camera to detect and localize
mature apples in tree canopies, and achieved an accuracy of 89.5%. In
[67], the authors developed a clustered tomato detection method based
on a stereo camera, and the recognition accuracy was 87.9%. Although
the stereovision scheme tends to render better results, it suffers from
high complexity, long computation time, and uncertainties in stereo
matching [20].

On the other hand, the laser active visual schemes obtain three-
dimensional features using laser scans, where laser beam reflections are
exploited to generate a 3D point cloud based on the time-of-flight prin-
ciple. The 3D point cloud can then be used to reconstruct the scene.
For example, [59] utilized infrared laser scanning devices to recognize
cherry on the tree. [71] acquired a total of 200 images for indepen-
dent ‘Fuji’ apples and developed an apple recognition method using the
near-infrared linear-array structured light for 3D reconstruction. [62]
proposed a point cloud based apple detection method using a LiDAR
laser scanner and reached a 88.2% overall accuracy on the defoliated
tree dataset [62]. Note the defoliated scene is significantly less chal-
lenging than the real orchard conditions during the harvest season.
Furthermore, the laser point cloud is generally sparse and it is chal-
lenging to be used in real-world orchards with dense backgrounds. The
high cost and complexity also limit its practical application in agricul-
tural applications.

Finally, the thermal imaging schemes make use of the distinct ther-
mal characteristics of fruit and leaves (e.g., the different temperature
distributions) to obtain the visualization of infrared radiation [35]. In
[5], citruses are successfully segmented using a thermal infrared camera
according to the largest temperature difference in both day and night
conditions. An enhanced approach for fruit detection [6] was devel-
oped using the combination of the thermal image and the color image.
The results showed a promising performance under weak lighting en-
vironments. However, in the thermal imaging scheme, the accuracy of
recognition is largely affected by the shadow of the tree canopy [55].

Considering the cost, performance, and real-time constraints, our
work focuses on the monocular camera scheme, the state-of-art of which
will be discussed next.

1.2. Recognition approaches

Image-based fruit recognition approaches can be classified into fea-
ture analysis approaches and deep learning-based approaches, depending
on how features are obtained. In feature analysis approaches, hand-
crafted features are first extracted based on the fruit characteristics, and
classification approaches are then developed to recognize fruit. [54,53]
developed thresholding methods to classify fruit from other background
objects using smoothing filters that remove irrelevant noises. The large
segmented regions are then recognized as fruits. This method is capable
of segmenting fruit regions in simple backgrounds but it is susceptible
to varying lighting conditions and complex canopies. [64,3] proposed a
circular Hough Transform approach to obtain binary edge images and
then used a voting matrix to identify fruits. This approach is sensitive
to complex structured environments and it generally fails in a dense
scene. In [44,7,31,75], they combined the shape and texture of the fruit
to obtain a richer set of feature representations. Then, extracted fea-
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tures between fruit and leaves are compared and contrasted to identify
the fruits. However, this method is also sensitive to lighting conditions
and occlusions.

On the other hand, deep learning-based approaches have found
great successes in object detection and semantic image segmentation
[49,2], which can learn feature representations automatically with-
out the need of manual feature engineering. Specifically, Convolutional
Neural Networks (CNNs) have showed great advantages in the field of
object detection in recent years, making it possible to recognize fruits
in complex situations due to its deep extraction of high-dimensional
features of objects. R-CNN and its variants Fast R-CNN and Faster R-
CNN [19,18,47] have enjoyed particular successes. For instance, [72]
deployed the fine-tuned Faster R-CNN using the pre-trained network
VGG19 [52] and achieved a precision of 82.4% for apple detection.
Modified Inception-ResNet (MI-ResNet) [45] used deep simulated learn-
ing for yield estimation to address challenges including the varying
degrees of fruit sizes and natural lighting conditions. You Only Look
Once (YOLOv3) [46], a representative of the one-stage object detector,
uses logistic regression to predict an objectless score for each bounding
box. An improved YOLOv3 model [60] was developed to detect ap-
ples with a precision of 85.0%. Due to the simple optimization pipeline,
YOLO enjoys much faster inference than the aforementioned region-
based methods. EfficientDet [58], an augmented variant of YOLOV3,
exploits a pyramid network to enable the detection of scaling targets. In
[28], they evaluated EfficientDet in their customized apple dataset with
a precision of 75.65%, while their proposed model FruitDet reached a
precision of 80.78%.

However, the aforementioned deep CNN approaches do not address
the challenge of fruit/foliage occlusions in real-world orchards. To-
wards that end, Compositional Convolutional Neural Network (Comp-
Net) [30] was proposed to detect partially occluded objects. The frame-
work exploits a differentiable fully compositional model that uses oc-
cluder kernels to localize occluders (the occluding objects). Bilayer
Convolutional Network (BCNet) [29], another model to address the
occlusion challenge, applies two Graph Convolutional Network (GCN)
layers to separately infer the occluding objects (occluder) and partially
occluded instance (occludee). Superior performance was reported on
occluded scenarios. In apple detection, various approaches are devel-
oped to enhance the performance of deep learning-based models in
complex orchards. [21] introduced CBL (Convolutional layers, Batch
normalization, Leaky-relu activation function [13]) module and CA (co-
ordinate attention) module into YOLOvV5 [24], and finally increased
4.41% in the precision compared to the base model. [68] utlized a cus-
tomized YOLOV3 to reach a recall of 93.4% for overlapped apples. These
two approaches are trying to extract the higher-level features by mod-
ifying models to improve the performance. Different from above, [16]
took advantage of a depth filter to remove background trees with a
RGB-D camera and finally improved apple detection precision by 2.5%
on overlapped apples. This paper will model the relationships among
overlapped apples and enhance the apple edge features to improve the
precision for clustered apples.

1.3. Our contributions

In this paper, we develop a novel Occluder-Occludee Relational Net-
work (O2RNet) to enhance apple detection in the presence of occlusions
in clustered apples that are frequently present in real-world orchards.
Specifically, we employ ResNet [22] and RPN [47] to extract features of
targets and utilize occluder-occludee layers to split candidates into oc-
cluder and occludee. Compared to other occlusion models, we only use
bounding boxes as labels instead of pixel-level masks that contain more
texture and shape information. In addition, we present a new apple
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dataset! collected in two Michigan apple orchards in multiple harvest-
ing seasons. We evaluate the performance against state-of-the-art object
detection models and demonstrate superior performances. The contri-
butions of this paper are highlighted as follows:

1. A comprehensive apple dataset of 1246 images for two varieties of
apple under different lighting conditions and occlusion levels were
collected from two orchards during two harvesting seasons.

2. A novel Occluder-Occludee Relational Network (O2RNet) was de-
veloped for enhanced apple detection in the presence of occlusions
due to apple clusters.

3. The O2RNet outperformed 12 state-of-the-art deep learning-based
models for apple detection.

2. Materials and data processing
2.1. Image collection and annotation

In this study, apple images were taken in two orchards: the commer-
cial orchard in Sparta, Michigan, USA during the 2019 harvest season
and the experimental orchard of Michigan State University in East Lans-
ing, Michigan, USA during the 2021 harvest season. The apples are
mainly ‘Gala’ that are generally red over a green/yellow background
(see Fig. 1). An RGB camera (RealSense D435i) with a resolution of
1280 x 720 was used to take images of apples at a distance of 1 — 2
meters from the tree trunks, which is the typical range of harvesting
robots [10,73,74]. The images were collected across multiple days to
cover both cloudy and sunny weather conditions. In a single day, the
data were also collected at different times of the day, including 9am,
noon, and 3pm, to cover different lighting angles: front-lighting, back-
lighting, side-lighting, and scattered lighting. Furthermore, we also cap-
tured clustered apples with different occlusion levels including both
foliage and branches occlusion. When capturing images, the camera was
placed parallel to the ground and directly facing the trees to mimic the
harvesting scenario. For training our model, we split the dataset a total
of 1246 images into 934 and 312 as the training sets and the test sets re-
spectively. A few typical sample images for the two varieties of apples
under three lighting conditions are shown in Fig. 1.

The acquired raw images were then processed into formats that can
be used to train and evaluate deep networks. Specifically, apples in
the images were annotated by rectangles using VGG Image Annotator
[14], and the annotations were then compiled into the human-readable
format. Compared to polygon and mask annotations, rectangular anno-
tations used here would accelerate data preparation for our dataset of
dense images. The annotated dataset was then split into training and
test subsets with the apple quantities of 10523, and 3995 respectively.
The processed image database can be accessed publicly at https://
github.com/pengyuchu/MSUAppleDatasetv2.git.

2.2. Transfer learning

We have employed transfer learning to enable faster training and
improved performance. Transfer learning is a popular scheme that
starts the model development with a pre-trained model on a large-scale
dataset and then fine-tunes the model on a customized dataset from the
specific domain of interest [77]. For apple detection in this study, we
used ImageNet [11] to pre-train each model and only replaced the last
fully-connected layers in each model. Since there are objects of apples
and alike in ImageNet, the pre-trained models converge faster in our
customized apple dataset compared to randomized initial parameters.

1 The database is

MSUAppleDatasetv2.git.

open-sourced at https://github.com/pengyuchu/
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Fig. 1. Six sample images from the collected dataset: (a)-(c) ‘Gala’ apples on
older trees under overcast, back-lighting, and direct lighting conditions, re-
spectively; and (d)-(e) ‘Blondee’ apples on younger trees under overcast, back-
lighting, and direct lighting conditions, respectively.

2.3. Performance metrics

For model development and evaluation, conventionally the apple
dataset is randomly partitioned into training, validation, and test sets
for model training and evaluation, respectively. To quantitatively eval-
uate the detection performance, we use performance metrics including
precision, recall, and F1-score for algorithm evaluation. All detection
outcomes are divided into four types: true positive (T P), false positive
(F P), true negative (T'N), and false negative (FN), based on the rela-
tion between the true class and predicted class. The precision (P) and
recall (R) are defined as follows:

p= TP . R= TP ) o)
TP+ FP TP+FN
The F1-score is then subsequently defined as:
F1=2LR @)
P+ R

To better evaluate the precision between the prediction and the
ground truth, we also employ Microsoft Common Objects in Context
(COCO) dataset [33] evaluation metrics. Specifically, after the calcula-
tion of precision and recall, we calculate the average precision (A P) and
average recall (AR) based on different Intersection over Union (IoU) be-
tween the prediction and the ground truth. For example, AP, ;_ 5, Or
APs, denotes that AP is averaged over IoU = 0.50 values, which belongs
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to PASCAL VOC metric [48]. We also use AP, 75 or AP;5, whichis a
stricter metric for model evaluations. In our study, we use a spectrum
of 10 IoU thresholds ranging 0.50 : 0.05 : 0.95 to average over multiple
IoUs to obtain a comprehensive set of results.

2.4. Data augmentation

Data augmentation is a method that can be adopted to increase data
diversity for achieving robust training and enhanced performance of
computer vision models. For example, transformations and rotations are
frequently employed to increase the diversity of images from a single
source. It has been shown to be a powerful tool in agriculture applica-
tions [65,56,12] as it generates distinct data from existing orchard data.
This is especially useful for applications with a limited dataset by de-
tecting anomalies in images with different transformations and making
it possible to generate new training examples without actually acquir-
ing new data.

Specifically, in the considered application of apple detection in or-
chards, the collected dataset can only cover a limited set of scenarios.
Therefore, we applied several data augmentation techniques [8] on
the collected and processed data to enhance the data diversity for im-
proving the inference performance of our models. Specifically, besides
geometric transformations including scaling, translating, rotating, re-
flecting, and shearing, we also applied color space augmentations such
as modifying the brightness and contrast to fit different intensities. In
addition, we injected Gaussian noises on the collected images by ran-
domly modifying the pixel intensities based on a Gaussian distribution.
Furthermore, we applied Mixup by randomly selecting two images from
the dataset and blending the intensities of the corresponding voxels of
the two images [36]. Filtering is another augmentation approach we ap-
plied where we modify the intensities of each pixel using convolution
[50]. Specifically, we exploited sharpening [50] to detect and intensify
the edges of objects found within the image. We applied these addi-
tional augmentation techniques on our dataset and the benefits of data
augmentation will be demonstrated in the experiment section.

3. Methodology

In this section, we first present the key challenges of object detection
in clustered environments and an overview of the general object detec-
tion framework. Based on those, we describe the proposed Occluder-
Occludee Relational Network (O2RNet) with explicit occluder-occludee
relation modeling. Finally, we specify the objective functions for the
entire network optimization, followed by details on the training and
inference processes as well as performance evaluation metrics.

3.1. Challenge and main idea

For images with heavy occlusions, multiple overlapping objects cap-
tured in the same bounding box can result in confusing object outlines
from both front objects and occlusion boundaries. In apple orchards,
apple clusters are quite common (see Fig. 2 for a few examples). How-
ever, the prediction head design of Faster R-CNN directly regresses
the occludee with a fully convolutional network, which neglects both
the occluding instances and the overlapping relations between objects.
With this limitation, Faster R-CNNs will inevitably omit some occludees
due to Non- maximum Suppression (NMS). On the other hand, with a
properly tuned threshold, the RPN can propose many candidates after
feeding the target features from CNN (see Fig. 3), but the NMS will sup-
press the nearby bounding boxes and neglect occludees. Motivated by
this observation, the proposed O2RNet aims at extending the existing
two-stage object detection methods by adding an occlusion perception
branch parallel to the original object prediction pipeline. By explicitly
modeling the relationship between occluder and occludee, the interac-
tions between objects within the Region of Interest (Rol) region can be
well incorporated during the bounding box regression stage.
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Fig. 2. Eight sample images from the collected dataset show cascaded apples
at different occlusion levels: (a)-(d) apples are in the normal occlusion and can
be identified by most models; (e)-(h) apples are highly cascaded and would be
easily detected as one apple.

anchor point |

feature map

Fig. 3. Illustration of how RPN works. The RPN selects anchor points on the
feature map and generates anchor boxes for each point. The anchor boxes are
generated based on the two parameters, i.e., scales and aspect ratios.

3.2. O2RNet workflow

As illustrated in Fig. 4, the O2RNet follows the two-stage archi-
tecture used in Faster R-CNN [47] and consists of three main parts.
First, we use a Residual Network (ResNet) [22] as the backbone for fea-
ture learning/extraction over the entire image. Specifically, the ResNet-
101-FPN [23] is instantiated as its backbone for feature extraction, as
it outperforms other single ConvNets mainly due to its capability of
maintaining strong semantic features at various resolution scales. Even
though ResNet-101 is a deep network, the residual blocks and dropouts
function help it avoid gradient vanishing and exploding problems. Sec-
ond, an RPN [47] is employed to generate object regions, which is a
small convolutional network to convert feature maps into scored region
proposals around which the object lies. The generated proposals with
a certain height and width are called anchors, which are a set of pre-
defined bounding boxes. The anchors are designed to capture the scale
and aspect ratio of specific object classes and are typically chosen to be
consistent with object sizes in the dataset. RPN is mainly used for pre-
dicting bounding boxes in Faster R-CNN, but it can also provide enough
anchors with different scales that was further exploited in our network
as explained in the sequel. Third, an occlusion-aware modeling head
with a structure of two classification and regression branches is built for
the occluder and occludee for decoupling overlapping relations and seg-
ments the instance proposals obtained from the RPN. Compared to the
conventional class-agnostic classification, this task is divided into two
complementary tasks: occluder prediction using the original classifica-
tion head and occludee modeling with an additional Feature Expansion
Structure (FES), where the occluder predictions provide rich foreground
cues like textures and the FES predicts the positions of occluding regions
to guide occludee object regression.

More specifically, an input image is first processed by the ResNet
backbone to extract intermediate convolutional features for down-
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Occluder Branch

bbox

Occludee Branch

class |+ | bbox
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Conv FCN

Conv FCN

Fig. 4. Network structure of the proposed Occluder-Occludee Relational Network (O2RNet). It consists of a feature learning backbone, Rol feature extraction, and
object detection heads with occluder and occludee branches. The Feature Expansion Structure (FES) provides expanded Rol features along with features from the

occluder branch to facilitate the detection of occludee.

stream processing. The object detection head (i.e., RPN) then predicts
bounding box proposals, which are then consumed by the occlusion
perception branches into the occluder branch and the occluee branch.
For the occluder branch, we adopt the object detection head in Faster
R-CNN [47] to output positions as well as categories for instance can-
didates and prepare the cropped Rol features for the occludee branch.
In the occludee branch, the input consists of both cropped Rol features
from the occluder branch and expanded features from FES, which is
targeted for modeling occluded regions by jointly detecting boundaries.
Essentially, the distilled occlusion features are added to the original
input Rol features and passed to the next module. Finally, the oc-
cludee branch, which has a similar structure to the occluder branch,
predicts the occludee guided by these expanded features and outputs
classes and bounding boxes for the partially occluded instances. The
occluder-occludee relational modeling is discussed in more details in
the following section.

3.3. Occluder-occludee relationship modeling

For highly overlapped apples, in typical Faster R-CNN-based models,
the generated region proposals corresponding to the partially occluded
ones may be separated into disjoint subregions by the occluder. As such,
we employed the FES to obtain boundary features from the occludee,
where expansion in each direction extends the potential proposals for
the occludee. In our implementation, we expand ¢ steps in k (k=8 in
this study) directions from the original Rol proposals, and the expanded
Rol proposals contain additional boundary features. The rationale is
that irregular occlusion boundaries unrelated to the occludee can cause
confusion to the network, which in turn provides essential cues for de-
coupling occludees from occluders. Therefore, occlusion patterns are
explicitly modeled by detecting bounding boxes of the occluders using
the occluder detection branch, and since the occludee detection branch
jointly predicts bounding boxes for the occludee, the overlap between
the two layers can be directly identified as occlusion boundary that can
thus be distinguished from the real object bounding boxes. In order to
reach this goal, the occluder modeling module is designed as a sim-
ple 3 x 3 convolutional layer followed by one FCN layer, the output of
which is fed to the up-sampling layer and one 1 x 1 convolutional layer
to obtain one channel feature map for occludee branch.

3.4. End-to-end learning

As we have two separate detection heads in the occluder and the
occludee branches, we define two loss functions in the following way.
For the occluder branch, we adopt the loss function used in Faster R-
CNN [47], which defines a multi-task loss on each sampled region of
interest as

LOccluder = Lcls + Lbbox’ (3)

where L, and L,,,, are, respectively, classification loss and bounding
box loss defined in Faster R-CNN [47].

The final loss L is a weighted sum of the loss from occluder branch
and the loss from occludee branch defined as:

L= /11 LOccluder + }“2L0cclua’ee' C))

Here Ly juqe. 1S the occludee branch loss that is the sum of the k ex-
panded proposal losses, i.e.,

k
LOccludee = Z(Li'ls + LZbox)’ (5)
i=0
Here A; and 4, are two positive linear weights and 4, + k- 4, = 1, which
are tuned to balance the two loss functions. In our study, 4, was tuned
to be {1.0,0.75,0.5,0.25,0} on various trials for cross-validation.

3.5. Training and inference

During the training process, we filter out parts of the non-occluded
Rol proposals to keep occlusion cases taking up 50% for balanced sam-
pling. SGD with momentum is employed to train the model with 60K
iterations where it starts with 1K constant warm-up iterations. The
batch size is set to 2 and the initial learning rate is 0.01 with a weights
decay of 0.95. In our study, ResNet-101-FPN is used as the backbone
and the input images are resized without changing the aspect ratio, i.e.,
by keeping the shorter side and longer side of no more than 1200 pix-
els. For inference, the occludee branch predicts bounding boxes for the
occluded target object in the high-score box proposals generated by the
RPN, while the occluder branch produces occlusion-aware features as
input for the occludee branch. The one with the highest score is then
chosen as the output.
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Table 1

Performance of O2RNet on the customized apple dataset. The step is from FES, which represents how much features expanded. The evaluation uses AP, AR, and
F1-score at the different IoUs.

Model Step AP APy, APy AR ARy, AR5 F1-Score
O2RNet t=1 0.511 0.945 0.935 0.351 0.938 0.803 0.864
t=2 0.490 0.920 0.900 0.330 0.900 0.770 0.820
t=3 0.490 0.920 0.904 0.328 0.900 0.770 0.820
Table 2 2.001 —— Transfer learning
Model parameters numbers and inference time between the state-of-the-art net- From scratch
works and our proposed Occluder-occludee Relational Network (O2RNet). 1.751
Models Parameters Time 1.501
7
(x107) (ms) 1.251
wn
FCOS 2.6 80 0
o ]
YOLOvVS 4.2 30 31.00
Faster R-CNN (ResNet50) 2.6 75 0.75
Faster R-CNN (ResNet101) 4.5 100
EfficientDet-b0 0.4 35 0.501
EfficientDet-b1l 0.7 50 0.251
EfficientDet-b2 0.8 70 '
EfficientDet-b3 1.2 100
Efﬁc%entDet-M 2.1 160 0 20 40 60 80
EfficientDet-b5 3.4 250 Epoch
CompNet via VGG 1.4 920
CompNet via RPN 4.5 100 . . . . s
OZRIIert (I‘{,esNetSO) 26 80 Fig. 5. Training loss comparison between transfer learning and training from
O2RNet (ResNet101) 45 110 scratch on our model (O2RNet). The training loss with transfer learning from

4. Results and discussions
4.1. Experimental setup

In this section, we evaluate the efficacy of the proposed O2RNet
on the processed data as discussed in Section 2.1. The network hyper-
parameters, including the momentum, learning rate, decay factor, train-
ing steps, and batch size, are set as 0.9, 0.001, 0.0005, 934, and 1, re-
spectively, through cross-validation. The input image size is 1280 x 720,
which is aligned with the resolution of the camera used in our data col-
lection. To better analyze the training process, we set up 80 epochs for
training. We exploit a pre-trained model on the COCO dataset [33],
where we train on 2017train (115k images) and evaluate results on
both 2017val and 2017test-dev to pre-train model parameters. This pre-
trained model generally only takes 50 epochs to converge. By tuning the
steps 7 in FES, different results are obtained and listed in Table 1, which
shows that O2RNet with ¢ =1 leads to the best performance.

4.2. Performance comparison and analysis

To accelerate the model training on our customized dataset, we ini-
tialized parameters by transfer learning from ImageNet [11]. ImageNet
provides large-scale images in different fields (including apples) and
large- scale ground truth annotation. During the transfer learning pro-
cess, our model learned specific characteristics with an effective transfer
of features from ImageNet. Compared to randomized parameters, the
results (see Fig. 5) shows that our model converges faster as benefited
from the pretraining on a large-scale database.

Furthermore, data augmentation is another useful technique to op-
timize detection performance without increasing inference complexity.
We applied five augmentation strategies, including geometric transfor-
mations (GTs), color space transformations (CSTs), Gaussian noise injec-
tion, mixup and sharpening data augmentation, to extend our dataset.
The results are summarized in Table 3. It shows that GTs such as rota-
tion, flipping and scaling — by changing the pixel position of the image
and reordering apples in the image — improve the accuracy performance
by around 1%. Through changing color illumination and intensity of an
image, CSTs also roughly increases the performance by 1%. Due to the
sparsity of apples on some images, mixup helps enlarge apple density on

ImageNet apparently decreases and converges faster as compared with training
from scratch.

the image and enhances the accuracy by 2%. It turns out that Gausian
noise and sharpening do not help much, as they try to change textures
and increase complexities on the dataset, which generate confusing data
and is not suitable for our model. Finally, the augmentation combina-
tion of GTs, CSTs and Mixup offers the best enhancement by increasing
the accuracy of 4% on our dataset.

To better evaluate the performance of our model, we compare
our O2RNet with the-state-of-art object detection methods on our cus-
tomized apple dataset (see Table 2 for a list of benchmark models
and their number of parameters). The performance of these models
were tested on an Ubuntu 20.04 with an AMD 3990X 64-Core CPU
and a GeForce RTX 3090Ti GPU (24 GB GDDR6X memory). Besides,
the libraries Pytorch [41] and Detectron2 [66] were also used to per-
form these deep learning functions over CUDA 10 [39]. In particular,
FCOS and YOLOVS8 are representatives of one-stage detectors, achiev-
ing consistent improvement and demonstrating their effectiveness by
outperforming the SSD method [34] on several public datasets [61,4].
We also evaluate Faster R-CNN and EfficientDet since they are state-
of-the-art models with promising performance demonstrated in fruit
harvesting-related works [37,69]. We also compare O2RNet with the
state-of-the-art occlusion-aware network CompNet [15].

We then use the same experimental setup to train each model and
evaluate them on the same apple test dataset. The results are shown
in Table 4, which compares the detection precision and recall over dif-
ferent IoUs among the 14 selected models (including our O2RNet). No-
tably, in addition to FCOS, EfficientDet-b5 and Faster R-CNN achieved
decent Fl-scores of 0.83 and 0.82, respectively. Two occlusion-aware
networks, CompNet and our O2RNet clearly outperform all traditional
models with F1-scores of 0.86 and 0.88, respectively, and O2RNet clearly
shows superior performance over CompNet. It can be seen that our
O2RNet can achieve a great detection performance in the precision and
recall and subsequently the F1-score.

In our approach, we focus on advancing the accuracy of detection
for clustered apples, which shows significant challenges due to oc-
clusion. To exactly present how our O2RNet improves the detection
accuracy, we select a total 832 overlapped apples from the test dataset
as the clustered cases. Our results (see Table 5) are then benchmarked
against those 12 state-of-the-art methods mentioned before. The em-
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Performance of O2RNet on the augmented dataset. The geometric transformations consist of rotation, flipping and scaling. The color space transformations consist
of brightness and contrast shifting. Finally, all of the augmentation methods are integrated to evaluate the O2RNet.

Augmentation AP APy, APy AR ARy, AR5 F1-Score
Base 0.51 0.92 0.90 0.35 0.91 0.80 0.84
Geometric transformations (GTs) 0.52 0.93 0.91 0.35 0.91 0.80 0.85
Color space transformations (CSTs) 0.52 0.93 0.91 0.35 0.91 0.81 0.85
Gausian noise 0.48 0.91 0.90 0.34 0.91 0.80 0.83
Mixup 0.52 0.93 0.92 0.35 0.92 0.81 0.85
Sharpening 0.52 0.92 0.90 0.35 0.91 0.80 0.84
GTs+CSTs+Mixup 0.52 0.96 0.94 0.36 0.94 0.83 0.88
All 0.52 0.94 0.92 0.36 0.92 0.83 0.86
Table 4
Performance comparison of our own models and other 12 state-of-the-art deep learning models on the customized apple dataset.
Models AP APy, APy AR ARy, AR5 F1-score
FCOS [1] 0.48 0.89 0.87 0.34 0.87 0.78 0.80
YOLOVS [25] 0.48 0.90 0.87 0.32 0.86 0.77 0.81
Faster R-CNN ResNet50 [38] 0.48 0.89 0.87 0.32 0.87 0.78 0.81
ResNet101 [38] 0.49 0.94 0.93 0.31 0.84 0.75 0.82
EfficientDet EfficientDet-b0 [40] 0.45 0.89 0.85 0.30 0.82 0.71 0.77
EfficientDet-b1 [40] 0.45 0.89 0.86 0.30 0.82 0.72 0.77
EfficientDet-b2 [40] 0.46 0.89 0.87 0.30 0.82 0.73 0.78
EfficientDet-b3 [40] 0.49 0.93 0.91 0.32 0.84 0.75 0.81
EfficientDet-b4 [40] 0.50 0.94 0.92 0.34 0.88 0.78 0.82
EfficientDet-b5 [40] 0.50 0.95 0.93 0.34 0.88 0.78 0.83
CompNet CompNet via VGG [70] 0.50 0.94 0.92 0.36 0.94 0.80 0.85
CompNet via RPN [15] 0.51 0.95 0.94 0.35 0.94 0.80 0.86
O2RNet O2RNet-ResNet50 0.50 0.93 0.91 0.35 0.91 0.80 0.84
O2RNet-ResNet101 0.52 0.96 0.94 0.36 0.94 0.83 0.88
Table 5
Performance comparison of our own models and other 12 state-of-the-art deep learning models on the 832 clustered apples.
Models AP APy, APy AR ARy AR F1-score
FCOS [1] 0.29 0.71 0.63 0.22 0.69 0.53 0.57
YOLOVS [25] 0.36 0.76 0.69 0.22 0.71 0.59 0.64
Faster R-CNN ResNet50 [38] 0.33 0.71 0.65 0.21 0.68 0.59 0.62
ResNet101 [38] 0.36 0.75 0.69 0.23 0.70 0.61 0.65
EfficientDet EfficientDet-b0 [40] 0.30 0.71 0.64 0.30 0.65 0.57 0.60
EfficientDet-b1 [40] 0.30 0.71 0.64 0.21 0.65 0.58 0.61
EfficientDet-b2 [40] 0.32 0.72 0.66 0.21 0.67 0.59 0.62
EfficientDet-b3 [40] 0.34 0.74 0.67 0.21 0.68 0.59 0.63
EfficientDet-b4 [40] 0.36 0.75 0.69 0.23 0.70 0.61 0.65
EfficientDet-b5 [40] 0.36 0.76 0.69 0.24 0.71 0.61 0.65
CompNet CompNet via VGG [70] 0.36 0.75 0.69 0.24 0.69 0.61 0.65
CompNet via RPN [15] 0.38 0.77 0.71 0.26 0.72 0.63 0.67
O2RNet O2RNet-ResNet50 0.44 0.85 0.80 0.31 0.80 0.71 0.75
O2RNet-ResNet101 0.46 0.87 0.82 0.33 0.82 0.72 0.77

pirical results demonstrate that our method outperforms the existing
state-of-the-art methods with an increase of 11%, 9% and 10% in terms
of precision, recall and F1-score. Some representative inference results
are shown in Fig. 6. This superior performance is indicative of the effi-
cacy of O2RNet in dealing with the clustered cases in the complex apple
orchard through enhancing the boundary features of overlapped apples.

5. Conclusion
In this study, we collected a comprehensive apple dataset under

different lighting conditions and at various occlusion levels from two
orchards. A novel Occluder-Occludee Relational Network (O2RNet) was

developed to robustly detect clustered apples from the dataset. Our
developed O2RNet significantly reduced false detection and improved
the detection rate by embedding relationships between the occluder
and the occludee. As a result, our model consistently outperformed
12 other state-of-the-art models when evaluated using our apple im-
age dataset. It was found that transfer learning and data augmentation
techniques were useful tools to enhance learning efficiency and model
performance.

Our future work will include the incorporation of foliage informa-
tion in the network design to further improve the detection performance
since the current work only focused on clustered apples. Furthermore,
branch detection will be developed to provide necessary contextual in-
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Fig. 6. Results from six models on the various lighting conditions and occlusions.

formation for the robot to maneuver, e.g., avoiding collisions with tree
branches. Lastly, we will also investigate whether artificial lighting aug-
mentation can enhance the detection performance.
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