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ABSTRACT. We show that the cohomology ring of a finite-dimensional complex pointed
Hopf algebra with an abelian group of group-like elements is finitely generated. Our
strategy has three major steps. We first reduce the problem to the finite generation
of cohomology of finite dimensional Nichols algebras of diagonal type. For the Nichols
algebras we do a detailed analysis of cohomology via the Anick resolution reducing the
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we turn to the classification of Nichols algebras of diagonal type due to Heckenberger.
In this paper we complete the verification of these combinatorial properties for major
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all the theoretical foundations necessary for the case-by-case analysis. The remaining
discrete families are addressed in a separate publication. As an application of the main
theorem we deduce finite generation of cohomology for other classes of finite-dimensional
Hopf algebras, including basic Hopf algebras with abelian groups of characters and finite
quotients of quantum groups at roots of one.
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1. INTRODUCTION

1.1. Antecedents. A fundamental result in representation theory of a finite group scheme
[F'S, Theorem 1.1] is that its cohomology satisfies the finite generation property. Using
the language of Hopf algebras it can be phrased as follows. Let H be a finite-dimensional
cocommutative Hopf algebra over a field k. Then

(fgc-a) The cohomology ring H(H, k) is finitely generated.
(fge-b) For any finitely generated H-module M, H(H, M) is a finitely generated module
over H(H, k).

Prior to the Friedlander-Suslin theorem, the result was known for group algebras of
finite groups [G, V, Ev]|, restricted enveloping algebras [FP, AJ] and finite dimensional
subalgebras of the Steenrod algebra [Wi]. At the end of the introduction of [FS], the
authors observe that the cohomology ring of a finite-dimensional commutative Hopf algebra
is easily seen to be finitely generated using the structure as in [Wa| and add:

We do not know whether it is reasonable to expect finite generation of the
cohomology of an arbitrary finite-dimensional Hopf algebra.

Slowly, evidence confirming that this is indeed a reasonable question has emerged. In
[GK] the cohomology ring of Lusztig’s small quantum groups u,(g) (in characteristic 0)
under some restrictions on the parameters was identified as the coordinate ring of the
nilpotent cone of the Lie algebra g. The restrictions on the parameters were weakened in
[BNPP]. The finite generation of cohomology was established for the duals of Lusztig’s
small quantum groups (in characteristic 0) [Go], for Lusztig’s small quantum groups in
positive characteristic [Drul], for finite supergroup schemes [Dru2], for finite-dimensional
complex pointed Hopf algebras whose group of grouplike elements is abelian and has order
coprime to 210 [MPSW], for some pointed Hopf algebras of dimension p* [NWW, EOW]
(in characteristic p > 0), for the bosonizations of the Fomin-Kirillov algebra FK3 with the
group algebra of Sz and its dual [SV], for Drinfeld doubles of finite group schemes [FN, NJ.
In all the cases above, the approach is based to a greater or lesser extent on the knowledge
of the structure of the Hopf algebras under consideration.

Finite tensor categories were introduced in [EO], where it was also conjectured that
finite generation holds in this more general context. A systematic study of this question
was started in [NP].

1.2. The main result and applications. In the present paper we work over an alge-
braically closed field k of characteristic 0. For brevity we shall say that an augmented
algebra H has finitely generated cohomology (abbreviated as fgc) when both (fge-a) and
(fge-b) hold. Our main result is the following:

Theorem 1.2.1. Let H be a finite-dimensional pointed Hopf algebra whose group of group-
like elements is abelian. Then H has finitely generated cohomology.

The class of finite-dimensional pointed Hopf algebras is the best understood and the
subclass of those with abelian group of group-like elements is the only one whose classifica-
tion is essentially complete. Theorem 1.2.1 goes beyond the situation treated in [MPSW]
but uses the same approach to the classification of pointed Hopf algebras proposed in
[AS1, AS2]. Let us mention the main differences between the setting of [MPSW], that
invoked the classification result [AS3], and the present work. In the former, the associated
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braided vector space V' (described below) was of Cartan type and the deformations of the
defining relations in the liftings took values in the group algebras. These restrictions, in
the terminology introduced in [NPe], guaranteed that the Nichols algebra Z(V) had a
smooth integration @ — (V') by an algebra of finite global dimension. That property,
though not stated as explicitly, was crucial for the techniques in [MPSW]. When the re-
striction on the order of the group of group-like elements G(H) is dropped, V' belongs to
the list in the celebrated classification of [H2] but is not necessarily of Cartan type. The
defining relations of the Nichols algebras and their deformations are more involved, see
[Anl, An2, AAG, AnG, GalJ, He] and conceptually different resulting in the absence of the
crucial smooth integration property. In particular, as our results demonstrate, generating
classes of the cohomology ring of a general Nichols algebra of diagonal type can lie in arbi-
trary large degrees whereas in the context of [MPSW] and whenever the algebra is smoothly
integrable, generating classes lie in degree 2. We do have control over the degrees of the
generators: they depend on vanishing of certain coefficients as stated in Remark 6.1.1. In
the very computationally heavy Section 10 we calculate these coefficients which turn out
to be quantum integers determined by the defining parameters of the Nichols algebra. By
choosing different Nichols algebras from the classification list one can obtain various high
values for the minimal degrees of the generators of the cohomology ring. Hence, handling
this more general case of all Nichols algebras of diagonal type calls for development of new
techniques which we present in this work.

We state two direct applications of Theorem 1.2.1 extending further the number of types
of finite-dimensional Hopf algebras with finitely generated cohomology. We also observe
that Theorem 3.1.7 provides another class of Hopf algebras satisfying fgc.

Theorem 1.2.2. Let H be a finite-dimensional basic Hopf algebra whose group of char-
acters is abelian. Then H has finitely generated cohomology.

Basic Hopf algebras with abelian group of characters are just the duals of the Hopf
algebras in Theorem 1.2.1; thus Theorem 1.2.2, that generalizes [Go], follows from Theorem
1.2.1, Lemma 2.1.1, Corollary 3.2.3 and Theorem 5.0.6.

Theorem 1.2.3. Let H be a finite-dimensional Hopf algebra that fits into an extension
k- K — H — L — k, where K is semisimple and L is either pointed with abelian group
of group-like elements or else basic with abelian group of characters. Then H has fgc.

Theorem 1.2.3 follows from Lemma 3.2.5 and one of the previous two theorems. Quo-
tients of algebras of functions on quantum groups at roots of one (of various kinds) were
classified in [AG, Ga, GaG]. In particular, these results provide families of Hopf algebras
H that fit into an extension k — kl¢! - H — L — k where G is a finite group and L
is a finite-dimensional basic Hopf algebra with abelian group of characters; thus Theorem
1.2.3 applies to them.

1.3. Scheme of the proof of Theorem 1.2.1. Let H be a finite-dimensional pointed
Hopf algebra with abelian group of group-like elements I' := G(H) so that the coradical
of H is Hy ~ kI'. Let D(H) be the the Drinfeld double of H, let gr H be the graded
Hopf algebra associated to the coradical filtration and let V' be the infinitesimal braiding
of H, see §2.2. We know that gr H ~ A(V)#kI' [An2]. Then the Nichols algebra Z(V)
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is finite-dimensional. We shall use V# = Homy(V, k) to denote the k-linear dual. The key
point in the proof of Theorem 1.2.1 is the following.

Theorem 1.3.1. Let U be a braided vector space of diagonal type such that the Nichols
algebra B(U) has finite dimension. Then B(U) has fgc.

This Theorem being proved, the rest of the proof proceeds in the following steps:

Theorem 1.3.1 =—= B(V), B(V#) have fgc Lheorem 310, gr H, (gr H)# have fgc

Theorem 5.0.6

Theorem 3.2.1 D(gr H) has fgc

Th, 2.2.4
H has fgc Lo

D(H) has fgc

1.4. Finite-generation of cohomology for Nichols algebras. We next outline the
proof of Theorem 1.3.1 referring to §2.3 for unexplained terminology.

1.4.1. Reduction to the connected case. By Theorem 5.0.1, we conclude that Theorem 1.3.1
holds for U if and only if it holds for U; for every connected component J € X
We assume for the rest of this Subsection that the Dynkin diagram of U is connected.

1.4.2. The Anick resolution. The Nichols algebra Z(U) has a convex PBW-basis, hence
a suitable filtration. Its associated graded ring gr (U) is a quantum linear space. The
cohomology ring of gr #(U) is well-known, but we provide a computation using the Anick
resolution [Ani| specifically in order to relate it to permanent cycles in a suitable spectral
sequence. See §4.3.

Since the Anick resolution is compatible with the mentioned filtration on Z(U), we
may use a spectral sequence argument based on Evens Lemma 3.3.2 to reduce the finite
generation of H(#A(U),k) to the verification of the following statement.

Condition 1.4.1. For every positive root v € AE{, there exists L, € N such that the
*
cochain (xﬁ”) is a cocycle, that is, represents an element in H(A(U), k).

*

The elements (Xﬁ”) are cochains of the complex Hom(C\(#A(U),k) which computes

H(#A(U),k) and are defined prior to Theorem 4.4.3. If Condition 1.4.1 holds, then Theorem
4.4.3 implies that #(U) has fgc.

1.4.3. Reduction to Weyl-equivalence. In practice, given U we shall prove that Condition
1.4.1 holds for any braided vector space with the same Dynkin diagram as U, particularly
for U#. Let G be any finite abelian group such that U is realized in ﬁg)ﬁl). By Theorem
3.1.6 and Theorem 5.0.6 we see that D(Z(U)#kG) has fgc.

We apply this last claim as follows: let U’ be a braided vector space of diagonal type
which is Weyl-equivalent to U (see § 2.3.2). This implies that U’ is realized as Yetter-
Drinfeld module over G and there is an algebra isomorphism

D(B(U)#kG) ~ D(B(U"#kG).
By Corollary 3.2.2 B(U’) has fge. That is, we only need to deal with one representative

of each Weyl-equivalence class which drastically reduced the amount of computations we
need to perform to finish the proof.
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1.4.4. Verification of Condition 1.4.1. We argue case-by-case using the list of [H2]; by the
preceding discussion we just need to consider one representative in each Weyl-equivalence
class—and we could choose the most convenient for our purpose. We also argue recursively
on dimU. All in all, we reduce the verification to claims on Nichols algebras of diagonal
type, see §6.2 and we deal with them using information on the PBW-basis from [AA].

1.5. Future directions/applications. We expect that our methods can be applied to
prove fgc property for finite-dimensional Hopf algebras beyond the setting of Theorem 1.2.1,
for instance, pointed but with non-abelian group of group-like elements G(H). We outline
here the steps which will need to be taken to follow our general strategy.

Let H be a finite-dimensional Hopf algebra whose coradical Hy is a Hopf subalgebra.
Let V' be the infinitesimal braiding of H. Then gr H ~ R#H, where R is a connected
graded Hopf algebra in the category of Yetter-Drinfeld modules over Hy, gg YD, and #(V)
is a graded Hopf subalgebra of R. To prove that H has fgc following the scheme presented
in 1.3 one would need to address these problems:

(i) Prove that Z(V) and Z(V#) have fgc.

(ii) Is R = A(V)? (in all known examples in characteristic 0 the answer is positive). If
not, prove that R and R have fgc.

(iii) Prove Lemma 3.1.4 for any semisimple Hopf algebra (and not just for group algebras
and their duals). Together with (i) this would give that gr H, (gr H)# have fgc.

(iv) Extend Theorem 5.0.6 to prove that D(gr H) has fgc. Even in the pointed case, we
would need Lemma 3.1.4 for D(kG(H)) to prove this conjectural extension.

(v) Is H a cocycle deformation of gr H or at least Morita equivalent to gr H as in §2.17
(in all known examples in characteristic 0 the answer is positive). This would imply
that D(H), and a fortiori H, have fgc since Theorem 3.2.1 holds in general.

We also notice that a large part of this approach could be used in positive characteristic
under appropriate assumptions, e.g. the coradical Hy needs to be a semisimple Hopf
subalgebra.

1.6. Organization of the paper. Part I starts with a recollection of facts on Hopf and
Nichols algebras in Section 2. Section 3 contains several preliminary results on cohomology
including the passage from the cohomology of Z(V') to the cohomology of Z(V)#kI" and
versions of the Evens Lemma and the May spectral sequence crucial for our arguments.
Section 4 presents the Anick resolution and the reduction to Condition 1.4.1. In the last
Section 5 of this Part it is shown that the Drinfeld double of Z(V)#kI" has fgc provided
that #(V') has via considerations of cohomology for twisted tensor products.

Parts II is devoted to the proof of Condition 1.4.1. Section 6 presents the strategy of the
verification with proofs of technical Lemmas postponed to Section 10. We verify Condition
1.4.1 for finite-dimensional Nichols algebras of diagonal type belonging to families with
continuous parameter. We proceed case by case in Sections 7, 8 and 9 corresponding
respectively to classical (Cartan, standard and super) types, exceptional (Cartan, standard
and super) types, and Nichols algebras with the same root systems as the modular Lie



COHOMOLOGY RINGS OF FINITE-DIMENSIONAL HOPF ALGEBRAS 7

algebras wk(4) and br(2). The remaining Nichols algebras of diagonal type are dealt with
in a separate publication [AAPPW] of more computational nature.

1.7. Conventions. For ¢ < 6 € Ng, we set [yp = {¢,0+1,...,0}, Iy =1, 9. Let Gy be
the group of roots of unity of order N in k and G’y the subset of primitive roots of order
N; Goo = UnenGn and G, = Goo — {1}. If L € N and ¢ € k*, then (L), := Z]L:_ol ¢

All vector spaces, algebras and tensor products are over k. We use V# to denote the
linear dual to a vector space V, V# = Homy (V) k).

By abuse of notation, (a; : i € I) denotes either the group, the subgroup or the vector
subspace generated by all a; for ¢ in an indexing set I, the meaning being clear from the
context. Instead, the subalgebra generated by all a; for i € I is denoted by k{a; : i € I).

If A is an associative augmented algebra and M is an A-module, then we set

H™(A, M) = Ext"(k, M), H(A, M) = @pen, H' (A, M).

Then H(A, k) = ®nen, H"(A4,k) is isomorphic to the Hochschild cohomology HH(A, k) =
BrneNy Ext’ig 400 (A, k) via an equivalence of bar complexes; see for example [MPSW,
(2.4.1)].

Let P.(A) be the normalized bar resolution of k in the category of left A-modules and
let 2*(A) = Homa(Pi(A),k), in particular Q"(A) = Homy(A$", k), where A4 is the
augmentation ideal.

Let T = Hom,,(I",k*) be the character group of an abelian group I'.
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Part I. From cohomology of Nichols algebras to cohomology of Hopf algebras
2. FINITE-DIMENSIONAL HOPF ALGEBRAS

2.1. Morita equivalence of Hopf algebras. In this subsection, no restrictions on the
the field k are needed. Let H be a finite-dimensional Hopf algebra. We refer to [R] for
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the definitions of the Drinfeld double D(H) of H and of the (braided tensor) category
ZJ}D of Yetter-Drinfeld modules over H. It is well-known that g)ﬂD is the Drinfeld center
of the category of H-modules and that it is braided tensor equivalent to the category of
D(H)-modules.

Let H' be another finite-dimensional Hopf algebra. Borrowing terminology from [Mu,
ENO|, we say that H and H' are Morita equivalent, denoted H ~y\jor H', if there is an
isomorphism of quasitriangular Hopf algebras D(H) ~ D(H’). This is not the same as
Morita equivalent as algebras!

Lemma 2.1.1. H is Morita equivalent to H' in the following cases:

(a) H' ~ H¥, the dual Hopf algebra.

(b) H' ~ HY is a twist of H [Dr, Re|, i.e. there exists F € H ® H invertible such that
HY = H as algebra and has the comultiplication A¥ = FAF~L.

(¢c) H ~ H, is a cocycle deformation of H [DoT], i.e. there exists an invertible 2-cocycle
o:H®H — k such that H, = H as coalgebra and has the multiplication x -5 y =

o(z) @ Y1) T2y H(TE) @ ys))-

Proof. (a) This follows from [AGr, Proposition 2.2.1] because of the identification of the
category of Yetter-Drinfeld modules over H with the category of representations of D(H)
as mentioned in Subsection 2.1. (b) follows since the categories of H and H*'-modules
are tensor equivalent [Dr, p. 1422]. Finally (c) is a consequence of the preceding, as
(H,)" ~ (H#)F where F = o in H" @ H¥. O

2.2. The role of Nichols algebras. Even though our primary interest is in cohomology
of finite dimensional Hopf algebras, the Nichols algebras which originated in independent
work of Nichols and Woronowicz show up very naturally in our study. Here we give a
very brief account of the general approach to the classification of finite dimensional Hopf
algebras over an algebraically closed field k of characteristic 0, highlighting the importance
of Nichols algebras in their structure. The reader can find all the precise definitions and
details in the surveys [AS2, A].

Let H be a Hopf algebra, Hy its coradical [R] and H|g) = k(Ho) its Hopf coradical, a
Hopf subalgebra of H [AC]. The classification of finite-dimensional Hopf algebras can be
organized in four classes, according to the relative behavior of Hy and Hg:

(a) H = Hy, i.e. H is cosemisimple. (c) H # Hyg = Ho.
(b) H = Hjp) # Ho. (d) H # Hyp) # Ho.

Hopf algebras in class (a) are semisimple by a theorem of Larson and Radford. Albeit
families of examples and some classification results in low dimension are known, no system-
atic approach to the classification is available. Being semisimple, they are not interesting
for our cohomology explorations since cohomology simply vanishes in positive degrees.

Similarly to (a), the class (b) has no proposed method to deal with the classification,
but contrary to (a), cohomology rings are far from trivial. Even though there is no classifi-
cation, many examples are known; some of them have the fgc property by Theorem 1.2.2.

Hopf algebras in classes (c¢) and (d) have interesting cohomology rings and this is where
Nichols algebras become highly relevant. The approach we develop allows us to deal with
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class (c) under some additional assumptions on Hy though we expect that it can be applied
more generally. The class (d) is not as rigidly structured as the class (c¢) and even though
the Nichols algebras still play a central role we do not know enough about the structure
to make conclusions about cohomology yet. We will mention a little bit more about case
(d) towards the end of this subsection.

Now let us consider case (c¢) which is the case of interest for this paper. If H is in class
(c) then Hy is a proper Hopf subalgebra. Let gr H be the graded Hopf algebra associated
to the coradical filtration of H; then

(2.2.1) or H ~ R#H,

where R = ©pen,R" is a connected graded Hopf algebra in the braided monoidal category
ZgyD, called the diagram of H. We also say that H is a lifting of R, or of R#Hy. Then
R is coradically graded, hence its subalgebra generated by V := R! is isomorphic to the
Nichols algebra Z(V); see [AS2] for details. The braided vector space V' is an important
invariant of H called its infinitesimal braiding.

We make the following additional assumptions on H. Assume that H is pointed, that
is Hy = kI'; also assume that I is abelian. In that case the infinitesimal braiding V is of
diagonal type (see Subsection 2.3). Then the following two properties hold:

(2.2.2) R~ B(V),
Jo :gr H ® gr H — k such that (gr H), ~ H.

The first property (2.2.2) holds by [An2, Theorem 2], see also [AS3, Theorem 5.5]; notice
that the proof uses the classification in [H2] and the main result on convex orders from
[Anl]. The second property (2.2.3) holds by [AnG, Theorem 1.1], based on previous studies
of the lifting question and the explicit relations from [An2, Theorem 3.1], that again uses
[H2, Anl]. Summarizing, we get the following structure theorem:

Theorem 2.2.4. Let H be a finite-dimensional pointed Hopf algebra such that the group of
group-like elements G(H) is abelian. Then H is a cocycle deformation of the bosonization
of a Nichols algebra of diagonal type: H ~ (B(V)#kG(H)),. Hence H ~ por gr H. O

The theorem implies that to verify fgc for H it suffices to verify it for the Nichols
algebra Z (V') and for the Drinfeld double D(gr H) which is what we do in Theorem 3.1.7
and Corollary 3.2.3.

We point out that (2.2.2) and (2.2.3) have been verified in most known examples in
class (c¢) beyond pointed Hopf algebras with abelian group of group-like elements and are
expected to hold generally. Hence, generalizing Theorem 3.1.7 and Corollary 3.2.3 to the
other cases in class (c) one should be able to reduce the question of fgc for H again to the
same question for #(V') and the Drinfeld double for gr H. We do not pursue this direction
in this paper but we do expect our methods to be fruitful in these cases as well, potentially
allowing one to finish off proving fgc property for all Hopf algebras in class (c).

Finally, let H be in class (d). Then one considers the graded Hopf algebra gr H associ-
ated to the standard filtration of H [AC]; again
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where R = @©pen,R" is a connected graded Hopf algebra in the braided monoidal category
H
Hg YD. But it is not known whether R is coradically graded, or its subalgebra R’ generated

by V := R! is isomorphic to the Nichols algebra %(V). We do know that Z(V) is a
quotient of R’ but the present approach does not allow to reduce the question of finitely
generated cohomology for H to the analogous question for Z(V'). So fgc property for class
(d) is completely open.

2.3. Nichols algebras of diagonal type. Since finite-dimensional Nichols algebras of
diagonal type are central in this paper, we present here the features more relevant for
our goals and refer to [AA] for an exposition. The input is a matrix of non-zero scalars
q = (qij)ijer where I = I, # € N. To this datum we attach a braided vector space of
diagonal type V with a basis (z;);er and braiding ¢ € GL(V ® V') given by

Cq(ﬂfi X l‘j) = qijT; Q T4, 1,7 € L.
The corresponding Nichols algebra is a graded connected algebra with strong properties

denoted here mostly as %, instead of (V). For these Nichols algebras substantial infor-
mation is available.

2.3.1. Dynkin diagrams and positive roots. We codify as usual the matrix q in a (gener-
alized) Dynkin diagram D with vertices numbered by I and labelled with g;;, while two
different vertices ¢ and j are joined by an edge only if g;; := ¢;;¢;; # 1 in which case the
edge is labelled with g¢;;:

(2.3.1) G i 9

( J
Two different matrices with the same Dynkin diagram are called twist-equivalent [AS2].

The Nichols algebra %, has a very useful Nﬂo—grading given by the rule degx; = a;, ¢ € 1,
where ()1 is the canonical basis of Z?. By [Kh, Theorem 2.2], Ay has a PBW basis

B:{s?...sft:teNg, siES,sl>~->st,0<ei<h(si)}.

where S is an ordered set of Nj-homogeneous elements and h : S — NU {oo} is a function
called the height. The following set does not depend on the choice of B:

A% = {degs:s € S} CNj.

Occasionally we set AY = A%. The elements of A} are called the (positive) roots of %;.
We assume from now on that

dim %, < 0.

Then Al is a finite set and the map S — Al, s +— deg s, is bijective. Also Al admits a
convex (total) order in the sense

a,Ba+pBeAl a<f = a<a+fB<p.

See [Anl]. The convex order is not unique; in the case-by-case analysis below we use that
of [AA] except when a more suitable choice is possible that we mention explicitly.
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A connected component of D is a subset J of I such that the matrix q; = (¢;j)i jes gives
rise to a connected Dynkin subdiagram Dj; of D and is maximal with this property. Let
X be the set of connected components of D. For J C I, we say that a positive root (an
element of Ai) is supported on J if it belongs to the subset NO‘] C NHO where the containment
is induced by the inclusion J C I. We say that a root has full support if it’s not supported
on any proper subset of I. If J C I, we identify A’ with the subset Af of A of roots
with support in J. We also denote by V; the subspace of V' spanned by (z;);es. By a
result of Grana, we have

(2.3.2) By~ Q) By, Al =[] af.
—JeX Jex

Here ® means the braided tensor product of algebras.

2.3.2. Weyl equivalence. Let q be such that dim %; < oo and let G be a finite abelian group
such that (V, ¢7) is realized in £4YD. Given i € I, one defines a matrix p;(q) by a precise rule
[H1] or [AA, (2.25)]. Then, although the matrices q and p;(q) might be quite different, there
is an algebra isomorphism T; : D(%,#kG) — D(%,,q)#kG), see [H1]. The assignments
q +— pi(q), for all i € I, generate the so-called Weyl groupoid of q [H1]. Two matrices q and
q are Weyl-equivalent if there exists a sequence i1, ...,iy € I such that ' = p;, ... pi.(q).
In this case one also says that the braided vector spaces (V,¢) and (V',c") are Weyl-
equivalent. Hence there is an algebra isomorphism D(Z,#kG) — D(Zy#kG). See [AA,
Section 2.6] for an exposition.

2.3.3. Classification. The classification of the matrices q such that dim.%; < oo was
achieved in [H2] (the result is slightly more general). By the preceding discussion we
may assume that D is connected. As in [AA] we organize the classification in 4 types:

(a) Cartan type. (c) Modular type.
(b) Super type. (d) UFO type.

The type refers to the connection with different parts of Lie theory, see loc. cit. We
shall check Condition 1.4.1 for each entry of the classification of [H2].

2.3.4. Root vectors. For brevity, we set

(2.3.3) zij = ade (), i #j el

more generally, the iterated braided commutators are

(2.3.4) Tivigeip = (ade i) -+ - (ade iy, ) (24, ), 1,00, - ,i € L.
In particular, we will use repeatedly the following further abbreviation:

(2.3.5) T(k1) = Tk (k+1) (k+2)..1> k<l

Using a fixed convex order, we define the root vector z, € %, for every a € Ai as
iterated braided commutators proceeding case-by-case, see [AA].
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For those q with dim %, < oo, the defining relations of %, were given in [Anl, An2],
again see [AA], but these are not needed in this paper. Instead, we use systematically that
fora< g € Ai and a suitable defined g, € k*, we have

(2.3.6) TaZB — quBTRTa € Z K, Ty o 2y,
a<y <y <<y <feA]

See [Anl, Theorem 4.9], inspired by the original work of [DCK].

2.4. Realizations. Let I" be a finite abelian group. A Yetter-Drinfeld module V' over kI’
is determined by families (g;)ic1, of elements of I' and characters (x;)ic1, in [. Then V is
a braided vector space of diagonal type with braiding matrix q = (¢s;)i jer with respect to
a basis (z;)icr, i.e. c(z; ® x5) = ¢ijr; @ zy, i,j € I, where ¢;; = x;(g;). That is, the same
braided vector space V' with braiding matrix q = (g;;): jer can be realized in many ways
over many I'. Even more, it can be realized over other Hopf algebras than group algebras
over abelian groups. To discuss the possible realizations we need the notion of a YD-pair.

Let H be a Hopf algebra. A pair (g,x) € G(H) x Homyz(H,k) is a YD-pair for H if

(2.4.1) x(h) g = x(h@))ha)gS(hes)), h e H.

When this is the case, g € Z(G(H)); also ky =k with action and coaction given by x and
g respectively, is in gyD. YD-pairs classify the 1-dimensional objects in g)ﬂD. Note that,
if dim H < oo, then (g, x) is a YD-pair for H if and only if (x, g) is a YD-pair for H#.

Definition 2.4.2. Let V be a braided vector space of diagonal type with braiding matrix
q = (gij)ije1- A principal realization of V over H is a family (g;, Xi)ier of YD-pairs such
that x;(g;) = ij, i,j € I, so that V € BYD via ka; ~ kg, and the braiding c is the
categorical one from g)}D.

Given a principal realization of V over H, we have I' := (g1, ...,90) < Z(G(H)); hence
we can also realize V' as an object in ﬁgyp.

Example 2.4.3. If T is a finite group, then the YD-pairs of H = kI" are of the form (g, x) €
Z(I") x Homgp(I', k). For example, for I' = GL,,(Fp), the YD-pairs are (diag(t), ¢ det™),

where t € FX and ¢ € Fy.

Example 2.4.4. Not every realization is principal: if ¢ € Z(I') and p € IrrepI' with
dimp = d > 1 and p(g) = (id, then the simple Yetter-Drinfeld module M(g,p) [A,
Example 24] is a braided vector space of diagonal type with braiding matrix (g;;); jer,
where ¢;; = ¢ for all 7,5. Other examples arise from simple Yetter-Drinfeld modules
M(g, p) such that the elements in the conjugacy class of g commute with each other.

2.5. The Drinfeld double of a bosonization. Recall that chark = 0. Let £ be a Hopf
algebra whose coradical Ly is a Hopf subalgebra and let ‘H be another Hopf subalgebra of
L. Then Ho = Lo NH by [R, 4.2.2] and this is a Hopf subalgebra of H. By [R, 4.4.11] we
have an injective map of graded Hopf algebras gr H — gr L. Let R and S be the diagrams
of H and L respectively, see (2.2.1). Hence we have an injective map of graded braided
Hopf algebras R — S.
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Let £ be a finite-dimensional Hopf algebra. The Drinfeld double of £, denoted by D(L),
is a Hopf algebra whose underlying coalgebra is £L&® £#°P. Let <—, —> : L&L* — k denote
the evaluation map. The multiplication on D(L) is given by the following formula:

(h[><]f)(h,[><]f,): <f(1)> /(1)><f(3)’5(h,(3))>(hh,(2) [><]f/f(2))7 f?fle‘c# hvhleﬁa

where hi< f := h® f in D(£) and fr = m(f ®r) is the multiplication in £# rather than
in L#°P,

Let K be a semisimple Hopf algebra, hence cosemisimple by the Larson-Radford the-
orem. Let V € KYD with dimB(V) < oo and H = #A(V)#K. Then V# € KLyD
appropriately and H# ~ B(V#)#K#. Since D(H) ~ H#*P @ H as coalgebras, the
coradical of H, respectively H#, can be identified with K, respectively K#. We identify
D(K) with a Hopf subalgebra of D(H) in a natural way.

The following result generalizes, with an analogous proof, Theorem 2.5 in [Be].

Proposition 2.5.1. The Drinfeld double D(H) is a lifting of a Nichols algebra B(W)
where W =V @ V# and V braided commutes with V.

Proof. First, the coradical D(H ) of D(H) equals D(K); this follows from [R, 4.1.8]. Hence
the coradical filtration of D(H ) is a Hopf algebra filtration and gr D(H ) ~ R#D(K), where
R = @,>oR" is the diagram of D(H). Let W = R'. By the preceding paragraph applied
to £L = D(H) and either H = H or H = H?", we have morphisms of braided vector
spaces V < W and V# — W; we have V @ V# — W by comparing the D(K)-comodule
structures. Recall that dim Z(V)dim Z(V#) < dim Z(V @& V#) and the equality holds iff
V and V# braided commute [Gr, Theorem 2.2]. Then

dim D(H) = dim #(V) dim K dim Z(V#) dim K#
< dim B(W)dim D(K) < dim Rdim D(K) = dim D(H),

hence R = Z(W) = Z(V @ V#) and V and V¥ braided commute. O

Assume next that K = kI’ where I' is a finite abelian group; recall that T is the group
of characters of I'. Then

kD' = (kT')#,
D(kT) 2 k(I x I') 2 kI’ @ (kT')#.

Let (gi)ier, and (xi)ier, be (dual) generating families in I" and r respectively. Let V €
%:y@ with a basis (x;);er such that the action and coaction of I on z; are given by y; and
g; respectively, i € I. Assume that (V') has finite dimension and let H = B(V)#kI[. Let
(yi)ic1 be the basis of V# dual to (z;)icr. Then H#“P ~ B(V#)#Kk[ where the action

and coaction of T' on y; are given by g; and x; L respectively, i € I. Also W =V & V# can

be realized in tgi%)ﬂ? extending these structures. See [Be, Theorem 2.5] for details. Let

Z(V) =ker(T(V) — AB(V)) be the ideal of defining relations of the Nichols algebra Z(V).
The following statement is well-known.
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Proposition 2.5.2. D(H) is isomorphic to the quotient of T(W)#k(T x T') by the ideal
generated by Z(V), Z(V#) and the relations

(2.5.3) ziy; — X, (90yiwi = 0ix; (gi) (1 — gixi) i,j €L

Outline of the proof. By the preceding discussion there is a morphism of Hopf algebras
T(W)#Kk(T x T') — D(H) whose kernel 7 contains Z(V), Z(V#) and the relations (2.5.3),
see the proof of [Be, Theorem 2.5]. The induced map T(W)#k(I' x f)/j — D(H) is
clearly surjective and preserves the coradical filtration. Since the associated graded map
is injective, the claim follows. O

3. COHOMOLOGY

3.1. Invariants. Let H be a Hopf algebra and A an H-module algebra. The ring of
invariants is the subalgebra

Al ={z e A:h-z=cg(h)x VYhe H}.

Let now K be a semisimple, hence finite-dimensional, Hopf algebra. Let ¢ € K be a
normalized integral, that is kt = e(k)t = tk for all k € K and (¢) = 1. In other words ¢ is
a left, hence, right, integral [Mo, 2.2.4].

Let A be a K-module algebra and let R : A — A be the Reynolds operator R(z) =t -z,
x € A. Then

o The Reynolds operator is a projector, R? = R, and im R = AX.

o R is a morphism of K-modules.

o R is a morphism of R¥-bimodules: R(zyz) = 2R (y)z, for z,z € AKX and y € A.
The following result, a variation of a classical argument by Hilbert, is well-known.

Lemma 3.1.1. Let K be a semisimple Hopf algebra. Let A = ©pen, A" be a graded K-
module algebra that is connected and (right) Noetherian. Let M be a finitely generated
A# K -module. Then AX is finitely generated and M* is a finitely generated AX -module.

Proof. Let I = A(AX), be the left ideal of A generated by the augmentation ideal of AX.
Since A is Noetherian, I is finitely generated; we may assume that I = (f1,..., far), where
f; € AK is homogeneous of degree d;. We claim that AX =k(f1,..., fas). For this we shall
prove that any f € AX homogeneous of degree d belongs to k(f1,..., far). If d = 0, this
follows by connectedness. If d > 0, then we may write f = >, a; f; with a; either 0 or else
homogeneous of degree d — d;. Then f = R(f) = >, R(ai)fi and R(a;) € k(f1,..., fm)
by the recursive hypothesis, so f € k(fi,..., far).

For the module statement, note that the hypothesis of [Mo, Theorem 4.4.2] holds; namely
the map denoted there ¢ is the Reynolds operator R. Hence A is a right Noetherian AX-
module, and thus finitely generated over AX. Thus M is a Noetherian A¥-module. Since
M¥E is an A¥-submodule, it is also Noetherian, therefore finitely generated over AX. [

If R is an H-module algebra, then H acts on Q*(R) via the comultiplication and the
antipode, and a fortiori on H(R, k). The following proposition is well-known.
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Proposition 3.1.2. Let K be a semisimple Hopf algebra and let R be a finite-dimensional
K-module algebra. Let M be an R#K-module. Then

H(R#K,k) ~ H(R, k)X, H(R#K,M) ~ H(R, M)¥,
and the action of H(R#K,k) on H(R#K, M) is precisely that induced by the isomorphisms
and the action of H(R,k) on H(R, M).

Proof. This is well-known; the first isomorphism is for example [SV, Theorem 2.17]. In
case K is a group algebra, the relevant spectral sequence is the Lyndon-Hochschild-Serre
spectral sequence [Ev, §§7.2, 7.3] which collapses since K is semisimple. O

Now we pass to algebras in gyD. An algebra A in gyD is braided commutative if the
multiplication m 4 satisfies ma = maca 4, that is

(3.1.3) ry = (2(—1) - ¥)Z(0), x,y € A.

If A is braided commutative, then A is central in A. We elaborate on an idea of [MPSW];
for this we do not need the commutativity of .

Lemma 3.1.4. Let I' be a finite group and let A be a braided commutative algebra either
mn HEIE))D or in ﬁ?)ﬂD. Assume that A is finitely generated (as an algebra). Then A is
Noetherian.

Proof. Let N be the exponent of I'. We deal first with ﬂg)ﬂ). As an object in ﬂg)ﬂ),
A is T-graded: A = @g4erAy. Thus, if A = k(f1,..., fu), then we may assume that
each f; belongs to A,y for some g; € I Then fiN € AgN = A.. Since A is braided
commutative, f¥ f; = (g7 - f;) N = f;fN for alli,j. Then B =k(f{¥,..., fi¥) is a central
subalgebra of A and is Noetherian by Hilbert’s Basissatz. Now A is a finitely generated
B-module, actually A = o, .x B St fi . Thus A is a Noetherian B-module hence
a Noetherian algebra. We deal next with ﬁﬁyn Since H = k' has a basis of idempotents
dg, g € I', again A is I'-graded: A = @g4crAy where Ay = 0,A. Thus, if A =k(f1,..., fu),
with each f; € Ay, for some g; € I', then le € AgN = A. = 6.A. But . is the integral of
k', thus again fiN € A" is central. Then we proceed as previously. ]

We wonder whether any finitely generated braided commutative algebra is Noetherian.
We need the following result from [MPSW].

Proposition 3.1.5. [MPSW, Corollary 3.13] Let H be a Hopf algebra and let R be a
bialgebra in gyD. Assume that either H or R is finite-dimensional. Then the (opposite of)
the Hochschild cohomology HH(R,K) is a braided commutative graded algebra in gyD. O

Actually [MPSW, Theorem 3.12] gives more: the claim is true if R is a bialgebra in an
abelian braided monoidal category C where the needed hom-objects exist.

Theorem 3.1.6. Let I' be a finite group and let R be a finite-dimensional Hopf algebra in
HEFJJD. f R has fgc, then so does R#KI .

Proof. By Proposition 3.1.5, Lemma 3.1.4 and the hypothesis, H(R, k) is Noetherian. Then
H(R,k)' is finitely generated by Lemma 3.1.1. By Proposition 3.1.2, H(R#kI',k) ~
H(R,k)" is finitely generated. We next prove: If M is a finitely generated module, then
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H(R#KI, M) is finitely generated as an H(R#kI', k)-module. For this, we may induct on
the length of the composition series of M, and so it suffices to prove it in case M is simple.
Let Ry denote the augmentation ideal of R. Note that Ry M is an R#kI-submodule of M
and therefore Ry M = 0 (by Nakayama), that is, M|g is a trivial R-module. We conclude
that H(R, M) is finitely generated as an H(R, k)-module. By Lemma 3.1.1, it follows that
H(R, M)¥ is finitely generated over H(R,k)¥. O

We are ready for one of our main results.

Theorem 3.1.7. Let V be a braided vector space of diagonal type such that

(a) the Nichols algebra B(V') is finite-dimensional,
(b) V is realizable over a finite abelian group,
(c) H(B(V),k) is finitely generated.

Let K be a semisimple Hopf algebra and assume that V' is realizable over K. Then
B(V)#K has fgc.

Proof. The proof is the same as for the previous result. By (b), (c), Proposition 3.1.5
and Lemma 3.1.4, H(#(V),k) is Noetherian. Then H(Z(V),k)X is finitely generated by
Lemma 3.1.1. By Proposition 3.1.2 and (a), H(B(V)#K,k) ~ H(Z(V),k)¥X is finitely
generated. The proof of the module statement is similar. O

Observation 3.1.8. If V' admits a principal realization over K, then (b) holds. Notice
. . . . - . qi1 g2
that (a) does not imply (b): take V of dimension 2 with braiding matrix

G12 922
where ¢11 € G, qi2 ¢ Goo, g22 € Gy, N,M > 1. However we do not know if V' being
realizable over K semisimple implies (b).

3.2. Subalgebras, extensions.

Theorem 3.2.1. Let R be an augmented subalgebra of a finite-dimensional augmented
algebra A, over which A is projective as a right R-module under multiplication. If A has
fgc, then so does R.

Proof. By the right module version of the Eckmann-Shapiro Lemma [Ben, Corollary 2.8.4],
for each n, and any R-module M, there is an isomorphism of vector spaces,

H™(R, M) ~ Ext",(k, Homp(A, M)) = H"(A, Homp(A, M)),

where Homp(A, M) is the coinduced right A-module. (The action is given by (f - a)(b) =
f(ab) for all a,b € A, f € Homg(A, M). Then f -a is indeed a right R-module ho-
momorphism.) These isomorphisms, one for each n, provide an isomorphism of H(A,k)-
modules H(R, M) ~ H(A, Hompg(A, M)). Now when M is a finite-dimensional R-module,
Homp(A, M) is finite-dimensional as a vector space. For M = k, a set of generators of
H(A,Homp(A, k)) as a module for H(A, k), together with the restriction to R of a set of
generators of H(A, k), generates H(R, k) as a k-algebra. For an arbitrary finite-dimensional
module M, Homp(A, M) is then a finite-dimensional module over H(A, k) and, hence, over
H(R, k). O
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If K is a Hopf subalgebra of a finite-dimensional Hopf algebra H, then H is free as a
left or right module over K with respect to multiplication by the Nichols—Zoller Theorem.
Thus Theorem 3.2.1 applies to inclusions of Hopf algebras, in particular to the inclusion
of a finite-dimensional Hopf algebra into its Drinfeld double, see [NP, Theorem 3.4]. For
further reference we state a useful application of Theorem 3.2.1.

Corollary 3.2.2. Let H be a finite-dimensional Hopf algebra and V € gyD such that
dimB(V) < oo. If D(B(V)#H) has fgc, then so does B(V).

These ideas apply in particular to Morita equivalence of Hopf algebras as in §2.1.
Corollary 3.2.3. If H ~ . H' and D(H) has fgc, then so does H'.

Question 3.2.4. Is the fgc property for Hopf algebras invariant under Morita equivalence
in the sense of §2.17

The reader might want to compare this question to [NP, Conjecture 1.1].

Lemma 3.2.5. Let k - K — H — L — k be an extension of finite-dimensional Hopf
algebras. If K is semisimple and L has finitely generated cohomology, then so does H.

The proof makes use of a variation of the classical Hochschild-Serre spectral sequence.

Proof. Let M be an L-module and N an H-module. By [CE, Chapter 16, Theorem 6.1]
there exists a convergent spectral sequence

HP(L,HY(K,N)) = HPTI(H,N).

Since K is semisimple, we have H(K, N) = 0 when ¢ > 0. Hence, the spectral sequence
degenerates giving an isomorphism H(H,N) = H(L,N¥). For N = k we immediately
get that H(H,k) = H(L,k) is finitely generated. For an arbitrary finitely generated H-
module N, we have that N¥ is a finitely generated L-module, and, hence, by assumption
H(L,N¥) is a finite H(L,k) = H(H,k)-module. O

3.3. Evens Lemma. Let R = @®,cn,R" be an Nyp-graded ring with a decreasing algebra
filtration F"R, n € Ny, compatible with the grading. We shall assume that F*R™ = 0 for i
sufficiently large. Then the associated graded ring Eo(R) = Y., F'R/F""' R is N3-graded.

Similarly, the graded FEy(R)-module associated to an Ny-graded R-module N with a
decreasing module filtration is N3-graded. Again, F'NJ = 0 for i sufficiently large. The
following proposition is [Ev, Section 2, Proposition 2.1].

Proposition 3.3.1. Let R be a graded filtered ring and N a graded filtered R-module as
above. If Eo(N) is (left) Noetherian over Eyg(R), then N is Noetherian over R. O

The following result is a non-commutative version of [MPSW, Lemma 2.5], adapted in
turn from [FS, Lemma 1.6] and inspired by early work of Evens.

Let EV? = EEF9 be a multiplicative spectral sequence of bigraded k-algebras concen-
trated in the half plane p + ¢ > 0. Recall that x € EF? is called a permanent cycle if
d;(x) =0 for all ¢ > r. More precisely, if ¢ > r, d; is applied to the image of = in F;.
Lemma 3.3.2. [Shr, Lemma 2.6]

(a) Let C** be a bigraded k-algebra such that for each fized q, CP% =0 for p sufficiently
large. Assume that there exists a bigraded map of algebras ¢ : C** — E"™ such that
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(1) ¢ makes E’" into a left Noetherian C**-module, and

(2) the image of C** in E}"™ consists of permanent cycles.
Then EY is a left Noetherian module over Tot(C**).

(b) Let Ef’q = Eé’jq be a spectral sequence that is a bigraded module over the spectral
sequence E**. Assume that Ey™ is a left Noetherian module over C** where C**
acts on E7" via the map ¢. Then EX is a finitely generated E -module. O

3.4. The May spectral sequence. Let A be a Hopf algebra equipped with an increasing
multiplicative filtration A9 C A; C As... C A. We fix a (non-canonical) vector space
splitting A ~ Ay @ A so that A/AL ~ Ay. Let (P,d) = (V,, ® A,d) be a free resolution
of the trivial module k satisfying the following properties.

Condition 3.4.1. (1) V,, is a finite-dimensional vector space, the action of A on P, is
on the last factor A.

(2) P. is equipped with an increasing filtration ... F;P, C Fi11P, .. ..

(3) For any x € F}V,, = F;(V, ® 1) :== F;P, N (V,, ® 1), we have

d(l‘) EF V1 QA+ Fi_1Vy,1® A+.

Example 3.4.2. We will apply this setting in at least two different situations.

(i) When P. is the bar resolution and F. is the coradical filtration, see Theorem 5.0.6.

(ii) When P. is the Anick resolution of k£ for #(V), and the filtration is given by the
PBW basis induced by the convex ordering of the roots, see Theorem 4.4.3. In this
case Ay = k and we identify A, with the augmentation ideal.

We set up a version of May spectral sequence analogous to the one in [GK, 5.5]. We
follow the construction in May [May] but without assuming that the module M is filtered.
Such a spectral sequence is also constructed in [BKN, §9] using a non-canonical filtration
on M induced by the filtration on A.

Theorem 3.4.3. Let A be a filtered finite-dimensional Hopf algebra , (P.,d) be a projective
resolution of the trivial module k, and assume that A and P. satisfy Condition 3.4.1. Let
M be an A-module. Then there exists a converging cohomological spectral sequence

Ey = H(gr A, My,) = H(A, M)
equipped with a natural module structure over the multiplicative spectral sequence
Ey=H(grA k)= H(Ak).

The action of gr A on My, is via the projection gr A — Ao and then restricting the action
of A on M to the action of the subalgebra Ay C A.

Proof. Let C*(A, M) := Hom 4 (P., M) be the complex computing H (A, M). Let
FZCn(A7 M) = {f S HomA(PmA) ‘ f\LFifan = 0} - Cn(A7M)

be a decreasing filtration on C*(A, M) making it into a filtered complex.
As V,, C P, we have an induced filtration (of vector spaces) on V.: F;V,, = F;(V,,®1) =
F;P,N(V, ®1). Using the isomorphism Hom 4(V,, ® A, M) ~ Homy(V,,, M), we make the
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identifications:
FZCN(A,M) :{f Vo> M | f\l/Fi—lvn = O}
FHICn(A, M) {f:Va— M| flry, =0}
- Homk(v’n/ﬂ—lv’ru M)

F;Vy
~H M.
Onu:<fﬁ—1vh’ >

Letting n be the total and ¢ be the internal degree, we have

H M) ~H —— My | ~ H"(gr A, M,).
Oy, <Fi1Vn, ) OlMgr A (Filpnv tr> (gI‘ ) tr)

7 mn

Let EJ" (M) = Fm Since A is finite-dimensional, the filtration is finite
and, hence, this defines the 0 page of the spectral sequence of a filtered complex C*(A, M)
converging to H(A, M). We have identified the terms of the double complex EO(M ) with
the complex C"(gr A, M,) computing cohomology H (gr A, M4,). To identify E’l(M) and
H(gr A, My,) as complexes, it suffices to show that the differentials in E(M) and E(My,)
are the same, that is, that the differential d; in the spectral sequence only depends on
the Ag-module structure on M.

Consider the differential d;:

Eé,n—Z(M) HOmk (Fi‘l/&n ? M)

.

EEn=171(M') =—— Homy, ( L M) .

F,V,_ F;V,

Let f € Homy (m, M>, T € ——— and let € F;Vj, be a representative of Z. By
Fi 1V Fi 1V,

Condition 3.4.1(3) we can write d(z) = vg ® ap + v’ ® a’ with ag € Ag and v/ € F;_1V,,_1.

We now compute

The equality (*) holds since ' =v' mod F;_1V,,—1 = 0.
The statement about the action of E; (k) acting on F1 (M) follows from the construction
of the spectral sequence. ]
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4. THE ANICK RESOLUTION

4.1. The setup. In this section we discuss the Anick graph and the construction of the
Anick resolution [Ani, Fa, CoU]. Let V' be a finite-dimensional vector space with a basis
(x;)ic1, and Z an ideal of T'(V') such that €(Z) = 0, where € : T(V) — k is the standard
augmentation map, e(z;) = 0 for all ¢ € I. Thus the algebra A := T(V)/Z has an
augmentation map € : A — k.

4.1.1. The tips. Let X be the set of words on the letters (x;);cr (including the empty word
1). Notice that X is a basis of T'(V'). Let z,y € X. We say that = is a subword of y if
there exist w, z € X such that y = wzxz. If w = 1, respectively z = 1, then we say that x
is a prefix, respectively a suffix, of y.

Let ¢ : X — Ny be the length function. The lex-length order < on X is defined as
follows: given v,w € X, we say that v < w if either ¢(v) < {(w) or else ¢(v) = ¢(w) and v
is less than w for the lexicographical order (induced by the numeration of the basis). This
is a total order on X compatible with left and right multiplication.

Here is a way to give a set of generators of the ideal Z. Given f € 7 — 0, write f as a
linear combination of elements of X; let z; be the largest element of X (with respect to
<) with non-zero coefficient. Then x¢ is called the tip of f. Consider the set of all tips of
all elements in Z — 0. A tip ¢ is minimal if each subword of x is not a tip (Anick calls a
minimal tip an obstruction). Let T be the set of minimal tips of Z. For each t € T we pick
wt € Z such that ¢ is the tip of w; (which is not unique in general). Arguing recursively on
<, it is possible to show that

IT=(w:teT).

For each w € X we also denote by w its image in A = T'(V)/Z. By [Ani, Lemmas 1.1
and 1.2], the set

(4.1.1) B={we X :tis not a subword of w Vt € T}

is a basis of A.

4.1.2. The chains. Let n € Nyg. We describe the n-chains which are words defined from
the minimal tips; they will provide a basis of the n-th term of the Anick resolution of A.
The unique 0-chain is the empty word 1. The 1-chains are the letters, i.e. the x;’s. Let
n > 1. An n-chain is a word w such that:

(a) w admits a factorization w = wv such that u is an (n — 1)-chain and the suffix v does
not contain any minimal tip as a subword (i.e., does not contain any tip);

(b) for every suffix y # 1 of w as in (a), the word yv contains a minimal tip as a subword;

(c) any other prefix w’ of w does not satisfy (a) and (b) simultaneously.
Let M(n) be the set of n-chains. We urge the reader to check that M(2) is the set of minimal
tips—all requirements are needed.

There exists an alternative way to express the definition of n-chains. A word w =
Tj, -+~ Ty, i € 1, is an (n + 1)-chain if there exist integers a;, b;j, 1 < j < n, such that
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(1) 1:a1<a2§b1<a3§b2<---<an§bn_1<bn:t;
(2) Tig Tig i1 - Tig, 1 Ty, € T foralll<j<mn;
(3) for all 1 <m < n, the words z;, - - - z;,, S < by, are not m-chains.
By [Ani, Lemma 1.3] the integers a;, b; satisfying (1)—(3) are uniquely determined and
® x; -+ _ is the unique prefix which is an (n — 1)-chain, and

Ty, 44 Ti, does not contain any element of 7" as a subword.
n—

Example 4.1.2. We fix N > 2, V of dimension 1, 2 € V —0, T = (V). Thus 7 = {z"V}.
Now M(0) = {1}, M(1) = {z}, and we claim that

M(2k) = {«VFY, M(2k + 1) = {aVE+1Y, k> 1.

Moreover ag;_1 = (Z — 1)N + 1, ag; = (Z — 1)N 42, bo;—1 =i, by; = iN + 1. We proceed
by induction on k. If k = 2, then M(1) = {2V} since this is the unique minimal tip, and
{xN+1} is a 2-chain with a; = 1, a3 = 2, by = N, by = N +1; thus, each word 2V, j > 1,
is not a 2-chain since z¥ ! is a prefix of V17,

Assume that £ > 2 and the statement holds for k. To compute M(2k + 2), we start
with the unique (2% 4 1)-chain z*¥+! and the integers aj, b; already determined: agy41
should satisfy bop_1 = kN < aggr1 < bogp = EN + 1, hence agyp+1 = kKN + 1. Hence
M(2k +2) = {x*+DNY For M(2k + 3), we have that 2*+DN+1 is a (2K + 3)-chain, hence
this is the unique (2k + 3)-chain: indeed, if w = 2* € M(2k + 3), then s > (k+ 1) since w
should contain the (2k +2)-chain z*+DN as a prefix; but if s > (k+ 1)N, then w contains
the (2k + 3)-chain z(*+*DN+1 a5 a prefix so it cannot be a (2k 4 3)-chain.

Let V(n) be the k-vector space with basis M(n). Then
M(n) ;== {u®w:ueMn), weB}

is a basis of V(n) ® A. Given u® w,v ® z € M(n), if uw = vz, then u = v, w = z; indeed,
if £(u) < £(v), then the n-chain u is a prefix of the n-chain v and (3) implies that u = v.
Hence the order on X induces an order on M(n): u @ w < v ® z if uw < vz.

4.1.3. The Anick graph. We next introduce a graph which helps to compute the chains of
the Anick resolution [CoU]. Let T" be the graph whose set of vertices is given by the union
of {1}, X and the set of all proper suffixes of the minimal tips. For the arrows, there exists
one arrow from 1 — x for each x € X, and one arrow v — v if the word wv contains a
unique minimal tip such that it is a suffix of uv (possibly the word wv).

A basis of the free module of n-chains of the Anick resolution is given by paths of length
n starting at 1. Thus:

e There exists a unique 0O-chain: 1.
e The set X gives a basis of the 1-chains.
e The set of minimal tips gives a basis of the 2-chains.

Notice that vertices v not connected to 1 (that is, without a path from 1 to v) do not
contribute new elements for the basis of chains, hence we may omit them and the related
arrows.
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Example 4.1.3. Let ( € G}y, ¢ € k*. We want to determine the Anick graph of the
Nichols algebra %, of [AA, §10.7.5] (The scalar g corresponds to g2 in loc. cit.) In terms
of the PBW generators, % is presented by generators x1, 1112, 112, Z12, T2, and relations

xil =0, 121112 = C3q T11127%1, T1T112 = —q 11271 + X1112,
23112 =0, z1712 = (YqT10m1 + 7112, T1T2 = qT2T1 + T12
239 =0, T11127112 = (g T11271112, z1112212 = (¢ 21971112 — q(1 + )2ty
a3y =0,  T112712 = (qT127112, T111272 = —@°Ta71112 + (P T127112,
x5 =0, T12X9 = —qT2X12, T11282 = —¢° 27112 — q12(1 + (¥) 2,

Thus the set of 2-chains (equivalently, minimal tips or obstructions) is

4 2 3 3 2
M(2) = {37173711127 T112,%12, Lo, L1L1112, L1L112, L1L12, T1L2,

211122112, 21112212, £111222, £112T12, L112L2, 1’12332}

and the Anick graph is

1
1 T1112 112 12 T3
3 2 2
L1 T112 T12

There exists a vertex z?7 with a loop on itself which we omit since this vertex is not
connected to 1. Using the graph we compute
5 4 4 4 4 2 3 2 2 2
M(3) = {x1, 2171112, 17112, 1012, T1 T2, T1TT 112, T1112, T11121125 T1112712, T111972,
3 3 4 3 3 3 3 3 .4 .3
T1T1125 T1112%1125 L1125 1127125 L1122, T1L19, T1112T12, L112T12; T12, L12T2;
2 2 2 2 3
T1T9,T1112%2,XL112T9, L12X9, Lo, T1L11122112, L1L1112L12, L1L111222, L1L112L12,

1711222, L1X1272, £11122112L12, L1112L11272, L1112L12L2, x112$121’2}-
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4.1.4. The resolution. We consider the Anick resolution of the A-module k. Recall that
V(n) is the k-vector space with basis M(n). In [Ani, Theorem 1.4] Anick introduced an
A-free complex

(4.1.4) V) A" -1 eAlE vl ed A k0

and k-linear maps s,, : V(n)®A — V(n+1)®A, n € Ny, such that (4.1.4) is an A-resolution
of k and s. is a contracting homotopy:

(4.1.5) dnt15n + Sn—1dp = idV(n)@A for all n € N.

The maps d,,, s,—1 are defined recursively; see for example [NWW, §4.1] for a left
module version. For n = 1, the map d; is determined by

di(z®1)=x for all z € M(1),
while for sy we give the values on each w € B:
so(w) =2 ® z, w=uzz,x €M(1), z €B.
Now assume that dy,...,d,_1, So,- .., Sn—o were already defined and satisfy:
(4.1.5) di_1d; = 0, $i—28;—1 = 0, forall1<¢<n-—1.
The morphisms of A-modules d,, : V(n) ® A — V(n — 1) ® A are determined by
dp(u®1l)=vRt— sp_adn_1(v®1), ueMn), u=vt,veM(n—1),teB.

Now we define s,,_1. From (4.1.5), V(n—1) ® A = kerd,,_1 ®im s,_2. We start by defining
(8n-1)|imsp_o = 0, 50 8p—15,—2 = 0. Now we define (s,-1)|kera,_, recursively on the
order of the leading term of each element of ker d,,_1, which we write in terms of the basis
M(n —1). We require dy,(5n—1)|kerd,,_, = idkerd,_,- Let
K = Zajuj®bj€kerdn_1, ajEkX,UjEM(n—1>,bj€B.
j€lm
We assume that u; ® by is bigger than u; ® b; for all j > 1. We write u; = v;t;, where
vj € M(n — 2), t; € B. Hence
0=dy 1(K)=ajv; @ty + K, K := Zajdnfl(uj ® bj) — sp—3dn—2(a1v; @ t1by)
Jj>2

Hence t1b1 ¢ B, otherwise v; ® t1b; is the biggest element of ffl\(n — 1) in the previous
expression of d,,_1(K) with non-zero coefficient. Now we write b = wyy;, where w; is the
shortest prefix of b; such that tyw; ¢ B. Hence ujw; = vitjw; € M(n). Hence we set

(4.1.6) Sp—1(K) := a1 uiw1 @ Y1 + Sp—1 Z a;uj @ bj — dp(ar uiwr ® Y1)
j€ly,

Below the differentials d,, and the maps s,, will be denoted simply by d and s.

We shall refer to the complex (4.1.4) as the Anick resolution of A, and denote it by
(Ci(A), d):

dn dn—l d1

(4.1.7) Cp(A) —>C,_1(A) = C1(A) A—>k 0




24 N. ANDRUSKIEWITSCH, I. ANGIONO, J. PEVTSOVA, S. WITHERSPOON

so that Cp,(A) =V(n) ® A.

4.2. Application to Nichols algebras. We consider now the Anick resolution of a
Nichols algebra %, of diagonal type associated to the presentation given by PBW gener-
ators () ge AT We fix a convex order on A%, which induces a total order on the letters:
xg, > x, > -+ >1xg,. Weset Ng = ordqgg.

The defining relations of %, are

(4.2.1) 3:27‘3 =0, N3 finite;
(4.2.2) [@"ﬁwmﬁj]c = Z 0&1)1, n xﬂj i xZ::, i<j.

Ni41,--,n5-1€Ng
where cg;ﬂ, ..n;_1 € k can be computed explicitly [Anl, Lemma 4.5].
We denote by xg, 3 € AL, the set of letters for the tips and the chains, to distinguish
them from the generators xg of the Nichols algebra %,;. The minimal tips are the following:

(4.2.3) XaXg, a>f€peAl; Bﬁ’ Be Al
Hence the Anick graph looks locally as
1

Xa X3
No—1 Ng—1
X, @ X3

for o > B3, where if N, = 2, then the loop between z, and z)e~! is understood to be

collapsed to a loop from z, to itself, and similarly for xg. If N, > 3, then there exist
vertices x!, and xYo~* for each 2 <t < N, — 2, and arrows between them. These vertices
are not connected to 1 and are omitted.

Now we describe the set of chains. For each § € Ai we set

(4.2.4) fs : No — Np, f5(2k) = Ngk, f5(2k +1) = Ngk + 1, k € Np.
The set of all n-chains, n € N, is given by

f (TL ) f (’ﬂ ) m nnL
(4.2.5) M(n) = { I T Y —n}

4.3. Quantum linear spaces. These are the less complicated Nichols algebras of diagonal
type. Let q = (qij)ije1 be as above and assume that g;;q;; = 1 for all @ # j € 1. Let
I'={iel:q; € G} and for i € I, set N; = ord g;;. Then A, is presented by generators
y;, ¢ € I, with relations

(4.3.1) YiYi = QijY;Yis i<jel
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(4.3.2) yNi =0, icl.

Proposition 4.3.3. The cohomology ring of %Ay is generated by n; for i € I and ;, for
j €I with relations

NN, .
&néj =y, "&ikn, h<j €T,
N; . .
ni&5 = 45" &M icl, jel,
(4.3.4) Nk = —QikMENi, 1<k €L
n? =0, iel, N;>2,
ni&i = &inis iel.

If N; =2, then n? = &. If M is a finitely generated Bq-module, then H(%Bq, M) is finitely
generated as a module over H(%,, k).

Proof. We will construct the Anick resolution K. of k as a %;-module. The following
notation will be helpful. For each i, 1 <i <6, let 0;, 73 : Ng — Ny be the functions defined
by
1, if a is odd
oi(a) =
N; —1, if a is even,
and 7;(a) = Zai(j) for a > 1, 7(0) = 0.
j=1
We claim that the differential d of the Anick resolution is given as follows:

[4
d(y”{l(al) . .yge(ae)@)l) _ Z <H(_1)a£q£_igi(ai)7'£(aé)> y?(th) o y;"i(ai_l) o y;é)(a@)(X)y;n(ai)7

i=1 \{4<i

where we set yfi(o) = 0. This is the right module analog of a formula from [MPSW, §4],
for an explicitly constructed minimal resolution of k as a %;-module. (There is a slight
difference in comparison of our formulas to those in [MPSW] since we are working with
right modules. This also leads to a slight difference in relations among the generators.)
The resolution from [MPSW] is in fact the Anick resolution: The modules in the Anick
resolution will have the same vector space dimension in each degree by construction, im-
plying that the Anick resolution is also minimal in this case, and so comparison maps
between the Anick resolution and this one must be isomorphisms in each degree.

Next apply Homg(—,k) to K. in order to compute Extg(k,k). Note that d* is the
(@) acts as 0 on k. Thus in degree n the cohomology is a vector
space of dimension (";ﬁ;l). Now let & € Homg(K2,k) be the function dual to yzNi ®1
and n; € Homg(K1,k) be the function dual to y; ® 1. Identify these functions with the
corresponding elements in H2(S, k) and H!(S, k), respectively. We claim that &;, 1; generate
H(S, k). We also denote by &; and 7; the corresponding chain maps &; : K, — K, _2 and
n; + K, — K, _1 given by

e Tola —Nite(ap) 71(a 7i(ai— To(a
é—i(yll( 1) ..yee( 0) ® 1):qu o ( é)yll( 1) oy (ai—2) ‘yeg( 0) o1
£>1

. g;
zero map since y,"
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iy @ 1) =

—(oi(a;)—1D)1y(a a, —Te(ag) T1(a Ti(a;—1 70 (a, oi(a;)—1
qui( (ai)—1)7e(ar) H(_l) ‘q; o( e)yll( IV Y] ( )...y09( 0) R y; (ai)-1
1< 0>

Note this implies that if a; is even and N; > 2, then 771’(3’?(&1) . .yg"(a") ® 1) = 0, since
yzN =2 acts as 0 on k. Calculations show that these maps satisfy the following equations:

N;N, N;
(4.3.5) &&= a;;" "&&G, m& = a;;7 &M, and ning = —qinni

for all © < 7, and n;§; = &m; for all ¢, with one exception: If N; = 2, then 7712 =& (so
that we may leave & out of our choice of generators, or not, as is convenient), while
if N; > 2, then 772-2 = 0. Due to these equations, any element in the subalgebra of
Extg(k, k) generated by the & and 7; may be written as a linear combination of ele-
ments of the form 511’1 . -53977‘1:1 ---mg? with b; > 0 and ¢; € {0,1}. Such an element takes
yohiNiter .ygﬂN9+°9 ® 1 to a nonzero scalar multiple of 1 and all other S-basis elements
of Ks~(ap,4¢;) to 0. Recall that the dimension of H"(S,k) is (”;rle); consequently, the
elements €1 - - 0 - % form a k-basis for H(S, k).

For the last statement, we may induct on the length of a composition series of M, and
it suffices to prove the statement in the case that M is a simple module. The generators
of %, are all nilpotent, and so the only simple module is the trivial module k, for which
the statement is clear. g

4.4. Cohomology of graded algebras with convex PBW basis. Here we consider a
graded connected algebra R = @,ecn, R" with a finite PBW-basis B = B({1},X, <, h); that
is X is a finite subset of R with r = |X| elements, < a total order on X (with a numeration
X = {x1,29,...} such that ¢ < j if and only if 2; < z;) and a function h : X — N U {oo},
x; — Nj (h is called the height), such that

B = {x?m?_‘f xrft i 0<e < NZ-}

is a k-basis of R. Let I = {1,...,r} and I' = {i € I : N; < oco}. We assume that the
elements of X are homogeneous: z; € R%, d; € N. We set

degb = (617 <oy Epy Zejdj) € N6+1, b= .’BiriCiT__ll .. .1‘321'? € B.
J

Let < be the lexicographical order, reading from the right, on Ng“. We consider the
N{ L filtration on R given by

Ry = (b€ B:degh= f), F= (1, fren) € NG
Inspired by [DCK], we also assume that the PBW-basis B is convex, i.e. (Ry) fengt! is an
algebra filtration. It can be shown that the PBW-basis B is convex if and only if
(a) for every i,j € I with ¢ < j, there exists ¢;; € k such that

(4.4.1) TiTj = QijT;T; + Z Rf;
f<degx;+degx;
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(b) for every i € T',

N;
(4.4.2) zie > Ry
f=<N;degz;

See [AAH]. We call this the PBW-filtration. Assume that in (4.4.1), g;; # 0 for all i < j.
Then the associated graded algebra S := gr R is a quantum linear space, i.e. it is presented
by generators y; (the class of z;) and relations (4.3.1), (4.3.2).

The PBW basis gives rise to the Anick resolution C\(R) with Cy,(R) = V(n)® R comput-
ing H(R, k) and H(R, M) for an R-module M as in §4.1. By construction of the resolution,
xfiN ¢ (or rather xfiNi ® 1) are homogeneous elements of cohomological degree 2¢;. More-
over, again by construction, XfiNi is a basis element in V(2/;). We denote by (XfiNi)* the
corresponding element in the dual basis of Homy(V(2¢;), k) = Hompg(Coa, (R), k), that is
the function which evaluates to 1 on xfiNi and to 0 on all other basis elements. By con-
struction, these are homogeneous elements (or cochains) in the complex Homp(Cy(R), k)
which computes H(R, k).

In the next theorem we prove that if all cochains (xfiNi)* are cocycles, then H(R, k) has
fgc.

Theorem 4.4.3. Let R be a graded connected algebra with o finite convexr PBW-basis
satisfying all of the assumptions above; let C(R) be the Anick resolution of R. Suppose

*
that there exist positive integers £; for any i with N; < oo, such that the cochains (xfiN"

are cocycles in Hom(C\(R),k), that is, represent elements in H(R,k). Then H(R,k) is
finitely generated and H(R, M) is finitely generated as a module over H(R,Kk) for any
finitely generated R-module M.

Proof. Observe that gr R is a quantum linear space. By Proposition 4.3.3, the cohomology
H(gr R, k) is finitely generated over its subalgebra generated by §fi for all i € I, since it
is generated by all &, n;. Since the Anick resolution for R is compatible with the PBW-
filtration on R, there exists an associated spectral sequence E convergent to H(R, k) whose
Eq-page is H(gr R, k); see Theorem 3.4.3. Moreover, the cochains (XfiNi)* are the images
of §fi in the spectral sequence (see the proof of Proposition 4.3.3) and so by assumption,
the 551' are permanent cycles. Thus the hypotheses of Lemma 3.3.2 are satisfied, and,
hence, H(R, k) is left Noetherian. (That is, gr H(R, k) is Noetherian, from which it follows
that H(R, k) is Noetherian.) Finite generation follows from Lemma 3.1.1 taking K to be
a trivial algebra there.

If M is a finitely generated R-module, then since the Condition 3.4.1 is satisfied, Theo-
rem 3.4.3 implies that H(R, M) is finitely generated as an H(R, k)-module. O

The following corollary is immediate since Nichols algebras of diagonal type have convex
PBW bases.

Corollary 4.4.4. Let %, be a finite-dimensional Nichols algebra of diagonal type. If %,
satisfies Condition 1.4.1, then it has fgc. O
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5. COHOMOLOGY OF THE DRINFELD DOUBLE

In this section we prove that if the bosonization of a Nichols algebra of diagonal type
has fgc then so does its Drinfeld double.

We briefly recall the general definition of a twisting map 7 for two algebras A and B:
Let 7: B® A - A® B be a bijective k-linear map for which 7(1p ® a) = a ® 1p,
T(b®1y)=14®bfor all a € A and b € B, and the following compositions of maps from
BRB®RAR®Ato A® B are equal:

To(mp@my)=(ma@mp)(ler)(re7) (1@ 11),

where m 4 (respectively, mp) denotes multiplication on A (respectively, on B), and 1
denotes an identity map. The twisted tensor product algebra A ®, B is A ® B as a vector
space, and its multiplication is the composition (m4 @ mp)(1 @ 7 ® 1).

If A and B are Hopf algebras, we say that 7 is a Hopf twisting if A®, B is a Hopf algebra
with coalgebra structure being the usual tensor product of coalgebras (no twisting), and
A, B are Hopf subalgebras. The augmentation map is €4 ® e : A ®, B — k.

We assume that the Hopf twisting 7 is compatible with coradical filtrations, that is for

CACCAc... and CBcCCPc...
the coradical filtrations of A and B, we have

rcfechc Y clrech
r+s<a+b
Then the associated graded space gr(A ®, B) is again a Hopf algebra.

We will need a special case of the twisting construction to apply it to Nichols algebras:
Assume that A and B are graded by abelian groups I' and IV. Let ¢t : I’ x IV — k* be a
bicharacter (that is, it induces a homomorphism I' ®7 I" — k* of abelian groups). Define
T:B®A— A® B by 7(b® a) = t(|al],|b])a @ b for all homogeneous a € A, b € B, where
la| € T, |b] € T” denote grading. In order to distinguish a twisted tensor product algebra
A ®; B for which the twisting 7 is defined by a bicharacter ¢ in this way, we will write
A ®! B for this twisted tensor product algebra.

Due to the following result of Bergh and Oppermann [BO, Theorem 3.7], the cohomology
of A®! B can be computed.

Theorem 5.0.1. Let A and B be augmented algebras graded by abelian groups T' and T".
Let t be a bicharacter on I' x I''. There is a twisting map t, induced by the bicharacter t,
for which

H(A®' B,k) = H(A,k) ® H(B,k).

Let A = R#kD and B = (R#kID)# with R = #(V). Let D = D(A) be the Drinfeld
double of A. Since A and B are subalgebras of D = D(A) and, as a vector space, D is
isomorphic to A ® B, there is an isomorphism of algebras,

D=~ A®, B,

where A ®, B is a twisted tensor product algebra whose twisting map7: B® A — AR B
is defined to correspond to multiplication in D. The augmentation map on D(A) is

€Ep = €4 Q€ER.
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Recall that A and B are both coradically graded. With respect to the coradical filtration
on D, there is indeed an isomorphism

grD= A®'B

for some bicharacter ¢ on grading groups of A and B. The bicharacter ¢ is defined by
the braiding ¢ and the group action. See, for example, [Be]. Hence, as a consequence of
Theorem 5.0.1, H(gr D, k) can be computed in terms of H(A,k) and H(B, k). Moreover,
since gr D is a Hopf algebra, its cohomology is graded commutative so the bicharacter ¢
takes values £1.

To show that D has finitely generated cohomology we will establish that H(D,k) has
“enough” cocycles and apply Evens Lemma (3.3.2).

Let P., Q. be bar resolutions of k as an A-module and as a B-module. Then as in [BO,
SW] for left modules, we may form the twisted tensor product resolutions P. ®, Q. and
P. @' Q. of k as a right A ®, B-module and a right A ®' B-module, respectively. We recall
here briefly this construction, and translate to right modules: As a complex of vector
spaces, each of P.®, Q. and P.®' Q. is simply P.® Q., and it remains to define the A ®, B-
and A ®' B-module structures on each vector space P; ® Q. We will do this for A ®; B,
and A ®" B is similar. For each j, define 7;: Q; ® A - A ® Q; by iterating 7. The right
module structure is defined by the following composition of maps:

1® 7501 PP,®PQ,;

(5.0.2) PRQ, ®ARB P®A®Q;®B

-Pi & Qja
where pp, and pg, denote the module structure maps.

Lemma 5.0.3. Let f € Hom(P;, k) be a cocycle. Then f extends to a cocycle representing
an element in H*(D,k). A similar statement holds for Homp(Q;, k).

Proof. The first statement will follow from the construction of the resolution P. ®; Q. and
the definitions. The second statement involves switching the order of P. and Q.. This
asymmetry in the proof is due to the asymmetry of choosing to work with right modules
instead of left modules.

Let f € Homy4(P;, k) be a cocycle. We first claim that f®ep, as a function on P;®,; Qo =
P, ®; B, is an A ®, B-module homomorphism.

Consider

(5.0.4) (f@ep)((z®y) - (a®Db))

where x € P;, a € A, and b,y € B. Expression (5.0.4) can be evaluated by first applying
1®7®1tor®y®a®b, then applying f ® €4 ® ep ® ep to the result, since f is an
A-module homomorphism and A acts trivially on k. We wish to show this is equal to

(5.0.5) ((f@ep)(x®y))-(a®b) = (f@ep)(z @ylep)(a@b) = f(x)ep(y)eala)es(b).

It suffices to show this for all y from a set of generators of B, for all a from a set of
generators of A, and for all x € P; and b € B. If either a or y is an element of the field k,
the expression (5.0.4) is equal to

(f@ep)((z-a)®(y-b)) = f(x-a)ep(y-b) = f(z)ep(y)eala)en(b),
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as desired. Now assume that a and y are generators in the kernel of the augmentation
maps for A and B, respectively, so each is either a root vector or a difference of group
elements. The case where either is a difference of group elements is straightforward since
applying € to either of the middle two factors will yield 0 after applying 7. Now assume
that a and y are both root vectors. Then by Proposition 2.5.2 we have that in D(A),

ya = Aay + k(1 — gx)
where A, k are scalars, g € I', x € T. Then

(f@ep)((z®@y) - (a®b)) =
(fReAa®RepRep) (M RaRYRb+rr®1I®IRI-—KT®gRDXRD) =

Af(z)eala)en(y)en(b) + w(f(x)ep(b) — f(z)ealg)en(x)en(b) =

o

where the first term disappears since eg(y) = 0 and the second two terms cancel out since
€a(g) = es(x) = 1. We also have f(z)ep(y)ea(a)ep(b) = 0 since ep(y) = 0. Therefore
the expressions (5.0.4) and (5.0.5) are equal, as desired. It follows that f ® ep is an
A ®; B-module homomorphism, that is, f ® eg € Homag_p(P; ® Qo, k).

By hypothesis, 0 = dj, (f) = fdix1 where d;11 : Piy1 — P; is the differential. Letting
d denote the differential on P. ®, Q.,

d(f@ep)=(f@ep)(dig1 @1+ (1) ®@d1) = fdiy1 ®ep+ (—1)'f @ epdy = 0.

Therefore f ® ep is a cocycle representing an element of H(D, k).

Now let g € Homp(Qj,k) be a cocycle representing an element of H(B, k). Note that
AR; B~ B®.-1A. Let Q.®.-1 P. be the twisted tensor product resolution corresponding
to this inverse twisting 7—!. By the above arguments, g ® € is a cocycle representing an
element of H(A ®; B,k). Since P. ®; Q. is quasi-isomorphic to Q. ®,.-1 P. (in fact, a
comparison map is given by iterating 7), there is a cocycle ¢’ defined on the resolution
P.®, Q. corresponding to g®e€ on Q; ®,-1 Py. Note that in general ¢’ will not equal €4 ®g,
due to the twisting.

O

Theorem 5.0.6. If the Nichols algebra R = (V) and its dual R have fgc, then the
Drinfeld double D = D(A(V)#KkT') of the bosonization B(V)#KIL has fgc.

Proof. Let A = R#kI' and B = A#. By hypothesis, A and B have finitely generated co-
homology, specifically, the cohomology H(A, k) is a finite module over a finitely generated
commutative subalgebra, and similarly for H(B, k). Choose generators of these commuta-
tive subalgebras and representative cocycles on P. and @.; we will use these in a spectral
sequence argument in combination with Theorem 5.0.1.

As a consequence of the Theorem 5.0.1, A ®! B has finitely generated cohomology since
both A and B do. Of necessity, since A ®' B is also a Hopf algebra, H(gr(A @, B),k)
is graded commutative, and so ¢ will in the end only take values +1. We will next show
that A ®, B also has finitely generated cohomology. This relies on existence of needed
cocycles. Let f € Hom4(P;, k) be a cocycle representing an element of H(A, k). Then by
Lemma 5.0.3, f extends to a cocycle representing an element of H(A ®, B, k). A similar
statement holds for Homp(Q;, k).
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Next note that the filtration on A®; B induces a filtration on the resolution P.®. Q.. Let
E be the corresponding spectral sequence. Page E; is H(A®! B, k), which by Theorem 5.0.1
is isomorphic to H(4,k) @ H(B, k). The cohomology H(A ®" B, k) is the homology of the
total complex of the bicomplex

Hom g, g(P. ®; Q.. k).

By the above argument, a cocycle f € Homa(P;, k) representing an element of H'(A,k)
may be extended to a cocycle f ® € € Homag_p(P; ®; Qo,k) representing an element of
H(A ®™ B,k). This is thus a permanent cocycle in the spectral sequence E. Moreover, it
corresponds to f ® e, this time representing an element of the F-page H(A,k) ®' H(B, k).
Similarly, a cocycle g € Homp(Q;,k) representing an element of H/ (B, k) may be extended
to a cocycle ¢’ € Homag, p(Po ®r Qj,k) representing an element of H(A®, B, k). Thus we
obtain, for each chosen generator of H(gr A ®, B, k), a permanent cocycle in the spectral
sequence. Applying the spectral sequence Lemma 3.3.2, since H(A®' B, k) is a finite module
over a finitely generated (commutative) subalgebra, H(A ®, B,k) is finitely generated.
(A commutative subalgebra can be found by taking high enough powers of the chosen
generators since the defining parameters and thus also the values of the bicharacter # are
all roots of unity.)

Now let M be a finitely generated A ®, B-module. Then H(A ®, B, M) is a graded
module over H(A ®; B,k). The coradical filtration on A ®, B induces a filtration on the
bar resolution K. of k as A ®, B-module and thus on Homag, p(K., M). Let E* be the
corresponding spectral sequence. Arguing as in [Ja, §1.9.13], we get a spectral sequence

Ey =H(grA®, B,k)® M = H(A ®, B, M).

which is a module over the spectral sequence E*. By Lemma 3.3.2, H{(A®, B, M) is finitely
generated over H(A ®;, B, k). O

Part II. Permanent cocycles for Nichols algebras of diagonal type

In this Part we deal with

Condition 1.4.1. Let U be a braided vector space of diagonal type whose Nichols algebra
is finite-dimensional. For every positive root v € Ag, there exists L, € N such that the

*
cochain (xfe”) is a cocycle, that is, represents an element in H(A(U),k).

We shall prove that Condition 1.4.1 holds for one representative U of each Weyl-
equivalence class in the classification of [H2]. By Theorem 4.4.3 this shows that ZA(U)
has fgc and as explained in §1.4, this implies Theorem 1.3.1. We argue also by induction
on dim U; in other words we often assume that the root v has full support, i.e. suppy = 1.
Towards this, we choose the representative U in the Weyl-equivalence class in such a way
that Condition 1.4.1 was already verified for any proper subdiagram.
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We discuss the strategy in Section 6, a summary been given in § 6.4. Proofs of the
technical statements in this Section are deferred to Section 10. We proceed case by case
in Sections 7 (classical Cartan and super types), 8 (exceptional Cartan and super types)
and 9 (modular types wk(4) and br(2)). The remaining Nichols algebras of diagonal type
in the classification are dealt with in [AAPPW].

6. THE STRATEGY

6.1. The setup. Let q be the braiding matrix of U and denote by %, the corresponding
Nichols algebra as before. For § € Ai recall that N5 = ord gss. Recall that the set of
n-chains, n € N, is given by

(4.2.5) M(n) = {ngl (nl)xg?(m) . _ngnm(nm) : an = n} ,
where for § € A1 we introduce fs5: No — Ny by
fs5(2k) = Nsk, fs(2k+1) = Nsk + 1, k € Ng.

The starting point is the following straightforward observation.

Remark 6.1.1. Let v € Al and L € N.

(a) x,]; is a chain if and only if L is of the form /N, or /N, + 1, for some £ € N,
(b) A cochain (X%)* is a cocycle if and only if for any chain ¢ € M(n + 1) such that
d(c® 1) € V(n) ® %,, when written as a linear combination of basis elements, the

term xg ® 1 has zero coeflicient.

Because of Theorem 4.4.3 and Remark 6.1.1 (a) we shall assume that L = ¢N,, for £ € N.

We reduce the set of chains ¢ € M(n+1) to be considered in (b) using degree and grading
constraints. First, since the relations of %, are N§-homogeneous by definition we have:

Lemma 6.1.2. The differential of the Anick resolution preserves the N'-grading. O
Let ¢ = xﬁl(m)ng () .ngn’" (nm) & M(n + 1) such that
de@1)=...+ A5 @1 +..., A0,

. N : . (N
as a linear combination of basis elements. By Lemma 6.1.2 and since x,

we have the following constraints:
(6.1.3) f51 (n1)51 + -+ fam (nm)dm = €N77
(6.1.4) ny+ -+ ny =20+ 1.

is a 2/¢-chain,

Henceforth we refer to the conditions (6.1.3) and (6.1.4) on the chains as the Nj-grading
and homological degree constraints. Writing the roots as linear combinations of
simple roots, (6.1.3) and (6.1.4) boil down to a system of equations on {ni,...,nm,¢}.

Let v € Al and £ € N. We summarize now the approaches to verify that (xf;N”)* is a
cocycle using Remark 6.1.1 (b). Thus we need to consider the chains ¢ € M(n + 1) in (b
up to degree and grading constraints.

o We introduce integers P, @, in §6.2. If N, > P,,Q, then (xfyv“’)* is a cocycle of degree
2, by Lemma 6.2.5. Here £ = 1.
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We may assume that v is not simple, otherwise it is covered by the previous discussion.
Then there are 3,6 € Al such that 3 <y <, vy =+ 4. If N, is small, typically 2 or 3,
then the condition N, > P, Q) does not hold.

o Assume that N, = 2 and condition (6.2.9) holds. Then (XZYV 7)* is a 2-cocycle by Lemma
6.2.8. Again ¢ = 1.

o Condition (6.2.9) is about the relations between the root vectors zg, z, 5. If it does
not hold, then a finer analysis is needed. We summarize in Proposition 6.3.2 all possible
cases that we need to check in this setting when N, = 2.

o Similarly we summarize in Proposition 6.3.23 all possible cases to check when IV, > 2
and the condition N, > P,, (), does not hold.

Propositions 6.3.2 and 6.3.23 depend on several Lemmas whose proof is deferred to
Section 10.

The techniques presented in Lemma 6.2.5, Lemma 6.2.8, Proposition 6.3.2 and Propo-
sition 6.3.23 are applied to those Dynkin diagrams in the list of [H2] with a continuous
parameter in Sections 7, 8 and 9. The remaining diagrams in the classification are treated
in Part III.

6.2. Degree 2 cocycles. We discuss two techniques to get generators of degree 2 in
cohomology from root vectors. First we introduce P, and (- that under suitable conditions
imply the existence of the cocycles.

Definition 6.2.1. Let v € AL. We define

P, = max{p € N : 3 distinct 61, 02,03 € AL such that §; + &2 + 03 = pv},

Qy = max{q € N : 3 distinct d1,d2 € Ai such that Nj, 61 + d2 = ¢}
We set P, = 0, respectively @, = 0 if no such relation exists.
Remark 6.2.2. For any specific v € Ai, the computation of Py, (), depends only on the
combinatorics of the corresponding root system, see for example Lemma 6.2.7. We will
leave these calculations for an interested reader in the later sections as they are straight-
forward to do in any specific case.
Example 6.2.3. If v is simple, then P, = @, = 0. Also, if 7 is not simple, then
(6.2.4) P, >2.

For, since v is not simple, v = 3 4 ¢ for some distinct 3,5 € A%, hence 2y = v+ 3 + 4.

Lemma 6.2.5. Let v € AL. If Ny > P,,Q, then (XJVV”)* is a cocycle of degree 2. In

particular, if v is simple, then (Xévv)* s a cocycle of degree 2.

Proof. To show that (XJWV 7)* is a cocycle, we use Remark 6.1.1 (b). That is, we show that
there is no chain ¢ € C3 such that x,]yv " ® 1 is among the terms, with nonzero coefficient,
of d3(C® 1) € (Cy® A.

The chains in C3 are of the form xgﬁ +1, xgﬁ Xs, x5xévé and xgxsx,. We consider these
cases separately.
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For ¢ = xgﬁ +1, ds(c) = xgﬂ ® xg, which is not of the required form.

Let ¢ = xgﬁ xs. If X,JYV” ®1 is present in d3(c®1), then Lemma 6.1.2 implies that we have

a numerical relation
NgB+9d = Ny,
which contradicts the assumption N, > @),. The case X5X§V§ is similar.
Finally, if ¢ = xgxsx,,, and Xiv 7 ® 1 is present in d3(c ® 1), then we have a relation
B+0+n= N,y
which again contradicts the assumption Ny > P,. O

Because of the previous Lemma we need to compute P, and @; this is simplified via
the following result. Let W be the Weyl groupoid of the Nichols algebra %, see [H1] or
[AA].

Lemma 6.2.6. Let 61, 99, 03 € Ai. Then there exist w € W and T € Sy such that

w((sl) € Ai N (Z’YT(I) + Z’77'(2) + Z’Y’T(3)) ) 1=1,2,3,
for a suitable p.
Proof. See [CuH, Theorem 2.3]. d

Lemma 6.2.7. Assume that q is of Cartan type and that v is not simple.

(a) In types Ag, Dy and Eg, we have Py, =2 and Q, = 1.
(b) In types By, Cy and Fy, we have P, < 3 and Q = 2.
(c) In type G2, Py <4 and Q < 3.

Proof. (a) Type A: Let v = ;; with ¢ < j. Suppose that there exists P € N such that
Pyij = Yke + Ymn + Ysu With B < m < s (and the three roots in the right are different).
Then the coefficient of 7 in the right hand side is at most 3, so P < 3. If P = 3, then
k=m = s =i and ¢, n, u are all different. If, say, u is the largest of them, then the
coeflicient of v, in the right hand side is 1, a contradiction. Thus Py = 2 by (6.2.4). Next,
suppose that there exists P,t € N such that Pv;; = tyr + Ymn (and the two roots in the
right are different). Arguing as before, we see that P < 1, and (6.2.4) applies. Types D, E:
this follows from Type A and Lemma 6.2.6.

(b) Type B: Let 71,...,79 be the simple roots with «y the short root. Then the roots
come in three flavors: v;+...+7v;, ¢ < j <0, v +.. .47, and v +. . . 4+yj—1+27+. .. +27,
i < j < 0. Hence, the maximum P is 3 and P, < 3; similarly, (), < 2. Note that P, = 3
and (@, = 2 can occur, e.g.

(Yo—2 + 79-1) + (Yo—2 + Yo—1 + 79) + (Y9—2 + Vo1 + 279) = 3(Y9—2 + Vo1 + V0)-

Type C: The coefficient of vy in v is 0 or 1, but in the former, « belongs to a sub-diagram
of type Ag_1 that was already settled. Looking at the coefficient of ~y in both sides of
01 + 02 + 03 = Pry, we conclude that P < 3. Similarly, @, < 2. Note that P, = 3 and
@ = 2 can occur, e.g.

(2902 + 279-1 + 70) + (Yo—2 + Yo—-1 + 70) + 70 = 3(Yo—2 + Yo—1 + V0)-

Type F': this follows from Types B and C and Lemma 6.2.6.
(c) By inspection. O
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By Lemma 6.2.5 we may assume < is not simple. If N, = 2, then the Lemma does
not apply. The second technique provides an explicit computation of the differential of a
suitable chain in this setting. Let s = s, be as in (4.1.6).

Lemma 6.2.8. Let v € Al be such that N, = 2 and the following conditions hold:
(a) For all B,6 € AY, B<d,v=pB+9,

(6.2.9) TETy = 4y, TyT§ = Gr6T6T, 488 = 4ss-

(b) If y1,72,v3 € AL are three different roots, ~v; # vy, then 1 + v2 + 3 # 27.

(¢) If 1,72 € AL, 71 # 2, then Nyy1 + 72 # 27.
Then (X%)* is a cocycle of degree two.

Proof. By Remark 6.1.1 we have to check that the coefficient of x,2y ®1in d(c® 1) is zero
for all 3-chains ¢ of degree 2y. By (b) and (c) we have to deal with ¢ = xgx x5, where
8,0 € Ai, B < d,v= [0+ Here we use the convexity to deduce that g < v < 4.

Fix 8,6 € A} such that 8 < § and v = 8+ §. By (4.2.2),

TRTs = qBsTsxTs + bry + Z bul, Ty - Ty
B<v <<y <o: Y vi=v

for some bz, by, . ., € k. Using the convexity again we see that if v; < --- <y, are such
that Y v; =, then v <y < .
By definition of the differential on 2-chains and (a),

d(xpxs ® 1) = x3 ® T5 — qsxs @ 23 —bxy ® 1 — me,m,ngwc ® Ty, 4 - T,
d(xpxy ® 1) =x3 @ Ty — @31y D28, d(XyXs @ 1) = Xy @ Ts — ¢y5Xs @ T
Using these computations and (a),
d(xpxy%5 ® 1) = xgx, @ x5 — sd(xfgxaY ® :L'5) = XgXy @ T5 — s(x5 ® Ty Ts — qayEy @ mgm(s)
= XgXy ® x5 — S (qw;x/g Q T5Ty — qpyXy & (qggxgxg + bz, + Zbyl,m,ykx,,k - l‘y1)>
= XpXy ® Ts — §y6%XpX5 © Ty — 8((%5 — Qpy)bXy ® Ty — 4By Gps%y ® TsTg
Y Bu e (5%, @ Ty T Ty — Ay ey ® Ty - Ty) + Uy UB560%5 © Wﬁ)
= XXy Q Ts — Gy6X%5 @ Ty + (qﬁ’Y — q,y(s)bx?}, ® 1+ qpyqpsxy%s @ 2
+ Zbljl,...,l/kqﬂ'yx’yxyk X LTyp_q - Ty
- 8<ZbV17~~~kaXVk ® (q’\/fS:EVk—l co o Ty Ty = By Gy Ty Ly g - - - xl’l)
- Zblll,---,’/kqﬂ’ys(fﬂ?mwuk Lyp_q -+ 'xm))

Here fo o, = [2y, Ty]e — 4Ty, + ¢y %0, @ 24. We claim that

Cl?yk

d(xpxy%5 @ 1) = %%y @ T5 — ¢y5%8%X5 @ Ty + (ggy — qwg)bxgl ® 1+ ¢8,q85%1%s @ T

+ § bul,...,l/kQB'yXfyka & Typ_q -+ Tuy-
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According with the previous computation we should prove that s annihilates
(6.2.10) x, ® (qm;xl,kfl e Ty Ty — By Gy, Ty Ty - - .ac,,l), S(f%’xyk Ty y - Toy)-

For the elements on the right of (6.2.10) we use that s> = 0. For the elements on the left
of (6.2.10), due to the convexity of the PBW basis, z,, ,...2,, 2y and 2z, ,...2,, are
linear combinations of products Ty e Ty, With vp <y < -oo <y < g and py < 7.
Hence p; < vy, so they are linear combinations of

Xy @ Ty o Tpy = S(Tyy Ty Ty ),

and we use again that s> = 0. Finally, using the claim and that

(6.2.9)
48y — Gy = 4884985 — 48sqss = 0,

the coefficient of xg ® 1 is zero. O

6.3. Higher degree cocycles. We now assume that we are not in the situations of §6.2.
We shall compute all chains ¢ € M(2¢ + 1) satisfying the degree and grading constraints
(6.1.3) and (6.1.4) and verify that the condition in Remark 6.1.1 (b) is satisfied. As before
v € A is fixed.

Let fs : No — Np be the function defined in (4.2.4) for § € A,.

6.3.1. N, = 2. Here the constraints (6.1.3) and (6.1.4) take the form
(6.3.1) > f5(ns)s = Ly, > ng=L+1.

sEA, SEA,

In the following mega statement we collect all possible conditions that we may need
to verify on v to conclude that (xﬁ)* is an L-cocycle (that is, a cocycle of degree L).
We explain the scheme of the proof up to the specific computation of differentials that is
postponed to Section 10.

Proposition 6.3.2. Let L = 2( € N even. Assume that each solution (ns)sea, € NOA+ of
the equations (6.3.1) is of one of the forms (A), (B), (C), (D), (E), (F), (G), (H), (I) or
(J). Then (x%)* is an L-cocycle.

(A) ny =L—1,nq =ng =1 and n, =0 for the other p € A, ; where a, 3 € Ay satisfy

(6.3.3) a<fB, a+p=n7,

the corresponding PBW generators satisfy (10.1.8),
(6.3.4) and L satisfies (L)_gaa = 0.

86
(B) ny =L—2,ny =ng =ns =1 andny, = 0 for the other p € A,. where o, 3,0,n € AL
satisfy

(6.3.5) a<n<y<pB<Id y+n=a+p, n+d=r,

the corresponding PBW generators satisfy (10.1.11),

L
. L ~

(6.3.6) and L satisfies cgﬁ),y = Z(—qm)k(k +1)g,, = 0.

k=0



COHOMOLOGY RINGS OF FINITE-DIMENSIONAL HOPF ALGEBRAS 37

(C) ny =L -3, ny=2,ng=n5=1 and ny, =0 for the other ¢ € AL where o, 3,0,n,T

satisfy
(6.3.7) a<n<y<T<pB<s y+T=a+p, n+i=1,
o No =2 at+T=7+n n+f=2m
the corresponding PBW generators satisfy (10.1.16),
L-1
(6.3.8) and L satisfies (L)g,,q,5 + Z c(()fT)7 =0.
j=1
(D) ny =L —2,nq =ng=n5 =1 and n, =0 for the other p € Ay, where o, 3,6,n,T €
AL satisfy
atd=y+n p[F+o=n+r,
(6.3.9) a<f<y<T<Nn<6,

yHo=2+T1, n+f=n
the corresponding PBW generators satisfy (10.1.24),

; L) _
(6.3.10) and L satisfies ¢, 5, = 0.

E)Yny, =L—-3 ny, =ng =nsg =n, =1 and n, = 0 for the other o € Ay, where
v B n ® +
aaB757 Y IR/AS A-i- SCLtiSfy
(6.3.11) a<f<i<y<T<u<n, atu=y=0+71, n+d=7+7+p.
the corresponding PBW generators satisfy (10.1.33),
L—1

(6.3.12) and L satisfies d(aLB)(;7 = Z q~5’iy(k‘ + Doy (k +2)g,, = 0.
k=0
(F) ny = L=2,no =ng =ns =1 andn, = 0 for the other p € Ay, where a, 3,6,n € Ay
satisfy
(6.3.13) a<n<y<B<, ytn=a+d, n+p=r,
the corresponding PBW generators satisfy (10.1.43),
(6.3.14) and L satisfies c&%}y = 0.
(G) ny = L—=2,nq =ng =n5 =1 andn, = 0 for the other ¢ € AL, where a, 3,0, € Ay
satisfy
(6.3.15) a<fB<y<n<d, y+n=p4+6 n+a=r,
the corresponding PBW generators satisfy (10.1.49),
(6.3.16) and L satisfies c(j;)m =0.

H)ny, =L—-2 ny, =ng =mns =1 and n, = 0 for the other ¢ € AL, where
a76757 7T, 4V E A-‘r satisfy

a< T f<y<pu<r<n<s a+d=n+71, B+I=v+7,
BAn=p+y, atv=r,
the corresponding PBW generators satisfy (10.1.55),

(6.3.17)
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(6.3.18) and L satisfies B .

—day T
(I) ny =L =3, nq =ng =n5 =ny =1 and n, = 0 for the other p € AL, where
aaﬁ)”n“’a 577] € AJr Satisfy
(6.3.19) a<fB<v<y<p<di<n, B+o=~v+v, vin=p+7v, atp=17,
the corresponding PBW generators satisfy (10.1.63),

(6.3.20)  and L satisfies dg{gﬂ@aﬁ =0.

(J)ny =L -3, no =ng =ns =ny =1 and n, = 0 for the other ¢ € A, where
aaﬂ)(sv nv,u € A-i— SCLtiSfy
(6.321) a<B<déi<y<pu<v<n Bt+n=v+v, d+tv=p+y, atp=y
the corresponding PBW generators satisfy (10.1.63),

(6.3.22)  and L satisfies d(BL_)Vm =0.

Proof. As Ny = 2, xJ ® 1 is a n-chain for all n € N; hence x{; ® 1 is so. By assumption

L=1x4, for a pair («, 3)

gl
~2xgx5, for a 4-tuple (o, 83,6, n) satisfying (6.3.5); ngg_gxmc(g, for

all (L 4 1)-chains of degree Ly are one of the following forms: x,x

satisfying (6.3.3); xax$

a 5-tuple («, 3,4, n, ) satisfying (6.3.7), XO(XBX§_2X5, for a 5-tuple (o, 3,6, n, 7) satisfying

(6.3.9), XQX5X5X§_2xn, for a 6-tuple («,f,d,7,p,n) satisfying (6.3.11), xaxf;“

a 4-tuple (o, 3,6,n) satisfying (6.3.13), Xamxf/_zx(s, for a 4-tuple (o, 3,0,n) satisfying

(6.3.15), XQX5X$_2X5, for a 7-tuple (v, 8,0, n, 7, u, v) satisfying (6.3.17), xax5x§_3x(;x,7, for

a 6-tuple (o, 8, v, ud, n) satisfying (6.3.19).

o Fix a pair (a, 8) satisfying (6.3.3). To simplify the notation, call ¢ := —gj—; = —ZZ—Z.
We can apply Lemma 10.1.7 since conditions (10.1.8) hold by hypothesis. Assume first
that L = 2a 4 1 is odd. Hence the coefficient of xg ®1in d(xax£*1Xﬁ ®1)is

0028 {(—C 1) (@) — (~0} = —ba5" {(140) (a)es + ¢} = ~bgl5 (L.

If L = 2a is even, then the coefficient of x{“/ ®1in d(xaxg_lxﬁ; ®1)is

b (=C— 1) (a) g2 = —bays " (1+0) (a)e = —bay5 (L)c.

By (A) such coefficient is zero in both cases.

_2X5X5, for

o Fix a 4-tuple («, 3, d,n) satisfying (6.3.5). We can apply Lemma 10.1.10 since conditions
(10.1.11) hold by hypothesis. Hence the coefficient of X% ® 1 in d(xaxfi_Qxlgxa ® 1) is
zero by (B).

o Fix a 5-tuple («, 3,9,n, ) satisfying (6.3.7). We can apply Lemma 10.1.15 since condi-
tions (10.1.16) hold by hypothesis. Hence the coefficient of X% ®1in d(xixﬁ*’xm@ ®1)
is zero by (C).

o Fix a 5-tuple («, 8, d,n, 7) satisfying (6.3.9). We can apply Lemma 10.1.23 since condi-
tions (10.1.24) hold by hypothesis. Hence the coefficient of X,% ®1in d(xaxﬁgxg_2x(; ®1)
is zero by (D).
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o Fix a 6-tuple (o, 8,0, T, ¢, n) satisfying (6.3.11). We can apply Lemma 10.1.32 since con-
ditions (10.1.33) hold by hypothesis. Hence the coefficient of X,{; ®1in d(xa}%x(;xg_an ®
1) is zero by (E).

o Fix a 4-tuple (a, 3, 0, n) satisfying (6.3.13). We can apply Lemma 10.1.42 since (10.1.43)

holds by hypothesis. Hence the coefficient of x,% ®1in d(XaX,e_Qngg ®1) is zero by (F).

o Fix a 4-tuple (o, 3,4,n) satisfying (6.3.15). We apply Lemma 10.1.48 since (10.1.49)
holds by hypothesis: The coefficient of x,% ®1in d(xaxlgx,’;foa ® 1) is zero by (G).

o Fix a 7-tuple (a, 8, 9,n, T, u, v) satisfying (6.3.17). We can apply Lemma 10.1.54 since
(10.1.55) holds by hypothesis: The coefficient of X,% ® 1 in d(xax5x£_2x(; ® 1) is zero by
(H).

o Fix a 6-tuple («, 8, v, u, d,n) satisfying (6.3.19). We apply Lemma 10.1.62 since (10.1.63)
holds by hypothesis: The coefficient of xg ®1in d(xoéxmg%*?’x(;x77 ® 1) is zero by (I).

o Fix a 6-tuple («a, 8,6, n, v, p) satisfying (6.3.21). We apply Lemma 10.1.70 since (10.1.71)
holds by hypothesis: The coefficient of X% ®1in d()(oé}c,6>)(5}c§*3)c77 ® 1) is zero by (J).

Thus the coefficient of x,% ® 1 in d(c) is zero for all ¢ € M(L + 1) and Remark 6.1.1
applies. [l

6.3.2. Ny > 2. We carry out a similar analysis when the assumption is IV, > 2 instead.

Proposition 6.3.23. Let v € Ay be such that Ny > 2 and for all pairs («, ) € A% such
that

(6.3.24) a<p and a+f=(N,—1),

the corresponding PBW generators satisfy (10.1.8). Let f5 : Ng — Ny be the function de-

fined in (4.2.4) for each § € Ay. Assume that £ € N satisfies the following two conditions:
(a) For each pair (o, ) € A%L satisfying (6.3.24) the scalars qo, and q g satisfy

Qory
6.3.25 — —1)(4) aa =0.
(6329 (52— 1) Oy,

(b) The solutions (ns)sca, € N?* of the equations
(6.3.26) > f5(ns)d = ENy, > ng=20+1
SeA, SeA,

are all of the form n, = 2({ — 1) + 1, nq = ng = 1, for any pair (o, B) satisfying

(6.3.24), and ns = 0 for the remaining 0 € A.
Then (ng”)* is a 20-cocycle.
Proof. Fix a pair of positive roots (o, 3) satisfying (6.3.24). We can apply Lemma 10.1.7
since conditions (10.1.8) hold by hypothesis and conclude that the coefficient of XA%N” ®1
in d(xaxzyv”(L_l)HXg ® 1) is zero by (a).
By (b) all (2L + 1)-chains of degree LN,y are of the form XOAX']\;LY(

(o, B) satisfying (6.3.24). Thus the coefficient of xfeNW ®1in d(c) is zero for all ¢ € M(2L+1)
and Remark 6.1.1 applies. O

L—1)+1 .
I+ xg, for a pair
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Next we deal with the scalars ¢Z). and dfoﬁ)dw' Given r,s,t € k, let

aBy
L—1 L—1
(6.3.27) B ="k (k4 1), dB = STk (k4 1)k + 2).
k=0 k=0
. Ly _ (L) (L) _ 4
Notice that Copy = Cifawﬂ@w and da(;ﬁv = s s

Lemma 6.3.28. (a) Assume that (L), =0. Then cfn,Ls) = —scg,Lr)
(b) Assume that (L), =0 = (L)s and rs # 1. Then C%) =0.
(¢) Assume that (L), =0= (L)s for L >3 andrs # 1. Then dg;),s =0.

Proof. For (a) we compute

L—1 koo L-1  L-1 L1 L—1
C7(67Ls) = Tk<zsﬂ) - sz(z Tk) - sl((L)r _ (Z)r) - _ Z st (i),
k=0  j=0 i=0 k=i i=1 i=1
L2 L—
=— Z ST E+ 1), = -5 sf(k+1), = —scg?.
k=0 k=0
Now (b) follows using (a). Indeed, we have that c,(ﬂ,Ls) = —scg,L,) = rsc,(ﬂ,Ls); as rs # 1 by
hypothesis, we have that C£7Ls) = 0.

Next we deal with (¢). As rs # 1 and (L), = (L)s = 0, we have that (L),s = 0; thus
(L

C'rs,)s =0 by (b). Also, (L;I)S = (. Then we compute

4, = (2,3 (k : 2)3 - <2>5L21r’f((k : 1)3 b b4 1),)

k=0 k=0
L1 L2 .
k+1 . 492
—o. (") redb - (7))
2 ; 2
k=1 S 7=0 S
L1 .
(i+2
=(2)sr Y 1! <‘7 0 ) =rd{%),.
j=0 s
As r # 1 we have that dgf.;)’s =0. O

For each § € Ay, let af € Np be the coordinate of o; in §: that is, 6 = Y, affozi.

6.4. Summary of the algorithm. As we have seen in Part I, to prove finite generation

it is remained to establish Condition (1.4.1) for Nichols algebras of diagonal type. Now

that we introduced all the necessary players we can describe the procedure we will follow

to establish this condition. Going through these steps will occupy the remainder of the

paper.

o We fix one type in the classification of Nichols algebras of diagonal type. We choose
a representative of the Weyl-equivalence (as defined in § 2.3.2) with the care that the
proper subdiagrams were already treated.
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o We fix v € AY. We assume that v has full support (see definition in § 2.3); recall that
Lemma, 6.2.5 takes care of simple roots.

o We compute N, P, Q.

Then we apply one of the following criteria:

(I) If Ny>P,,Q,, then (x]VV”)* is a cocycle of degree 2.
(II) If Ny =2 and (6.2.9) holds, then (X»JYVW)* is a 2-cocycle.
(IIT) Assume that N, = 2 but (6.2.9) does not hold. We define

L, =1lcm ({2}U {ord(—qa—a) cy=a+B,a,8e€ Al )
458
We find all families (1) 5¢ AT of non-negative integers satisfying (6.3.1) with L = L.

We check that any of these families (né)éeAi has one of the forms (A), ..., or (J)

in Proposition 6.3.2. Then (xgw)* is a cocycle.
(IV) Assume that N, > 2 but the inequality in (I) does not hold. We define

L, = lem ({NA,} U {ord ((Z‘”)NO C (Ny—1)y=a+B,a,8¢c Al )
VB
We find all families (ns)sc Al of non-negative integers satisfying (6.3.26) with L =

L.. We check that any of these families (ns)sc AT has one of the forms (a), ...in

Proposition 6.3.23. Then (xfﬂ)* is a cocycle.

Actually we distinguish two classes of types in the classification of finite-dimensional
Nichols algebras of diagonal type. In the first the braiding matrices have continuous
parameters and correspondingly the values of IV, might depend on these parameters. Then
arguments by hand are needed. These are the types treated in Sections 7, 8 and 9.

The second class consists of the remaining types where the braiding matrices are so to
say discrete. For them we compute N,, P,, @, and the suitable families (ns)sc Al using

a computer program developed by Héctor Pena Pollastri towards these goals. We then
check whether (”5)66A1 has one of the forms (A), ..., or (J), respectively (a), ...by hand

using the defining relations, or at least the convex order, of %;. The types in this class
are those treated in Part III (to appear later).

The implicit numeration of any generalized Dynkin diagram is from the left to the right
and from bottom to top; otherwise, the numeration appears below the vertices.

7. CLASSICAL TYPES

We shall use notations and conventions introduced in § 1.7. For a positive integer 6
defining the Dynkin type let T = I.
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7.1. Types Ag and A(jl0—j),0>1,j¢€ HLHJ' Let g be a root of 1 of order N > 2. In
2

this subsection, we deal with the Nichols algebra %, of standard diagonal type Ay, that is
associated to the Dynkin diagram

q11 @12 q22  G23 q33 g9-10-1 Jo—10 ey
o 0 o — 0

-1

where the g¢;;’s are either —1, ¢ or ¢~ and locally the edges are of the following forms:

at q ¢! a ¢! ¢ ¢ -l q ! gt -1

9 9 9

For more information, see [AA, §4.1, §5.1]. The aim of this Section is to prove that
Condition 1.4.1 holds for types Ag and A(j|0 —j),0 >1,j € I ox1). That is,
2

Proposition 7.1.1. For every v € A%, there exists Ly € N such that (xﬁ”)* is a cocycle.

We start by setting the notation. Let
(112) o= Y o i<jel
kel ;

The set of positive roots is Ay = {a;;|4,j € I, i < j}; this set is ordered lexicographically
on the subindex (i,7). Let r = |[Ay| = (931); we have a numeration A, = {5;|i € I} so
that B < Be if k < £.

We set IV;; := ord Qoij s that is IV;; = N, if a = «;j. For simplicity we set N; = N;; for
all 7. Then

7.1.3
( ) N |k el;:quw=—1}|is even.

2 ‘{k’ S ]Ii,j L Qkk = —1}| is odd,
Nij =
The root vectors are
Loy = Loy = Tiy 1 €1,
$a¢j = x(z]) = [xi7$a¢+1j]ca { < ] S H?

see (2.3.5); we order them lexicographically: x; < r(1g) <+ <wg <--- <wzg. Thus

ngg Mo—10 _Mo—16—1 nig n11
{zp%x O—10)To—1 - Tig) - |0 < nj; < Ny}

is a PBW-basis of %;. The defining relations in terms of the PBW-generators are

Z(i5)(ik) = GovijonL(ik) L (i5) i <<k
L(ik)L(jk) = Daipa;n(jk) L (ik)s 1< j <k
L(i)L(j+1k) = doizaz1k TG+ k) T(g) T Z(ik) 1< j <k

L) (k) = QagjaneT (k)T (ij)s 1<j<k-1</{-1;
T(ip)s 1<j<k<{

)
T(i0)T(jk) = Gapajp T (jk)
12G5) T (1= Gjjr1)dasan T Tk, 1<k <J<b

x(’t ) (k@) = QOéijOékg‘T(k‘@

(U)_O LS
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The relations are homogeneous with respect to the Ng—grading, an observation that will
be useful later. As an example we draw the Cojocaru-Ufnarovski graph that encodes the
Anick resolution for the Nichols algebra %, of type Az in case N1, N1z, No > 2:

€1 Z12 Z2
Ni—1 Ni2—1 No—1
Ty Z12 EP)

Observe that in this case N1 = Nis = N and we are in Cartan type. The chains are then
M(0)={x1, x12, X2},

M(1)={x]", x152, X0°,X1X12, X1X2, X12X2},
M(2):{xf71+1, ngu“, XéVQ—H, thxlg, X{VIXQ, Xlegm, Xlxé\b, XlgxéVQ, nguxQ, X1X12X2},
M(B):{X%Nl, X%Vm, XSNZ, lelefglz, X]1V1X12X2, Xileé\[z, xf[ﬁlxlg, Xi\rl—’_lXQ,

Xlxi\gm-&-l’ Xlxé\&-l—l, X1X12Xé\/27 X{\QQ—HXQ, Xll\gmxé\&? X12X§2+1}7

and so on. In case N1 = 2, the loop between x; and X{V 171 s understood to be collapsed

to a loop from x; to itself, and similarly for the other root vectors.

In order to apply Remark 6.1.1, we start by the following Claim.

Claim 1. Let a be a non-simple root with N, = 2. Let C,(%4;) be the Anick resolution of
the Nichols algebra ;. Let ¢ € M(N + 1) and assume that d(c ® 1) € Cn(%,) has a term
xN ® 1 with nonzero coefficient. Write ¢ = xgi .. .xaﬁ:, where a; € Ny for all j. If Ng, > 2,
then a; = 0,1 and

(7.1.4) Y ai=N+1.
i€l
Indeed, we may safely assume that « = a9 = a1 + - -+ 4+ ag for simplicity. Since d is
homogeneous, Najg = Zie]lr a; ;. Assume that
S:={iel,: Ng >2,a; >1}

is non-empty. If i € &, then a; > N by looking at the Anick graph, hence a; = N by x.
Also, the supports of the ; with i € & are disjoint. Let R = {k € I : k ¢ supp 5;,i € &};
observe that £ is non-empty because N, = 2, cf. (7.1.3). Now

b
Zazﬂi y:* Na—NZﬁz = NZak.
26 €6 kef
Pick k£ € 8 and compute the coefficient of a; in the last expression; then

Zaiz Z ai:N.

¢S ¢S, kesupp By
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Now the cohomological degree of m“ﬁi . x%: sums up a; for each i ¢ & and 2 for each i € &
(one arrow in, one out). Thus

N+1=> a;i+2/6/>N+2.
¢S
This contradiction shows that & = () and the claim is proved.

The following result on root systems of type A should be well-known; we provide a proof
for completeness of the argument.

Lemma 7.1.5. Let v,71,...,Y+1 € Ay with y1 <72 < ... < Ypy1. Assume that

(7.1.6) Y14+ oo+ Ynr1 =n7.
Then

V2= = ==, Y =7t Int1

Proof. We may assume that v = a1 +. ..+ g for otherwise we reduce to a smaller 6. Since
we have n+1 roots in the sum which contains each simple root with coefficient exactly n, we
must have that v1,. .., v, have a; in the support but v,11 does not. Similarly, v2, ..., Vn+1
must have ay in their support but 7; does not. Hence, the supports of s, ..., 7, contain
all simple roots. We conclude that v9 = ... =, =+, thus 71 + y,+1 =7 by (7.1.6). O

Claim 2. Let v € Ay and let ¢ € M(n). Assume that

(a) d(c®@1)=...+Cx; ®1+... for some C # 0,
(b) The polynomial degree of ¢ is n + 1.

Then there exist o, 5 € AL such that

c:xaxz_lxw v=a-+p.
Proof. By (b), we may write ¢ = %, ...%y,,, ® 1, where 71 < 7o < ... < yq1 € AL
Since d is Nf-homogeneous, (7.1.6) holds by (a). Thus Lemma 7.1.5 applies. O
Claim 3. Let o, 8,7 € A} with vy =a+ . Let p = _doa - Assume that N, = 2. Then
488

d(xaxé Xy ®1) = xaxffl ®xg — q%[gxax?'fQng ® T

. o o
+ (-UJC]@,,BQZWYIX% 1X6 ® To — qu,g (])soxgy ® 1.
Proof. The defining relations say that
Taly = qa,flyTa + Ty, Talp = dayTala, LRLy = Qvy,BLyTg-

Hence we are in the setting of Lemma 10.1.7. We consider two cases.
First we assume that j = 2a + 1 is odd. The only thing we need to prove is that the
coefficient of xJ, ® 1 is of the given form. We compute

2a
j—1 o,y _ 1> @), au _ <Qa,'y) S VN 1 (a (. \2a
98 {(%,,B ( )(;7:;)2 7%,,8 a4, s (¢ ) )(—p)2 (=9)™)

i q _ i—1 —1, .
=05 1+ p)(L+e" +...+ "+ 0™) = —¢) 5 20+ 1)p = —¢) 5 (§)o-
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Next we assume that j = 2a + 2 is even. We do a similar calculation for the coefficient
of x4 ® 1.

9v,8

) — QOc, j—
%ﬁ(QW— >W+”<%Q2:%EVW—1WH4XwP
V7,8

2

i1 i—1 —1/ .
= —quﬁ A+ e)A+e"+...+ ™) = _Q»]y,g (20 +2)p = _Q»]yyg (J)g-

0

Proof of Proposition 7.1.1. First, if N, > 2, then (xf,vv)* is a cocycle in degree 2 by
Lemma 6.2.5, cf. Lemma 6.2.7 (a). Let v be a non-simple root with N, = 2.

By Remark 6.1.1, it suffices to show that there is no ¢ € Cy(R) such that d(c) contains
xfyv ® 1 with a non-zero coefficient. Assume that this happens. By Claim 1, ¢ satisfies

the hypothesis (b) of Claim 2. Hence ¢ = xaxév_lm ® 1 for some o and 3. But xfyv ®1

does not enter in d(XOCX,]yV_IXg ® 1) with a non-zero coefficient for any «a, 3,7 € A™ with
v=a+ f. Indeed, p = oo _ g1, see (7.1.3); taking j = N, the coefficient in Lemma
4sB
. —1 /.
3 is quﬂ (4)e =0. O

7.2. Types By and B(j|0 — j), 0 > 1, j € Iy_1. Let ¢ be a root of 1 of order N > 2. In
this subsection, we deal with the Nichols algebras %, of diagonal types By or B(j]0 — 7).
In the first case, the Dynkin diagram is

q @ q q q 7 q 7 q q
o O O o O o o
J
The set of positive roots in both cases is
(7.2.1) Ay ={ap |t <k el}U{apg+arg|i < k el}.

We fix the following convex order:

(722) ap <ap<- - <ap<aytoa <---< o+ agg
o <y <aoy3 < - <ag_1 < ap_19 < ap_19+ g < Qg.

We set N, := ord qn,,, Mir := ord qa,p+a4e, that is Ny = No if o = ayi, M, = Ny if
a = a9+ apg. Let M = ord¢?, P = ord(—q). Then
2 i<j<k<,
M i<k<jorj<i<k<0; M:_{2 i<j<k
P i<j<k=0, FTIM i<k<jorj<i<k.
N j<i<k=6,

Nip =

Here we set j = 0 if q is of Cartan type. For more information, see [AA, §4.2, §5.2].
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In this Section we prove that Condition 1.4.1 holds for types By and B(j|0 — j), 0 > 1,
j € Iy_1. We need the following technical result.

Lemma 7.2.3. Let vy = ayg, assume Ny = 3, and let (o, B) be a pair of positive roots such
that

(1) a+ B =2y,
(2) o = aqg, B =19+ agr1e for some k € Iy_q,

(in particular, (o, B) satisfy o < j3).
Then the relations between the root vectors xo, xg and x., are of the form

TaTy = QayTyTas TyTg = QyaTRT~, TaTB = (aBTaTa + bxg/, bek

Proof. The statement follows by the repeated application of the convexity and homogeneity
of the relations.We prove 24Ty = qay2~% first. For any n € AL such that o <n <, we
must have n = ay, for some k < r < 6 by (7.2.2). From here, we see that is impossible to
find n1,...,m such that ao+~v # n1 +--- + 1 and o < n; < v. Hence, 247y = qay2TyTo by
(2.3.6).

For the second relation, if n € A, is such that v < n < 3, then n = a9 + a9 for some
kE<r<0. Hence B+~ #m +---+n if a < <, 50 2,28 = q,5237~.

The last relation follows similarly: o < < --- < < 8 are such that >, n; = o + 8
if and only if £k =2 and n; =2 = 7. 0

Proposition 7.2.4. For every v € Ai, there exists L, € N such that (XAI/W)* 18 a cocycle.

Proof. Let v be a positive non-simple root. Arguing recursively we may assume that + has
full support. Hence, either v = g9 or else there exists k € I g such that v = a9 + age.

First we consider v = ajp. It is easy to check that P, = 3 and ), = 1. Hence, if N, > 3,

then Lemma 6.2.5 applies and (XZWV 7)* is a 2-cocycle. Next we consider the case Ny = 3:
that is, either N = 3 if the braiding is of Cartan type, or else N = 6 if not.

All the pairs («, 8) as in (6.3.24) are of the form o = aqk, f = @19 + agy1¢ for some
k € Ip_;. Fix a pair (o, f). By Lemma 7.2.3, 24, 25, 2 satisfy (10.1.8). Also, gj—; =
for all of them, so we take L = 1. Now we look for solutions of (6.3.26). That is,
256A+ fs(ng)d = 3, ZéeA+ ng = 3. We check that there is no solution with nsg = 3

neither with ns = 2, € A;. Hence we are forced to look for solutions with n,, = 1 for
three different roots 74 € A, (and 0 for the other roots). We write ¢ = >, ¢ al(t)az-. As

ot agt) = 3 for all i € I, we have agt) =1 for all ¢ € I3, and either agt) =1 for all ¢t € I,
or aét) = 2 for some t € [3. If aét) =1 for all ¢t € I3, then 4 = y for all ¢, a contradiction.

Hence we may assume a(gl) =0, ag) = 2, a((f) = 1. Then v1 = a1k, 72 = 19 + k410,

~v3 = 7, for some k € Ty_;. Thus Proposition 6.3.23 applies and (Xf’/)* is a 2-cocycle.

Now we consider v = g + agp, k € I 9. Here, P, = 2 and Q, = 1. If N, > 2, then
Lemma 6.2.5 applies and (xiv 7)* is a 2-cocycle. Next we consider the case Ny = 2: that
is, either N = 4 if the braiding is of Cartan type, or else k > j if the braiding is of type
B(j|60—j). Let a < 8 be a pair of positive roots as in (6.3.3). We have several possibilities:
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o a=awa1i-1, 8=+ arg, ¢ < k. Arguing as in Lemma 7.2.3, the relations between the
root vectors are of the form:
TaTy = QayTryTas, TyTR = QyBLRT, TalB = qapTaTa + DIy, b e k.

o a=a1i1, 8 =ar+ay, k<i<4@. The relations between root vectors are of the form

i—1
Taly = QayTyTay TyTR = QyBTRTy, Talp = (afTTa + DTy + Z btTag+aeTari—1s
t=k+1
for some b, b; € k.
o o= ayy, B = ar. Arguing as in Lemma 7.2.3,
0—1
TaZy = JayTyTa; TyTg = qypTpTy; Talp = qapTaTa + BTy + Z btTaigtaLag, 1
t=k+1

for some b, b; € k.

In all cases the root vectors satisfy (10.1.8), and —g;’;—; = ¢*2, so we take L = M.

Next we look for solutions of (6.3.1). In the Cartan case with N = 4, we have
Y sc AL Ns = 3 we easily discard the possibility that nsg > 2 for some § € Ay, so ex-
actly three of them are one, and n, = 0 for the remaining ¢ € A,. Arguing as in
the case v = a9 we check that all solutions are of form n, = n, = ng = 1 for a pair
(ar, B) satisfying (6.3.3). Next we consider the case B(j|0 — j), k > j. We have that
ZaeA+:1esupp6 fs(ns) = M. Let n € A4 such that 1 € suppn and n, > 0.

e If 7 = ayg, then ny = 1: otherwise, fy(ny) =2 P =2M > M =} 50 1, . 1csupps J6(n6), @
contradiction.
o If n = ay;, 7 < j, then n, = 1. Suppose on the contrary that n, > 1. Then n, = 2, since

fn(ny) < M = N,. This implies that ns = 0 for all § # ay; such that i € supp .

Let 6 € Ay such that afH = 2. Then ns = 0 since @ € suppd. Thus

M= > fs(ng), Y mg<M.
56A+:af+1:1 56A+:af+1:1

Then n;4+1¢ = 2 for some ¢ > ¢, which implies that ns = 0 for all § # a;1¢ such that
¢ € suppd. Recursively, there exist ig =1 < i3 =i <19 < --- < ig =7 — 1 such that

2 6= QG 14y T € ]IS,
n =
*T\0 5 # iy, suppd NIy # 0.

On the other hand, if a? = 1, then either N5y =1, or § = ayg, ¢ < j, in which case ng < 1
since Ns = P = 2M. Hence ns = fs(ns) for all § such that a?- = 1. Using this fact,

M= fstng)ai= > ng+2 > fs(ns)

ey s€Atiad=1 b€Ayiad=2
< D m+2 Y filng) <M —142 Y fs(ng).
seAr—{n} (5€A+:a‘]5.:2 56A+:a§:2

Thus n, # 0 for some p € Ay such that a; = 2; but j — 1 € supp , a contradiction.
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o If either n = avy; or else n = g + g, j <@ < 0, then N,y =2, so f,(n,) = n,.
o If n = g + ayp, © < j, then n, = 1. Otherwise,
M = Z f(;(n(;)a?_l > 2fp(ny) >2M,
0€A:j—1€suppd
and we get a contradiction.
Hence f5(ns) = ns for all § such that 1 € suppd. Therefore,
Z ng=M+1— Z ng=M+41-— Z fs(ng) = 1.
0€AL: 1¢suppd 0€A L :1€suppd d€A:1€suppd

That is, there exists a unique root § € A such that 1 ¢ supp 8 and ng # 0; moreover
ng = 1 for this root 8. Thus fs5(ns) = ns for all § and we may translate to solve (6.3.1)
as follows: find 7y € Ay, t € Ip41, not necessarily different such that >, v = M~.
Write v¢ = > ey agt)ai. Hence we may assume that agt) =1 for t € Iy, a%MH) =0. As
ZteﬂMH a,(:) = 2M and each a,(f) <2, at least M — 1 of them are 2, and for the other two
a,(f)’s, either both are 1, or else one of them is 2 and the other is 0. Hence we may assume

that a,(f) =1 for t € Ijy—1. This forces to have v = v for t € Ips—1, yir + Y41 = -
Hence all the hypotheses of Proposition 6.3.2 hold, and (xfj;”)* is a cocycle. O

7.3. Type By j standard, j € Iy_;. Here ¢ € G5. In this subsection, we deal with Nichols
algebras %, of standard type By ;. We assume that the corresponding diagram is

¢ ¢ < - ¢ -1 —=¢ —¢ - —¢ ¢
o —— o o o o

O O

J
The set of positive roots is (7.2.1), and we fix the same convex order, see (7.2.2). For more
information, see [AA, §6.1]. We prove that Condition 1.4.1 holds for type By ; standard:

Proposition 7.3.1. For every v € A, there exists L, € N such that (Xﬁ”)* s a cocycle.

Proof. Let v be a positive non-simple root. Arguing recursively we may assume that + has
full support. Hence, either v = g or else there exists k € I g such that v = a9 + age.

First we consider v = 9. Here, P, = 3 and Q4 = 2, N, = 3. All the pairs (o, 3) as in
(6.3.24) are of the form a = aq, B = a9 + agy1¢ for some k € [p_;. By Lemma 7.2.3,

Taly = ayTyTa, TyTg = GyBLRTy, Lol = qufTiTa + bk:cg/, for some by € k,

so the root vectors satisfy (10.1.8). Also, Z“—; =1 for all of them, so we take L = 1. Now
2l

we look for solutions of (6.3.26). As in the proof of Proposition 7.2.4, there exists a pair
(o, 8) as in (6.3.24) such that n, = no = ng = 1, and ns; = 0 for the remaining roots
§ € A%. Thus Proposition 6.3.23 applies and (xg)* is a 2-cocycle.

Now we consider v = aqg + agg, k € Iz 9. Here we have P, = 2 and (), = 1. Hence, if
k < j, then Lemma 6.2.5 applies since IV, = 6, so (xg)* is a 2-cocycle. Next we consider
the case k > j, so Ny = 2. The pairs a < (8 as in (6.3.3) are the same as in Proposition

7.2.4, the root vectors satisfy (10.1.8) and —% = —(*! so we take L = 6. Also, the
same argument as in the case B(j|60 — j) in Proposition 7.2.4 shows that there exists a pair
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(o, B) as in (6.3.24) such that n, = 4, n, = ng = 1, and ns; = 0 for the remaining roots
o€ Ai. Hence all the hypotheses of Proposition 6.3.2 hold, and (Xg)* is a cocycle. O

7.4. Type Cy. Let g be a root of 1 of order N > 2. In this subsection, we deal with the
Nichols algebras %, of diagonal type Cy: the Dynkin diagram is
—2 2

qa q q
¢} o .

The set of positive roots is
(7.4.1) Ay = {aij i <jel}uU{ay+ g1 i <jelp_1}.
We fix the following convex order:

(7.4.9) ap <ap <o <oapg <oagtarg-r <o togog << agg+ a1
o <apg<az<agy<-o<agor<ago1g <19+ ag-1 < ap.

Let M = ord ¢2. It follows from the definition that

N — M, ~v =i+ a1 0r v = ap;
N7 ’Y:a’i9+aj9717i<j7 Or")/:Oéij, (7'?.7)7&(070)

For more information, see [AA, §4.3]. The aim of this Section is to prove that Condition
1.4.1 holds for type Cy. More precisely,

*

Proposition 7.4.3. For every v € A%, (xfva) is a 2-cocycle.

Proof. Let v be a positive non-simple root. Arguing recursively we may assume that + has
full support. Hence, either v = g or else there exists j € ly_; such that v = a9 +aj9_1.

First we consider v = ag. In this case we have P, = 3 and (), = 1. Hence, if N, > 3,
then Lemma 6.2.5 applies and (XJWV ")* is a 2-cocycle.

Now assume that N, = 3: that is, N = 3. The unique pair (o, ) as in (6.3.24) is
a=ap+a19-1, B = ap. Arguing as in Lemma 7.2.3, the relations are of the form '

TaZy = QayTyTas  TyTR = QyTRTy,  Talg = QafTaTa + b:c2 for some b € k,

and then the root vectors satisfy (10.1.8). Also, qa—; =1 for all of them, so we take L = 1.

Now we look for solutions of (6.3.26). That is, > 5.1, fs(ns)d =37, Yo5en, no = 3. We
check that there is no solution with ns = 3 neither Wlth ng=20¢€A,. Hence we look for
solutions with n,, = 1, for three different roots v, € Ay (and ns = 0 for the other roots).
We write 7 = > .cq agt)ai. As ), az(-t) = 3 for all 7 € I, we have a((f) =1 for all t € I3, and
either agt) =1 for all t € I3, or agt) = 2 for some t € I3. The case aét) =1forall t €3

(t)

gives a contradiction: either v; =« for all ¢, or else ), a,”

agl) =2, agz) =0, agg) = 1. Then v1 = a19 + @19-1, Y72 = ag, 73 = v. Thus Proposition
6.3.23 applies and (xi)* is a 2-cocycle.

; > 3. Hence we may assume

1Indeed7 To = [:cl 0—1, xlg]c, Z~y = T19, and using g-Jacobi identity we have that b = ¢(¢—1) HieH#l qi6 -
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Now we consider v = a9 +ajg—1, j € Ip—1. In this case, P, =2 and @, = 1. If N, > 2,

then Lemma 6.2.5 applies and (xiv ")* is a 2-cocycle. Hence we need to study the case
N, = 2: that is, N = 4 and v = a19 + a1p—1. Let a < 8 be a pair of positive roots as in
(6.3.3). We have the following possibilities:

o a=aqari1, =aig+ a, i €lrp_1. There exist b,b; € k such that

0—1
Lally = ay@yTa; Tr = Gyplpty, Taly = aflaTa + by + Y biliastareTarii-
t=i+1
o o= ayg, B = ajg—1. In this case,
Taly = oy TyTa, Ty TR = QyBTRL~, Talg = quBTR%a + L.
In all cases the root vectors satisfy (10.1.8), and —42¢ = —1, so we take L = 2.

4pp
Next we look for solutions of (6.3.1). That is, > s5c o, f5(n5)d =27, D 5c 4, ns = 3. Let

€ AL be such that n, # 0, 0 € supp p. Notice that
2= > fieah= D> fs(ne),
d€ Ay :6esupp b d€A L 0€suppd

so ny < fu(nu) < 2. Suppose that n, = 2. Then u = ajg + oj9—1 for some i € Iy_; since
N, = fu(2) <2, and there exists n # p such that n, =1, ns = 0if § # p,n. But then

doanig =2y =2u =" fs(ns)s = fo(L)n =,
d0F#p

a contradiction. Hence n, = 1 for all p € A, such that n, # 0, 0 € suppp. Then
there exist three different roots v; € Ay such that n,, = 1, and we may assume that
6 € supp 2 Nsuppys, 0 ¢ suppyi. As v2 # 73, we may assume y2 # 7, so a]> = 1. This
implies that a' =1, so y1 = ay; for some i € Iy_q, and a]® = 2, so v3 = 7.

Hence all the hypotheses of Proposition 6.3.2 hold, and (xiv ")* is a 2-cocycle. O

7.5. Type Dy. Let ¢ € Gy, n > 2. Let %, be a Nichols algebra of type Dg. That is, the
generalized Dynkin diagram of %, has the form

o

The set of positive roots is
Al = {aij |Z g] € ]L (Zvj) 7é (0 - 179)}
U{aig—2+ag|i€lp_o} U{aig+ ajoo|i<jelys}.

We fix the following convex order:

(7.5.1)

a1 <o < <1 < a1g—2 oy < ag < apt+oag_o < ...
<opgt+agg2 <o <ags << apog < ap-29-1 < g2+
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< opg—9p < ap—1 < Q.

For more information, see [AA, §4.4]. The aim of this Section is to prove that Condition
1.4.1 holds for type Dy. More precisely,

Proposition 7.5.2. For every v € A%, (X{YV’V)* is a 2-cocycle.

Proof. By Lemma 6.2.7, P, = 2 and (), = 1 for all non-simple roots «. Hence, if N > 2,
then Lemma 6.2.5 applies and (xiv ")* is a 2-cocycle for all roots «.

Next we assume N = 2, that is, ¢ = —1. We will apply Proposition 6.3.2. Let v be
a positive non-simple root. Arguing recursively we may assume that « has full support.
Hence, either v = ag or else there exists k& € I g_o such that v = a9 + arg—2. We look
for pairs & < f € A4 such that v = a+ 3. Notice that gaa = ¢sg = —1 = —242= in any

4pp
case so we may guess that L = 2.

First we consider v = aqg. All the pairs («, 3) as in (6.3.3) are of the form a = oy,
B = ajy1¢9 for some j € Ip_q. Similar to Lemma 7.2.3,

Taly = qayTyTa,  TyTg = QyBTRTy,  Talg = (afTRTa 1 DIy for some b € k,

so the root vectors satisfy (10.1.8). Next we look for solutions of (6.3.1). That is, 2y =

01+02+63,0; € Ay. We write §; = >, az(»j)ai. AsaW is0or 1 fori= 1,0 —1,0, we may

fix agl) = a§2) =1, ag?’) = 0 and see the possible pairs of roots such that agnj)l = agi)l =1,

respectively aép ) = agr) = 1. Suppose that no one of the §;’s has coefficient 1 for the three

simple roots simultaneously. Then we may assume aél_)l = a((g?’_)l =1, aéZ) = aég) =1, so

aé{)Q > ( for all j € I3, a contradiction. Hence we assume aglzl = aél) =1, so al(-l) > 1 for
all ¢ € I. If either agl =1lor ang) = 1, then a((i)Q > 1, which implies aéIJQ =1 and so
01 = «. Otherwise a((;:)l =1= aé?’), then a((ig > 1, which implies again §; = 7.

Finally, let v = a9 + agg—2. Let o < 8 be a pair of positive roots as in (6.3.3). Then
the coefficient of oy is one for just one of them (and zero for the other): it should be «,
since o < B. We have several possibilities:

o a=a1j-1, B=aj+arg—2, j <k. Then
Taly = QayTyTas  TyTB = GyBLRT~,  TalB = (aBTRTa + DIy for some b € k.

oa=aij-1, B=oar+ajo_2, k<j <02 Then

7j—1
Taly = qayTyTas TyTg = GypTaTy; TaZf = aplala + DTy + Z btTaygtarg_oTari—1s
t=k+2
for some b, b; € k.
o a=aig9_1, B = agg_s + ag. Then
TaZy = qayTyLa, Lylp = qyBLBLy, TaTB = qapTBTa + DTy,

for some b, b; € k.
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o a=ayy, B = arg_o. Then

j—1
TaZy = oy TyTay TyTB = (yBTRTy, TaZB = qafTTa + BTy + Z biZagtarg oTag; 1>
t=k+1
for some b, b; € k.
o a=aig+aje-2 B=arj_1,k<j<0—2 Then
j—1
Tally = Gan@yTa;, Tyl = GypTaly, Taly = dapTaTa +bTy+ Y Bilfayrars sari1s
t=k+1

for some b, b; € k.

In each case the justification relies on the homogeneity of the relations and is similar
to Lemma 7.2.3; we leave the details to an interested reader. Therefore the root vectors
satisfy (10.1.8). Next we look for solutions of (6.3.1). That is, 2y = 01 + 02 + 03, 0; € A4

We write d; = > g al(»j)az-.

When k = 0 — 2, first consider the case d; = ay_s. Then ag-i) =1fort=1,0-1,0
and j = 2,3, so da, d3 have full support. This implies that a\’ =1 for 2 <i<6—2and

J
(0-2)

J =2,3, and we need that a; = 1 for one of them; that is, either do = v or else d3 = ~.
If 0; # cg—2 for all j € I3, then
20019 = 289,2(7) = 89,2<51) + 89,2((52) + 89,2((53), 89,2((5]‘) € A+.

Applying the previous case, sg_2(d;) = ayp for some j € I3, so 6; = 7.

If k < 0 — 2, then we argue recursively. Indeed, we first consider the case §; = o and
argue as in the case k = 6 — 2 to show that either do =~y or else 63 = . If 0; # ag_o for
all j € I3, then

2019 + agpr10-2 = 255(7) = sx(01) + sk(d2) + sx(d3), se(05) € Ay
Hence sj,(6;) = a19 + ag419—2 for some j € I3, which means that §; = v for some j € 3.

Hence all the hypotheses of Proposition 6.3.2 hold, and (x%)* is a 2-cocycle. O
7.6. Type D(j|0 —j), 0 > 1, j € Iy_1. Let ¢ be a root of 1 of order N > 2. In this

subsection, we deal with the Nichols algebras %, of type D(j|6 — j). We may assume that
the corresponding diagram is

The set of positive roots is
Ai ={apx|i <kel}U{ap+are-1]i<kelp_1}
U{ap +azo-1]i € Ljp10-1}

Thus (7.6.1) is a subset of the set (7.4.1) of positive roots of type Cp: We fix the convex
order in A} obtained from (7.4.2). For more information, see [AA, §5.3]. We prove
Condition 1.4.1 for type D(j]6 — j):

(7.6.1)

Proposition 7.6.2. For every v € A%, there exists L, € N such that (xﬁ”)* s a cocycle.
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Proof. Let v be a positive non-simple root. Arguing recursively we may assume that + has
full support. Hence, either v = g or else there exists k € Iy_1 such that v = a9+ arg_1.

First we consider v = 9. Again, one can easily check that N, =2, P, = 3 and ), = 1.
Let o < 8 be a pair of positive roots as in (6.3.3). Then there exists i € Iy_; such that
a = ay, 8= a;y19. Now,

Talny = QanyTyTa, Ty = GyBTRTy;  Lalp = (apLaTa +bxy  for some b €k,
hence the root vectors satisfy (10.1.8), and — qo‘o‘ € {q¢ ', ¢ %}, so we take L = N.

There exist 4-tuples (o, 8,6,n) € A4 as in (6 3.5):

a=a; <nN=0a19-1 <Y< =ay+a19-1<0=ap.

The corresponding PBW generators satisfy (10.1.11); indeed, there exists b € k such that
[xa,xg}c = apTpTa + bTyTy, TyTs = qusTsTy + T, and the other pairs of root vectors
g-commute. Now C&JZL = 0 by Lemma 6.3.28 (b) since oy = Ggy = ¢~

Next we look for solutions of (6.3.1). We claim that f,(n,) =n, for all n € A,.

o If N,, = 2, then this holds by definition of f,,.
o If n = ap+ agp—1,1 <k <60—1,then Ny =N, so f,(k) > Nifk>2. As

2fy(ny) < an”nae 1 =N

seAl
we have that n, <1, so f,(n,) = n,.
o Let n = oy, with ¢ < k < j. Then N, = N. Suppose that n, > 2: as f,(s) > N if
s > 2, we may have n, = 2: moreover, ns = 0 for all § # a;;, such that 6 N1; ; # 0 since

N = Z fs(ng) at N + Z f(;(n(;)af for all t € I; .
(5€Aq dF o tEsupp &
Now if £+ 1 < 7, then ng =0 for all § # ai14, t > k+1: as ZéeAi fé(né)ai+1 =N,

we have ng,,,, = 2 for some k+1 <t < j. Thus we may assume k = j — 1. Let § € Al
be such that j € suppd. Then nsg =01if j —1 € suppd, and Ns =2 if j — 1 ¢ suppd, so

)
N = Z fé(né)aj = Z foéjt (najt) - Z Najy -
6€Aq+:j€supp5 d:j€supp d, j—1¢supp é d:j€supp 6§, j—1¢supp &
This implies that ZéeAl ns > N + 2, a contradiction. Then n,, <1, so f,(n,) = n,.
o Let n = oy, j <i < k. Then N;, = N and an argument as in the previous case shows
that we have that n, <1, so f,(n,) = n,.
o Similar situation holds for n = a;s + a;9—1: Ny = M but again n, < 1, so fy(ny,) = ny.
As the claim holds, we may rewrite the problem as follows: find v; € A}, i € Iy,
such that >>7; = Nv. Asa{ = 1if 1 € suppé, ag = 1if 6 € suppd, there exist § — 1 roots

such that 1,6 € supp~;: we may fix that 1,6 € supp ’y, fori>3. As N = wagl a)’ | and
ae 1 = 1, there exists at most one ¢ > 3 such that a =2
e ifa) , =1 foralli>3, then*yi—yforallzZBandwl—Fvg:v.

o if ae 1 = 2, then v; =« for all i > 4 and v3 = a19 + agg—1 for some k € I 9_1. Hence
Y1+ 72 = Q@1k—1 + g, SO V1, Y2 Are Q1 k—1, Q-
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Hence all the hypotheses of Proposition 6.3.2 hold, and (xﬁ”)* is a cocycle.
Now we consider v = a9 + ®;9—1, © € Iog_1. In this case, P, = 2 and (), = 1. Let

i <j. Then Ny = N > 2, so Lemma 6.2.5 applies and (XJWV”)* is a 2-cocycle.
Next we assume that i > j, so N, = 2. The pairs (a, 3) as in (6.3.3) are the following:

o a=ayy, B =a;9_1. As in Lemma 7.2.3,
TaZy = QayTyTas  TyTR = QyLRTy,  Talg = QaBLaTa + DTy for some b € k.

o a=ayg+aks, B=ajk-1, k €li119-1. Then

0—1
Taly = qayTyTa; TyTR = qyBTETy, Talf = (afTpTa + DTy + Z biTa;, 1 Tagtasgs
t=k+1
for some b, b; € k.
o a=a1k-1, =g+ ajg_1, k €lLjy1;-1. Then
i-1
TaZy = JoyTyTa, TyTB = qupTETy; Talf = qafTaTo + BTy + Z btZaygtaigTars
t=k+1

for some b, b; € k.
o a=aii-1, 8 =0+ a;9p_1. In this case,

Taly = QayTyZa,  TyT = (yBLRT~,  Talg = (afTBTa + DI, for some b € k.

Hence all the pairs of root vectors satisfy (10.1.8) and —gz—;‘ c{q', ¢ %}, sowetake L = N.
Now we look for solutions of (6.3.1); i.e. D 5cn, fo(ns)d = N7, 3o5c4, ns = N + 1. Let

n e Aﬂ_ such that 1 € suppn, N, > 2 and n, # 0. Suppose that n, > 2. Arguing
as for the case v = g, there exists ¢ € I;_; such that n = ay; and n, = 2. This
implies that ng = 0 for all § € Al such that suppd N1I; # (. Recursively, there exist
to=0<t1 =t <ty <-- <ty =j—1suchthat n, =2if n = o, _ 114, 7 € L,
and ng = 0 for all § € Al such that suppd NI;—; # (. Now, if j € suppd, then either
j—1suppd (so nsg = 0 by the previous argument) or a? =1, N5 =2, s0 fs(ns) = ng. Thus,

1)
R S T S
66A1:j€supp5 66Ai:j€supp5
But then
N—l—lzZn(;Znn—l— Z ng = N + 2,
5€Al 6€Aj_:j€supp6

a contradiction. Thus we have that f,(n,) = n, for all n € AL such that 1 € supp 7 since
either IV, = 2 or else n,, > 1. From here,

1)
N= > filns)aj= D
5€Ai:1€supp5 6€A1:1€supp5

As ZéeAi ns = N + 1, there exists a unique n € A such that n, # 0 and 1 ¢ suppn;

moreover, n, = 1. Again we may rewrite the problem as follows: find 73, € Ai, kelnyt,
such that >, v = Nv. As a‘f =1if 1 € supp§, ag = 1if 6 € suppd, there exist 0 — 1
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roots such that 1,60 € suppyy: we may fix that 1,0 € suppy for k > 3. Also, a* < 2 and

,a* = 2N, so either a]* = 2 for exactly N of them and 0 for the remaining one a

V&
7

or else a/* = 2 for exactly N — 1 of them and 1 for the remaining two a;*’s. A detailed
study case-by-case shows that v; =« for ¢ > 3, and =1 + v2 = 7. Hence all the hypotheses
of Proposition 6.3.2 hold, and (X,JYV)* is a cocycle. O

8.1.

8. EXCEPTIONAL TYPES

Type Ep. Let ¢ € Gy, n > 2. Let %, be a Nichols algebra of type Eg, 6 < 6 < 8.

That is, the generalized Dynkin diagram of %, has the form

N O

Here A9 = A is a root system of type Fy. We fix the following convex orders on the sets
of positive roots:

Eg

:1,2,13,3,1234, 134,234, 24, 34,4, 1232425, 123425, 23425, 12345, 1345, 2345, 345, 245,

45, 5,12232435%6, 123243526, 123242526, 12324256, 12342526, 23242526, 1234256, 234256,
123456, 23456, 2456, 13456, 3456, 456, 56, 6;

: roots of support contained in Ig ordered as for Eg followed by

1222334453627, 122334453627, 122324453627, 122324353627, 12324353627, 122324352627,
12232435267, 12324352627, 1232435267, 12324252627, 1232425267, 123242567,
1234252627, 123425267, 12342567, 1234567, 134567, 234252627, 23425267, 2342567,
234567, 24567, 34567, 4567, 567, 67, 7;

: roots of support contained in I7 ordered as for E7 followed by

12233%405561738, 122334465561728, 122331495°63 728, 122334455163728, 12233455163728,
122231455163728, 122333455163 728, 12333455163 728, 122233455163 728, 12233455163 728,
1222334151637%8, 1223341563728, 1223241563728, 122233415363 728, 12233415363 778,
1223245363728, 1223243563728, 1232435363728, 122233445362 728, 1223345362728,
1223245362728, 1223243562728, 12232435262 728, 1232435362728, 1232435262728,
1232425262728, 123425262728, 23425262728, 122334465761 7382, 122233415362 78,
1223344536278, 1223241536278, 1223243536278, 123243536278, 1223243526278,
122324352678, 123243526278, 12324352678, 123242526278, 12324252678, 1232425678,
12342526278, 1234252678, 123425678, 12345678, 1345678, 2342526278, 234252678,
23425678, 2345678, 245678, 345678, 45678, 5678, 678, 78, 8.
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For more information, see [AA, §4.5]. The aim of this Section is to prove that Condition
1.4.1 holds for type Ey. We need first the following result.

Lemma 8.1.1. Let 3 < § € A} be such that v =3+ € AL.
() If pp < --- < pp € Ay satisfy Y, i = B+, then either pn < 8 or else py, > 7.
(b) If i < -+ < g € Ay satisfy >, i = § + vy, then either py < or else py, > 9.

Proof. Let (-,-) be the symmetric positive definite form on R? such that (v,v) = 2 for all
veA Then —1 < (u,p)<1lifv#1/ €A Aspf+6€ A, (B8,§) =—1; thus (8,7) = 1.

Next we prove (a): the proof of (b) is analogous. Let u; < --- < ug be such that
> ;i = B+ . Note that k > 2, since 8 +v =28+ ¢ A. Suppose on the contrary that
B<p <--- <k <+. Then k > 3, since (u;, ) <1 and

i
Assume that k£ > 4. Then there exist j # ¢ such that (u;, e) = —1 since
6=B+7B8+7) =D (i) + > (1ir 1) <8+ > (i p1y)-
i i#] i#]

Thus p1j + pe € Ay, pj < pj + pe < pe and we can replace the set {1 }ier, by

({paYien, — {ng, pe}) U {pj + e}
Hence, recursively, we may assume that £ = 3. But using the computer we check that
v1 +vo+v3 # B+ for all the 3-uples 8 < 11 < vy < w3 < 7y so we get a contradiction. [
Proposition 8.1.2. For every v € A%, (xi,vw)* is a 2-cocycle.

Proof. By Lemma 6.2.7, P, = 2 and (), = 1 for all non-simple roots . Hence, if N > 2,
then Lemma 6.2.5 applies and (xiv 7)* is a 2-cocycle for all roots 7.

Next we assume N = 2, that is, ¢ = —1. We will apply Lemma 6.2.8. Let v be a positive
non-simple root. For each pair 5 < § € Ai such that v = 8 + §, we have that

TpLy = 4pyTy¥s, Tyl = qyoToTy
by (4.2.2) and Lemma 8.1.1, and ¢gs = ¢s5s = —1. Hence (6.2.9) holds.

Let v1,72,73 € Ai be three different roots such that v; + 72 + v3 = 2v. By Lemma
6.2.6 there exists w € W such that the support of w(~y;) is of size < 3, and a fortiori 7 too.
As w(vy) +w(y2) + w(y3) = 2w(y) and these roots are contained in a subdiagram of type
Asz or Ay x A1, we conclude that +; =y for some i € I3. Using a similar argument we also
check that 2y, + v9 # 2y for all v # 5 € Ai. Hence all the hypothesis of Lemma 6.2.8
hold, and (x?y)* is a 2-cocycle. O

8.2. Type Fjy. Let g be a root of 1 of order N > 2, M = ord ¢°. In this section, we deal
with a Nichols algebra %, of Cartan type Fj, that is associated to the Dynkin diagram

-1 -2 2 -2 2
9 q
¢}
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For more information, see [AA, §4.6]. The set of positive roots with full support is
{1229334, 1224324, 172%3%4, 1727374, 172234, 12°3%4, 12%3%4, 172%3%4% 12234, 1234}.
The aim of this Section is to prove that Condition 1.4.1 holds for type Fy. More precisely,

Proposition 8.2.1. For every v € A%, (XZWVV)* s a 2-cocycle.
Proof. By induction on the rank it is enough to consider v with full support. We have:
if v € {12233%4, 1233%4, 1223%4, 12234, 1234}, then N,=N,P,=3,Q,=2
if v € {1223%4, 172%3%4, 17273%4, 172234, 172*3°4%}, then N, =M, P, =2, Q, = 2.
Hence, if N > 4, then N, > P,, @, for all v with full support. Thus (XJWVW)* is a 2-cocycle
for all v with full support by Lemma 6.2.5.

Next we assume N = 4. If y € {17233%4, 123324, 122324, 12234, 1234}, then N, =4 >
P,,Q,, so (xf]va)* is a 2-cocycle by Lemma 6.2.5.
Now we consider v € {1224334, 1224324, 1222324, 122234, 122%334%}. Let a < B be a
pair of positive roots as in (6.3.3). We have the following possibilities:
o v =1221334, a = 3, f = 1?23%4. There exists b € k such that [z4,25]. = bz..
o v = 1224334, o = 23, B = 1?23324. There exist b, b; € k such that
[Za, zg)c = bTy + b12q294324%3.

v =1224334, a = 223, B = 12223%4. There exist b,b; € k such that

o

[.Ta, xﬁ]c = b.%'»y -+ b1x1224324x3 + b2$1223324x23.

(@]

v =1224334, a = 123, 8 = 1233%4. There exist b, b; € k such that
[xa, xﬁ]c = bxn, + b1x1224324:t3 + b2$1223324x23 + b3$1222324x223.

v =1224334, a = 1223, = 1223%4. There exist b,b; € k such that

(@]

[xa, xﬂ]c = bl'»y + b1$1224324.%'3 + b2x1223324:€23 + b3x12223241‘223 + b4x123324x123.

(@]

v =1224334, o = 12223, B = 223%4. There exist b,b; € k such that

[xa, xﬂ]c = bl"y + b1$’1224324x3 + b2x1223324x23 + b3$1222324$223

+ b4 1933242123 + b5T192324%123-

o

v = 122324, o = 223, B = 122234. There exist b € k such that [z, 4] = bzs.
v = 1221324, a = 1223, = 12234. There exist b, b; € k such that

o

[l’a, I’ﬁ]c = bl'/y -+ b1x122234x223.

v = 1224324, o = 12223, B = 2234. There exist b,b; € k such that

o

[xa, Q?/g]c = bx»y + b1x122234x223 + b2x12234x1223.

v =12213%4, a = 2, B = 1223324, There exists b € k such that [z4,25]. = bz..

o
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o v =1221324, o = 12, f = 1233%4. There exist b, b; € k such that

[Za, g]c = BTy + b12129234T923 + Dok 293324 T2
v =1222324, a = 3, B = 1?2%34. There exists b € k such that [zq, 2] = bz,.
v = 1222324, o = 123, 8 = 1234. There exist b,b; € k such that

o

(@]

[Ta,xglc = Ty + b112923473.

v = 1222324, a = 12223, 3 = 34. There exist b, b; € k such that

(e]

[Ta, 2gle = by + b1712923423 + b2 12347 123.

v =12223%4, a = 1, = 1223%4. There exist b,b; € k such that

(@]

[Ta,xgle = Ty + b112923423.

v = 122234, (o, B) one of the pairs (12,1234), (12223,4), (1,12234). There exists b € k
such that [z, 28] = b,.

v =12213342 o = 122324, B = 12234. There exists b € k such that [z, 2], = bz,.
v = 12243342 o = 123324, B = 1234. There exist b,b; € k such that

)

o

O

[l'o” JJB]C = b%»y + b1x12234$122324.
v = 12213342 o = 122234, B = 223%4. There exist b, b; € k such that

o

[Tas Tple = by + b1212234T 192324 + D2T1234T 193324
v = 12243342 o = 1222324, B = 2234. There exist b,b; € k such that

@]

[l‘a, xﬂ]c = ba:,y + b1219234T 192324 + b2L1234193324 + b3T92324L129234.
v = 12213342 o = 1223324, B = 234. There exist b, b; € k such that

o

[.%'a, .%'IB]C = b.’IJ»y + b1$12234$122324 + b2$1234$123324 + b3x22324x122234 + b4x2341’1223324.
v = 12243342 o = 1224324, B = 34. There exist b, b; € k such that

(@]

[l‘a, l‘ﬂ]c = b'I'Y + b1$12234$122324 + b2l’1234$123324 + b3l’22324l‘122234
+ b4x234x1223324 + b5l’234$1223324.
v = 12243342 o = 1224334, B = 4. There exist b, b, € k such that

(@]

[Za, 2glc = Ty + D1719234 192324 + baT1234T 193324 + b3To2324T 129234
+ 0423471293324 + b52234% 1203324 + beT34T1204324.

In all cases [zq, 2]c = 0 =[x, 2] the proof of all these relations follow as in Lemma
7.2.3. Hence the root vectors satisfy (10.1.8), and —q;—g = —1; then we take L = 2.

Next we look for solutions of (6.3.1). That is, ZéeAi fs(ng)d = 27, ZéeAl ns = 3.

Notice that ns # 3 for all § € Al: otherwise n, = 0 for all n # 4, so 2y = [5(3)9,
a contradiction. Hence, either 2y = f,,(2)y1 + 72 or else 2y = 41 + 72 + 73 for some
vi # 7v; € Al. By Lemma 6.2.6 there exists w € W such that 7/ = w(v;) have support
in a rank 3 subdiagram, so 7/ = w(+y) has the same support: this subdiagram is either of
Cartan type Bs or C3. Looking at the corresponding cases (see the proofs of Propositions
7.2.4 and 7.4.3) the solutions for 7" are v4 =+, 74 +~4 = 7. Hence, all solutions for v are
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of form ny, = n, = ng = 1 for a pair («a, ) satisfying (6.3.3), and n, = 0 for the remaining
@ € A,. Hence all the hypotheses of Proposition 6.3.2 hold, and (xﬁ”)* is a 2-cocycle.

Finally we consider N = 3. If v € {1224334, 1224324, 1222324, 122234, 12243342}, then
N,=3>P,,Q~, so (X»]YVV)* is a 2-cocycle by Lemma 6.2.5.

Now we consider v € {1223324, 123324, 122324, 12234, 1234}. Let a < 3 be a pair of
positive roots as in (6.3.24). We have the following possibilities:

o v =1223324, o = 1224324, B = 1222324, There exist b € k such that [z4,25]. = b:n%.

v =12233%4, a = 1221334, B = 122234. There exist b, b’ € k such that

(0]

2 /
[.’Ea, .’L‘/j]c = b.l',y +Db T1292324L1294324-

o

v =1233%4, a = 1727324, 8 = 223%4. There exist b € k such that [zq,2]c = b2,

o

v =1233%4, o = 1224334, B = 2234. There exist b,b’ € k such that

/
[l’a, Iﬁ]c = bI?Y +b TL92324L1294324-

(@]

v =1223%4, o = 1222324, B = 22324. There exist b € k such that [z4, 2], = b:c%.
o v =1223%4, a = 122334, 3 = 34. There exist b,b’ € k such that

/
[xa, xﬁ]c = bx,zy +Db 9232421292324

o

v = 12234, a = 122234, 8 = 2?34. There exist b € k such that [z, ). = bz?.

v = 12234, o = 1224324, 8 = 4. There exist b,b’ € k such that

o

2 /
["Eoﬁ l‘ﬁ]c = bl',y +b L9234L129234-

(@]

v = 1234, a = 1?2234, 3 = 34. There exist b € k such that [z, z4]. = bx%.

v = 1234, o = 1222324, B = 4. There exist b, b’ € k such that

(@]

2 !
[Tas 2gle = by + b 234712923

In all cases [zq, 2] = 0 = |2, 2], and Z"—; = 1: the proof of all these relations follow as
Y
in Lemma 7.2.3. Therefore the root vectors satisfy (10.1.8), so we take L = 1.

Next we look for solutions of (6.3.1). That is, Z(SeAi fs(ng)o = 3, Z(SeAl ns = 3.
Notice that ns # 3 for all § € Al: otherwise n, = 0 for all n # 4, so 3y = [5(3),
a contradiction. Hence, either 3y = f,,(2)y1 + 72 or else 3y = 71 + 72 + 73 for some
Vi # v € Al. Again we use Lemma 6.2.6 to reduce to rank 3 subdiagrams and looking
at the proofs of Propositions 7.2.4 and 7.4.3 we conclude that all the solutions for v are of
form n, = ny, = ng = 1 for a pair («, B) satisfying (6.3.24), and n, = 0 for the remaining
@ € A,. Hence all the hypotheses of Proposition 6.3.23 hold, and (X»]va)* is a 2-cocycle. U
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8.3. Type G2 Cartan. Let ¢ be a root of 1 of order N > 3. Set

_JN, 3 does not divide IV;
~ | N/3, 3 divides N.

In this section, we deal with a Nichols algebra %, of Cartan type G2, with Dynkin diagram

g a? ¢
@] o .
The set of positive roots is
(8.3.1) Ay ={1,132,1%2,1%2% 12,2}.

We take as generators x1, x2, as well as
(83.2) z1112 == (ade21)?22, 2112 := (ade 21) w2,
o T11912 := [T112, T12]e, @12 := (adex1)mo.

We order these root vectors: z1 < 1112 < 112 < 11212 < T12 < T3.
The aim of this Section is to prove that Condition 1.4.1 holds for type G3. More
precisely,

Proposition 8.3.3. For every v € A%, (Xy”)* is a 2-cocycle.

Proof. o For v = 132, the case Nij12 > 2 follows by Lemma 6.2.5 again. Assume now that
Nii12 = 2 (that is, N = 6). We will apply Proposition 6.3.2. The unique pair as in (6.3.3)
is @ = a1, B = 2a1 + ao, since the following relations hold:

2 3 3
T1Z112 = 1112 + ¢7q12 T112%1, T1X1112 = ¢~Q12 T1112%1, 11122112 = G 12 £11221112-

In this case, —3;—; = —1 so we take L = 2. The unique solution of (6.3.1) is n; = nqsy =

ny29 = 1, and ng = 0 for the remaining roots. Hence Proposition 6.3.2 applies and (x31,5)*
is a 2-cocycle.

o For v = 122, the case N1z > 4 follows by Lemma 6.2.5. Assume now that Nijo = 4. We
will apply Proposition 6.3.23. The unique pair as in (6.3.24) is & = 3a1 4«2, 8 = 3a1+2ax,
since the following relations hold:

2 .3 3 3
21112711212 = —(q + 1)6]1295112 — (12 1121221112, T11122112 = ¢ 412 11221112,

3
T112711212 = ¢ 412 112122112

Here %22 —
ays

and ngs = 0 for the remaining roots. Hence Proposition 6.3.23 applies: (x};,)* is a 2-cocycle.

1, so we take L = 1. The unique solution of (6.3.26) is nyzy = ny29 = nysg2 = 1,

o For v = 1322, the case Nij212 > 2 follows by Lemma 6.2.5. Assume now that Nqja12 = 2
(that is, N = 6). We will apply Proposition 6.3.2. The pairs as in (6.3.3) are o = 2a + g,
8 =ai + as, and a = 3a; + @, B = ao, since the following relations hold:

2 2
T112Z12 = 11212 + ¢ q12 122112, L112711212 = (12 11212112,
2 .
211212212 = 412 £12L11212;

3 2 2 3
111272 = —(3)qQ12 T11212 — 12 T2T1112 — 27 G712 T12T112, T1112T11212 = (12 T11212T1112,
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L1121272 = Q%z L2211212-
In both cases, —ZZ—; = —1 so we take L = 2. The solutions of (6.3.1) are

® ny1o = Ny392 = N1 = 1, and ns = 0 for the remaining roots, or
® ny3y9 = Ny3g2 = ng = 1, and ng = 0 for the remaining roots.

Hence Proposition 6.3.2 applies and (x3;9;5)* is a 2-cocycle.

o For v = 12, the case Nio > 4 follows by Lemma 6.2.5. Assume now that Nis = 4. We
will apply Proposition 6.3.23. The unique pair as in (6.3.24) is o = 3a1 + 2a9, f = a2,
since the following relations hold:
z1121202 = —2(1 + q)¢3o 35 + qqis 2711212, T11212812 = ¢°q12 T12T11212,
L1222 = qgthz T2T12-
Here 9% = 1, so we take L = 1. The unique solution of (6.3.26) is ny392 = n1g = ng = 1,

avp
ng = 0 for the remaining roots. Hence Proposition 6.3.23 applies: (X%Q)* is a 2-cocycle. [J

TABLE 1. The roots with full support of Go; v1 < v =1+ 72 < Y2

v | Ny, Cartan | N,, (84.1) b | Py | Qy| 1 72 | Ly, Cartan | L,, (8.4.1) b
132 M 8 21 2] 1 122 M 8
122 N 4 41311 12 N 8
1322 M 2 2 | 1 |122 12 M 8
132 2
12 N 8 41311 2 N 8

8.4. Type G; standard. Let ¢ € Gg. In this section, we deal with a Nichols algebra %,
of standard type G2 associated to any of the Dynkin diagrams

2 = 2 3 _ 5 _
(8.4.1) 8 5 — g, b & —C ol7 ¢ o6

The set of positive roots is again (8.3.1). Thus we take as generators x1,x2, as well as
(8.3.2) with the same order for these root vectors: x; < z1112 < 112 < T11212 < T12 < T2.
For more information, see [AA, §6.2]. We prove Condition 1.4.1 for type G2 standard:

Proposition 8.4.2. For every v € A%, there exists Ly € N such that (ngyﬁ s a cocycle.
Proof. We just consider the diagram (8.4.1) b.

o For v = 132, (x§,15)* is a 2-cocycle by Lemma 6.2.5.
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o For v = 122, we will use Proposition 6.3.23. The unique pair as in (6.3.24) is a = 3 +az,
8 = 3a1 + 2ae, since the following relations hold:

2 .3 3
L1112211212 = 41227112 — 12 1121221112, Z11127112 = —q12 T11271112,

5
T112711212 = (7q12 T11212%112.

N.
In this case, <ga—;) " = —1 so we take L = 2. The unique solution of (6.3.26) is nq29 = 3,
v

Nny3g = Nysg2 = 1, ng = 0 for the remaining roots. Hence Proposition 6.3.23 applies and
(x¥,5)* is a 4-cocycle.

o For v = 1322, we will use Proposition 6.3.2. The pairs as in (6.3.3) are a = 2a; + s,
8 =a1+ a9, and a = 3a; + az, f = as, since the following relations hold:

T112212 = 11212 + (Cq12 T12T112,
T112211212 = C7Q12 2112122112,
T11212212 = 12 T12211212;
w1272 = C(4) s qra 211212 — G Taw1112 — (P(2) 308y T122112,
z112211212 = (Pqly T1121221112,
T1121222 = Q%z L2211212-
In both cases, —3;—; = (" so we take L = 8. The solutions of (6.3.1) are
® ny392 = 7, n112 = niz = 1, and ng = 0 for the remaining roots, or
® N3z =7, N3y = ng = 1, and ng = 0 for the remaining roots.
Hence Proposition 6.3.2 applies and (x},515)* is an 8-cocycle.
o For v =12, (x§,)* is a 2-cocycle by Lemma 6.2.5. O

8.5. Type D(2,1;«). Here ¢,r,s # 1, grs = 1; N = ordq, M = ordr, P = ord s. In this
section, we deal with a Nichols algebra %, of super type D(2, 1;«) with Dynkin diagram

— 0
wo=s

We fix the following convex order on the set of positive roots:
1<12<123<1223<2<23< 3.
For more information, see [AA, §5.4]. We prove Condition 1.4.1 for type D(2,1; «):

Proposition 8.5.1. For every v € A, there exists L, € N such that (ng)* 18 a cocycle.

Proof. By induction on the rank it is enough to consider v with full support. We start

with v = 123. The pairs («, 3) of positive roots as in (6.3.3) are (1,23) and (12,3). As
T1%23 = ¢12413723%1 + T123, L1123 = 4412413212321, L123723 = —(12413L23X123;
1223 = 13¢23T3T12 + X123, T12T123 = —¢13G23%123%12, T123T3 = 1q13923L3L123-

the root vectors satisfy (10.1.8). As —fl’g—g = ¢, respectively = r, we may take L =

lem{N, M, P}. There exists a 4-tuples (o, 3,0,n) € Ai as in (6.3.5):

a=1<n=12<~y=123<p3=1223<§=3.
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The corresponding PBW generators satisfy (10.1.11); indeed,
Talpg = apTlpla + QQ126113(1 - S)x'yxm InTs = nsTsly + Ty,

and the other pairs of root vectors g-commute. Now C%L = 0 by Lemma 6.3.28 (b) since
doy = ¢, 43y = 5. Next we look for solutions of (6.3.1). There exist three solutions:
o N123 ZL—l, n1 = Nng3 = 1, n(;:Oif(S;«é 123,1,23;
0 N123 ZL—l, ni2 = ng = 1, n(;:Oif(S;é 123,12,3;
omni3=L—2,n =ng9s =n3=1,ns =0if § #123,1,123, 3;
Hence all the hypotheses of Proposition 6.3.2 hold, and (xfj;“’)* is a cocycle.

Now we consider v = 1223. If N, > 2 = P,, then Lemma 6.2.5 applies and (X’Jva)* is a
2-cocycle. Now assume that N, = 2. The following relations between root vectors hold:

T123T2 = —(12Q32C2T123 + T1923,

T123T1223 = (4124321223123, L122372 = (12G32X2X1223;

T12T93 = —q12413G23T23T12 — 2371223 + q12(7 — 1) 727123,

L1221223 = —q12413923%123212, 1223223 = —(12413¢23L23L123-
Hence for each pair (o, 3) as in (6.3.3), the PBW generators satisfy (10.1.8). Now L = 2
satifies the hypothesis of Proposition 6.3.2, so (x?/)* is a 2-cocycle. U

8.6. Type F(4). Let ¢ be a root of 1 of order N > 3. Set M = ord ¢?, P = ord ¢>.
In this subsection, we deal with the Nichols algebras %, of diagonal type F(4). We may
assume that the corresponding diagram is

We fix the following convex order on Ai:

1,12,123,1232,12232,2,23, 232, 3,122334, 122324, 12324, 2324, 1223342, 1234, 234, 34, 4.
For more information, see [AA, §5.5]. The aim of this Section is to prove:
Proposition 8.6.1. For every positive root 7y, there exists a positive integer L. such that
(xﬁ”)* is a cocycle.

Proof. Let v be a positive non simple root. Arguing recursively we may assume that + has
full support. That is, v € {122334, 122324, 12324, 1223342, 1234}.

If v = 122324, then N, = 2 = P,. First we look for pairs a < 3 as in (6.3.3). We have
the following posibilities:

o (o, B) = (2,123%4) or (a, B) = (23,1234). There exists b € k such that [z4,25]. = bz,.
o (a, ) = (12,23%4). There exist b,b; € k such that

[T, xgle = DXy + b1219324T2.
o (a, ) = (123,234) or (o, B) = (1223%,4). There exist b,b; € k such that

[T, gl = bxy + b1T1234223.
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N
In all cases [zq, Zy]c = 0 = [z, 28]¢, so the root vectors satisfy (10.1.8), and <—3;—;> =1

the proof of all these relations follow as in Lemma 7.2.3. Hence we take L = N.

Next we check that (12,2,122334,123%4,23%4,1223342) is a 6-uple (a, 3,6,7,p,7n) sat-
isfying (6.3.11). AS oy = ¢* = @3y, Goy = ¢~ ', we have that d((%Lﬁ)(s7 = d((ﬁ)l’
Lemma 6.3.28 (c). Hence (E) holds in this case.

Now we look for 4-uples («, 3,0,n) satisfying (6.3.13). There are three possibilities:
(2,123,123%4,1223342), (2,122334,12324,1234) and (1223%,1234,234,23). In these cases,
dory = %, 43y = ¢~ . Hence C(()fg),y = célg)q_l = 0 by Lemma 6.3.28 (b), and (F) holds.

We look for 4-uples (a, 3,8, 7) satisf’ying (6.3.15). A possibility is (12,23, 1223342 2324).
AS oy = ¢* and Gs, = ¢~ ; thus C(—L5)av = CEIZZI)Q = 0 by Lemma 6.3.28 (b), and (G) holds.

Also, (12,122334,234,1223342,1234, 2, 12524, 2324) is a 7-uple (o, 3,8,n, T, i, V) satisfy-
ing (6.3.17). As Gay = ¢*, Qo4 = ¢!, we have that c(_L(s),Ow = c((ILqL = 0 by Lemma
6.3.28 (a). Hence (H) holds in this case. Now (2,12232, 122334, 12324, 1223342, 1234) and
(12,12232,122334,2324, 1223342 234) are 6-uples (o, 8,1, u,8,n) satisfying (6.3.19). As
Joy = QBy = ¢%, and G5y = ¢! in both cases, we have that dfoJr)ﬁ’&aﬁ = dqf,q—1’q2 =0
by Lemma 6.3.28 (b). Thus (I) holds in this case.

Notice that v; = 2, 79 = 12, v3 = 12232, 44 = 75 = 1223342 satisfy Zieﬂs v = 4.
Hence, if Nyg2g342 = 2, then no = nja = nyg232 = 1, ny = ny923342 = 2 is a solution of
(6.3.1). The coefficient of xg ® 1 is zero in d(x2x12x12232x3x%223342 ® 1) by Lemma 10.1.79.

Finally we look for solutions of (6.3.1), i.e. 266A1 fs(ns)o = N, EéeAl ns =N+ 1.

Set n = 1223342, Looking at the coefficient of ay:
N = Z fa(nd)ai = 2fp(ny) + Z ng > 2 fn(ny).
6€Al 6#m, 4€supp
As N, = M, we have that n, < 3. Suppose that n, = 3: necessarily N = 3M and

> ng=3M-ng—2£(3) =M —ny—2.
d#n, 3,4€Esupp d

22 0 by

Looking at the coefficient of «sg:
> fs(ng)ad = 6M — > nsad—3£,(3)
§:3€supp 8,4¢supp § d#mn, 3,4€supp &
<6M-— > ny—3fy(3)=2M+ns—1<3M=N.
6#m, 3,4€Esupp &

By inspection, f5(2)a§ = N(;ag = N for all § such that 3 € suppd,4 ¢ suppd, so ng < 1
for those ¢. This implies that fs(ns) = ns for all § # n such that 3 € suppd. Using this
fact, the coefficients of ay and ag give the following equalities:

6M = Y fs(ns)ad = fra(nio) + falna) +2(M + 1)+ Y nsal
§:2€supp 6#n:2,3Esupp 0

6M= > fs(ng)a=3M+1)+ > ngaj
§:3€supp 6#n:3€supp §
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From these two equalities:

fra(nig) + fa(ng) =M +1+ > mngay— D ngad
d#m:3€supp 0#m:2,3€supp 0
= M + 1 + 1932 + 932 + ns + 1192334 + 19324 + N9324 + IRV Z M + ].

ASs nyg2334 + Ny9324 + Nog2g + N3a < M — ny — 2 and nyg32, 932, 13 < 1, we have that
fi2(ni2) + fa(ne) < M +1+3+M —ng—2>2M +2—ng <2M — 2.

But this is a contradiction since No = Njo = P. A similar argument holds if we suppose
that n, = 2, so n, < 1.

Hence ns = fs(ns) for all § such that 4 € suppd, so we may translate the equations
to the following problem: Find v; € A%, i € Iyqq, such that Yiely, Vi = Nv. As
S al' = N and af <1 for all § € A, we may assume that a]’ = 1 for i € Iy, a]** = 0.
As Y alt = 2N and ay < 2 for all § € A, there are two possible cases: elther ay =2
for N of them, aj’ = 0 for the remaining root or else ag' =2 for N — 1 of them ay =1
for the remaining two roots. In any case N — 1 roots have aj’ = 2, and as a2 = 2 implies
that al = 1, we may assume that ag" =2forall i € Iy_1, so a3 >2foralliely_q. As
Sal = 2N at most two of aj"’s are equal to 3. Therefore we have three cases:

(a) a3’ = ad? =3, al' =2 for i € I3 y_1. Hence a}"¥ = 0, which implies that

al¥N =aNt = 0. As >~ a]' = 2N, at least one of them is equal to 2. With all these
conditions we find exactly two solutions:

YN+1
= as

v = 1223342, Yo =1223%, yi=v,i€l3n_1, =12, Ny =2
=2 =1223%42, 43 =123,  y=y,iclno, wW=12, =2
The last solution requires 2 = fi923342(n) for some n € N: the unique possibility is
N1223342 = 2, n = 2.
(b) a3t =3, a)' =2 for i € Iy y_1. Hence elther al¥ =1, aj =0 or else a¥ =0,
agN“ = 1. In the first case, yny41 = 2, so a) = 1. The Solutlons are:

YN+1

v =12%23%42 Ny =~ i€ o, yn_1 = 12%3% v = 1234, yni1=2;

1 =1223%4%, =7y, i€l N1, N =123, YN+1 =25

M =12°3%, i =7v,i€ln_1, v =1234, v =2
Now we consider a3¥ = 0, a3"' = 1. Notice that a3, a;" ™" < 1,80 a3V = ag"*' = 1.
This implies that vy = 12. We have three solutlons

7 =12°3%4% gy =v,i€lyn_n, N-1=12%3% N =12,y =234

M =12234% g =y,iclhy1, =12 YN+1 = 23;

M =1223%4, g =y,iclhy1, =12 YN+1 = 234.

(c) a’ =2 for all i € Iy_;. In this case, exactly N of the a}'’s are 1, and the remaining
one is 0. Hence either

v = 12232 Yi =7, €l n_1, N = 1234, VN4l = 234,
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or v; = 7, for all i € Iy_1, so Yy + ynv+1 = 7: the possible pairs (yn,vny1) are
(123,234), (1234,23), (2,123%), (12,23%4), (12232,4).

Hence all the hypothesis of Proposition 6.3.2 hold, and (xﬁ”)* is a cocycle.

If v = 122334, then N, =2 = P,. First we look for pairs o < § as in (6.3.3). We have
the following posibilities:

(1223%34), (123%,234), (23%,1234), (3,12%3%4), (23,123%4), (123,23%4).

N
In all cases [T, Ty]c = 0 = [z, 28]., so the root vectors satisfy (10.1.8), and (—ZZ—Z) =1
Hence we take L = N.
Next we check that (1232, 232122324, 1234, 234, 1223342) is a 6-uple (a, 3,6, 7, @,n) sat-
. ~ ~ o~ _ L L
isfying (6.3.11). AS oy = ¢* = @3y, @5y = ¢ ', we have that d((lﬁ)(;,y = d((f)quz,qz = 0 by
Lemma 6.3.28 (c). Hence (E) holds in this case.
Now we look for 4-uples («, 3, d,n) satisfying (6.3.13). There are five possibilities:
(1232,23,1223%42,123%4),  (1223%,3,1223342,1223%4),  (1232,1223%4,23%4,3),
(23%,1223%4,123%4, 3), (1223%123%4,23%4,23).

aBy
We look for 4-uples (o, 3, 6,7n) satisfying (6.3.15): the unique is (123,232, 1223342, 2324).

AS Goy = ¢* and @5, = ¢~ '; thus C(L(;)a = C(L)2 = 0 by Lemma 6.3.28 (b), and (G) holds.
There are two 6-uples (a B, v, u, 0, 17) Satlsfylng (6.3.19):

(23%,12%32,1223%4,1234,12%3%4%,123%4) and (123%,12%32,1223%4, 234, 1223342, 2324).

Here Goy = q%, Gsy = ¢~ ' Hence ¢\ =cf) , =0 by Lemma 6.3.28 (b), and (F) holds.

As oy = q3y = ¢%, and dsy = ¢~ ! in both cases, we have that d((wzﬁ oy = dgf?q,l,qz =0
by Lemma 6.3.28 (b). Thus (I) holds.
Also v = 1273, 7p = 123, 3 = 232, 4y = v5 = 1223%42 satisfy >,y 7 = 4. Hence,
if Nig2g342 = 2, then Ni9232 = Ny9g2 = Ngg2 = 1, Ny = Ny923342 = 2 is a solution of (6.3.1).
The coefficient of x ® 1 is zero in d(x12232x1232x232x xf223342 ® 1) by Lemma 10.1.79.
Finally we look for solutions of (6.3.1), i.e. ZéeAi fs(ns)o = Nv, ZéeAi ns =N + 1.

Looking at the coefficient of ay we get as in the previous case that ng = fs(ng) for all §
such that 4 € suppd, so we may translate the equations to the following problem: Find
vi € AL, i € Iny1, such that ZzeﬂN Vi =Nv. As > al'=Nandaf <1forall§ e Al,

we may assume that a]* = 1 for i € JIN, a"* = 0. As Y. a} = 3N and a} < 3 for all
d € Al, at least N — 2 of these roots satlsfy a3’ = 3 and we have three cases:

(a) a3t =0,a) =3fori €Iy yi1. Thenal' =1, a) =2,a) > 1fori € Iy yy1 but there
1s no solution in this case.

(b) al' =1, a3 =2,a} =3 fori €3 ny1. Thenal’ =1, a3 =2, a) > 1if i >3, s0
T +a> =1, al' +al’> =2, ay' +a)® <1
If a)' = a}? = 0, then we obtain the following solutions

v = 123, v = 232, v3 = 1223342 vi = ifi € Iy nya;
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vy = 1232 Yo = 23, v = 12%3%42, vi =y if i € Ly N1
v = 12232, Yo =3, vy = 1223342, vi =7 ifi € Iy i1
Otherwise ; = v for all ¢ > 3; that is, 71 + 2 = -, and the possible pairs (71, 72) are
(1223%)34), (123%,234), (23%,1234), (3,12%3%4), (23,123%4), (123,23%4).
(c) al’! =2fori€ls, ay =3fori€lynt1. Thenal' =1, a) =2, a] >1ifi >4, so
al' +al” +ai® =2, al' +al)’ +al® =4, a' +a’ +a)® <2.
If a]' = a}’ = a;’ =0, then the unique solution is
1 =12%3% 4 =123% 43 =232 =5 = 1228342 4 =~ ificlg v

For this solution we need Nig23342 = 2, which implies that N = 6.
If azl =1, a4 = a4 = 0, then the Solutlons are

v =1223%4, 4y =123%, 43 =232 vy =12%23%42 )y =y ifi € T5 vyq;
y1=123%4, 4y =1223% A3 =232 vy =12%23%42 )y = ifi € I5 vyq;
v = 2324, Yo = 1232, 3 =12%3% 4, =12%3%42 4 =qifi €5 n.

If a]' = a)? =1, a}* = 0, then the unique solution is

v = 122324, o = 23%4, 3 = 1232, vi =7 if i € Iyny1;

1 = 12324, o = 122324, 3 = 232, yi =y if i € Ty N1

1 = 23%4, o = 12324, g = 12232, vi=7ifi € Iy ny1.

Hence all the hypothesis of Proposition 6.3.2 hold, and (xﬁ”)* is a cocycle.

If v = 123%4, then N, = 2 = P,. The pairs a < 3 as in (6.3.3) are (1,23%4), (123,34),
(o, B) = (123%,4). In all cases [zq, 2] = 0 = [z, 2], s0 the root vectors satisfy (10.1.8),

N
and (—Z‘;—;‘) = 1. Hence we take L = N.

Now (123%,1234,34,3) is a 4-uples («, 3,0, n) satisfying (6.3.13). Here, Goy = ¢°, @3, =
q !, so CEYLﬁ)7 c(L) o1 = 0 by Lemma 6.3.28 (b), and (F) holds.

Next we Check that (1,3,1223342,23%4) and (1,1223%4, 34, 23%4) are 4-uples (a, 3,6,7)

o ~ ~ _ L L
satisfying (6.3.15). As gy = ¢? and 45y = q 1 (—5)cw = c;q)z =0 by Lemma
6.3.28 (b), and (G) holds.

Also, (1,1232,122334,23%4, 1223342, 34) is a 6-uple satisfying (6.3.19). As oy = g3y = ¢
and s, = ¢, we have that d{7;; = =d{¥) , » =0 by Lemma 6.3.28 (b). Thus (I)
holds in this case.

in both cases, c

Finally we look for solutions of (6.3.1), i.e. ZaeAl fs(ns)d = N+, ZéeAi ns = N + 1.
Looking at the coefficient of ay and arguing as in the case v = 122324, we find that
ns = fs(ns) for all §, so we translate the equations to the following problem: Find ~; € A%,
i € Iny1, such that = Nv. As Y a]" = N and af < 1 for all § € A%, we may

ZEHN+1
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assume that a]’ = 1 for i € Iy, a]" ' = 0. Using a detailed study as the previous case we
check that the solutions are

v =12%3%42  y =nvichn o, N1 = 123% v =1, YN+l = 34;

v =1223342 =, i€lh N1, =1, YNt = 3;

v =1223%,  y=v,i€lhn_1, v =1, YN41 = 34.

™ =123 Vi =", t € lan-1, N =1234, N1 =34,

or v; =7, for all i € Iy_1, so Yy + yn+1 = 7: the possible pairs (yn,yn+1) are (123,34),
(1234, 3), (1,23%4), (1232, 4). Hence all the hypothesis of Proposition 6.3.2 hold, and (ng)*
is a cocycle.

If v = 1234, then N, = 2 = P,. The pairs o < 8 as in (6.3.3) are (1,234), (123,4),
(12,34). In all cases [zq,2y]c = 0 = [x,28]c, so the root vectors satisfy (10.1.8), and

N
(7@) = 1. Hence we take L = N.
s

Next we check that (1,1223242,234,4) and (12,1234, 4, 34) are 4-uples («, 3,9,n) sat-
isfying (6.3.15). As gay = ¢ and G5, = ¢~ ' in both cases, c(_L(S)M = c((JLq)2
6.3.28 (b), so (G) holds. ’

Notice that v1 = 1, 79 = 12, v3 = 1223342, v, = 4 satisfy Zieh ~v; = 3. The corre-
sponding root vectors g-commute so the coefficient of xg ®1in d(X1X12X1223342X,]yV SBxs1)
is zero by Remark 10.1.2.

= 0 by Lemma

Finally we look for solutions of (6.3.1), i.e. ZéeAl f5(ns)d = N, Z6€A1 ns =N + 1.

Looking at the coefficient of a4 and arguing as in the case v = 122324, we find that
ns = fs(ng) for all §, so we translate the equations to the following problem: Find v; € Ai,
i € Iny1, such that ZiEHN+1 7i=Nv. As Y a]" = N and a{ < 1forall § € A% we may

assume that a]’ = 1 for i € Iy, a]"™" = 0. Using a detailed study as the previous case we
check that the solutions are

n=12284% g =y i€lyoa N1 =12, w=1 =4

v =1223%4,  y=v,i €N 1, v =1, VN1 = 4.

n =12, vi=yi€hyor,  w=123%, v =4,

or v; =, for all i € Iy_1, so yn + yn+1 = = the possible pairs (yn,vn+1) are (123,4),
(1,234), (12,34). Hence Proposition 6.3.2 applies and (xﬁ”)* is a cocycle.

Finally, if v = 1223342, then N, = M, P, =2, Q, = 1. If N # 6, then N, > P, = 2,Q.,,
SO (XZWV”)* is a 2-cocycle by Lemma 6.2.5. Next we assume N = 6; that is, N, = 2. Let
a < (B be a pair of positive roots as in (6.3.3). We have the following posibilities:

o a =23%4, B =1234. There exists b € k such that [z, 2] = bz,.
o a = 123%4, = 234. There exist b,b; € k such that

[Ta,xglec = Ty + b121234%0324.
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o a = 1223%4, B = 34. There exist b, b; € k such that
[Ta,xglc = DTy + b121234%0324 + 0222347 19324.
o a = 122334, B = 4. There exist b,b; € k such that
[Ta, Zgle = Xy + b121234%0324 + D2%2340 19324 + D3T34% 192324

In all cases [z, Zy]c = 0 = [z, 28]¢, 50 the root vectors satisfy (10.1.8), and —Z;—Z =-1:
the proof of all these relations follow as in Lemma 7.2.3. Hence we take L = 2.

Next we look for solutions of (6.3.1). That is, ZéeAl fs(ng)o = 27, Z(SeAi ns = 3.

Suppose that n, = 3 for some n € A%, then ns = 0 for § # n and 2y = (N, + 1)n, a
contradiction. Now suppose that n, =2, n, =1 forn # 7: 2y = Nyn+ 7. Asaf,a] <1
and 2 = Nya] + a], we have that a] =1, N, = 2, a] = 0. As 4 = 2a] + a] and aj < 2,
al <1, we have that ag = 2, a3 = 0. Thus 7 € {3, 34,4}, but there is no solution for these
cases, a contradiction.

Therefore, n, = n, = n, = 1 for three different roots 1,7, u. As af,a],af < 1 and
2 = af + a] + d¥, we may assume a = a] =1, af = 0. As al,a] < 2, af <1 and
4 = aj + af + afy, either al = al = 2, a = 0 or else ag = 2, a] = af = 1. In the first
case, ad,a} < 3, af <1 and 6 = al + a] + af, so either a] = a] = 3, a§ = 0 or else
a3 =3, a} =2, a§ = 1; in both cases we are forced to get n =y = 7+ p, and moreover we
obtain only two possibilities, either 7 = 122324, u = 34 or else 7 = 122334, ;= 4. In the
second case, a] < 2, aj,aly <1 and 4 = aj + af + afj, so a] =2, a] = a}/ = 1, and again
we are forced to get n = v = 7 + pu, and moreover we obtain only two possibilities, either
T =123%4, u =234 or else 7 = 1234, p = 23%4.

Hence all the hypothesis of Proposition 6.3.23 hold, and (X,JYV 7)* is a 2-cocycle. O

8.7. Type G(3). Let ¢ be a root of 1 of order N > 3. In this section, we deal with a
Nichols algebra %, of super type G(3), associated to the Dynkin diagram

For more information, see [AA, §5.6]. The set of positive roots with full support is
{123,12%3,1233,1233%,12%3%}.
We fix the following convex order of Al:
1<12<123 <1273 <1233 < 12332 <1273 <2< 2°3 <223 < 2°3% <23 < 3.

It comes from Lyndon words once we fix the order of the letters 1 < 2 < 3 and differs from
the one in [AA, §5.6]. We prove Condition 1.4.1 for type G(3):

Proposition 8.7.1. For every v € AL, there exists L, € N such that (X?)* s a cocycle.

Proof. Tt is enough to prove the statement for v with full support.

o For v = 123, we apply Proposition 6.3.2. The pairs as in (6.3.3) are « = aq, f = ag+ as,
and a = a1 + a9, 8 = ag since the following relations hold:

Talg = Ty + (o TRTa, Taly = Qo TyTa, TATZ = (B TRT~.
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As —q‘l—g = gq, respectively ¢>, L should be a multiple of N.

as
Let L = ord(—q). Now (6.3.5) holds for a = 1, 8 = 1223, § = 3, n = 12, and the root
vectors satisfy (10.1.11); the scalars oy = ¢! and qsy = g2 satisfy cg:ﬁ)ﬂ/ = 0.

Also, (6.3.7) holds for a = 1, 8 = 12332, § = 3, n = 12, 7 = 1223, and the root vectors
satisfy (10.1.16); the scalars gay = ¢~ ', @y = ¢ ', Gry = ¢~ % satisfy (6.3.8).
Let (né)éeAi be a solution of (6.3.1). If ng = 0, then

L(ar + az) = s3(Ly) = Y fs(ns)ss(9),
seAl
and s3(0) € A% if § # az. As N5 = N, (s), we have that f5 = fy,(5), so we have a system
as in (6.3.1) for ar; + ag in place of v and we may restrict the support to aq, as. The new
system has a unique solution, which gives place to the solution of the original system:

e ny =ng3 =1, nio3 = L — 1, ng =0 for all the other j € A%.
Next we assume n3 # 0. Suppose that 115253 > 1. Then fi923(nq923) > N, so the coefficient
of ag in Z5€Aq+ f5(ng)o is > 2N, a contradiction. Hence nqg23 < 1, and then fi925(n1923) =

nqg23 < 1. The coefficient of a; in this sum is
n1 +ni2 + ni23 + g2z + Nigs3 + nygszz + nygagz = L.
As the sum of all ns’s is L + 1 and n3 # 0, we have nz = 1, no = ngs3 = Ng23 = Ngaze =
nog = 0. Now we look at the coefficients of asg, a3 in the equality 25641 fs(ng)d = L:
L = n13 + ni123 + 2n923 + 304933 + 3ngsz2 + 4nqgage,
L =14 nj93 + nyo23 + nqgsz + 2nq9332 + 2n10432.

Thus 19 +’I’L1223 + 2TL1233 —I—n12332 + 2”12432 = 1, which 1mphes that N1933 = MN19432 = 0 and
two of the three numbers nj2, 11923, 119332 are zero (the remaining one being 1). Looking
at the three possibilities, we have three solutions:

e nig =ng=1,n193 =L —1, ng =0 for all the other § € A%;

® Ny =n3=nNqy23 =1, nia3 = L — 2, ng = 0 for all the other § € Ai;

e Ny =2 njyos32 =ng =1, nia3 = L — 3, ng = 0 for all the other J € Ai.
Hence Proposition 6.3.2 applies and (x},3)* is a cocycle.

o For v = 1223, the case N, > 3 follows by Lemma 6.2.5. Assume now that N, = 3.
We will work as in Proposition 6.3.23. The pairs as in (6.3.24) are (1,12%32), (12,12332),
(123,1233), since for each one of these pairs the following relations hold:

Talg = ba/3$% + Gap TaTq, Taly = Qay TyTa, TyTg = Qyg TET112, b.s € k.
As g‘*—; =1 for the three cases, we take L = 1. We look for solutions of (6.3.26):
v
> ns =3, > fs(ns)s = 3y.
seAl seAl

If ny, > 2, then f,(ny) > 3, a contradiction. Then n, <1, so f,(ny) = n,. Looking at
the coefficient of oy we get the equation:

(8.7.2) 3 =mn1+ni2 + n123 + Nyg23 + Ny233 + Ny2sz2 + Nyg4z2.
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Hence ns = 0 for § = 2,233,223, 2332, 23, 3. Looking at the coefficients of ay and «s,
(873) 6 = ni2 + ni123 + 2”1223 + 371/1233 + 3n12332 + 4”12432,

(874) 3 = N123 ‘|’ 19223 + T 1233 + 2”12332 + 2n12432.

From (8.7.2) and (8.7.4), n1 + ni2 = nqg332 + nygag2. From (8.7.4), nqgszz + nqgage < 1. If
n1 = ni12 = 0, then ny9332 = nyga32 = 0: the solution is n123 = Nq923 = Nq933 = 1. Next
we assume 1 + nijz = 1 = nyg9332 + Nyga32. If myy23 = 1, then the solutions give pairs as in

(6.3.24). Otherwise we have a unique solution: 119 = nj23 = ny9132 = 1, ng = 0 otherwise.
Hence we have to compute d(x12x123%12432 ® 1). Notice that

T12%10432 = —CIS‘J?QQ%?)qg:s 212432212 + D121233T1923,

T123T12432 = —QSQ?2Q13Q§2 2124322123 + D2T12332% 1923,
T12%12332 = —q2Q%2Q%3Q§3 T12332%12 + b3x§223 + bax1933%123,
T123%1933 = —q (o030 T1233%123 + b5TTp23,

for some b; € k. Using these relations, we get
d(x12%123%19432 ® 1) = X12X123 ® Ty9a32 — S(X12 ® 2123712432 + q13¢23X123 @ T12T12432)
= X12X123 @ Ty9432 — 8( — ngi)’qugqgQ X12 ® T194327123 + baX12 @ T1933221923
— Q3Q?2qz1))3qg3 X123 @ T12432%12 + q13¢23b1X123 @ $1233$1223)
= X12X123 @ T19432 — baX19X 19332 & X923 — S( — q3q:1)’2q13q§2 X12 @ T194322123
— b2’ G120 T3033 X12332 @ T12T1923 + bab3Xyo23 ® T]924 + bobyXynsz ® T123%1923
— ng:fzq;’;;qgg X123 @ 19432712 + q13¢23b1X123 ® 901233561223)
= X12X123 ® T19432 — b2X19X19332 @ Z1923 + CISQ?QQBQ;%Q X12X10432 ® T123
- S(QIQ(]Q?)Q?:; X19432 K 123012 — b1QSQ%QQ13Q§2X1233 ® T19237123
+ bzqgﬁzqugqgg X19332 @ X1923T12 + ba2b3Xj923 ® 33%223 — Gq12Gq32b2b4X 1933 @ X1923%123
- qsqi’qu’ngg X123 @ T12432212 + q13G23b1X123 & 1'1233331223)
= X12X123 ® T1932 — baX19X19332 @ L1923 + Q1o Q13050 X19X 2432 @ T123
— q13G23b1X123X1933 ® T1923 + 00412073053 X123X 19432 ® T12
+ (q13G23b1b5 — bb3)xTp2q ® 1.
We compute the scalars b; using the form of the Lyndon words and the g-Jacobi identity:

b1 = q1013¢239(1 — q), b2 = qioq139(1 — q), b3 = q12¢13¢339(1 + @), bs = q12g23q(1 + ).

Hence ¢13¢23b1bs —bobg = 0. Thus the coefficient of xi’223 ®1 in d(c) is zero for all 2-chains

¢, 80 (x3,55)* is a 2-cocycle.
o For v = 1233, we will apply Proposition 6.3.2. The pairs (o, 3) as in (6.3.3) are (1,233),
(12,223), (1223,2), since the following relations hold:

TaTg = Ty + B TRTa, Taly = Qo TyTa, Ty TR = (B TRT~.

As —g%; = ¢, respectively ¢2, ¢3, L should be a multiple of N.
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Let L = ord(—¢q). Now (6.3.9) holds for a = 12, 8 = 1223, § = 233, and the root vectors
satisfy (10.1.11); the scalars gay = ¢~ ', @gy = ¢~ 2 satisfy (6.3.10).

Also, (6.3.7) holds for a = 12, 3 = 12432, § = 233, n = 123, 7 = 1223, and the root
vectors satisfy (10.1.16); the scalars Goy = ¢4, Ggy = ¢~ 1, Gry = ¢ 2 satisfy (6.3.8).

Let (n5)66A1 be a solution of (6.3.1). If no = 0, then

N(ar + a2+ as) = s3(N7) = > fs(ns)ss(6)
seAl

and s5(0) € A if § # az. As N5 = N, (s), we have that f5 = f,,(5), so we have a system
as in (6.3.1) for a1 + g + a3 in place of y. The new system has four solutions, which gives
place to the following solutions of the original system:

nig = ng23 = 1, nygs3 = N — 1, ng = 0 for all the other § € AY;

N1 = Ngsg = 1, Nyg33 = N — 1, ng = 0 for all the other § € A%;

N1y = Ngsg = Nyg23 = 1, Nygs3 = N — 2, ng = 0 for all the other § € A% ;

Nig = 2, Nypiz2 = Ngsg = 1, nygsz3 = N — 3, ng = 0 for all the other § € Al.

Next we assume ng # 0. Suppose that ny923 > 1. Then fi923(n1923) > N, so the coefficient
of o in Z5€Ai f5(ns)d is > N; this forces to ns = 0 for any ¢ # s since f5(ns)d must have
a1, ag with coefficient zero, and this gives a contradiction. Hence njg25 = fi923(nqg23) < 1.
The coefficcient of « in this sum is

n1 + N1z + N3 + Nyg23 + N3z + Nygsze + Nygage = N.

As the sum of all ng’s is N + 1 and ng # 0, we have ng = 1, ng = ngsgz = Ng23 = Ngszz =
nog = 0. Now we look at the coefficients of asg, a3 in the equality ZéeAl fs(ng)d = N~:

3N =1 + ni2 + 1123 + 2”1223 + 37’1/1233 + 3TL12332 + 471/12432,
N = ni193 + nyg23 + nygsz + 2ny9332 + 2ng9132.

Thus 11 4 21123 + Ny933 + 2n19332 + 4nq9232 = 1, which implies that ni23 = 113332 = 0 and
two of the three numbers np, ny9s3, ni9132 are zero (the remaining one being 1). Reducing
the three previous equations, we get njs + nqgs3 = N — 1, nya + 3nqa33 > 3N — 3, so we
have a unique solution:

® 711923 = N9 = ]. T1933 = N — 1 ns = 0 for all the other § € Aj_

Hence Proposition 6.3.2 applies and (x * is a cocycle.

1233)

o For v = 12332, we will apply Proposition 6.3.2. The pairs («, 3) as in (6.3.3) are (1,2332),
(123,223), (1223,23), (1233, 3), since the following relations hold:

Talg = Ty + (o TRTa, Taly = Qo TyTa, TATZ = (B TRT~.

chg € {q,4¢* ¢}, L should be a multiple of N.

Let L = ord(—q). Now (6.3.9) holds for = =123, B = 1223, § = 2332, and the root
vectors satisfy (10.1.11); the scalars oy = ¢ %, g3y = ¢~ 2 satisfy (6.3.10).

Also, (6.3.7) holds for a = 123, 8 = 12432, § = 2332, 5 = 12, 7 = 1223, and the root
vectors satisfy (10.1.16); the scalars gy = q_l, 4By = q_l, Gr = q 2 satisfy (6.3.8).
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Let (né)éeAi be a solution of (6.3.1). If n3 = 0, then

N(on + 30 + a3) = s3(Ny) = Y fs(ns)ss(d
seAl

and s3(0) € AY if 0 # a3. As N5 = Ny, (5), we have that f5 = f,,(5), so we have a system
as in (6.3.1) for a; + 3as + ag in place of . The new system has five solutions, which
gives place to the following solutions of the original system:
® nyg23 =n93 =1, nygsze = N — 1, ng = 0 for all the other § € AY;
n123 = Ng23 = 1, nygsze = N — 1, ng = 0 for all the other § € A%;
Ny = ngazz = 1, nygaze = N — 1, ng = 0 for all the other § € AY;
N123 = Ngsz2 = Nyg23 = 1, Nygaze = N — 2, ng = 0 for all the other § € A;
n123 = 2, Nygage = Nosgz = 1, nygsze = N — 3, ng = 0 for all the other § € A%.

Next we assume n3 # 0. An analogous analysis as for the root 1233 shows that the unique
solution is:

® ny933 =N3g =1, Nygsz2 = N — 1, ng = 0 for all the other § € Aj_.

Hence Proposition 6.3.2 applies and (x 2332)* is a cocycle.

o For v = 12432, we apply Proposition 6.3.2 again. The pairs (o, 3) as in (6.3.3) are
(12,233%), (1233, 23), (1223, 223), (123,233), (12332,2), since the following relations hold:

Talg = Ty + Gaf TTa, Laly = o TyTa, TyTp = qpTpTy-

As ZZZ € {q,4¢* ¢}, L should be a multiple of N.

Let L = ord(—¢q). Now (6.3.9) holds for a = 1233, B = 1223, § = 2332, and the root
vectors satisfy (10.1.11); the scalars oy = ¢, g3, = ¢~ 2 satisfy (6.3.10).

Also, (6.3.7) holds for o = 1233, 8 = 12332, § = 2332, = 1, 7 = 1223, and the root
vectors satisfy (10.1.16); the scalars oy = q_l, dsy = q_l, Gry = q 2 satisfy (6.3.8).

Let (n5)6eA1 be a solution of (6.3.1). If ny = 0, then

N(ag + 3 + 2a3) = s92(Nvy) = Z fs(ng)sa(o
seAl

and s2(0) € Al if § # as. As N5 = N,,s), we have that f5 = f,,(5), so we have a system
as in (6.3.1) for ag 4+ 3ag + 2a3 in place of v. The new system has six solutions, which
gives place to the following solutions of the original system:
® nygr3 = Ng23 =1, nygaze = N — 1, ng = 0 for all the other § € A%;
N19332 = No23 = 1, Nygaz2 = N — 1, ng = 0 for all the other § € Ai;
N1z = Ngsz2 = 1, nygaz2 = N — 1, ng = 0 for all the other § € Ai;
N123 = No3g = 1, nygaz2 = N — 1, ns = 0 for all the other § € Al;
N1933 = Mo332 = Ny923 = 1, Nygaz2 = N — 2, ng = 0 for all the other ¢ € Ai;
Ny933 = 2, Nygsz2 = Ngsgz = 1, nygage = N — 3, ng = 0 for all the other § € AY.

Next we assume ny # 0. An analogous analysis as for the root 1233 shows that the unique
solution is:

® Nyg332 =Ng =1, nygaze = N — 1, ng = 0 for all the other § € Ai.
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Hence Proposition 6.3.2 applies and (xfg432)* is a cocycle. O

9. PARAMETRIC MODULAR TYPES
9.1. Modular type wk(4). Here 8 = 4, ¢ # 1. In this subsection, we deal with a Nichols
algebra %, of diagonal type wk(4). We may assume that the corresponding diagram is

-1

g ¢! -1 -1 -1 —q —q!
O O O O

(9.1.1)

We fix the following convex order on A%:
1,12,2,1223,123, 23, 3,1223%4,123%4, 2324, 12234, 1234, 234, 34, 4.
For more information, see [AA, §7.1]. Let M = ord(—q): We may assume that N < M.
Note that
N if § € {1,123%4,23%4},
Ns =< M if 6 € {4,12234,1223},
2 otherwise.

We prove Condition 1.4.1 for type wk(4):

Proposition 9.1.2. For every v € A%, there exists L € N such that (Xﬁ”)* is a cocycle.

Proof. We may assume that + has full support i.e. v € {122324, 1234, 12324, 12234}.
First we consider v = 1223%4. Here N, = 2. The pairs o < 3 such that o 4 3 =y are:
(3,12234),  (23,1234),  (123,234),  (12%3,34), (2,123%4),  (12,23%4).
For all pairs, ToTy = GayTyTa, T4T3 = ¢y3T3%~. Also, there exist b; € k such that

(€3, T19234]c = b1 Xy,  [T123, T234]c = b2 Ty + b3 T1234723,
(223, T1234]c = bay,  [T1923, T34]c = b5 Xy + b X3T19234 + b7 2321234 + bg 2347123,
(T2, Z19324]c = b9 Ty, [12, Tog24]e = D10 Ty + b11 T19324T2.

Thus the root vectors satisfy (10.1.8), and _g(;TZ € {—1,+q¢*!}; hence we take L = M.

Next we check that (23,12324, 12234, 3), (123, 23%4,12234,3) and (1223, 12324, 234,123)
(L)
aBy

are 4-tuples (o, 3,6,n) satisfying (6.3.5). As goy = —1, ggy = ¢, we have that c

(L

c 1)’(1 = 0 by Lemma 6.3.28 (b). Hence (B) holds.

Finally we compute the solutions of (6.3.1). That is,

(9.1.3) Yo fstns) =M, > fs(ng) =M,
d:1€supp 6 §:4€supp
(9.1.4) > fslng)ah =2M, > fslns)al =2M.
§:2€supp § §:3€supp 0
(9.1.5) > ng=M+1.

q
deAl
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Let (ng) be a solution of (6.3.1). We claim that ns < 1 if N5 # 2. To prove it, first we
note that ng, nqs23, 19234 < 2 by (9.1.3). If ngy = 2, then ns =0 if 4 € suppd, d # 4, so

2M = Z f5(ns)ag = fizg(nixes) +nios + noz +n3 < fies(2) + Z ns
seAl 0#4,1223
<M+ (M—1)=2M—1,

a contradiction. Hence ny < 1. Next we suppose that njg23 = 2. Then ns = 0 if either
1 € suppé or else 2 € supp d, § # 1223. From (9.1.5), n3+ngs+ng = M+1—nj923 = M —1,
but we check directly that there are no solutions of (9.1.3) and (9.1.4) with these conditions.
Hence ny323 < 1. Analogously, njyg234 < 1.

Next we check that nj,ng9s24, n12324 < 1. The proof is analogous to the cases n4, nyg23,
Nqg234 if N = M. Thus we assume that N < M: that is, M = 2N, N odd. By (9.1.3),
n1,Ng324,N12324 < 4. We deal first with nyg324.

e Suppose that nqg324 = 4. Then ns = 0 if suppd N {1,3,4} # 0 by (9.1.3) and (9.1.4),
and also ng = 2N. But from (9.1.5), ng = 2N — 3, a contradiction.

e Suppose that nyp324 = 3. Then } 519324 ns = 2N — 2. By (9.1.4),

292
Nig2ges = frozgea(niszgzg)ay” >t < N — 1.
By the first equality of (9.1.4) and the previous computations
3N —1= Z f3(ns)as = 2 fro2324(n122324) + 2f1223(n1223) + 2f122340(n12234)
5412324
+ Z ns < 2nyg2g24 + 2+ 2+ (2N — 2 — nygeg24) < 3N — 1.

6:ag:1
The equality holds if and only if 192324 = N — 1, ny923 = nj9234 = 1, but in this case
the second equation of (9.1.4) does not hold.

e Suppose that mi9324 = 2. Then 26#2324 ns = 2N — 1, and by (9.1.4), nyg2324 <
N. A similar computation as for the previous case shows that the equality 3N — 1 =
> 5412324 fs5(ns)a$ holds if and only if nqg2424 = N, nyg23 = Nyg234 = 1, but again the
second equation of (9.1.4) does not hold.

The same argument applies for ny324. Finally we check that ny < 1. If ny =4, thenns =0
for all § # 4 such that 4 € suppd, so

9.1.5
oM = Y fs(ns)aj = nz+ nos+ nigz + nipes < Y ne O ar -3,

§:3€supp 0 0#£4
a contradiction. Now suppose that 2 < ny; < 3: by (9.1.3), ny2324 < N and
AN = ) fs(ns)ad < 2npseges + 2+ 2+ (2N — 2 — nygeqeq) < 3N 42,
6#£12324

a contradiction. Hence ns < 1 if N5 # 2, so fs(ns) = ns for all § € Al. Then we look for
vi € AL, i € Ins41, such that Dielyy, Yi = M. As aj < 2 for all § € A7, there exist two
possibilities up to permutations of these roots:
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o a3 = 2 for Ins, a3"*™ = 0. As a§ < 2 for all § € A%, at least M — 1 roots satisfy that
ajy’ = 2, and we know that aW”+1 < 1,80 «; =~ for i € Ij;_1 up to permutation, and

YM + ’YM+1 -

o ajy =2 for Ipy—1, a3 = a3™*' = 1. Again at least M — 1 roots satisfy that a)’ = 2.
If these roots are ;, ¢ € Ipr—q, then v = ~ for ¢ € I —1 up to permutation and
M + Y41 = 7. Otherwise we may assume that v; = 7 for i € Iys_o, ag"” ' = ad™ =1,
ag™™ = 2. We have three possibilities for (yas_1,var, Yar+1):

(123%4,23,12234), (23%4,123,12234), (123%4,234,12%3).

Hence all the hypotheses of Proposition 6.3.2 hold, and (xf‘f )* is a cocycle.

Next we consider v = 1234. Here N, = 2. The pairs a < 3 such that a + 8 = v
are (1,234), (12,34), (123,4). For all pairs, £o%y = Gay@yTa, T+Tg = ¢332, and there
exist b € k such that [x4,23]c = bax,. Thus the root vectors satisfy (10.1.8) and — qaa €
{—1, £q¢}; hence we take L = M.

Next we check that (12,12324,4,34), (1,123%4,34,234) and (1,1223%4,4,234) are 4-
tuples (a, 3,0,n) satisfying (6.3.15). As (gsy,qp,) are respectively (—¢~',—1), (—1,q),
(=g, q), we have that c(_L(s)OW = 0 by Lemma 6.3.28 (b). Hence (G) holds.

Finally we check that (1,12324,12234,4,234,34) is a 6-tuple (o, 3,9, 7, i1, ) satisfying
(6.3.21). AS goy = ¢ = GBy, Gy = —1, we have that df(é’j;jvaw = 0 by Lemma 6.3.28 (c).
Hence (J) holds.

Next we look for solutions of (6.3.1). That is, (9.1.5) and

(9.1.6) S fslng) =M, > fs(ng) =M
d:1€supp § §:4€supp §
(9.1.7) S felns)ad =M, > fs(ns)a =M
§:2€supp § 6:3€supp &

Let (ns) be a solution of (6.3.1). We claim that ns < 1 if N5 # 2. By (9.1.7),

M > 2 f1925(n1923), 2 f12234(12234)

As Nig23 = Njg234 = M we have that nqg23,m19234 < 1. Now suppose that ngy > 2. By
(9.1.6) we have that ny = 2. Then ns = 0 for all § # 4 such that 4 € suppd. By (9.1.7),

M= Z fa(na)ag =mni23 + n23 +ng < an =M -1,
§:3€supp 6 0#£4

a contradiction.

We also have that mngz24,nq9324 < 1 if N = M, and ng32y,Ny324 < 2 if M = 2N.
Suppose that M = 2N and njags2qy = 2, a € {0,1}. We have that nsg = 0 for all § such
that 3 € supp 6, § # 1923%4. By (9.1.6), fi(n4) = M: that is, ny = 2, a contradiction.

Finally suppose that n; > 2. By (9.1.6),

M= > fins)= > ms<y ny<M-—1,

§:4€supp d:4€supp 6 6#1
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a contradiction. Hence ng < 1 if N5 # 2, so fs(ns) = ns for all § € A%. Then we look
for ~; € Ai, 1 € lpr41, such that Zie]lM+1 v = M~. As ad,aj < 1 for all § € A%,
there exist exactly M roots such that a]® = 1, respectively a)° = 1. Thus there exist
M — 1 roots ~y; such that aj = a = 1, which implies that suppy; = {1,2,3,4} for these
roots. We may assume that a]® = aj' =1 for all ¢ € I;_; and we have three possibilities

up to permutations of the roots: either a]™ = aj™ = 1, a)"™ = ;"™ = 0, or else
a™ = aM" =1, a]™ = a}™ = 0. For the first case, ay’,a3’ > 1 for all i € Iy and we

have a contradiction. Hence a]™ = a}"™ =1, /™" = a}™ = 0. For i € [};_1 we write

Y = 12‘“31’1'4, a;,b; € Io. We also write vy = 12“M3bM, VM1 = 20m+130M+14, At most
one of the a;, respectively b;, is 2 for ¢ € Ipy_1. We analyze each case.

oa;=1=b;=1forall i € [3;_1. Hence v; = for all i € Ipy_1 and yps + ypr+1 = -
oa;=1foralltely_1,b; =1forall i €llj_o, byr—1 = 2. Here bpy = bps1 = 0, so
i =y for all i € Ips_o, -1 = 123%4, v =12, Y41 = 4.
o a;=1forallie€ly_o, bj=1"forall i €1, apy—1 = 2. Here apy = apsr+1 =0, so
v; =y for all ¢ € Ij;_o, -1 = 12234, Y =1, Yym+1 = 34.
oa;=b;=1forall i € lp;_9, apy—1 = bpy—1 = 2. Here aps = byy = apry1 = b1 =0, so
~v; = for all ¢ € Ip;_o, -1 = 122324, Y =1, Yrm+1 = 4.
oa;=1foralliely o b =1foralliecly_; —{M—2}, apy—1 = bpyr—2 = 2. Here
vi =~ foralli € Inj_g, Ya—o =123%4, 4y =12234, =1, yue1 =4
Hence all the hypotheses of Proposition 6.3.2 hold, and (xy)* is a cocycle.
Finally we consider v = 12324,12234. We have P, =2 Q=1 s0 P,Q, <N,. By

Lemma 6.2.5 (xévv)* is a 2-cocycle. O

9.2. Modular type br(2). Here § = 2, ( € G3, ¢ ¢ G3. In this subsection, we deal
with a Nichols algebra %, of modular type br(2), that is associated to any of the Dynkin
diagrams

—1 2 -1
(9.2.1) a1|—>c<> . a2|—>cC> e g

For more information, see [AA, §7.2]. Since (9.2.1 b) has the same shape as (9.2.1 a)
but with (g~ instead of ¢, we just discuss the latter. Essentially this is very similar to
standard By. The corresponding set of positive roots with full support is

{201 + ag, a1 + as}.
Let M = ord(Cq~'). We order the root vectors: x1 < 2112 < 12 < Ta.
We prove Condition 1.4.1 for type br(2).
Proposition 9.2.2. For every v € A%, (X{YV’V)* is a 2-cocycle.

Proof. As before we just consider non-simple roots, i.e. with full support.



78 N. ANDRUSKIEWITSCH, I. ANGIONO, J. PEVTSOVA, S. WITHERSPOON

TABLE 2. The roots with full support of br(2); v < v2, (Ny — 1)y =+ 72

YNy | Py | Qy | 1 2 L,
12| M| 2|1 1 12 2
1233|2122 2 |ordd®

o For v = 122, the case Ny12 > 2 follows by Lemma 6.2.5. Assume now that Njjo = 2. We
will apply Proposition 6.3.2. The unique pair as in (6.3.3) is & = a1, 8 = a1 + a9, since
the following relations hold:

2 2
T1T12 = 112 + (q12 L1271, r17112 = Q12 T11271, 112712 = (7 q12 T12%112-
As —Z‘;T; = —1, we take L = 2. The unique solution of (6.3.1) is nj12 = n1 = n12 = 1, and

ng = 0. Hence Proposition 6.3.2 applies and (x3;5)* is a 2-cocycle.

o For v = 12, we will apply Proposition 6.3.23. The unique pair as in (6.3.24) is o =
2a1 + ag, B = aw, since the following relations hold:
T11272 = (¢ — ()12 T35 + qq1s T2 112, T112212 = (P12 2127112,
L1222 = 4412 T2L12-
In this case, Z“—; = (%2¢7 ' as ¢ # (2, we take L = ord ¢®. The unique solution of (6.3.26)
Y

isnio =L —1, nis = n9 = 1, and ny = 0, so Proposition 6.3.23 applies and (XILQ)* is a
2L-cocycle. |

10. PROOFS OF THE COMPUTATIONAL LEMMAS
10.1. Given v € Ay, let g, : Ng = Ng be the function

1, n odd,
Ny —1 n even.

(10.1.1) gy(n) = fy(n) — fy(n—1) = {

Remark 10.1.2. Let 81 < P2 < B3 be positive roots such that the corresponding root
vectors g-commute:

TB,XB; = 4B;8; TB; Ty for all ¢ < j.
For each n € N,
fo(n) fog(n=1) _ gp,(n) fpy(n)_ fpy(n)
(10.1.3) d(x51x5i2 ®1)= x51x£2 ® 33522 + (—1)”qﬁf2ﬁ2 xﬁ? ® g,
fo,(n) fp, () 98, (n)_fp, (n—1) 95, (n)
(10.1.4) d(Xﬁfl X8, ® 1) = Xﬂfl ®xg, — qﬁflﬁz Xﬁfl X8, ® xﬁfl

fpa(n) o2 (n) 98, (1) fpy(n=1) 98, (1)
(10.1.5) d(xp, x5, %8, @ 1) =%, x5 " " @p, — qg.p, X8 Xp," Xg; ®Tg)”

fay(n) _fa,(n)
- (_1)nq51,33q61252 Xﬁ; Xpy O Ty,

fa,(n) fa,(n) fp,(n)
(10.1.6) d(Xﬁfl X3y %py & 1) = Xﬂfl X, @ Ty — q6253xﬁfl X3 @ T,

98, (n) gp,(n)_fg,(n—1)
+ qﬂllﬂz qﬂ1lﬁs Xﬂ11 XByXpy ® Zg,
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In fact, the root vectors g-commute by hypothesis so we can compute the differentials
as in the proof of Proposition 4.3.3.

The next results will allow us to identify some cocycles of degree higher than 2.
Lemma 10.1.7. Let n € Ng. Let a < 01,...,60, < v < n1,...,0n < B be positive roots.

Assume that the relations among the corresponding root vectors take the form

n
Ny—1
TaTg = qapTpTa +oxy” = + ijxnjacgj,

(10.1.8) =1
LaZly = qayTyTa, L; Ly = 45y TyL6;,
TyTB = QyBTRTy, LoyLy = Gy Ly Ly
for some scalars b,by,...,b,. Then, for alla > 1, d(xaxinxﬁ ®1)=
alN. Ny—1 Ny(a—1)4+1 Ny—1
XoXy | QTp —qw” Xaxﬂﬂ( ) X3 @ Ty
aN~ _aN. alN~ _aN.
— opoy Xy TXg D Ta — Zb Jory "Xy "Xy, © T5,
Jj=1

alNy
alNy (]ai'y _ _ %77 aN,+1 Ny—2,
00 { (qvﬁ ) (a)(%)ﬁw <q76> } © BTy

and for all a > 0, d(x,x7y Notly 1) =

N. N. N.
%Xy T @ T — Gyp¥aXy X O Ty + daslan Xy X O T

Ny+1 N+1 Ny+1 (¢ N (a+1)
JerJqfi7 X5 , ® x5, +bq] g <q:;—1> (a+1)<m)mx¢“ ®1.
9vB
Notice that the first equality in (10.1.8) forces
(10.1.9) (Ny—1)y=a+B=20;+n; for all j € I,,.

Proof. We need the following computation:
n
d(xaxg ® 1) = %0 ® T — ¢upxg @ To — bxy ® wa 2 ijxn]. ® x5,

The proof of the lemma is by induction on a. First we compute:
d(xaxyx3 ® 1) = X0xy ® 2 — s(d(xaxy ® 1)23)
= XaXy ® 28 — 5(Xa @ 4T3 — GayXy ® Talg)
n
Ny—1
= XoXy Qg — s(q%gxa ® TRTy — qanXy @ (qagxgxa +bx," T+ ijmnjx(;j))
j=1

= XXy Q Tg — ypXaXp @ Ty + S(gavqag (X’y R g — qypxg & xy)xa
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Ny—1
+b(gay — ¢4p)%y @2y + Z b; (danyXy ® Ty; — Gy545,4%n; @ xv)mt%)
=1

= XaXy @ T — ¢ypXaXp & Ty + Z bjqayXyXn; © Ts; + GardapXyXp © Ta
j=1

n
N
+b(gay — ¢yp)%y " @1+ S<ij (Gor@rm; — Gy5s;) (1 ® l’mxvf%))’
i=1

which agrees with the second formula for a = 0 since s o s = 0. Next we compute
d(XaX’ZYVWXB ®1)= xoéxijv7 ®xg — s(d(xopcfyvW ® 1):05)
Ny—1 Ny—
= Xax'y & xrp — (q75 XaXy & ‘TBIV + CﬁxﬁQa’y X'y & TRTo
n
+gogbxy” @) T 4+ biganx) T ® xnjx(;j)
j=1

N. Ny—1 N,—1
= XoXy ®@x3— qvg XaXyXg @ Xy

n
N. N~—1 Ny+1 N 2 N, N.
—b(qm”—qg qay-i-qw) R E qua,]x,ﬂxnj@@a:(;j
i=1

N~ N
- Qa,BQ(x';YX'y’YX,B & T,

and by (10.1.9), this agrees with the first formula in the lemma when a = 1. Now assume
the second formula given in the lemma holds when a is replaced by a — 1. Then

d(xaxf;N”’ng ®1)= xaxf,NA’ ®xz — s(d(xaxfyj\hY ® 1)xg)
= Xan/Nv ®xg — s(xaxfy”(afl)ﬂ ® meflxg + Z%xi ® Taxg)

N. Ny— N. - Ny _aN.
= x,x2" @y — S(qu 1XanV(a D+1 ®$Bl’77 +qagq$7”}<§ " ® 24T

n
N,
—i—chw x5 i ®x +Zb]qfw”x§ ”®xnjx5j).

-1 Ny(a—1)+1
XaXny(a )

Use the induction hypothesis to rewrite the term q%v ®x5$§v "1 {0 obtain

d(xang7x5 ®1)= xa}cf‘;NV ® g — s(qyg_ld(xaxga_l)]vvﬂx/g ® xNV 1)

1)N,+1 No—1 1)Ny+1 N~y—1
*qaﬁqgffy Wy Qg (ya Ny X3 Q Tl

~bg5” <q°” - 1) (a)( )wiNv Y AR

qay

4B

Ny—1 1)Ny+1 1)N. +1 Ny—
_Zb] 'yﬁw quy )Ny (a )Ny j®$6jx7 +QQ,BQO¢7 X'y ’y®$6$a
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n
aN. N N
—|—an x5 7®a: 1y E qugfxg ”®xnjw5j>

aN. Ny—1 a—1)N,+1 Ny—1
:xax7”®x5—q%67 xaxg INy Xg @ Ty

—|—S< aN, Ny—1_(a— l)N,Y—i—lX

Ny—1
Qoploy 4yg Xy

8 & Ty Lo

alN
N. N. N+ — N. N.
—|—qu57 <ch - 1> (a) Ny — qz7v x5 @y = Gopdor Xy | @ T5Ta
e (%) 9yp

n
Ny—1 (a—1)Ny+1 N,—1 (a 1)NW+1 N, — 1 aNy _aNy
+ E :b]q'yﬂ Joy 95, *v Xn; @ Ty~ To; — E bjday Xy " & Ty, T5; ).

Now use the formula d(x, ahvtlg, 1) = 25" @, (10.1.4) and (10.1.9) to rewrite the above
expression as

alN. N,—1 Ny(a—1)+1 N— aN~ _aN.
XaXy | ®3:,3—q757 Xax,ﬂ( I+ X3 Q@ Ty — qaBfay Xy X3 X Tq

aNy 4 q Ny+1 N -2 N, _aN.
+bqﬂy T (de ay )(G)(M)N—y _ (ﬂ)aNy}Xg v+ Q T ijqgwwxz ’YX"U ® 5,
q’YB g q"//B j=1
This agrees with the first claimed formula in the lemma.
Now we use the first formula to obtain the second formula:
d(Xaxf,N7+1X5 ®1)= xawaﬁ_1 ® T8 — s(d(an7N7+1 ® 1)xg)
oxy T @ ag — s(xaxy" @ wiwp — gay T

aNy+1 aN. aNy+1_aNy+1
= XoXy v KxTg — S(qvgan»y 7 R Taxy — %BQOWAY Xy K

& .%'aafg)
®$5xa

No+1 N 1 N -1 No+1 _aNy+1
_bqa ~+ <% v+ ¥ E b; gver aNy+ ®xnjx5j>.

By our induction hypothesis, we may use the ﬁrst formula in the statement of the lemma
. alN, ..
to rewrite the term ¢,sx.%y 7 ® 252, obtaining

N~+
xaxy @ ag - S(de(XaXv X5 @ Ty) + Qaplay | G5%S Xp ® Taly
Ny+1,,9 q Ny+1 N -1
=gy T = 1)(a) rery vy — ()T @y

4vB qvs

alN. alN. aN+1_aNy+1
+ ijqa’f/q%ﬁ’x’v Wxﬁj ® L; Ly — QaﬂQa'y Xy TR TRL
j=1

Nyt alNyt1 o N -1 No4+1_aNy+1
— bgar vt x5 vt K Zb] ?w” st ®xnjx5j)

aN+1
oxy T ® T8 — qypXaxy VXB ® Ty

Ny+1 N. Ny+1
- S(QQﬂqng (qwxf'; TXE ® TyTo — Xy | @ TpTa)
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—bqié““{@a;‘ )(@) gy, — (22 )Ny o (B2 pal 1SNt g 1
v

W g ole]

aN~+1 aN.
- ZquOé’Y aryXy " @ Ty; — Qypds;yXy Xy, ® wv)“j)'

Now we use the formula d(x Ny(atl) g 1) = xf,N7+1 ®x N” ! , (10.1.4) and (10.1.9) to rewrite
the above expression as
axny”H ®xg — qwxax7 Txg @ Ty + qagan”Hx(;Nﬁl X3 Q Xa

+b aNa,-l-l{(qai'y )(a+1)(q&7 N«,}X ~(a+1) ®1+Zb3 g{y\l’y—l—l aN.Y—&—l %, ®$5]-,

qvB avB =1

which agrees with the second claimed formula in the lemma. O

Lemma 10.1.10. Let o < n < v < B < § be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form

(10.1.11) TaTg = qafTpTa + D12y Ty, TyTs = QnsTsTy + 02T,

for some scalars b1,by and the other pairs of root vectors qg-commute. Then, for all n > 0,
d(xax:x5X5 ®1)= xaxf;x[g ® T§ — qpsXaXsXs @ Tg + qwqngaxz_lx[gx(; ® T

(10.1.12) + (—Gar) " G0 das®ixpxs @ T — qnsbr(—1)" g, (n + 1)g, X0 x5 @ 2

+ bleC((x,B)'y( q,ya)_nXTyH_Q ® 1.

where c(()lﬁ),y = kzo(fam)k(k: +1)gs,, n € N.

Notice that the equalities in (10.1.11) force
(10.1.13) y+n=a+p, n+o=r
Hence the following equality also holds: 2v = a4+ 8 + 9.
Proof. First we claim that
d(XaXTyLXﬁ ®1) = Xax: ®rg — Q“fﬁxaxzilxﬁ Q Ty — Qaﬁ(_%v)nxzxﬁ @ ZTa
—bi(—qay)"(n + 1)@”}{:“ ® Ty
The proof is by induction on n. When n = 0,

(10.1.14)

d(xax3 ® 1) = xq ® 23 — 50d1(Xa ® Tg) = Xa ® T3 — ¢apXg @ Ta — b1Xy @ Ty).
Now assume that (10.1.14) holds for n. Let ¢, = (—gay)"(n + 1)z, . We compute:
d(xax:“)cg ®1)= xax”Jrl Qg — sd(xaxﬁfrl ® zg)
= Xaan Qzg— S(QWX&X ® TaLy + (_qav)nH e

= an”H ®zg — qwxax X3 ® Xy — s(

qapTaTa + blxvazn))
( Qa'y) qaﬁxn+1 R TpTq
+ (—¢ar)" 1 Xnﬂ ® TyTy + ¢y8Gas(—qa)" )X @ Tazy + qvﬁblcnx ‘e )

— xaxm'l ®xg — qngax X3 ® &y — b1 (gyadyycn + (— qom)rl‘*'l)}cz"'2 ® Ty



COHOMOLOGY RINGS OF FINITE-DIMENSIONAL HOPF ALGEBRAS 83

— (—qm)"ﬂqa/@»sd(xffrlm ® xa).

Now the inductive step follows using Remark 10.1.2 and
Gy = Gor8y0y = oy
Next we prove by induction on n that there exist e, € k such that:
d(xaxZXﬁx(; ® 1) = xaxX0%5 @ T5 — qpsXaXyXs @ T + qqugxaxfy‘_l}%x(; ® T
+ (_QQ'y)nQa,BQa(sX:XBXé Q Toy — qngblcn_lx:“‘lx(; ® Ty + blbgenxz"'2 ® 1.
The proof is again by induction. When n = 0,
d(xaxpxs @ 1) = xoxg ® x5 — s1da (Xaxg @ x5)
= X0X3 ® T5 — 51 (¢85%a ® T528 — apdas®s @ TsTa — D1Xy @ (qnsTsTy + boz,))
= XoX3 Q@ Xs — (BsXaXs @ Xy — 51( — qapqas¥s @ TsTa — qnsb1Xy & TsTy
— biboxy ® Ty + ¢35Gas%s @ (¢apTaTa + b12y2y))
= XoXg @ T5 — (8s¥aXs ® Tg + brbox? @ 1+ gpsbix,x5 ®
— 51( = Gaplas®p @ T5Ta + 4859a6%s @ (QapTpTa + b1T4Ty) — GysGnsb1Xs @ TyTy)
= XaXB @ s — 4BsXaXs O T3 + b1b2X3 ® 1+ gusb1x4%Xs @ Ty + ¢apqasXpTs @ Ta
— b1(486Gas — Gy6dns)s (%5 @ Ty2y).
Now assume that the formula holds for n. Using (10.1.14):

n+1

n+1
Y Y

d(xaxzﬂ}cﬁx(g ®1) = x5 x8 @ x5 — sd(xax5 T X8 ® 5)

= xaxﬁ“}cﬁ ® T5 — s(q&;}caxg'H ® L6573 — GypGysXaXnXp @ T5Ly

n+1X,7YL+1X,3 R xsTo + blcn+1x2+2 ® (qn5$5$n + b2$7))

— 4apas(—qa?y)
= Xax,ryH_erg R x5 — qg(gxaxz—i_lxg Rxg — S(Q&;q,ygq,ygxaxzxg @ XBT

+ 485405 (—Gay)" T KT K5 @ (GaprsTa + b1yTy) — Gyp015%aX]Xg ® T2y

- QaBQa6<_Qa7)n+1X:+l

Next we use the inductive hypothesis, the relation x?Y =0, (10.1.5) and (10.1.6):

X3 ® T5Ta — b1en1X0 T ® (qpswsay + baxy))

d(xaxz+1x5x(; ®1) = xax2+1x5 R x5 — qB(;XaXZ’HX(s ® T3 + ¢ypGysXaXyXeXs @ Try
- 5( - qWBqWS(_Qa’y)n+1QaﬁQa5X:X6X6 QR TyZa — qWBqW5qW’yqn6blcn+1X:+1X6 & TyXny
+ b1b2enGy30y5%s 2 ® Ty + a5as(—ar)" T X K5 @ (qupT e + bLEyTy)

- QaﬁQOc(S(_Qa'y)n—’—lxz—i_l
n+1
Y

X3 @ X§To — b1Cn+1X$+2 ® (%763367317 + b233’y))

Xg ® x5 — q/g(;xaxzﬂx(; ® xg + qyﬁq,y(;xaxzx5x§ ® T
n+1_n+1
Xy

= XoX
+ Gapqas(—qary) X3X5 ® To — b1b2(€nqy3ys — Cn+1)X2+3 ®1
+ Qn5b10n+lxz+2xé ® Ty,
and the inductive step follows. To finish the proof we have to compute e,. Note that

eo =1, €ntl = —€nGyBGys + Cntls for all n > 0.
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By (10.1.13) and using that ¢,, = —1,
2 1 —1_ —1 -1
s = IyTyalys = Dalys-

Hence e,, = c(aﬁ)v( @ya) " for all n > 0. O

Lemma 10.1.15. Let a <n <y <7 < 8 <0 be positive roots such that N, = Ny = 2
and the relations among the corresponding root vectors take the form

Talh = (apTaTa + D122 TpTs = qpsTs5Ty + box
(10.1.16) ¢ e T e B
TaTr = QarTrTa + D3TyTy, TyTp = qupTply + bax7,
for some scalars b; € k and the other pairs of root vectors qg-commute. Then, for alln > 0,
d( xyXpxs @ 1) = x XyXg ® T5 — qggxixzx(; ® g+ qyﬁqygxix$_1x5x(; ® T

(10 1 17) + (_Q(m/) Qaﬁqadan,yXﬁxg R To + q%qgjlqngblng;‘“x(s ® Ty

anrl n ]
+ nfg ((n + 1)%&%6 + Z C‘(3Y]"2’Y>b1b2b3xz+3 ® L.

Notice that the equalities in (10.1.16) force

(10.1.18) y+T=a+8, n+0=r, a+T=7+mn, n+ 0 =2r.

Thus the following equality also holds: 3v = 2a + 8 + 4.

Proof. Let n € Nyg. A computation similar to (10.1.14) proves that

d(xaxzx.r ®1)= xaxg Rz, — quanZ_le ® Ty — an(—qM)”xng ® Zq
—b3(—qary)"(n + 1)qu;‘“ ® T,

d(xax$x5 ®1)= XaXy @ T3 — GypXaXy x5 ® Ty — qag(—qm)”x:x/g ® Za
- (—qm)”blx:xT ® Ty .

(10.1.19)

(10.1.20)

Now we compute more differentials:
(10.1.21) d(x%x xyX3 @ 1) =x2 ﬁxg q,ygxix:*l)([g ® Ty — qag(—qaw)"anng ® Ta
+ @apt br1bsxI T @ Ty — (—gay)" T b1xax] X, © T,
d(xax)xp%s ® 1) = XaX[Xg ® Ts — qpsXaXyXs ® Tg + qygqygxaxzflxmc(; ® T
+ (—4ary) " GapdasxyXs%s @ To + (—Gay) " G6D1X5 % %5 @ T,
First we prove (10.1.21) by induction on n. For n =0,

(10.1.22)

d(xixB ®1) = xi ® g — s(qagxa ® T3To + b1Xa ® ZL‘T$7)
= xi QX — b1XaXr & Ty — afXaXg @ To + s(qmblng,y Q Ty
+ (garGay + 90p)b1Xr ® xvxa)
= xi R xg — b1XaXr Q@ Ty — ¢upXaXs @ To + qmblngi & xy.

Assume that (10.1.21) holds for n. By inductive hypothesis, 2 = 0, (10.1.19) and
(10.1.20):

d(x% ”+1x5 ®1)=x2 xn+1 Qs — s(qﬂ,ﬁx " @ xpay + (—goy)" " %a n+1 ® Towp)
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= %02y @ 1g — ypxaxyxs © Ty — 5(41800p(— o) "XaX X ® Tay

Zglq:;jlblng’,;“ ® xTpy + (—(;(OW)"Jrlqagxopcifrl ® TaZq

+ (—qow)"ﬂblxoéxg”rl ® Tr Ty )

= xox) " @ 25 — 4ypxaxy %5 @ Ty — (—Gan)" dapraxy !

+1 +1 n+1 _n+1 +2
—s((—qm)” blxaxg ® TrTy — @5 q% blngg ® Ty

X5Q§$a

+ (—qm)Q””qagbch“xT ® azwxa)
= X(QXXZH ® g — qwxax;‘m ® Ty — (—qa,y)”‘*'lqaﬁxax

1
— (—qw)”“blxaxz*le @ Ty + q;‘g qg‘j2b1b33(x2+2 ® Ty2y)),

1

50 (10.1.21) follows since s(x07? @ z,x,) = xIT @ ).
Now we prove (10.1.22) by induction on n. For n =0,

d(xaxpxs @ 1) = XoXg ® T5 — S(Q55Xa ® T5T8 — GaBasXp ® TsTa — Gysb1Xr ® acgacy)
= XaX8 @ Ts — qBsXaXs ® T3 — $(q850as%s @ (¢pTsa + b12r2)
— GaBqas¥8 @ TsTa — Grsb1Xr & 965967)
= XaXg ® s — q3s5XaXs @ T3 + qwgblex(g X Ty + ¢apGaskpXs Q Tq.
Now assume that (10.1.22) holds for n. Using (10.1.20), Remark 10.1.2 three times, in-

ductive hypothesis, x% =0=a2,

d(xaxz“xBx(; ®1)= XaX,TlerlX,[j Qx5 — S(q,&;xaxTrl ® TsTH — GypGrs%aXyXp @ TsTy
_'Qaﬁ(_Qav)n+1Qa6XZ+lxﬁ<8>x6xa'_ t_Qaw)n+qu6b1XZ+lxr<8)x6xv)
= XaxfyH_lXIg K x5 — q&;Xaxz—HX(g KTg — S( — q%@q,yganZX/g X TsTy

)n+1

+ 085050y 5%aXa%s ® TaTy + Gas(—Gay)" T qasx" %5 ® (qaprsTa + B17724)

— qaﬁ(—qav)"ﬂqatgxzﬂx[g ® T§To — (—qaw)"ﬂqwblxzﬂm ® a:(;acﬂ,)
= xax?“){g Qx5 — q55xaxg+1x(s ® T + §ypGyoXaXyXXs @ Try
— 5( = 48075(— o) " Gaplasxi XS © T4 T
+ aplas(—ay)" T qpsxl T RS ® TpTa + Gas(—Gary) T qpsb1xl T R ® 2oy
— Gap(—ar)" " Gas¥) T R @ T570 — (—Gay)" T @yeb1xl T R, ® w524
= xaxz"'lxlg Qx5 — q55xax2+1x(g ® T + §ypGysXaXyXXs @ Try
+ (—ay)" T gysb1x] T kx5 © 1y — (= 448055 (—Gary) T QaplasXi X %S © T4
+ Gaplos(—day) " apsxi ks @ 28Ta — dap(—ay)" T dasxi T xs ® 570)
= xax:#lxﬁg R x5 — qg(;xaxgﬂx(; ®xg + qmnggxaxgxlgx(g ® T
+ (—day)" T gre1x] T xrxs @ 2 + Gap(—Gar)™ T dasxl T s ® 20

Finally we prove (10.1.17) by induction on n. Notice that root vectors corresponding to
a<n <7y <71 <6 satisfy (10.1.11), so d(xax%x:%5 ® 1) is given by (10.1.12). We claim
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that
d(xix?x/gng ®1)= XZXZXQ Qx5 — qﬁgxixzx(; ®xg+ q,yﬁq,y(;xixfy‘_lxﬁx(; ® Ty
+ (—Gar) " GaplasXaXyXpXs @ Ta + q%qgjlqngblngg'ﬂm ® Ty + Cnb1b2b3xzyl+3 ®1
for some scalar ¢,. For n =0,
d(xixmcg ®1)= szﬁ ® x5 — s(qg(;xi ® T528 — ¢ysD1XaXr @ T6Ty — GaBlasXaXg @ TsTa
+ qmb1b3X3 ® (qnsxsTy + b2x'y))
= xixB K x5 — q55xix(5 KrTg — s( — @ysP1X0Xr @ T5Ty — apdasXaXp @ TsTo
+ Qi Gnsb1b3%5 @ T3y + Gy b1babsxT ® Ty + 485GasXaXs @ (dapTpTa + b127,))
= XiXﬂ KR xs — qggxim Krg+ qAﬂ;leaXTX(g QR Ty — s( — GaB9as%aXs @ T5Tq
+ Qar§as@ysb1%rXs ® Taly + (nsGysb1b3xyXs ® Ty + QyyQnab1bsx> @ Tty
+ (qyy + qms)blbzbzxi & Ty + 4859as9apXaXs @ iﬂﬁﬂia)
= xi}% X x5 — qﬁgxax(g Qs+ qmgblxaxTx(; & Ty + GapGasXaXpXxs @ Tq
+ (qyy + qya)b1b2b3X§ ®1-— 8((%5 + Garfay)asys01%rXs @ Ty Ta
+ Goy5b1D3Xy X5 ® TyTy + Gy Gyeb1b3x’ @ Ty
= Xins x5 — Q,B(inXa ® x5 + ¢ysb1XaXrXs ® Ty + afGasXaXfXs & To
+qys(1 — Ejv_(sl)blbgng,?; ®1+ qmqngblngim ® T).
Now assume that (10.1.17) holds for n. Using (10.1.21), Remark 10.1.2, inductive hypoth-
esis, 22 = 0 = 2, (10.1.12), (10.1.22),
d(xs, 2 ”+1x5x(5 ®1)= x2 n+1X5 Q x5 — s(q&;xax;r ® TsT8 — qvﬁqng NXp ® Ty
- Qaﬁ(_%w) QQJXaXZyH_lxﬁ ® T5Ta — (—Gay)" T reb1%ax) T % @ 351,
+ a0 g Poibobsx P @ = + a0 a2 ansbrbsx T @ aswy)
= x? X"+1x5 Qx5 — qB(;an7 X5 KxTg — s(q,yﬂq,ygq/g(;xixf;x(g X TRT
+ gas(—Gay)"" (JBaXaX"+ X5 @ (QapTpta + D1TrTs) = 4yp0y5XaXy s @ 2524
— Gap(—ar)"  Gas%ax] T % ® 250 — (—ay)" T qeb1%0x] T % © 351,

+ an " by bobgx! T ® 537 + nglqngqTi‘Sblb?’XTg ® sty)

= x2 Xn+1X5 Qx5 — (]55}(0[)(,Y X5 Kzp+ qvﬁqvgxixZng(g & Ty
- 3( - q'y,Bq'y5(_QCx'y) QaBQOcJXaXzXBX(S QX Ty T

+ 18475Cnb1bab3x] TP @ 2y + 4430500y € a0 anab1b3x] TP xs © Ty,

+

+ QQBQOAS(_Qa'y)n+1q56xaxn+lx5 X TpTo + QQ6(_QO<7) Q65blxax X5 Q Trxy

- QQB(_Qav) QQéxax XB X T§Ta — (_Qa'y)n+2@yéb1xo¢xfy+ Xr Q Tsky

+ qw ”'*'lebgngn+ & :U7 + q”+1 ZjQqngblng & x(sfcn)

= x? Xn+1XB Qx5 — q&;xaxW X5 Rxp+ qwng;xaxyxBx(; & Ty
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+ (day)" 24501203 2% © 24— 5(— G4505(—dar) " daplasXaXyXpxs @ 100

+ Gy30y5Cnb12b3x] P @ 2y + 4y80y5 0y s dnob1bsx] TP xs @ Ty,

+ aplas(—Gay) " qasxaxi x5 © 230 — Gap(—day)" T Gasxaxl T xg @ 5T

+ qﬁglqﬁfblbzng:*?’ ® Ty + qgglqngQndblb:stH @ TsTy

— Gy ansdon TP (n + 2)g,, b1bsx" x5 ® Ty — 415000 Gar Gasb1X0 T X X5 ® 420

+ (_qw>n+2qf76b1b2b3(—%a)_n_lcgﬁ)xzﬁ ® xv)

= xix2+1x5 R x5 — qﬁgxzxzﬂxtg ®xg+ qvﬁqngix:}%x(; ® T

+ (—ay) " qye01%0x] T % %5 ® Ty + Gap(—Gan)™ T Gas¥axl T xpxs ® T4

- S(QQLElquL?qn&blb?)X:% & x5Ty

+ (448855007  ans — nsdan > (n + 2)g,., ) gyo Gy D1bsx] x5 @ 2y

+ (qZE Y+ aysayaen — aps 2%561;5‘%3%1))blbzngT?’ ® ).
Hence the claim follows using Remark 10.1.2 and that d(x2+4® 1) = XZJFS ®x~. The scalars
¢y, are defined recursively by the equation:

o1 = 3 T + qysthacn — it araaya e Y.
Thus (10.1.17) follows using (10.1.18) to express all the roots in terms of «, 3, 7. O

Lemma 10.1.23. Let a < B <y <7 <1 <4 be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form

Tals = qasTsTa + D1TyTy, TRTs = qsTsrg + boTnr,
(10.1.24) TyTs = QysTsTy + ng%xT, TaTr = Qar®rTo + baTyTg,
TpTy = qpnTnTp + D5Ty,
for some scalars b; € k and the other pairs of root vectors qg-commute. Then, for alln > 0,
d(xaxpxixs ® 1) = XaXpxy @ T5 — q,ygxaxL;x:*lx(; ® T
— (—48y)" 48s%ax]%s ® 28 + dap(—ary) " GasXpx)Xs © Ta

- (q%fl(n)iqﬁbgm + (—¢y)"2) %0 X%, © 7

(10.1.25) o
n n n—1

+ Gap(—gary)"P1b1XpX Xy @ Ty — D3XaXpXy Xy ® TyTy

n
q ~
o <Z(_QO¢7)]€(1€ + 1)(7[37) b1b5xg+2 ® 1.

Qo Ty \i=g

Notice that the equalities in (10.1.24) force
(10.1.26) a+0=v+n, B+d=n+r, y+d=2n+T, n+pB=r.
Thus the following equality also holds: 2v = a + 8 + 6.
Proof. A recursive computation on n € N shows that

(10.1.27) d(xzx(; ®1)= xz ® x5 — qm;x;‘_lx(; ® Ty — ngz_lxn ® Ty
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The root vectors corresponding to § < v < 7 satisfy (10.1.8), so by Lemma 10.1.7,
d(xﬁxzxn ®1) = x5x’f/ & Ty — qWXﬁxZ_lxn ® Ty — %n(—%w)"xf?xn Qg
+ b5q2n(n + 1)_%X:+1 ® 1.

ayn

(10.1.28)

We need more auxiliary results:
d(xaXpxy%y @ 1) = Xaxx) @ Ty — qwxozx/gxzflx77 ® Ty
(10.1.29) — (=47)" pn%axi%y @ 5 + dap(—Gar) " GanXpxy %y @ Ta

— q%(n + 1)7%b5xaxz+l ®1,
ayn

d(xaxy%s ® 1) = XX @ T5 — qmgxax:*lxg ® Ty — (—Gay)" QasX %5 @ Ta

(10.1.30) )

— ngaxz’ Xy @ TyTr — (—qow)"blxijx77 ® Ty,
d(xpxlxs ® 1) = 2% @ x5 — q75x5x:*1x(; ® Ty — (—qpy) " qpsxy%s @ T
e

10.1.31
( ) Yx, @ vpr, — ((—gpy)"b2 — b3b5q%(n)7qﬁ)xzxn Q7.
ayn

— b3X5X7
We start with the proof of (10.1.29) by induction on n. For n = 0,

d(xaxpx, ® 1) = XoXg ® T — s(anxa ® TpTg + bsXa @ Ty — apGanXs @ xnxa>
= XaXg ® Ty — ¢pnXaXn ® T + dapGan¥pXny @ To — b5XaXy ® 1.
Now assume that (10.1.29) holds for n. By Remark 10.1.2, inductive hypothesis and
(10.1.28),
d(xopc,gx:"'lzg7 ®1) = xax/gx:"'l ® Xy — s(qwxamxg ® Ty

+ (_qﬁv)nﬂxaxzﬂ ® (gpnTnrs + bsy) — Qaﬁ(—Qav)anmXﬁXzH ® xnxa>

= XaxBX:H ® Ty = GyyXaXpXyXy @ Ty — 8((—q,37)"anq7nQ57XaX:Xn ® zy28

- Qaﬂ(_Qa’y)n(IanQ’yWQOfyX,szxn QR Ty — Qaﬁ(_QOﬂ/)n—HQanXﬁXz—H X TyTq

+ (_Q,B'y)n—i_l(LBnXaXZ—i_l & TpTg + (q%—?i-l(n + 1)_‘157“% + (_Q5’Y)n+1)b5xaxz+1 ® .%'7)

ayn

1 1 2
= xaxpx) ' @ Ty — ynXaXpxixy @ Ty — ¢ (0 + 2)_2,34b5xax2+ ®1
yn

B (_qﬁ’y)n—i_lqﬁnxaxz—i_lxn ®xg+ QQ,B(_Qa'y)n+1QQnX,BX:+1Xn K Tq-
Next we prove (10.1.30) by induction on n. For n =0,
d(Xaxs ® 1) = Xq ® L5 — §asXs @ Ta — b1Xy @ T.

Now assume that (10.1.30) holds for n. Using Remark 10.1.2 three times, inductive
hypothesis and (10.1.27):

d(xaxz+1x(; ®1)= xax?rl Rxs — s(xaxz ® (qysT52y + bgwisz)

+ (—qm)"ﬂxﬁ;*l ® (qasToTo + blxnx7)>



COHOMOLOGY RINGS OF FINITE-DIMENSIONAL HOPF ALGEBRAS 89

n+1b1X$+1

1
= xoéxz‘F ® T§ — D3XaX Xy @ TyTr — GysXaXyXs © Ty — s((—qm) ® Ty

)n-&-lX;H-l

+ QOAS(_QCW D TsTo — <_Qav)n+1QO¢5qW5X;LX6 Q) Ty Lo,

2 2
+ oy (= Gan) " Qar 3% %y © TnTrTa + don(—dary) "P3baxlx, @ 9577%%)
= Xaxfyl'|r1 ® x5 — ngaxgxn ® Ty — qngaxzxcg ® Ty — (—qm)”"rlblxz‘HXT7 ® T

n+1l_n+1
X“/

- QOz(S(_qa’y) X5 @ Zq-

Now we prove (10.1.31) by induction on n. For n = 0,
d(xpxs ® 1) = x3 @ 5 — qgsxs ® xg — baxy @ 7.

We assume that (10.1.31) holds for n. Using Remark 10.1.2 three times, (10.1.28),
inductive hypothesis and (10.1.27):

d(Xﬁx:+1X5 ® 1) = X5X2+1 ® x5 — S(qf},(;XﬁXzyZ QR x5y + b3X5XfYL & 1’3]1'7—

+ q,g(s(—qm)”ﬂxz+1 ® xsr8 + (—qgw)"ﬂngzJrl ® 33,71:7)
— Xﬁxfyﬁ_l ® x5 — q,ng/gxzx(; ® Ty — ngﬁx:xn ® TpTr — s(dnqvgxf;xn ® TrLy

n+1l_n+1
X, R 5T

— ¢yo(—ay) " apsxlxs ® 2415 + qps(—qsy)
+ Q387 (—0y) "D3X 3y @ 2738 + Qg (—qpy)" Gy LXKy @ Ty

(25" oy — Babagly (0 + 1) _us, )1 @ g
4ym
- xﬁxg‘*‘l ® T5 — Gr6XpXL%s @ Tny — b3XpX Xy @ TnTr — qas(—qsy)

_ ((_q,B’y)TH_lb? — b3b5q%"1(n + 1)_!137-\,)X,7YL+1X¢] X Tr.
ayn

n+1l_n+1
X, X X xp

Finally we prove (10.1.25). To do so, we prove that there exist ¢, d,, e, € k such that

d(XaXQXZX(; ®1)= XaXpXy ® Ts — q,y(gxaxﬁxz_lxg Q Ty — (—(M'y)nQﬁﬁxlezX‘S ® xg
+ qaﬁ(—qm)"qa(g}cﬂxf;xlg ® To — Cn Xaxe77 QX — ngamxz_ljc?7 ® TpTr

+ dn X%y ® Ty — exb1bsxl T @ 1.
For n =0,
d(xaxpxs ® 1) = X0%3 ® Ts — 5(Xa ® (qasTs23 + bonTs) — qapXs ® Tals)
= XoXp ® Ts — (p5XaXs ® Tg — baXaXy @ Tr + s(qagqa5Xﬂ ® T5To + Qagb1Xg & Ty,
— (ggsb1 + ganb2aba)Xy ® 425 — GarGanb2¥Xy @ TrTa — Gapdasips¥s @ xﬁﬂca)
= XoXp ® Ts — (B5XaXs @ Tg — b2XoXy @ Tr + apdasXfXs @ To + Gapb1XsXy @ Ty

+ qa5b1b5X3 ®1-— 8((%5’01 + Ganbaby — QBnQ,B'yanbl)S(xnx’yxﬁD'
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We assume that (10.1.25) holds for n. Using Remark 10.1.2 twice, (10.1.29), inductive
hypothesis, (10.1.30), (10.1.28), (10.1.31)

d(xax/gxgﬂx(; ®1) = xaxﬂxz"'l ® x5 — 5 (qvgxax/gxz ® T2y + b3XaXpx @ 337271‘7
+ (—qu)"ﬂxaxg”rl ® TgTs — qag(—qw)”ﬂxlgxﬁ“ ® xaa:5>
= xa}chz+1 ® T§ — GroXaXpXyXs ® Ty — D3XaXgXyXy @ TnTr — s(qwgenblbg,xZ/H'2 ® T
+ qVé(_QBV)HQBvqﬁéxozszé Q@ Ty + q'yMIa,B(_qM)n—i_lCIaéX,BXzXJ Q) Ty T
+ (—qu)"ﬂcmaxaxzﬂ
+ (—qgv)”qgnqwngax:xn Q TpxrTp + (_qﬁv)nqﬁnqwbi’)bﬁaxzxn Q Ty
- qag(—qw)"qinqmnglgxzxn QR TyTrTo — ng(—qay)nqinbgbZLX@x:xn ® TyTyTg

+ (¢, (n +1)_ag,b3bs + (—qp,)" o) xax2 T ® 2y,

ayn

Q@ xsTrs + Q'yécanXaxzlen X Ty

- QQB(_Qav)n+1b1X6X:+1 X TpTy — Qaﬁ(_Qa'y)n—HQaéXBXfyH_l X 3753704)

= xax@cz“ ® x5 — qngax,gxgm ® Ty — (—qlg,y)n+1q/35XaX2+1X5 ® g

— b3XaXpX %Xy @ TyTr — (q%(n +1) a3, bsbs + (—(]/5>AY)"'~'1b2)Xa}cz"'lx77 ® T,
qvyn
- 3( - QQB(_Qav)n+lb1XﬁX:+1 X TyTy — Qaﬁ(_Qa’y)n—HQazSXﬁX:—H X T§To
+ (quLn(n + 1),‘757’Yb3b5 =+ (_QBv)nJrle)QOcn(_QOa’y)n+1X'7yL+1xn @ Talr
qyn
+ gysenbrbsxl T @ xy + qaﬁqgilqaaqgjl%axﬁﬂxa ® TaTa

+ qw;qag(—qm,)”anngxzx(g & TyTo + (_qﬁv)nﬂqﬁé(_qav)nﬂblxzﬂxn @ TyTp

- qaﬁ(—qaw)”qinqmbsmx%n ® TyTrTo — Qa,é’(—qm)nqznb?)bzlxﬁxgxn ® %,%965)
= XaXBX,TYLJrl R x5 — q,ygxax[;xzxts ® Ty — (—q57)”+1q55xax:+1x(5 ® g
— b3XaXgx) %y ® Tyzr — (g, (n + 1),31341331)5 + (=a8y)" ' b2) xax xy @ 24
v
+ dap(—ay)" T D125%) 1 xy ® 24+ Gap(—dar) " asxpx s ® 20
— 5((aap(— o) (0 +2) sz, + qygen)1Dsxl T @ 2,

ayn

+ (¢%,(n +1)_as,bbs + (—qsy)"'b2) qan(—qary)" " as(xI T @ zpayws)

ayn

B qaﬂ(*Qa'y)nqznb3b4S(X5X: X x%m,yxﬁ)) .

Hence the inductive step follows since s? = 0 and s(xﬁy”r2 ® xy) = x;”r?’ ® 1; for the last
step we use the equalities

n+1 _ n+1 n 2 _ n
s(x0T @ wpzyrg) = X0 X, ® THT8, 5(xpx]) ® T; XA Tp) = XXXy @ TpTyTa,
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. . 2 o o . . . .
which follow since 7 = 0 and z2;) = gyyTyz,. The formula for ¢, d, is explicit, while
for the e,’s we have the recursive expression: eg = g3,

ent1 = Qopdor @5 (0 +2)g,, + Gad en n >0,
where we use (10.1.26) to express ¢ and 7 in terms of a, § and ~. O

Lemma 10.1.32. Let a < <6 <y < T < ¢ <n be positive roots such that Ny =2 and
the relations among the corresponding root vectors take the form

TaZy = QapToTa + D12
(10.1.33) aTe T Teemer I
TRTr = BrTr TR + D2y, T§Ty = QspTyTs + D3TLT Ty,
for some scalars b;, and the other pairs of root vectors q-commute. Then, for all n > 0,
d(XaXpXsXy Xy @ 1) = Xaxlgxgxz ® Ty — qwnxa}(gx(;xzflxn ® T
= (=457)" GonXaxpxyxy @ 25 + qps (= dsy)" dpnXaXs% )%y @ 25

(10134) - QQ,BQa(?(_QQ'y)HQQnX,BX&X:Xn R Ty — (_qa’y)nb3xaxﬁxn){%@ ® LTy

1 daB9yn 4 (n) 3
— qaplye(n + 1)q~m(—q57)"b1b3x5xz+ Xr @ Ty — (aqé B daﬁév Tr ® 1,

where dgwﬂ/ Z %%k + Do (B +2)g,,, n €N,

Notice that the equalities in (10.1.33) force
(10.1.35) at+p=y=p+T, n+o=y+7+0.
Hence the following equality also holds: 3y =a + 5+ + 1.
Proof. We may apply Lemma 10.1.7 to the 3-tuples @ < v < ¢ and § < v < 7 to obtain
d(an:)Qp ®1)= Xaxg ® Ty — qmpxaxzflxw ® Ty — (—qm)”qathZx¢ ® Tq
g (n+ g, 1 91,
d(xBXzXT ®1)= X,gxf; Rz, — q,yTXBXQL_le ® Ty — (—qﬂw)”qﬁszxT ® g
+bagyr(n+ g, X @1,

(10.1.36)

(10.1.37)

for all n > 0. The next step is to prove by induction on n the following equalities:
d(xaxpxy%Xp @ 1) = XaXpxy @ Ty — qwxa}%x:*lx@ ® T~

(10.1.38) = (—487)" Bp%aXy%p @ T + Gap(—Gary) " dapXpXyXe ® Ta

+ Gapqy,(n + 1),7Mb1ng2+1 ®1,
(10.1.39) d(xsxhxy @ 1) = x5%5 ® Ty — q,mx(gxf;_lxn ® Ty — (—Qsy)" Qonxy Xy @ Ts
- (_Qch)anX:ch @ TrT,

d(xaXsx %y @ 1) = x0X5%X @ Ty — qﬂmxax(gxz_lxn ® Ty

(10.1.40) - (*Q(S'y)nQ(SnXaX:Xn X s+ QaJ(*Qa’y)HQaanSX:X’? @ Ta

- (_Q(S'y)nb?)xax:xgo ® TrZly — q’yt,o(n + 1)qa'y( Q§7)nblb3xg+le ® Ly,
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d(xpxsxyxy @ 1) = XXXy ® Ty — qwx/gx(gxz_lxn ® T
(10.1.41) — (—5y) " gonXpxy %y @ 25 + qps(—qpy) " qpnXs X%y © 5
— (—qsy)"b3xpX Xy @ T7 T
We start with (10.1.38). For n = 0 we have
d(xaXp%y ® 1) = XaXp ® Ty — 5(¢ap%a @ T2 = Qapxs @ (dapTeTa + D12y))
= XaXg ® Tp — qapXaXe @ Tg — 5(d8plaplasXe ® TpTa + qapb1xy ® T
— daplap¥p @ TpTa — qapb1Xp @ L)
= XoXp ® Ty — qBpXaXp Q@ T8 + §affapXfXp & Ta + apb1Xpxy & 1.
We assume that (10.1.38) holds for n. Using Remark 10.1.2 three times, inductive hypoth-
esis, (10.1.36), (10.1.33) and x2 = 0, we compute
d(XaX/BXZ—FlX(p ® 1) = XQX/BXTH_I ® Ty, — s(qmpxax5xz ® Ty
+ (_qﬁv) %’s@xax ' ® 205 = qop(—Gor) oo + b124))
= XaXﬁXZ ® Ty — GrpXaXpXaXp @ Ty — (—q/gv)"'*'lqg‘pxaxnﬂxw ® g

- 5(Qaﬂ(_qav)nﬂqwqwxﬁxzxw Q@ TyTa + qﬁsoqcvﬂqgjlqgil%sox o Xp @ TPTo

- Qaﬁ(_qw)nﬂq tﬂxﬁxnﬂ @ TpTa — (_qﬂv) qﬁwblqw(” + 2)chxfryl+2 Qg
— (¢yp(n+ g, + (_Qav)nﬂ)%ﬁblxﬁxzﬂ ® xv)
= XaXpX, o Ty — GrpXaXpXaXp @ Ty — (—gp)"t q&pxax x<p ® x3
+ Gapye (N + 2)g, D135%" 2 @ 1+ gap(—Gay) " gapxsxt T
Now we prove (10.1.39). For n = 0,

n+1X,3X;H_1 ® (

Xp @ Zq-

d(x5%y ® 1) = x5 @ Ty — qsyXy @ Ts — b3Xy @ T
We assume that (10.1.39) holds for n. By Remark 10.1.2 and inductive hypothesis,
al(x(gxfyl"rl}g7 ®1) = x(gx;”'l ® Ty — s(qwxégxz ® Ty~ + (—q(;v)”"'1 "o s )

"‘Hngz“x@ ® TrT~

1
= x(;X;H' ® Ty — GynXeXyXy @ Ty — (—qsy)
+1 +1
- (_Q(S’y)n Q(Snxn

Next we prove (10.1.40). For n =0,

Xy QTs.

d(xaxsxy ® 1) = XoX5 @ T — s(qanxa ® Tpxs + b3Xa @ LpZrTry — Gasqan¥s @ xnxa)
= XaX§ @ Ty — b3KaXp Q L1y — QspXaXn @ T — s(q(anm,qmsx77 R T§Tq
+ Gapardorb3Xy @ TrLaTa +b13Xy @ Trly — GasdanXs @ Tyla)
= XaX§ @ Ty — b3XaXp Q L1y — GspXaXn @ 5 + GasdanXsXn @ To — b1b3xyxr @ 4.

We assume that (10.1.40) holds for n. Using Remark 10.1.2 three times, inductive hypoth-
esis, (10.1.36), (10.1.39), we have

n+1

1 1 1
d(XaX(;XQH' x,®1) = Xax(5x"+ ® Xy — s(q,mxaxcsxz ® Ty~ + (—asy) q(gnxaxgﬁ ® TyTs

+ (_Q6 )n+1b3xaxn+1 QR XTpTrTy + Qa5( Qa'y)n—i_IQOmX&X:Jrl ® xnfxa)
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1 1 1
= xax(;sz“ ® Ty — qwxax(;x;‘xn ® Ty — (—q(;w)”Jr ngaszr Xp @ TrZy
1 1
- 3( - (_Q5'y)n+ QJnQ'\mXaszn K TyTs + QQJ(_Qa'y>n+ QaananSXZlen Q) Ty To
1 1 1 1
+ <_q5'y)n+ q(snXaXer @ Tpxs + QQJ(_Qa'y)n+ Qanxﬁxz—i_ & TynTq

+ qz¢2Qa¢Qa7q(T;’jlb3X:+1X¢ QR TrTyTo + Qv (n + 2)q~a~, (_Q57)n+lblb3xz+2 ® $‘rx'y)

_ n+1 n n+1 n+1
= XaX§X) " @ Ty — QypXaXsXyXy @ Ty — (—qs) b3xaX)" Xy @ TrTy

1 1 1 1
- (_Q57)n+ Q577XaX»TyL+ Xp @ x5 + Qaé(_Qa'y)n+ QOmxéxfyH_ Xp ® Tq

— Grp(n + 2)g,, (—57) " brb3s (0 @ ray).
n+2

2 _ _ n+2 _
As z2 = 0 and 242, = ¢y;27,2,, Wwe have that s(x7 ® .CL‘TZLDY) = x5

5
inductive step follows.

Now we prove (10.1.41). For n = 0,

X; ® z~; hence the

d(xgxs5xy @ 1) = x8%s @ Xy — S(Q6UXB ® TpTs + b3Xg @ TpTrly — qB548n%s @ xnazﬁ)
= XgX5 ® Ty — @5yXpXy @ T5 — b3XaXy ® 7Ty — S(qsndpndpsxy @ 518
+ qppbsxy @ (487 TrTp + b2y )Ty — QasdpyXs ® TnTp)
= XpX5 Q Ty — QsnXpXn @ Ts — b3XpX, @ TrTy + qB5G8n%Ks%n @ X3.

We assume that (10.1.41) holds for n. Using Remark 10.1.2 three times, inductive hypoth-
esis and (10.1.39), we have
d(xBx(;x$+1x7, ®1) = x5x(5x§+1 ® &y — $(GynXaxsX] @ Ty + (—q(sﬂy)"“q(snxﬁx’vhLl @ TyTs
+ (= 5y)" o3xpx T ® wpwray + qas(—qpy)" T gayxexy T @ wyp)
= X5X5X2+1 ® Ty — qan/BX(gX:Xn ® Ty — (—q(;v)"ﬂng/gxzﬂx@ ® TrTy
- (—QJy)nH%anJXTrlxn Qx5 — 3(%6(—Qﬁw)nﬂqﬁnqwxéx:xn QT2
+ 455 (—sy)" agnxox T @ wyap + 45 a5 4pebax T x, @ (qpraras + bawy)Ty
+ a5 aona  apnass¥yt xy © wswp))
= xﬁx(gxzJrl ® Ty — QynXpXsX Xy @ Ty — (—q(sw)”ﬂbg}ch;“"lxw ® TrTy
— (—a57)" M asnxpxl T xn @ 25 + qas(—qsy) " qayxext T Ry @ 2.

Finally, we prove (10.1.34) by induction on n. For n =0,
d(xaxpxsxy ® 1) = X4XpXs @ Ty — s(qgnanB ® TyTs + b3XaXg @ TpTr Ty

— 48548n¥a%s ® TnTp + GaplaslonXpXs @ TyTa)

= XaXpXs Q@ Ty — b3XaXXp @ Trly — QsnXaXpXy & T§
- s(qgnqgaqanxaxn ® 528 — gapdandasqsnXpEn @ TsTa
+ 48p4BrdpyP3XaXy @ TrZyTg — qapfaparfayP3XpXe @ TrTryTq
— qa5b1b3x5x7 R X Ty — 48598nXaXs R TnTg + 9apdasfanXsXs @ xnxa)

= XaXpXs Q Ty — b3XaXpXp Q Ty — @5nXaXpXny @ T + 45598nXaXsXny Q T

— GaBY9a59anXpXsXny @ To + QQBbleXBX'yXT Q Ty — qaplyr [2]§6Vb1b2b3x»?; ® 1.



94 N. ANDRUSKIEWITSCH, I. ANGIONO, J. PEVTSOVA, S. WITHERSPOON

We assume that (10.1.34) holds for n. Using Remark 10.1.2 twice, inductive hypothesis,
(10.1.38), (10.1.40), (10.1.41), (10.1.37), we have

d(xaxmchz*lxn ®1)= xaxlgx(gxg"'l ® Ty — s(q,ynxax[gx(gxz ® Ty~
+ (—qay)n"'lq(snxaxﬁgxfyﬁl ® xps + (—Q57)n+1b3XaX5X2+1 ® Ty
— 455(=a5,)"  gpnRaxsx T © 28 4 Gapdas(—dar)" danxexsx T @ 2y24)
= xa}cﬁx(;xgﬂ ® Ty — GynXaXpXsXnXy @ Ty — (—q(gv)”“ngaxlgxz“x@ ® TrTy

Hx, ® qgrarzy18

- 3(qvn(_%v)nqth%nxaxﬁx:xn Q TyTs + qgfqﬁsoqgfbﬂaxfi
— Gymp5(—0p)" 0y U %aXs XXy ® T30 — Gymlapas(—day)" " danXpxs X)Xy @ 2420
+ (=457) " gonxaxpxl T @ 2pTs — Gpdit *doplardsy axaxxp @ 2rxywa
+ qvn%ﬁqun_ldirgéyblb?b?)xzm ® Ty = qapyp(n + 2)¢?a7(_q¢5v>n+lb3b1xﬁxfyl+2 Q@ TrTy
— qutg(—q[g,y)”+1qlgnxax(;x:+l ® Tprg + qagqag(—qav)"+lqanXQX5xz+l ® xna:a)
— xax[;x(gx;”l ® Ty — qwxaxBxax:xn ® Ty — (—q(;v)”Hngaxlgx,’;Hx@ ® L7 T~
= (=a57)" " dsyxaxsxl lxy @ 5 + qss(—ay)" T dpnxaxsxy T xy @ 2
— 3( — qwqagqa(;(—qaw)”ﬂqanx[gxlgxzxn ® TyZo
— dapdon “Gopdardy, b3xpxy T %, @ Tray 1,
— Gunapdsy 405, D102bIE P @ 3y — qustng (0 + 2)g,., (—a5,)" babixgx] P @ e,
+ Gopos(—Gor) " Ganxpxsxy T © 2o — ¢5 GonGasdit qandasxexy T Xy © T520
+ 485957 Apndapdasdny qan¥s¥y %y © wata
— oty apsaT apn(n + 2)g,, bibax P x, @ 2p)
= XaX5X5Xz+1 ® Ty — qwxax[gxax:xn ® Ty — (—q(;v)”ﬂngaxlgx;”rlx@ ® L7 T~
- (_%v)nﬂ%nxaxﬁxzﬂxn ® s+ qﬂé(_qﬁ'y)nﬂqﬁ’nxaxﬂ:ﬂxn ®zs
— Gapas(—ar)" danxpxsx T xy @ 0 — s(qaﬁqmqgf‘ldg?57b1b2b3x2+3 ® T
— GaBGye(n + 2)50”(—q(;.y)’"”legblxrgx,’;”r2 ® TrTy
- qwqg;ﬂ%&qgjlqﬁn(” +2)g,,bibsx xr @ 2,2)
= xopwxgxﬁ“ ® Ty — QynXaXpXeXyXy @ To — (—q(;,y)"ﬂq(gnxax[;szxn ® xs
+ q35(—apy) " apnxaxsx T %y © 25 — Gaplas(—day)" T Ganxsxsxl T Ry ® 24
— (—q5y)" " bsxaxpx] T %, @ 212y — Gaptyo (n+ 2)g,, (—qsy)" T o1bexpx] P @ 2y

*nd(n)

— dap (@yn(—dsy) apoy — Be(n+2)g,, (=45)" ayr(n + 3)657)b1b2b35(xz+3 ® ).

Thus the proof of the inductive step follows since ¢ysqvs = ¢yyGyr@yp = —Gyrye and
sEIPP@a,) =xIM @ L O
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Lemma 10.1.42. Let o < n < v < 8 < d be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form
(10.1.43) TaTs = qasTsTo + 1Ty + nggx%, TyTg = QnaTRTy + b3,

for some scalars by,be, by and the other pairs of root vectors q-commute. Then, for all
n >0,
ne

d(xax)xp%s ® 1) = XaX[Xg ® Ts — qsXaXyXs ® T + GypdysXaXy 1x5X5 ® T

(10.1.44) + (_C_Ia’y)nQQ,BQQJX:XﬂXE X Ta + bl(_qoc’y)n(n + 1)557X:+1X5 @ Ty
+ qa,g(n + 2)@355]\/5,21)2}(2)(% ® 1'727 — q/35(—q7a)_nb1bgcg7g),yxz+2 ® 1.

Notice that the equalities in (10.1.43) force
(10.1.45) y+n=a+9d, n+pB=r.
Hence the following equality also holds: 2v = a + S8 + 6.
Proof. Lemma 10.1.7 applied to n < v < § says that the following formula holds for n > 0:
(10.1.46) d(xpxyxs ® 1) = X% @ T — GypxyX’y %5 ® Ty — (=) "anpxy x5 @ Ty
+ b3g,p(n + 1)%7){2_’_1 ®1,

Next we prove that the following formula holds for all n > 0:

(10.1.47) d(xaxixs @ 1) = XaX] @ T5 = Gra¥XaXy X5 © Ty = (—qar)"D2x]xg D
h - (_QON)n(n + 1)q~57b1X:+1 ® Ty — (—qm{)”qaéxzxé ® Tg

For n = 0 we have that
d(xax5 ®1) = x4 @ x5 — s(qm;a:(;:ca +brzyT)) + b2$5$727)
=Xq ®T5 —b1Xy @ Ty — boxg ® 373] — qasXs © Ta

Now assume that (10.1.47) holds for n. Using Remark 10.1.2, inductive hypothesis,

n+l_n+1
Xy

d(xaxﬁﬂxg ®1)= XQXZH ® x5 — S(Q’y(SXaX: ® L5 + (—qary) ® xaf’«"é)

)n—i—l n+1

1
= onXZyH_ Qx5 — q'y(ixaxzxé @ Ty — 3((_Qa'y dasXy @ T§To

+ (_ch)nﬂ(l + ¢ys(n + 1)557)b1X§”1 @ TyTy + (_thv)nﬂbﬂzﬂ ® xgx%

+ ququé(_qq'y)anXzX/B & xryl'% - (_QQ'y)n+1Qa6q'y6X2X6 ® wfyflfa)

T ® 25 — guaxaXxs © 2y = (—gay)" T (0 + 2), L] @ 1y

- (_QQW)n+1Q(x6Xz+1X6 QT — (_QON)”—HbQXZ—i_lXﬂ & x?;

= XoX

Now we prove (10.1.44) by induction on n. When n = 0,
d(xaxpxs @ 1) = xoXg ® T5 — s(qg(;xa ® T5TE — qapXg @ xaac(;)
= XaXg ® Ts — qgsXaXs Q@ Tg — Q55b1b3X,27 ® 1 — qnpqpsb1X4%g @ Ty
+ G0 (2)G,5ON5,2b2%X5 @ T + qaplas¥sXs © Ta,
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since xg ® &4y = s(xpLy2y) and s(xg @ Tgx;) = 0: either xp ® zpx; = s(xﬁx ) if Ng # 2
or %5(]7275 = qg(;qgﬁ = —qapqps if Ng = 2. Now assume that (10.1.50) holds for n. Using
Remark 10.1.2, (10.1.47) and inductive hypothesis,

d(xax Xﬁx(g ®1)= xax”+1x5 R x5 — s(q/g(;xax:}"'l ® T5TE — QypGrsXaXyXg @ ToTy
- (—q w) '4apx T x5 @ (qusTsta + b1ay Ty + o))

+

= xax x5 Qxs — Q5§Xax X5 @ xp + qwqmgxax;‘x/gx(; @ Ty

+1
— gos(—ra) el P orbaxt P @ 1 = (—gay) " aysgas(n + 2)g,, b1xl g @ 1y
+ Qaﬂ(n + 2)2]7356N3,2b2xyxﬁ X l‘n + (_th’y) QQBQQJXn+1X,6’X6 X Zq,
which completes the inductive step. O

Lemma 10.1.48. Let o < 8 < v < n < d be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form

(10.1.49) TETs = (BsTsTZ + D1TyTry, TaTy = QanTnTa + b2,

for some scalars b1,bs and the other pairs of root vectors q-commute. Then, for all n > 0,
d(xaxm{:}((g ®1)= XaXpXy @ Tg — q,ygxaxBx:*lx(; ® T

(10150) - (_QB'y)nq,Béxaxzle(S Kzp+ <_Qa7)HQQBQQ6X5XZX5 X T

_ (—qgfy)nbﬂaxzxn ® Ty — q%c(j;),aﬁb1b2xz+2 ® 1.

Notice that the equalities in (10.1.49) force
(10.1.51) y+n=p5+9, n+a=-
Hence the following equality also holds: 2v = a4+ £ + 9.
Proof. The following formula holds for all n > 0:

(10.1.52) d(xgxxs © 1) = xpx) @ 15 — Gyo%gxy %5 @ 2y — (=) " qpsx %5 © 7
— (—qpy)"b1x]%) @ .

The proof is analogous to (10.1.14), see also the proof of (10.1.30). Next, we apply Lemma

10.1.7 for aw < v < n (no other intermediate roots) to get
(10.1.53) d(xaXyxy @ 1) = XXy ® Ty — GypXaXy Xy © Ty = fan(—day)" X5 %y ® o
— (=gay)"(n + 1)qmb2xz+1 ® 1.

Now we prove (10.1.50) by induction on n. When n = 0,
d(xaxpxs @ 1) = xaXg @ T5 — 5 (¢p5Xa @ T528 + b1Xq ® TnTy — ¢aBlasXp @ TsTa)
= XoXg Qx5 — blxopg7 R Ty — qBsXaXs Q TF — s(qagqm;qlg(;x(; R TpTq
+ Gayqanb1Xy @ TyTa + b1b2Xy & Ty — ¢apqas®xs @ x(;xa)
= XaXg @ x5 — b1XaXy @ Ty — (85%aXs @ T3 + §apqasXsXs @ Ta — b1b2X3 ® 1.
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Now assume that (10.1.50) holds for n. Using Remark 10.1.2, inductive hypothesis, the
relation z2 = 0, (10.1.53), (10.1.52),
d(XaX5X$+1X5 ®1)= XQXBX;H'I ® x5 — s(qngax/gxg ® Ty + (—q&/)""rlblxaxg‘H ® Ty
+ (—q87)" M apoxaxi ! @ 157 — Gap(—dary)" T Gasxpxl T ® 2524

1 1
= xaxﬂxz+ ® T§ — GroXaXpXyXs ® Ty — (—qgﬂy)”jL blxa}(’f‘

'z @ 1,
— (—a8y)" " apsxaxl x5 @ 25 — (= Gap(—day)"  dasxpxl T @ 2524
— Gory (o) " 1ap 005X X %Xs @ Ty Ta
(0 + 03 5T (04 2)g, Jorbax @
+ qgjlqanqgizblxzﬂxn ® TyTo — qg;rlqﬁgqaﬁqg;rlqm;xzﬂxg ® xgxa)
= xax@czﬂ ® T§ — GroXaXpXyXs ) Ty — (—qm)”“'lblxaxzﬂxn ® T
— (—487)" " gps%axy T %5 © 25 + Gap(—dary)" T ooy x5 ® 14
— (@ g T (0 D) b P @ 1,
and the inductive step follows. O
Lemma 10.1.54. Let a <7< B <y <pu<v<n<J be positive roots such that Ny = 2
and the relations among the corresponding root vectors take the form
(10.1.55) TaTs = asTsTa + D1TyTr, TRTs = qsTsTZ + D2Ty T,
TRTy = qBnTnTg + D3TuTy, TaTy = QouTyTa + D4y,
for some scalars b; and the other pairs of root vectors q-commute. Then, for alln >0,
d(xa}%xzx(g ®1)= xax/gxg Qx5 — qmgxaxfgxz_lx(; ® T
(10.1.56) = (=48y)"4ps%axy%s @ 5 + (~day)" Gasdas®pXy%s @ Ta
+ qaﬁ(—qav)"m}cﬁxzxn Rz, — (—qﬁ,y)anXaX:r;Xl, ® Ty

2
— q%c(f(s),anbgbzle* ® 1.

Notice that the equalities in (10.1.55) force
(10.1.57) at+d=n+7, B+o=v+y, B+n=p+7y, atv="7.
Hence the following equality also holds: 2y = a + 5 + 4.

Proof. We need some auxiliary computations. First we apply Lemma 10.1.7 to a < v < v:

n

~Xv QT

d(xax3%y ® 1) = XoXy @ Ty — qwxaxz_lxy ® Ty — Gav(—qay)"x

—(=¢ay)"(n+ 1)g b4x,’;°+1 ® 1.

qavy

(10.1.58)

Next we claim that the following formulas hold for all n > 0:

(10.1.59) d(xaxixs ® 1) = 0% ® 25 — qﬁﬂyxax:_lm ® Ty — (—qary)" QasxyXs @ T
— (—qay)"b125%) ® T7,

d(xpxlxs @ 1) = 2% @ 15 — q75x5x2_IX5 ® Ty — (—qpy) " qpsxy%s @ T

(10.1.60)
- (_Qﬁv)anXfyZXV & X,
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(10.1.61) d(xpxyxy @ 1) = XX} @ Ty — GyyXpxy ™ Xy ® Ty — (—qpy)"apy X%y ® 5
— (=) "3xyxy ® T

The proof of each equality is analogous to (10.1.14).
Now we prove (10.1.56) by induction on n. When n = 0,
d(xaxpxs @ 1) = XoXg ® T — 5(q55xa ® 2528 + baXa ® LTy — ¢upXs @ azaxg)
= XaXg ® Ts — baXaXy ® Ty — ¢35%aXs ® 23 — 5 — qaplasXs @ TsTa — qasbiXg ® TyTr
+ Garb2%y, @ Tady + b2byXy ® Ty + (apdaspsXs @ TaTa + Graqasb1xy @ TaTr)
= XX ® Ts — boXoXy ® Ty — 36XaXs @ T3 + ¢apb1XXy @ Tr + §afGasXpXs @ Ta
— s(babyxy ® 2y — qapbi1bsx, @ Ty27),
which is (10.1.56) for n = 0 since
s(x7 ® :L‘,Y) = xg ®1, s(xu ® xvxT) =so0 s(a:#xme) =0.

Now assume that (10.1.50) holds for n. Using Remark 10.1.2, inductive hypothesis, the
relation :n?, =0, (10.1.58), (10.1.59), (10.1.60), (10.1.61),

d(xax[gxg“x(; ®1)= xax5x2+1 Qx5 — s(qmgxa}%xg ® T5xy + (—qgfy)"ﬂngaxi;“ ® Ty

)n+1 n+1
Y

XX ®Q xsx8 — QQﬁ(_QQv)nJFIQQ&XBX:Jrl X T§Tq

+ g5 (—apy
- qaﬂ(_qa’y)n+1blxﬂxz+l ® a:na:T)
_ n+1 n n+1 n+1
= XaXpXy @ T§ — (ysXaXpXyXs @ Ty — (—asy) boxaX) " Xy @ Ty
- 5( - qWé(_Q,B”/)n—HQEJXaX;LX(S R xyxp + qWé(_QOz'y)n—HQaBQOcéXﬁX:X& R Ty T
- qW(s‘Ia,@(_Qa’y)nle,BX:Xn R Trxy + qu(_qﬁ'y)anXaX:XV ® -T?y

1
(@ G (0 + 2)7,, Joabax 2 @
)n+1 :+1 ® T5T8 — QQﬁ(_Qaw)nJrqu&XﬂX:Jrl & T§Tq

+ qp5(— 4y
- Q(xﬁ(_Qa’y)nJ’_lleﬁXz—H & TnTr + QaVQZ;JQZ;FIbQXz-HXV ® l'fyl'a)

XX

1 1 1
= xaxﬁx;”' ® T§ — GroXaXpXyXs ® Ty — (—qM)”+ ngax;H' Xy ® Ty

— 45(—4py)" %Xy %5 @ 25 + dap(—ar)" T D1xax Ry @ 2
n+1_n+1

+ Qaﬁ(_Qaw)n+1Qa6X6X:+1X5 QT — S( ~ Gaplday 93, b1b3Xz+1xu & TATr

+ qﬁgrl(c(:%),o{77 + qgjlqgjlq;;”_l(n + 2)q~a7)b2b4x2+2 ® xy).
As a4+ B =2y — 6, we have qgilqgjlq;g—l = 2175”_1. Also, 8(X:+2 ® Ty) = xffr?’ ® 1, so
d(xaxfgx;‘“x(; ®1) = xaxBxZ‘H ® Ts — Gy6XaXpXyXs @ Ty — (—q/gv)"ﬂngaxzﬂxy ® T~

Xn+l

)”Hxa X Qg+ qag(—qw)"—"lblx[gxzﬂxn R xr

— 4p5(—4py
+1
+ QQ,B(_QQW)”+1QO¢6X5XZ+1X6 X To — q:;1CT5,a7Lb2b4XZ+3 ®1

+ qagqgjlqgjlblbgs(xfylﬂxu ® a;wa).
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n+1

Next we claim that X7

Xy @ Ty = s(xIT © zpay2,). Indeed,

n+1 o n _ n 2
d(x)T ®@ Ty Tr) = X ® TyTpTyTr = GypXly @ Ty

Y yor =0,

SO xgﬂ ® x, 2, € kerd,, and we compute

s(x’v‘+1 ® xuxyxT) = x?“xu ® TyTr + s(xz+1 ® Tply Ty — d(x?“xu ® :vaT))
= xzﬂxu ® TyTr + s(x:'H ® TyTylr — (X;‘+1 ® TpTyTr — QXX @ x%xT))
= xfyLHx# ® Ty Tr
From this claim, s(xzﬂxu ® :L‘WxT) = 0, and the inductive step follows. ]

Lemma 10.1.62. Let a < f <v <y < pu <06 <n be positive roots such that N, = 2 and
the relations among the corresponding root vectors take the form

TRLs = qBsTsTa + 01Ty Ty, TypXy = QupTyxy + bo2x,x,
(10.1.63) g potets vy Tuly = QuyTyly Py
TaZy = QapZuZa + D3T~,

for some scalars b;, x~ q-commutes with the other root vectors and the following pairs
of root vectors also q-commute: (Ta,x8), (Ta,%v), (TasTs), (TasTy), (Tg, ), (28,2y),
(y,25), (Tu,Ty), (Tu,Ts), (X, xy). Then, for alln >0,

d(XaXﬁX’,rYLX(;Xn ® 1) = XXX %5 @ Ty + (—qpy)" (1 + l)gévblngaxfy”‘lx“ ® T

_ qanaX/BXTlen ® x5 + qvn(_Qﬂ'y)n(n + 1)q~5,yb1onX:/L+1Xn X Ty

(10.1.64) _
+ Q’yéqW]Xaxﬁxz 1X5Xr) @ Xy + (_QBW)HQ,B(S(]ﬁnXaX:X(SXn X xg

- QQB(_Qa’y)HQa6QanxﬁX:X6X77 ® Ta — Qavqggqgndgﬁ@(s,a77b1b2b3Xz+3 ® 1.

Notice that the equalities in (10.1.63) force
(10.1.65) Brd=n+v, vin=p+ry, atp=r.
Hence the following equality also holds: 3y =a+ 8+ § +n.
Proof. We need some auxiliary computations. By (10.1.14)
(10.1.66) d(xsxxs @ 1) = g%} @ 25 — ¢ro%pxy %5 © 2y — 4ps(—dpy)"xX5%5 @ g
— (—g8y)"(n + 1)%7b1x2Jr1 ® Ty

Next we apply Lemma 10.1.7 to o < v <

(10.1.67) d(xaXy%; ® 1) = XaX]) @ Ty — GyuXaXy Xy @ Lo — Gap(—Gay) " %)%y ® Za
h -%—%ﬁﬂn+u%pgﬁﬂ®1

Now we prove the following equality by induction on n:
d(xaxpxxs ® 1) = XaXgXy ® Ts — qvgxax/gx;‘_lx(s ® T
(10.1.68) — (=87)"4Bs%axy%5 @ T3 + qap(—Gory) " asX Xy X5 @ Ta
— (=q8y)"(n + 1), brxaxl T @ @y
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d(xpxxs%y @ 1) = XpX1%X5 @ Ty — QsnXpXyXy @ Ts
(10.1.69) + quq'mxﬁxz_lxéxn ® xy 4 (—qpy)"(n + 1)&57b1b2xz+lxu Q@ Loy
+ (= 4p9)" 83480 Xy%8%0 @ 15 + (=a87)" Qun(n + 1)z, o155 2y @ .
Indeed, for n = 0 we have:
d(xaxpxs @ 1) = XoXg @ T5 — s(qua ® T528 + b1Xa ® 4Ty — ¢apdasXs @ x(;a:a)
= XaXg ® Ts — qBsXaXs @ L3 — b1XaXy @ Ty — 5( — qaplasXs @ TsTa
+ GaryGarb1Xy ® TyTa + qaplBsdasks @ TaTa)
= XaX3 ® s — 35XaXs ® Tg — D1XaXy ® Ty + §afGasXsXs @ Ta-
And for the other equality,
d(xpxsxy ® 1) = x8%5 @ T, — s(q(;nXg ® TyTs — qBsqpnXs @ TyTg — b1Xy ® x,,a:n)
= XpX§ Q Ty — QonXpXy @ Ts — s( — 4Bs9Bn%s @ TyLg — Quyb1Xy @ Tyxy
— b1boxy ® LTy + qBs9ay0enEy @ TsTa + qaydsnb1Xn © ToTy )
= X8X5 & Ty — QsnXpxy ® T5 + b1box~Xy @ Ty + qupb1XyXy @ Xy + qB598n%Xs%n Q 8.

Now assume that (10.1.68) holds for n. Using Remark 10.1.2 repeatedly, inductive
hypothesis, the relation 2 = 0 and (10.1.66),

d(XaXLqX;H'lX(; ®1)= Xoéx/gxgH'1 R x5 — s(qngax/gxz ® T5xy + (fqgv)”‘”'lblxaxgH'1 ® Ty

+ (—487)" M 4psxaxl T @ 2515 — Gap(—day)" T Gasxpxl T ® w20 )

= xaxﬁx;”'l ® T§ — QysXaXpXyXs @ Tny — s((—(]57)"“q[gfgxoéxg'H ® 528
+ (=a8y)" T (L + gy (—apy) T (0 + 1)g, Jbrxaxn ™ @ 242,
— Gap(—ar)"  Gasxsxl T @ T5ma — (—a8y)" T 48500 %aX %S @ Ty
+ Gap(—ar)" dastrexpxI%s @ T4

= xaxﬁx;H'l ® x5 — qvgxax/gxgx(g ® Ty — (—qﬁv)"ﬂq&;xaxgﬂx(g ®
— (—qpy)" T (n+ 2)%7blxaxz+2 @z, —s(— qaﬁ(—qm)”“qaame‘“ ® T5Tq
+ Gap(—Gor)" ' das 5% % %5 © Ty T0 + Gapdan osdl qsXS T Xs © TaTa
+ qgqugjl(n + 2);]~Mb1xgl+2 ® TaZy)

— XaX5X2+1 ® L5 — GysXaXpXLKs @ Ly — (—qBv)”“qg(;xax:Hx(; ® xg
— (=q87)" T (n + 2)g, 1%ax0 T @ Ty + Gap(—Gay)" T Gasxpx] T x5 @ 4.

Next we assume that (10.1.69) holds for n. Using (10.1.66), inductive hypothesis, Re-
mark 10.1.2, the relation 3:% =0,

d(x/gx:;“x(;xn ®1)= Xﬁxg‘ﬂx(; ® Ty — s(q(;nxyc:“ ® TnTs — Qy6GynXpXaXs @ TpTy
— (—a8y) " qpsqanxi x5 @ myms — (—q5y)" T (0 + 2)g, b1x0 T @ 2y
= xﬁx$+1x(5 ® Ty — q(gnx5x;‘+1xn ® T + GroGynXpXY XXy @ Ty — s(

- (—q/gw)"ﬂ(n + 2)%7b1b2x’7‘+2 ® Ty — (—qﬁv)"ﬂqyn(n + 2)€7Mb1x’$r2 ® Ty
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— (—a8)" " gpsq8nx x5 ® g

+ sz(hn(_%fy)n“(l + qys(n + 1)557)1)11(:“3(77 ® T Ty

+ don(—asy) " apsapnxy %y © w58 — Gysaam(—asy) " dpsdan Xy xsy © )
= XBXZ—’—lX(; ® Ty — q(gnx/gXZYH_an ® T + GroGynXpXY XXy @ Try

+ (—gs,)" (0 + 2)657b1b2xz+2xu ® @y + (=487)" " qun(n + 2)1757bleyl+2xn ® Ty

= (= (—a8y)" " ass080%y T x5 @ Ty + a5n(—a0)" T a5 X 2y ® w52

— Gy (—087)" " 4psqan ] xsTN © 217)

1 1
= Xﬁxz+ X5 @ Xy — q§77X/3XZ+ Xy @ Ts + QysQynXpXnXeXy © Try

+ (=) M (n + 2)g,, bibox" P x, ® y + (—gy)" T qun(n + 2)5, 010 Px, @ 1,
+ (—q/g'y)n+1Qﬁ5q/3,7X2+1X5Xn ® 3.
Finally we prove (10.1.64) by induction on n. When n = 0,
d(xaxpxsxy ® 1) = X0Xgxs @ Ty — s(q(gnxax[g ® TyTs — qpndasXaXs @ TyTg
— Qunb1XaXy ® TyTy — b1b2XaXy @ Tuly + GaslasdanXsXs @ TnTa)
= XaXpXs @ Ty — snXaXpXny @ Ts + qpnqpsXaXsXn ® T — 3( — qunpb1XaXy & Ty,
— b1baXaXy ® TpTy + 8ndsnP1XaXy @ Ty + ¢afGasdanXsXs @ TnTa
— GaB9on9as95nXpXn & T5Ta + GapdasdandpndpsXsXny & xﬂwa)
= XaXpXs Q Ty — QsnXaXpXn @ Ts + qpndpsXaXstn @ Tg + qunb1XaXyXy & T,
+ biboxaxy X, ® Ty — s(qalgqm;qanxlgx(; ® TpTa + Qav(Q)qulebSX?y ® T~
— GaB9on9asq5nXpXn & TsTa + 9apdasqondsndBsXsXn @ Lo
+ GayGandavQunP1XyXy @ TyTo + qa#qg,yblng,yxu ® xwzva)
= XaXgXs @ Ty — QsnXaXpXny @ Ts + qnQssXaXsXn @ Tg + quyb1XaXyXy @ X,
+ b1b2XaXy Xy @ Ty — ¢aflaslanXpXsXy @ Ta — qa7(2)§mb1b2ng§{ ®1,

which is (10.1.64) for n = 0. Now assume that (10.1.64) holds for n. Using (10.1.68),
Remark 10.1.2, inductive hypothesis, the relation .T,Qy =0, (10.1.67), (10.1.69),

d(xax5xz+1x(;xn ®1) = xax5xg+1x(5 ® Ty — s(q(gn}co[}c/g}cg+1 ® Tpxs

= (=48)"  amstnxax " %5 © 28 + das(—ar) " Gastanxax x5 @ Tya
= Qy5QynXaXpXyXs @ TyTsy — (—gs,)" Tt (n + 2)q~67blxax2+2 @ (qunTnTy + o,z ))

= XaXBX:ryH_lX(; ® Ty — q(;nxaxBx:;Hxn ® T5 — s( - (—qm)"“q/g(gqﬁnxaxzﬂx(s ® Tyrg
+ qaﬁ(—qa,y)”‘*'lqmqanx/gxg“x(g ® TyTo — qm;qwxa}%x;‘xa ® Ty T~
_ qwl(—qﬁ,y)n-*-l(n + 2)¢7Mb1Xax’7‘+2 ® TyTy + GynQsndysXaXpXXy @ Ty
— (=q3y)" T (n 4 2)g,, b1boxax2 T ® 2%y — Gap(—Gay) " GasGantsnxsxs T Ky @ T5T0
+ (=a8y)" " ganasnxox’ 5y © (qas775 + b1243,))

1 +1
= XQXBX;H_ X5 @ Ty — QsnXaXpXy Xy ® Ts + GrsGynFaXsXyXsXy @ Tny
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B s(qaﬁ(_ch)nﬂqafsqaﬁxﬁxzﬂm ® TyTa — (—qay)" T (n + 2)q~5wb1b2xax§+2 @ T Ty
— (=45,)" " apsasnxaxy x5 @ Tys — Qun(—4s,)" T (0 + 2)g, brxaxy T @ 2y,

+ (=a59)" (@1 + 1)z, oy Gysm — Qv Gandon)P1xaxy 2y © 2,

— Qo (=) a5 Qan@snxsx T 5y @ 2570 + (—q8y)" 45505 G5n%ax %y © w5

B (_qﬂ7)n+1qﬁ‘sqﬂ”qw%”xax:xéxn ® TyTg — Qa”/qgglq%ﬂ g@ﬁ,é,amblebzaXerg ® Ty
+ Gap(—day) " GasGantys X axl 5%y @ T4

Xax[;x;”lxa ® Ty — q(;,,}coé)%xg”rlx77 ® &5 + QysGymFaXaXy XsXy ® Ty

+ (=a57)" " (0 + 2)g;, rbaxax x, ® Ty + Gun(—q5,)" T (0 + 2)g, brxaxy iy © 3,
+ (—asy) " qsapnxaxl x5%y @ 25 — 5( = Gap(—ay)" T GasGantonxsxl T %y @ Ts24
+ Gas(—Gor) " Q0o QonXaxE T 55 @ TyTa + Gapdi  Gaslon ) 4ssden X X5y @ TaTa
+ Qaﬁ(*qay)nﬂqaaqanqa,ng}chzx(;xn ® TyTa

— Qo @y G T (0 20, (0 B)g, + A 550 Db @ 2

+ ququf’qgﬁl (n+ Q)qﬁblbzX:HX# ® TyTq

+ Qar @2t 2 don @ (0 + 2)g,, D1% 2, @ 2,20

XaX5%y %5 © @y — Gonxaxpxy T %y © 5 + 4y50ynXaXpX XXy ® Ty

+ (=) T (n + 2)g,, brboxax] TP x, © Ty + Qun(—qsy)" T (0 + 2)g;, brxaxn P x, @ 1,
+ (_Qﬁv)HHQB(SQﬁnXaX;LHX&Xn ®xg — qaﬁ(—wa)m_lqa(sqanx/gxg"_lx(;xn ® Ty,

+1 _n+1 4(n+1) +3
_Q(X'yng quLn da+,8,5,a,'yb1b2b35<xz ®:E,y),

and the inductive step follows. ]

Lemma 10.1.70. Let a < <6 <7y < pu < v <n be positive roots such that N, = 2 and
the relations among the corresponding root vectors take the form

(10.1.71)

LTy = qBnTnxg + b1x,x,

T5Ty = Q5T Ts + b2$ux'ya Taly = aulula + b3$7,

for some scalars b; and all other pairs of root vectors q-commute except possibly (xg,x,,).
Then, for all n > 0,

(10.1.72)

ci(xax/gx(;xZX77 ®1)= XaXpXsXy @ Ty — q,m}(Cp(/[;x(;xf;_1x77 ® T
- (_Q&y)ncﬁnxaxﬁxzxn Qx5+ QB6<_Qﬁ’y)nQﬁnXaX6XZXn K xs
+ q,@é(_QBv)nblxaxéxzxv Ty — QaﬁQQé(_QCxV)nQQnXBX(SXZXn X T

(n)

+ 4o qynd ,,,Mblbzbsxl,w?’ ®1.

Notice that the equalities in (10.1.71) force
(10.1.73) B+n=~v+v, d+v=y+pu a+p=r.

Hence the following equality also holds: 3y =a+ 5+ + .
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Proof. We need some auxiliary computations. By (10.1.60),

(10.1.74) d(xpxixy © 1) = xp%7 @ Ty — qvnxﬁxzilxn ® xy — (—qpy) " apyxixy @ T8
— (—qgw)"blxijxy ® Ty,
(10.1.75) d(xsxyx, @ 1) = X635 ® )y — qv,,x(;xf;*lxu ® Ty — (—qsy)" 5 Xy %0 ® T5
— (—qsy)"b2xlx) @ 2.
Now we prove the following equality by induction on n:
(10.1.76)
d(xaxmcglxn ®1)= XaX,BX;L ® Ty — qWXQXBXTYlen ® Ty — (—qm)"blxaxfylx,, ® T
- (—qm)"quaxen Qg+ qag(—qw)"qanmx:xn @ Ta-
Indeed for n = 0 we have:
d(xaxpxy ® 1) = X0X3 @ T — s(anxa ® Tprg + b1Xa @ TyTy — §apfapXs @ mn:z:a)
= XaXp @ Ty — b1XaXy @ Ty — @nXaXn Q T + qapanXpXn & Tq-

Now assume that (10.1.76) holds for n. By Remark 10.1.2, inductive hypothesis and
(10.1.74),

d,(xax/gx:*'lxn ®1)= xopcﬁxz+1 ® Ty — s(qwxax/gxz ® LTy
(=)™ 50X © (g + D12) — G ()™ s © )
= xaxﬁ}cz+1 ® Ty — QynXaXpXyXy @ Ty — (—qﬁ,y)"ﬂblxaxzﬂxl, ® T
- (—qﬁv)nﬂqﬁnxaxzﬂxn ®xp+ qaﬁ(—qaw)nﬂqanxﬁxzﬂxn ® Za-
Next we apply Lemma 10.1.48 to a < d < v < p < v to get:
d(an5x:XV ®1)= Xax(gxfy" R T, — qu,,XaX(;X,TyLilX,j ® Ty
(10.1.77) - (_Qz?y)nQ(SVXaX»TyLXV X x5+ (_Qa'y)nCJCMQaVX&X:XV @ X
— (—qay)"ngaxzxu @ Ty — q,’;,,c@’aﬁbeng” ® 1.
Now we prove by induction on n that
(10.1.78)
d(x5X5x:xn ®1)= xBX(;x: ® Ty — qwxrgx(;xzflxn ® Ty — (—qg,y)”q(;nxlgx:xn ® xs
+ (—48)" 4Bspn¥Xs%%n @ T + qps(—qpy) "P1X5X XY @ Ty
Indeed, for n = 0 we have
d(xpxsxy ® 1) = x8%X5 @ T — s(q(;nXB ® TyTs — qBsqpn%s © TnTg — qasb1Xs ® :c,,xv)
= XBX§ & Ty — QsnXpXn @ s + qBsqBn%Xsxn Q@ Tp + qpsb1X5%Xy & T~.

Now we assume that (10.1.78) holds for n. Using Remark 10.1.2, inductive hypothesis,

(10.1.74), (10.1.75),

d(XﬁX(;X,TYH_an ®1) = XBX(;X,TYL—H ® Xy — S(qunXﬂX(;XZ ® Ty~ + (—qgv)""'lq(;n}chz"'l ® TpTs
— q85(—apy)" apyxexy ™ @ 2yas — qps(—apy)" 125X @ w2y

1 1 1
= XBX(;X;H_ ® Ty — GynXpXsXY Xy @ Toy — (—qM)M' q(gnx/gx;H' Xy ® x5
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+ q,ga(—qg,y)"—"lblegxf;"'lxl, ® zy + qg(s(—qm)”"'lqgnxtgxzﬂxn ® g

— @5 a5 sy (1 — Gos)brs (x0T %, ® wm5),

and the inductive step follows since X;‘Hx,, ® TyT5 = s(xfylJrl ® Ty Ty Ts).

Finally we prove (10.1.72) by induction on n. When n = 0,

d(xaxpxsxy ® 1) = XaXgXs @ Xy — s(q(;nxa}% ® TyTs — 4BsdBnXaXs @ TyTg
— qBsP1XaXs ® TuXy + qapdasanXsXs @ xnxa)
= XaXpXs @ Ty — ¢snXaXpXn @ Ts + qB54BnXaXsXy @ T + ¢asb1XaXsXy @ Ty
— GaplasfanXpXsXy @ Lo + qpsb1babsx’ @ 1.

Now assume that (10.1.72) holds for n. Using Remark 10.1.2, inductive hypothesis,
(10.1.76), (10.1.77) and (10.1.78)

d(xaxfgx(;xgﬂxn ®1)= XaXBX(sxz—’—l ® Ty — s(qwxa}%x(sxg ® Ty
+ (—57) " yaxpxl T @ wyms — qps(—apy)" T anxaxsxl T @ wyag
— 4p5(—4sy)" T o1%ax5%y T © 02y + Gasas(—dan)" T danxpxsx T © 2y
= xax5x(5xz+1 ® Ty — GynXaXpXeXyXy @ Ty — (—qu)"+1q5nxax5xz+1xn ® x5
+qp5(—py)" " b1xaxsxy  xy © 2+ 4ps(—q,)"  dpnaxsxy T vy © 2

+

- 5(QaBCché(_QOz’y)n+IQanX,8X6X:+1 R TpTo — QQBQatsqz;rl(Zany;—lQEnXﬂX: lxn R Tsxq

- QaﬁQa5(_QQ'}/)H—HQanQ'ynXﬁdezxn QR TyZa + Qﬁchg’JyrlQZ¢QQa5Qaub1X6X:+lxu @ Ty T

+1
- QBé(q:/L;]LId/(anV ary =+ qulec(—nl/,a,)'y(_Qﬁ’y)n+1)blb2b3xz+3 & Ly

+ 4p5 5 4Bndasdosdnr donXsxly

— 1 +1 1
- Xax5x(5x$+ ® Ty — GypXaXpXsXXy @ Ty — (—qsy)" q(gnxaxﬁxz‘F Xy @ T

lxn & l’ﬁl‘a)

+ass(—asy)" T orxaxsxS i, © 2y + 4ps(—asy) " apxaxsxy T vy @ g

+1
- Qa,BQaé(_Qa'y)n—l—l(ﬂxnxﬂxéx:—i_lxn R xa + QB(Sququ_ld(ﬁn ) b1b2b3XTyL+4 ®1,

—vay
and the inductive step follows. ]

Lemma 10.1.79. Let a < S <7< I < p<v <vy <k <1i<n be positive roots such that
N, = N, = N, = 2 and the relations among the corresponding root vectors take the form

2
TaTs = asTsTa +D1T7T3, TsTy = QsnTnTs + boX kT + b3TATy,
(10.1.80) LTy = QrpZnTr + PaZly, TaZp = fapZula + P5TrLp,
Tply = QunTyTy + BT, Ty,  TuTy = QuyTnTy + D7T Tk,

TRTk = QBrTrTB T DT, TaZ, = qauTiTa + DT,
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for some scalars b; € k and the other pairs of root vectors q-commute, except possibly
($T7xﬂ)7 ('T,Unxﬂ); (:B(Sy-:vﬁ)' Then

d(xa}%x(gxgx?] ®1)= xax5x(5xixn ® Ty + qinxoé}c/gxfgxﬂfxf7 ® T
+ qgv(?’)%nbf‘bﬂaxﬁxixb Q Ty + qg,yq,,n(S)qugxax/gxixn ® xy
+ qquwqwngaxfgxg/x,{xn @ xyxy + quqgnxa}chgxg X x5
(10.1.81) + quqinc(ﬁ?%bzb(;ngax‘*xb ® xy + qquinqwcl(;n),bengax‘lxn ® z,
Qﬁaqmq/anxaxax ® g+ qoc,BQ,B»yq/Bnqq—'yQ'ynbleLXBXTX ann ® Tyx3
- QaﬁQB»y(.wnqryqq—nle,BX‘rxy ,, > ®arag+ QQﬁQaéqayqanXﬂxdx ® To
— QB0 iy Gy L 202, o b1 s X2y © 25 — q(squdgg)wbzbﬁbSbQX ® 1.
Notice that the equalities in (10.1.16) forces

a+d=p+2r, d+n=r+y+p o+n=v+v,
(10.1.82) T+n=r+7, a+pu=1+p0, w+n=t+7,
vin=t+Kr+y, B+r=17, a+1=7r.

Thus the following equality also holds: 4y = a + 5+ § + 2.

Proof. First we note that Lemma 10.1.7 applies for o < v < ¢, and Lemma 10.1.48 applies
for B <17 < v < kK <. Hence the following formulas hold for all n > 0:

d(xaxzxL ®1)= XaXy @ T, — qwxax:_lxb ® Ty — qaL(—qm)”xsz ® Za

(10.1.83)
—(=Gay)"(n+ 1)g, nggﬂ ®1,
(10.1.84) d(XTX Xy @ 1) = %%y @ @y — qwnxrxfryb_lxn X Ty — (—qm)"quzxn ® z;
( ’Y)nb4x Xp & Lrys
(10.1.85) d(xpx%, © 1) = XXy @ Tyg — GyeXpXly X @ Ty — i (—p) " X% @ 25
B ~ (~ag,)" <n + 1) bl w1,
d(x5XTxfnyn ®1)= xﬁxTX,y ® Ty — qurngxZ_an ® T
(10.1.86) — (=) " Grnxpx %y © Tr + (—py)" 4prapnx- X%y @ 5
- (—qm)”b@ch;‘xn & Ty — q% ( 735 7b4bsX"+2 ® 1.

We also need some auxiliar computations. These are straightforward and we omit the
details:

(10.1.87) d(xaxpxs @ 1) = XaXp @ L5 — ps¥aXs @ g + qasb1XpXr ® Trag
h + G0pasXpEs @ Ta,
(10188) d(XaXﬁXn ® 1) = XaXﬁ ® Tr — b8XaX'Y (039 1— Q,anozx/i ® IL'ﬂ
+ GapdarXpxs @ Ta,
d(XaX(iny ® 1) = xa%xs ® Ty — @5y XaXy ® Ts + qasdarXsXy @ T

(10.1.89)
+ Gryqp,b1Xr Xy @ T2 g,
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(10.1.90) d(xaxs%Xy @ 1) = XaXs @ Ty — qonXaXy @ T — baXaXx @ TyTy — b3XaXy @ Ty
+ qasGanXsXn @ Ta + qanb104Xr X @ TATg + q8nGryP1Xr Xy @ T T3,
(10.1.91) d(xpx:%, © 1) = X8%Xr @ Ty, — rrXpXs @ Tr + @3 bgXrxy @ 1
+ 484X @ T,
(10.1.92) d(xgxoxy @ 1) = x5%5 @ 2y — QJnXﬁ;‘n ® Ts — baxgX, @ T4x, — b3XgX, @ T,
+ 4Bsqpn%sxn @ T — babgxy @ Ty,
(10.1.93) d(xﬁxz ®1) = xpx; @ Ty + bgxyx, @ 1 + qgnxz ® xg,
(10.1.94) d(xpxux,y ® 1) = Xg%Xk @ Ty — QunXpXy @ Ty + bsxyXy @ 1 + qaranXnxy @ T,
d(xrXe%y ® 1) = XX @ Ty — QrnXrXy @ Ty + GruGrnXeXy @ Tr
+ Gior (2)baxs @ .,
(10.1.96) d(xrx; ® 1) = X7y ® @y + GyybaXXy @ Ty + @75, @ 7,
d(x5%y%y @ 1) = X5%y @ Ty — GyXsXy @ Ty + @5y QonXyXy @ Ts

(10.1.95)

(10.1.97) )
+ qoybaxy X ® Ty + 454(2)g,, P3%5, © Ty

d(x(;x% ® 1) = %%y ® Ty + b3brxyX, @ Tply + Gunb3xyXy ® T,

(10.1.98) S
+ Q"/onanXan ® a?'yxu + q(ann ® .CL‘(;

Next we compute differentials of some 4-chains, using the previous computations on
3-chains and Remark 10.1.2:

d(xax5x(ng & 1) = XaXBX§ & Ty — @5yXaXpXy © Ts + B35GB XaXsXy @ X

(10.1.99)
— 4af9By9ryP1XpXr Xy & TrX8 — (afGasoyXfEsXy @ Lo,
(10.1.100) d(xaxixi@ 1) = anx(ng ® Ty + qg,yxaxi ® x5 — qa(;qiyx(gxi ® T
= @7y 3, P1X7 X ® 7T,
d(%aXgXs%y @ 1) = XaXgXs ® Ty — ¢snXaXpXy @ T — D3XaXgXy @ Ty
(10'1.101) — boxaXpxy & THxy — bgngaxi @ xy, + qpsqpnXaXsXny @ T
— QaBqBnP1P4XBX Xk Q@ Ty TR — (apqpndrmP1XpXrXy Q@ TrTa
— GapGasGonXpXsXny & Ta + QBTQQBQBnb1b4b8XTX»2Y X 28,
(10.1.102) d(XaxpXeXy ® 1) = X0XgXkx @ Ty — @unXaXpXy @ Tx + (BrlpnXaXnXy @ T3
+ bsXaXy Xy ® 1 — GapGanfonXpXsXy @ Ta,
_— d(XaxpX Xk ® 1) = X0XgXy ® Ty — GyrXaXpXe @ Ty + (By0BrKaXy Xk @ T
(10.1.103) + qv_é(Q)%vngax?y ® 1 = GaBYaryGanXpXyXy @ Ta,
d(XaX5%yXy ® 1) = XaXs%y ® Ty — QynXaXsXy @ Ty + 5yQ5nKaXyXy @ Ts
+ @5yP2XaXy Kk Q@ Ty Ty — GasdayGanXsEyXny @ T
(10.1.104)

— Qrvq3~98nP1P4Xr XX © Ty T3 + Q(hbSXaxg @ zy

- Q,B’YQ,BUQT’)’QTT]bleX’}/XT] R xrx8 — qc2nyOmQ(57b2b5X'2an KT T8,



(10.1.105)

(10.1.106)

(10.1.107)

(10.1.108)

(10.1.109)

(10.1.110)

(10.1.111)

(10.1.112)

(10.1.113)

(10.1.114)

(10.1.115)

(10.1.116)
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d(xax(sx% ® 1) = XaX5%Xy @ Ty + Gunb3XaXyXy @ T, + qgnxax% ® xs
+ Qunmb2¥aXsXn © T3y — QG Qynb1oAX XXy ® ToTg
— QFy @2 P1Xr X ® X728 — aslayXsXe © Ta,

d(xp%Xr %X ® 1) = XXXy @ T — GyrXpXrXe @ Ty + GryQrrXpXyXy @ Ty
— Q57q;§(2)5ﬁvbsxrxg, ® 1 — qBr48q8rXrXyXn @ T,

d(x/ngx,.gx77 & 1) = XBX:Xk O Ty — QrnXpXrEn @ T + QruQrXpXpXy @ Tr
— qBrbgXrXyXy @ 1 — qwq%l@)fimb‘lxﬁxi @ Ty
— Br98r4BnXrXsXy ® T3 — qmnbszsﬁxﬁ ®1,

d(XﬁXTX% ® 1) = xx,xy @ Ty + qanBX,QI ® xTy — quq%nxTx% ® zg
+ GynbaXpXaxy @ Ty + babgx x, ® 1,

d(x8x5%4%y @ 1) = X3XsXy @ Ty — QynXBXsXy @ Ty + 5yQonXaXyXy @ Ts
+ g5y b2xaRy X, ® TyTy + q57(2)gjwb3x,3x,27 Rz,
+ 43y057(2)7,,2bsX5, ® Ty — g5 G- UnXa%yXn ® T,

d(XﬁX(sX?? ® 1) = xgxsXy ® Ty + b3brXgXyX, ® Ty + Quyb3Xgx,X,y @ Ty
+ QunGynb2XpXsXy @ Ty + qanﬁX% @5 — qzs&CJ%nXaX% ®xp
+ qm]bgnggyxn Qxy + b2b6ngg/xL & Xy,

d(x5%, %2 ® 1) = X%, %k @ T + qgmx[gxi ® Ty — qmbg(Q)%x%X,.g ®1
- %wq/%ﬁXin ®xp,

d(x8%y XXy ® 1) = X3XyXi ® Ty — QunXpXyXy @ Te + QyrQynXpXXy & Ty
— 457(2),,. b3y ® 1 — 03y 0prGan Xy Xnin ® T3,

d(Xr %y XXy ®© 1) = XXX @ Ty — QunXrXy Xy @ Ty + QryuynXrXeXy @ Ty
— GryQri(2),, DAy Xp @ Ty = GryGrlryXyXnXy @ Tr,

d(xTxvxz ® 1) = x:x,% @ Ty + q,2mx7x727 ® Ty — QrryQynPaXy XXy @ T
— Gy Q%A Xs @ T,

d(x(;xg/xn ®1) = x(;xgy ® Ty — QyyXsXyXy @ Toy — qunggx,$ ® Tyxy,
— qg7 (3);1~Wb3xg Rz, — qqu(;nxgxn ® xs,

b3b7xgxb & Ty Ty

d(x(;xyxi ® 1) = x5xy%y @ Ty + q,QYnx(;X% ® Ty — G5(2) g,

2 2 2
- Q(Fﬂfqyn(Q)Z]}anX'an R Ty — Q§Vananb2X'anXn Q TyXy — d5v9snEyXy R x5.
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Next we compute differentials of some 5-chains:

(10.1.117)

d(XaXBX(sX?Y ® 1) = XaXgX5Xy ® Ty + ngXaX,BX?Y Qx5 — qﬁgqﬁwxax(gxi ®x3
+ qaﬁqéyq%bmxfx% ® Trxg + qaﬁqaaqiw}iﬁmﬁ @ T,
(10.1.118)
d(xaXaXs%y%y ® 1) = XaXpXsxy ® Ty + ¢54(2)7

2
qwngaxva R Ty

— QynXaXpXsXy Q Ty + 5yqsnXaXpXyXy @ Ts + ¢54D2XaXpXy X & Ty

— 4859880 ¥aXsXy Xy @ T3 + qapqsy8ndrydrmP1XaXr XXy @ TrX g

_ 2
- Qci'yq,yglcf(gn),yb2b8xaxg Kz, + qQBQ,B'yQ,BnQT'yblb4XﬁXTX7X/@ &K Ty

+ GaBlasTar anXa%s%e Xy @ To + Qapqsr Qs €A Con b1babSXX> @ 5,
(10.1.119)
d(xax5X5X727 ® 1) = XXXy @ Ty + b3brXaXgXX, ® T4y + qanaXﬁ’X% ® x5
+ Qunb3XaXpXyXy @ Ty + QuyGunGynP2XaXpXpXn & Ty
- qﬁgqgnxax(g}c% R x5+ b2b6b8XaX3XL ® Ty — (4)qmb2b6b8ngi ®1
+ qwbgngoéx?ym7 & xy + qaﬁqgnqznblx[gxrxg & xrxg
+ Gapsy 45y TmPIDAXEX XXy ® T3 + (aplaslonXpXsXe © Ta
- %r%ﬁqgnblmbsxrxixn ® g,
(10.1.120)
d(xopch?YxN ®1) = xopchgY ® Tr — QyrXaXgXyXg @ Ty — q%vfm,ixax?yxﬁ ®xg
_ q;g(?))aﬁwngaxi 1+ qaﬁqivqaﬁxlgxix,{ ® T,
(10.1.121)
d(XaXpXyXeXy © 1) = XoXgXy Xk @ Ty — QrupXaXpXyXy @ Ty
— qgﬁl(Q)%ngxaxixn ® 1 4 ¢yr@ynTaXpgXeXy @ Ty
— 48v98x9nXaXy XXy & T3 + ¢apaydardanXpXyXxXy @ Ta,
(10.1.122)

d(XaX(SX%Xn ®1)= Xaxéxg @ Ty — GynXaX§XyXy @ Ty — q§7(2)~

3
Ayn b3XO‘X’Y ® Ty

2 2 2 2 2 2
= @5,02XaX Xk @ Ty Ty — G5y GsnXaX Xy @ T5 + GasdaryQanXsXyXny @ Ta

+ QBUQZWQZ’»YQTnbl}(TXan @ xrx8 + Q,Bnqz'yQ%—yblb4XTX§/Xn ® TyT g,
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(10.1.123)
d(xax(;)&:«/x?7 ® 1) = XXXy Xy ® Ty — Q5yquy(2)

- Q57(2)q~7nb3b7xaxixL @ Ty + Q(S'yc((fn)'ybiib?ngi Q Ty,

q~wnb3xax'2yxn R Xy
— qMqﬂnqwngaxﬂfx,{x,7 X T Ty, + qinxax(gx% X Ty — quqgnxaxvxfi X xs
+ 4By @5y Trr Ty PIX Xy X, ® Tr T3 + Gry A5y T 5y TynP1DAXA Xy XKy ® TT 5
+ Qo QarByQ6,b2abs X2 X7 @ T4 6 + GasdordayXs¥y Xy @ Ta
+ G2y Gardpndsy Grmb2bs XXXy © Tr24,
(10.1.124)
d(xBXTxix,{ ®1)= Xf;XTX% ® Tie — QyrXBXrEyXp @ Ty — qZVqT,{ng?yx,$ Q x,
+ 487055 (3)3,, b8%r X3 © 1+ 43703, GprXr Xo Xy ® T3,
(10.1.125)
d(x8xr XXXy @ 1) = X8Xr XX @ Ty — QrnXgXrXyXy @ T
- qﬂqfn(Q)Z]}nmXﬂX'sz @ Ty + QyrGynXpErEnXy @ Ty
— Qe GrnGrnXa%yXnXy © T7 + 4arq, 5 (2)g,, bsx X%, © 1
+ Q8- 48y Un UpnXr Xy XnXy @ T — Qrntlyy (2)g,,DabXI %k ® 1,
(10.1.126)
d(x5x.rx7x% ® 1) = XX, XyXy @ Ty + qgnxfngX% ® Ty — QryGynbaXgXy XXy @ Ty
— XX @ Ty + 3By Gy XXy Xy @ T + q;#c%_mbzlngixn ®1,
(10.1.127)
d(xBX(SXEIXU ®1)= Xﬁxfgxg ® Ty — QyyXBX5EAKy @ Ty — qqu(;n)cﬁxgxn ® x§
- qg,yngBxg/x,i ® TyTy — q§7(3)q~7nb3x5xi’ R T,
+ Qﬁaq/Qh(J@nXaX%Xn R %(@51 q§76(5:;)b2b8X§ & xy,
(10.1.128)

d(x5x(5x7x,27 ® 1) = x8x5%, Xy @ Ty — ¢5+(2)7

2
qvnb3b7x5x7xb & Ty

- ‘167(2)%, anb3X,BngXn ® Ty — 45y QunGrynP2XpXyXnXy @ Ty Ty
+ q,%nx[gxax% & Ty — q(;,ngnngwxz X x5+ qﬁgquvqgnxtngxi ® zg
- qﬂvq<57(2)%nb2b6ng§yxb Q@ xy — qﬁvqt5vqun<2)%nb2b8xixn @ Ty,
(10.1.129)
2.2 _ 2 2 2
d(xpxix,; @ 1) = XXX, ® Ty + ¢, XXX, @ Ty
+ qi’v(?’)%wnggxﬁ ®1+ q?;,ﬂq%ﬂ/xzxi ® g,
(10.1.130)
al(x5x,2yx,.ix77 ®1)= }{gxgyx,.i ® Ty — q,.mxBxixn ® e + QyrQynXpXy XXy & Ty

+ QBT U XoXnXn ® T3 + 05 (3)7,, bsxox, ® 1,
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(10.1.131)
2 2 2
d(xTxAYx,.ix77 ®1)= XXXk @ Ty — QanXrXiXn @ T + GrrlynXr XXXy @ Tny

+ qzqu@)aﬂnMX%Xi KTy + QZ'YQTRQTnX?YXHXn ® s,

(10.1.132)
2.2 _ 2 2 2
d(XTX,an ®1) = XXXy @ Ty + @ Xr XX, @ Ty
+ qgfyq’\ﬂ]bﬁlx?yxnxn ® x'y + q72"yq72'77xf2yx727 ® xT?
(10.1.133)

d(X5X,2YX% ®1)= X(;x,zyx77 ® Ty + q?mxlgxfyxfl ® Ty
+ q§7(3)%nb3b7xixb ® Ty + qqu,m(?))%nng,?;xn ® Ty
—+ qquwq,mngix,{xn (4 Ty, + qqugnx?yxg X xs.
First we check (10.1.117). Using (10.1.99), Remark 10.1.2, (10.1.100),
d(xax/gx(;xg ® 1) = XaXgXsXy ® Ty — s( — qg,yxaxfgxy ® Tyx5 + qﬁgq%ﬂ/xax(sxw ® T2

— qafgqquzvbmﬂxﬂc7 QR TyXrrg — qoégqa(;qgwxigx(gx7 ® xvxa)

= XqXpBX§Xy ® Ty + qg,yxax[gxgY X x5 — q[g(;qgwxax(;x?y ® g
— s( — qagq%,yqfvblx[ngxa, R xyxrTg — qagqagqi,yx[;x(;xy Q TyZa
— GaBlony Tad T3, XA% @ T6Ta — Gaplay U3, P1XAXS ® 222
+ 485402 1% X @ T2 TF + Gaplasan 8605, X6%s © T3Ta)

= XaXBXsXy & Ty + qg,YXanX?Y R x5 — qﬁgqgvxaxcsx% K xs
+ Qapdh, o P1XE% XS ® T g + (aplaslonXsXs%0 ® Ta.

For (10.1.118), we use (10.1.99), (10.1.101), (10.1.104), (10.1.106), (10.1.86), Remark
10.1.2, (10.1.109), xaxg R T8 = $(XaXy ® TyTpxR), Xi ® TpLa = s(x?Y ® TyTpZa),
d(XaxpXsXyXy ® 1) = X0 XgXsXy @ Ty — S(q,manBX(; ® TyTy — Q5yqsnKaXgXy @ Tyks

+ 48598+ 98n%aXs%y Q@ Tnxg — qsyP2XaXpXy & TXyTy — (5403XaXpXy & T Ty
~ 4aBYBy9andrydrnP1XpEr Xy Q InTr T3 — qapqsyqsndryP1P4XsX Xy & LrlyTp
~ GapasdordanXsXsXy @ Tyla)
= XoXpX§Xy @ Ty — QynXaXpXsXy @ Ty + ¢54Q5nXaXpXyXny @ Ts + qsybaXaXgXyXy & TyTy,
+ q57(2)-q~7nb3xax5x,zy ® Ty — (8543 UBnKaXsXyXy @ T3 — qgqu_ﬂlc(ﬁ?wbgngaxi ® z,
T 4apd8y48ndryIrnP1XaXr Xy Xy @ TrZ3 + GapdpydpndryP1PAXEEr Xy Xk © TyLp
+ aplasdaydanXpXeXyXy @ Ta + qa5q57q5nqn}1qgﬁlcgn)wblbzlngTxi K xg.

For (10.1.119), we use (10.1.101), (10.1.102), (10.1.105), (10.1.83), (10.1.107), (10.1.108),
Remark 10.1.2, (10.1.110) and (10.1.84):

d(XaXBX(;X% ® 1) = XaXgXsXy @ Ty — s( — Qunb3XaXpXy ® TyTy — b3b7XaXgXy @ X, LTy
— qanaXf;Xn & TnTs — Qonb2XaXpXy @ TTyXy — Gsnb3XaXpXy @ TyTy

— QynQunb2XaXpX @ TyT Ly — begXaX?y ® (QunTnTy + be,2y) + qﬁgqgnxax(gxn ® Ty
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— Q0B GmP1PAXER Xy @ TnT Ty — QaphyGrmP1XsXe Xy ® (GryTys + baT Ty )T
- qaﬂanQ3nX6X5Xn & TyTa + Q5rqa5q[23,7b1b4bsxr><3 ® xyap)
= XoXpXeXp @ Ty + b3b7XaXpXNX, @ LTy + qunb3XaXpXyXy & Ty
+ Qv QunQynb2XaXpXxXy @ TyTy + qgnxa)%x,% R x5 — q/g(;q%nxaxtgx% @ xp
+ b2b6b8xax§xb ® Ty — (4)q~a7b2b6b8b9x§ ®1+ qlmbgngoéx?ym7 ® Ty
+ qagqgnqznb1x5x7}c,2] Rxrxp + qaﬁqﬁwqénqﬂmblb@cﬁxfxﬁxn R xyxp
+ GaplaslonXsXs¥y @ Ta — Q3rqapls,b1babsx X%, ® 3.
Next we check (10.1.120) using Remark 10.1.2, (10.1.103) and x3 ® 2o = s(x2 ® 2,z4):
d(xozxmcgyx,.i ®1)= xaxﬁxi ® Ty — s(q%xaxfng ® Ty + q%,ngﬂxaxi ® T
+ 3, P8XaX> ® Ty — GaployGarXpXs @ Txla)
= xaxgx?y ® Tr — GyrXaXpXyXr @ Ty — q%vq&ixaxix,{ ® T8 — qgg(?))qmngaxi ®1
+ qa,gqivqaﬁx,gxixn ® Tq-
For (10.1.121) we use (10.1.103), Remark 10.1.2, (10.1.102) and (10.1.112):
A(XaXpXyXeXy ® 1) = XaXgXyXp @ Ty — s(c_zn,.ixaxlgx,y ® TpTr — QyrGynXaXpXe @ TnLy
+ 48v4BrIpnFaXyXk @ TyTp + q;gl(2)amb8xax3 ® Ty — Gaplor JanXpEyXs ® Taly)
= XaXBXyXx ® Ty — QrnXaXpXyXy @ Ty — q;ﬁl(2)%vb8xax3xn ®1
t GysGynXaXpXeXn @ Ty — 4y 48rdpnFaXyXnXy @ T + qaplardardonXpXyXsXny @ Ta.
To check (10.1.122) we use (10.1.100), (10.1.104), Remark 10.1.2, (10.1.84) and (10.1.115):
d(xax(;xgyx,7 ®1)= xaxigxg ® Ty — s(q«mxax(;xw ® Tpxy + qgwq(;nxax,?y ® Tpxs
+ G5, D2Xa X2 ® Ty Ty + G5, D3XES ® Ty — A3y Uiy Grnb1Xr XS ® TnTr T3
— Q5nq72-7q%7b1b4xrxi Q TrTyxg — qa(;qivqanxgxi ® xnxa)

2 2
= XaXXy ® Ty — GynXaXsXyXy @ Ty — q57(2)~q~w}

ngaxi R xy — qgwngoéxix,i & THTy
- Q§ryq5nxocxf2yxn Qx5 + quéqgmf%xnxéxgxn QT + qgnqg—'ngy%'nblxrxgxn X xrxp

2 2 2 2 2
+ QBnQquﬂyblbéleX'yX,‘i R TyTps + qcvchCwqomq(SA/(S)Z]}anS (X?y X J5V33a)7

and we use that x§f Q TyTy = S(x% ® xvx,,xa). To prove (10.1.123) we use (10.1.104),
(10.1.105), (10.1.83), Remark 10.1.2, (10.1.113), (10.1.114) and (10.1.116):

d(XaX(gX,YX% ® 1) = XaX5Xy Xy @ Ty — s( - q,zmxoéx(;x77 ® TyTry + G5 qonXaXyXy @ TsTy
+ @5yb2XaX Kk @ Ty TpZy — GasdayGonXsXryEy @ Toly
— GryQ3y4nb1bAX Xy Ky ® Ty T Ty + (5yb3XaX ® Ty
— 48748 TryGrnP1Xr Xy Xy © T Ty — Gy Qan sy D25 XK © T TpTy)
= XoX5XyXpy @ Ty + qgmxax(;xz ® Ty — quyn(Q);jngxax?yxn ® T,

— 45(2)g;, bsbTXaX K, © Tty + 45y Cligy b3bTDIX] © T — U5 Uiy KaXy Xy © T
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— 46yqundymb2XaXyXsXy & TyTy + qmqﬁvqgnqwblbﬂﬁvxﬁxn ® TyTg
+ Q,B'ng’n@rqunblxq—xwxi S xrxp + Q37QaHQﬂnQ67b2b4b5X%Xi & TyxB
+ QQJQO('yq(anXJXWX?] X ZTo + qgfyQaﬁq,Bnq5WQT77b2b5X»2yann QT rTa.

We compute (10.1.125) using (10.1.106), (10.1.86), (10.1.107), (10.1.111), (10.1.112),
(10.1.84), (10.1.113) and Remark 10.1.2:

d(x8xr XXXy ® 1) = XXXy X @ Ty — s(q,.m)chTxV ® TyTr — QyrGynXpErXy @ TyLy
+ GryQre@rXpXy Xk Q@ TnTr + QryQrrbaXgXyXy @ Ty
~ 45705 (2)g,, 8% XS © Ty = GBraaydaRdon ke X ke @ Typ)
= XBXrX X @ Ty — QenXpXrXyXy @ Ty — qmqm(Q);jmb4x5x7xi ® Ty
+ Gyl Xp%r KXy @ Ty = GryGrlrnX 5% XnXn @ Tr + qprq 5 (2)g,, bsxr X%, @ 1
+ 8By U8k A ErEn KXy © T3 — QenGyy (2)g,, babsxix, @ 1.
Next we check (10.1.124) using Remark 10.1.2, (10.1.106) and (10.1.85):
al(x[ngx,ny,$ ®1)= )chTxgY Q Ty — S(qWHXBXTXn/ ® Ty + qzvqulgxi ® Tplr
- %TQ?W%KXTX% Q@ TxTg — Qﬁquwba;XTXi @ x'y)
= XgX, X2 ® Ty — QyrXpXrXyXp @ Ty — (o QraXpXoXe @ Tr + qmqgg(?i)%bsmxg ®1
+ 4pr @ prXr X Ks © 5.
For (10.1.126) we use (10.1.86), (10.1.108), (10.1.112), Remark 10.1.2 and (10.1.114):
d(x5x.rx7x% ® 1) = XXXy Xy @ Ty — 3( — (]377}{5X7x77 ® TyTy + qqun}%xyxn ® TyTr
+ GryQrnPaXpXaXy ® Tly + GryGynPaXpXyXe © Tnly
— 487 Ty Xr Xy Xy ® Ty — Gy (2)7,,babsx; @ 1)
= XpXrXyXp Q@ Ty + qgm)%xTx% & Ty — QryQynbaXgEAX Xy & Ty — qqunx/gxwx?7 ® xr
+ Q5r @By Re X2 @ 15 + g ) babsxla, @ 1.
The proof of (10.1.127) is similar, using Remark 10.1.2, (10.1.109), (10.1.85) and (10.1.115):
d(xlgxcsx,%x77 ®1)= X5X5X3 ® Ty — s(qwxmc(gx,y ® Ty + qgwqanQX?Y ® TyTs
+ q(%,YbQXﬂX?Y Q TTyxy + qgwnglgxi R TyTy — q55q§7qlgnx(5xi & xnxg)
= XBX(;X% @ Ty — QynXBR§XAXy @ Ty — qqu(;nx/gxixn & x5 — q§7b2x5xix,{ R Tyxy
— q§7(3)%nb3x5x?’y ®x, + qB(;q%A/q[gnx(;xixn Qg — %wqy_glqucngbS)ci ® Ty
For (10.1.128) we use (10.1.109), (10.1.110), Remark 10.1.2, (10.1.112) and (10.1.116):
d(XﬁX(;X,yX% & 1) = XBX§XyXpy @ Ty — s( — qgmx/gxlgxn X TyTy + qg,ngnx/gxwxn & TynTs
+ qM%nb?XﬂX'yxn @ T TryTy + qavqgnng[;x,yxn & TyTy
+ 45y QunGynP2XaRY X & TyTy Ty + ‘I67(2)%nq'ﬂ7b3xﬁxg ® Ty

+ q57(2)%nb3b7xBxg{ ® T, LTy + q/qu(;vqw(Q)qwbzngi ® TpTy
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+ q57q(57(2)%nb2b6b8x3 Q@ T, Ty — qB(;foyq%nX(gX,an ® Tpxs)
= XBX5XXy @ Ty + qgmx5x(5x2 ® Ty — q57(2)q~wb3b7x/gx,2yxb ® Ty ry
- qM(z)%annbfiXﬁxgan @ Ty = 4y QunGynb2XpXy XXy @ Ty Ty
— Gy oy 5%y %y © Ts + qasdp Ty Ks%a Xy ® 5
- q57q57(2)%nb2b6b8x§ny Q Ty — qﬂvqfquun(Q)%anbSXan @ Ty

We check (10.1.129) using (10.1.85), (10.1.111) and Remark 10.1.2:
d(xBX,nyi ®1)= xfgxix,{ R Ty — s( — quXBX’YX,{ ® Tyl — Qfg,.;q%,yng?yxN ® T
N qg,{qévxgx,{ ®TrTp — q%v(?))qmngi ® k)
= XﬁX?yX,{ ® T + q,?mXQX,YXi ® Ty + qév(?))gﬂwngix,.C ®1+ q%,{qgvx?yxi ® 3.
For (10.1.130) we use (10.1.85), Remark 10.1.2 and (10.1.112):
d(x/gxgxﬁxn ®1)= xmc%x,i ® Ty — s((]m]x/gxgY ® TpTr — QyrGynXpEy X @ TyTn
- qﬁnqquﬁnxixﬂ QLT — qé’y(3)‘7ﬁwng§/ @)
= ngixﬁ XXy — qm}cﬂxgxn R T + QyrGynXpRy XXy & Ty
+ Q80 G E X%y ® T + ¢5,(3)g,, bsx %, @ 1.
Now we compute (10.1.131) using Remark 10.1.2, (10.1.84) and (10.1.113),

d(xTxgxnxn ®1)= xTxix,{ ® Ty — s(q,mxTxg ® TpTy — qinxTxfyxn ® Ty
— GGk QXX ® TnTy — Qo GrxbAXoXy @ Ty
= XXX @ Ty — QX XXy © T + QynynXr XXXy ® Ty + @2 Grie(2) g, PAXEX @ Ty
+ G rr XXXy @ Tr.
For (10.1.132) we use (10.1.84), (10.1.114) and Remark 10.1.2:

d(x.r}c?yx?7 ®1)= XTX?YXU ® Ty — 8( — q,2mX7—X—an ® TyTy — qzﬁ/qmbzlxgyxn ® Ty
_ quqznﬁxn ® Tyxr — qzwq.mbzlx%x,ﬁ ® :1:771:7)
= XTX3X77 & xy + qgnxTx,YX?7 ® Ty + qzvqﬁmbzlxixﬁxn X xy + qzqunxixg R Tr.
Finally we compute (10.1.133) using (10.1.115), (10.1.116) and Remark 10.1.2:

d(x(;xgyx?7 ®1)= x(;x,zyx,7 ® Ty — s( — q3,7X5x7x,7 ® TpTy — q(%q,mqwnggyx,.C ® TpTyTy
— q§7(3)%nb3b7x§y ® L, T4 Ty — qg,yql,n(?))%nngf’y ® TpTy — qqu(;nb;gxzxn ® Ty
— qg,yq(;nngixn Q Ty Ty — qg,ngnx?yxn ® xnx(;)

b3b7X,?;XL @ Ty

2 2 2 2
= X5% %y ® Ty + ¢y, X6%1 %, @ Ty + 45, (3)7,,

+ qqum, (3)fq~Wb3x:}Yx77 ® x, + qquwqwngix,@xn ® Ty, + q§7q§nx3x$] ® z§.
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Next we compute differentials of some 6-chains:

(10.1.134)

d(xoéx/gxgxgx77 ®1) = XaX[3X5X,2y ® Ty — QyyXaXBXsXyXy @ Ty — qg,y(?))qzmnga}(ﬂxg ® xy
— qg,beXaXﬁX,zyXH Q TyXy — qqu(;nxaxfgx%xn R xs + q/g(gq%,yqﬁnxax(gxgyxn QK xg

-2 (3
— qqu'ygc,g?;vmngaxi R xy — qaﬁqévqﬁnqzvblbzl}(ﬁmx%x,{ R xyxg

— GaBU3 U0 Ty P1XBXr XXy @ Tr T3 — aBlaslon TanXaXsXoXy © Tq
+ 4o}, 4895795 (3)s, 47, P1baDEX X, © 25,
(10.1.135)
d(xoéxBX(;XAYX?7 ® 1) = XaXgXsXyXy @ Ty + qgnxa}chtgx% ® Ty — q§7(2)§wnqynnga}{5xixn ® zy
- q57(2)aﬁmb3b7xa}c5x$xb ® Ty — (5yGynQunP2XaX3Xy KXy @ Ty Ty,
~ Gy Gy XXXy Xy ® L6 + QaB8y Ry Ir TynPIDIXX Xy XXy @ 2425

_ 2 3
+ 45705l babEDEXAIIE, ® Ty + Gy Ged s, Dabebsbox? © 1

— 2
+ q(quwlqwc(ﬁ%bgngax?’yxn K xy + qgaquqznxax(;xvxi X xs

- qa,@QBWQ%WQquzanXBXTX'yX?] KT rTE — QQBQazSQawqinXBXJXvX% X To

-1 — 2
— Qa8 i €A o Drbabsx 3%, @ 75,

(10.1.136)
d(xax[;x,zyx,ixn ®1)= xaxlgxgxﬁ ® Ty — quax[gxzxn ® Ty + QyrGynXaXpXyXuXy @ T,

+ q;g(3)q~ﬂwb8xaxixn ®1+ qquﬁﬁ%nxa}chnxn ®xg — qaﬁqivqa,{qanx5xixnxn ® Ta,
(10.1.137)

d(xax(;x?yx?] ®1)= xax(;xgyxn ® zy + (],QWXO[x(ngX?7 ® xy + q§7(2)~

3
qvnb3b7xax7xb @ Ty

— q3,¢3) bsbrbox? ® T + 43, quy(2)7,,b3XaXoxy ® Ty + 3,03, XaXX) ® T5

4vn
+ 43 Qun Gy P2XaXa XXy © LTy — QG A5y GynP1DAXT XS XXy @ T g
_ q%nqzyqﬁvqfnbmx%x% ® Trrg — qa(;qgwqinx(sxzxg ® Za,

(10.1.138)

d(X,BXTX%XHXn ®1)= Xﬁx‘rxgxN ® Ty — c_zﬁn}{ﬂx.rx,zyx77 ® Ti + GyrynXBEr Xy XXy © Ty
+ @2 Gr(2) g, PAXEEI X @ Loy + Q7 GrnlrnXgXo KXy @ Tr — qgfq;g(S)aﬁwngTxixn ®1

2
- QﬁTQ%WQBHQ,BnXTximen @ xg — q'inQNnc(_%ﬁ77b4b8X§Xn ®1,
(10.1.139)
d(X5XTx,2YX727 ®1)= XﬁxTX?an ® Ty + q,%nXBXTX,yX?? ® Ty + qzvqmbélx,gx,zyxnxn ® T

2
+ qzqunxﬁxgx% XRxr — qBTq%Vq%nxTx%x% Rxp+ q%nc(—;,,ﬁ,wmbBXi & xy.
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(10.1.140)
d(x5X5x§x§ ®1)= X5X6X3Xn ® Ty + q%nxﬁx(;xvx?? ® Xy + qg,y(?));]vwbgbﬂgxi?’ym ® Ty
+ qgrqu(:})iiwaixﬁxixn ® Ty + ququnqvnbﬂﬁxgyxmxn ® Ty Ty
+ qgwq(?nx[;xix% ® x5 — qﬁwﬁ%vqﬁ%nx‘sxixz ® zg
_ 2 _(3) 4 _ 2 _(3) 4
4897k 95~y b2b6b8x7xb @ Xy 48797k 95y qm]bgngvxn Q Xy

First we deal with (10.1.134): using (10.1.117), Remark 10.1.2, (10.1.118), (10.1.120),
(10.1.122), (10.1.124), (10.1.86) and (10.1.127):

d(xax[gx(gxixn ®1)= XQX5X5X3 ® Ty — $(quxax/gx(gx,y ® Tpxy + qgvanB}c% ® QsnTyTs
+ qgvxa:%x% & box Ty, + quxa}%x% & bgryx, — q/g(;q%,qunXaX(;X?Y R xyxs
+ QB3 Uy 1o P1X% XS @ (Gry@yTr + DaTiTy) T3 + GaplasTondanXsXsXe @ TyTa)
= XQX5X5X,2Y ® Ty — QyyXaXBXsXyXy @ Ty — q(%/(?;);jwb3xax5x§Y Q
- qgﬁ/ngopchix,i & TyXy — q(?vq(gnxax5x3xn & x5 + qggq%7q5nan5xg{xn X g
_ qgﬂ/q;gc(ﬁ?vbgngaxf’; T, — qa[;qqu/gnqgvblb@cﬁxTxgyxﬁ ® TTp
— Qap U3y ATy GrnPIXER XKy ® TrT g — alasay lonXsXsXo Xy @ T
+ 40893480579, 5 (3)ds, 4, P1babRX X5 @ 4.

Next we compute (10.1.135): using (10.1.118), (10.1.119), Remark 10.1.2, (10.1.121),
(10.1.123), (10.1.83), (10.1.125), (10.1.126), (10.1.128) and (10.1.84):

d(xaxpxs%yXp @ 1) = XoXgXsXy Xy @ Ty — 5(q5y(2)g,,03%aXpX> @ (QunTnTy + b1, Txty)
— qinxamxtgxn ® TyTy + G5y snTaXpXyXy @ (¢snTnTs + 022y T ) + b3z, )

+ 45y @y qunb2XaXpXy Xy & TyTaly — qﬁéqﬂvqgnxaxéxvxn ® Tps

+ QaBUsy U5y drydrnP1X %Xy Xy @ (GrpTnTr + b4ty )T s

—-1_(2
— q(;,yqvéc(ﬂn)vbgngaxi & x Ty + qagquq%nqwqwblb4x5xwax,€ Q@ TpTyxg

+ QaBasTor 02y Xa%5Ee Xy © TyTa + Gaplar oGy dy o b1bsbsx, X3 ® 2,75)
= XoX3X§XyXy @ Ty + qznxax[gx(;x% ® Ty — qsy (2)q~wb3b7xax5x3xL ® Tl
— 5(2)g,, dunb3XaXpX3 Ky @ Ty = G57G7nGun2XaX g% XXy @ T/ T
- q(qugnxamxvx% Qx5 + Qaﬁqﬁvqgnqm‘hnblb4XBXTX7XHX77 Q zyZp
+ 457054l DabEDXXTE, ® Ty + G5y yndl gy, D2bGbsDOXS ® 1+ G503 G babsxaX Xy @
+ qﬁaqmq%nxax(sxyx?, ®@xg — QaﬁQ,Bwq%nQT'yqznblXBXTXWX% ® xr2
— GaplasdonlonXpXsXyXy @ Lo — qagquq?gnq;vlqv_ﬁlc(ﬁablbgtngTxE’;xn ® z5.
For (10.1.136) we use (10.1.120), Remark 10.1.2, (10.1.121) and (10.1.130):
d(xaxlgxgx,ﬂxn ®1) = xop%xgyxN ® Ty — S(quaxﬁgxg ® TyTr — QyrQynXaXpEyXr @ Tyl

- qaﬁ]ﬁﬂ]ﬁnxax%xn & TpTp — qf;g(g)q}wbSXaXi & Ty + QaEQinOMQanXﬁX%XK ® xnxa)
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= xax/gxgyx,.i & Ty — q,.mXax/gx,zyx,7 X Ty + QyrGynXaXpX XXy & Ty
+ qw_g(g)%wbSXaxiX” ®1+ qgwqm%nxax%xﬁxn ®xg — qagqi,yqa,ﬁqanxlgx?yx,{xn ® T
For (10.1.137) we use (10.1.122), (10.1.123), (10.1.83), (10.1.131), (10.1.132) and (10.1.133):
d(xax(;x?yxgi ®1)= xax(;x?yxn ® Ty — s( — q?mxopchy)&:77 ® Ty — qg,yqyn(2);1~Wb3xax§Y ® Ty
— q§7(2)%nb3b7xaxi @ T, Ty — qqu,mqwngoéX,ZYX,.i ® Ty Ty — quqgnxax?yxn ® TyTs
_ qqu(;nngax?yxn ® TpTry Ty — qqugnngaxixn ® Ty + qm;qfv,yqinx(;x?yx?7 ® TyTa
+ @y oy TGy Gy PIEA KoK @ TnTr T + QB G Gy I PIDAXA X Xy ® Ty g
+ QB 0o G5y ymP1DAX Ko K ® T )
= xaxchgx77 ® y + q,2mxax(;x,yx727 ® xy + q§7(2)%nb3b7xaxixb ® Ty~
_ q§7c3377)7b3b7b9x2 ® xy + qgwa,n(Q)%nngax?Yxn ® x, + qquwqﬂmngaxgyx,ﬁxn ® Tyx,
+ qgwqgnxaxix% Qx5 — qgnqzﬂ/qévqwblbzmxixnxn ® xyTg
— QB0 0B Ury D1 X XKy @ T — Gadan Yoy 6% %y © Ta-
Next we compute (10.1.138) using (10.1.124), (10.1.86), (10.1.125), (10.1.129), (10.1.130),
(10.1.84) and (10.1.131):

d(x5x7x3x,€xn ®1)= x[ngx,zyx,.; ® Ty — s(q,ﬂ,x[ngx,zY ® TyTr — QyrGynXpXrXyXp @ TpTy
— G QribaXpX K ® Ty — Gy GrnrnXaXa Ky @ Ty
+ 45765 (3)g,, P8%r XS @ 2y + 43745, Aprdon%r XX @ Ty p)
= XBXTX,QYX,{ X xTy — q,mx/gx.rxglxn R T + QyrGynEpXrXy XXy @ Ty
+ @2 Grw(2)4, DAXEXEXL @ Ty + G G Grn X% Xn Xy @ Tr — qprq ;5 (3)g,, bsxr X%, @ 1
— q/gquvqﬁ,ianxTx%x,ﬁxn X xg — qinqmcg)hﬁﬁbzlngix,{ ® 1.
For (10.1.139) we use (10.1.86), (10.1.126), (10.1.130), Remark 10.1.2 and (10.1.132):
d(XﬁXTX?yX% ®1)= XBXTX,QYX,] ®xy —s( — qanﬂxTxpyxn ® Tyl — qzqunxlgxixn ® TyTr
— qzyqﬁmb4X5X%X,{ & Ty — qzvanbzleX%xn ® TrTy
+ q57q%7q%77x7x%xn @ xprg — qgmc(_%)%ﬁnbz;ngi ® xn)
= XBXTX?YXW ® xy + qinngwax,% Q xy + qz,qubzlxlgxgxﬁxn Q xy + qg,ngn)%xgyx% QT
- qﬁququnXTXgYX?? ®zp+ qgmc(—Qv)%Bﬁb‘lbin ® Ty

The proof of (10.1.140) is similar, using in this case (10.1.127), (10.1.128), Remark
10.1.2, (10.1.130) and (10.1.133):

d(XﬁX(;X%X% ®1)= x,gx(;xgxn ® Ty — s( — qanﬁx(gxfyxn ® TpTy — qg,ngnng/gxgxn ® T Ty
- qu%nbﬂﬁxzxn © Tply Ty — quq(%anxixn © Tnls — q(?»quqvnbzXﬁX%Xn ® TpTyy
— qgv (3)qynb3b7X5x§; ® T, LTy — qquyn(i%)gwbg}%xi ® TpTy + qﬂgqqugnxigxzxn ® Ty

-1.2 _(3) 4 -1.2 (3) 4
— 4By45 95+ bobgbsx, & z,2, — 48743 95~ ry Qunb2bgx, @ :En:r“)



= XBX(;X,QYXU @ Ty + CI?WXBX(SXWX% @ Ty + qg'y(?’)N
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3
qwbgb7X5X7xL & XL

+ quqvn(ig)%nbiixﬁxgxn ®zy + ququnqvnbﬂﬁxgyxﬁxn ® TyTy

+ 43,03, %3 x, @ T5 — Qa5 05, UGy Xs¥ X, @ T

3 3
— q57q7,{q§7c(ﬁ77)b2b6b8xixb X Ty — qmqwqgvc;n)qﬂnmngixn Q-

Finally we compute (10.1.81). Using (10.1.134), (10.1.135), Remark 10.1.2, (10.1.136),
(10.1.137), (10.1.138), (10.1.139), (10.1.140) and (10.1.84):

d(XaXBX(;X?YX% & 1) = xa}%x(;x,%xn KTy — 3( — q,%nxax5x(;x7xn Q) TyTy

= XanX(;X,QYXn ® Ty + qgnxax[gx(;xvxz ® Ty + q§7(3)~

2 3 2 2 2 2
— G5,(3)7,,b3%aXpXy @ TyTy — @5, P2XaXpXXs ® TyZpTy — 5 qonXaXpXs%n @ TsTy

+ q55q§7q5HXQX5x3xn & xgwy — qagqqugnqzvblbzl}cgmxgxﬁ @ Ty XgTy

-2 (3
- qquygc(ﬁ%bgngaxi QTuTy — QaBQ%qu]qz—yQTnblX,erx?yxn Q@ TrTRTy

— qagqm;qivqanxﬁx(;x?yxn ® Ty + qagqthgnqmq;ﬁ?(3)%7 q37b1b4b8x7x§ ® x32y)
qvnb3b7xax5x§yxb & Ty
+ qqum] (3);;Wngoéxigxix77 ® xy, + qquunqwngax[gxgyx,{xn ® TTy
+ qgwqgﬁcg%bgbﬁngaxi& Q@ xy + qqugﬁquncgvbgngaxixn Q xy

+ Qo BT Uiy doy T PIPIX X X2 X Xy ® Ty T — Qa Aoy Do Ty PIX X XX ® T7T 5

- 3
+ Qa0 Gor oy ®5¥5% % @ Tar = qaﬁ%f(][zzngnqyg qiwcg,}yblmngmixn ® xg
4
- q(%vq?md((xﬁ)’n’beb6b8b9X,6y ® 1.
This completes the proof. 0
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