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Dedicated to the memory of Ragnar-Olaf Buchweitz.

ABSTRACT. The tensor product R® S of two algebras can have its multiplication deformed by
a bicharacter to yield a twisted tensor product R®"S. We completely describe the Hochschild
cohomology of R®" S in terms of the Hochschild cohomology of the components R and S, in-
cluding the full Gerstenhaber algebra structure. This description generalizes a result of Bergh
and Oppermann. A number of interesting classes of noncommutative algebras arise as bichar-
acter twisted tensor products, sometimes in non-obvious ways. The main result thereby allows
us to significantly simplify various calculations in the literature, and to compute Hochschild
cohomology in several new classes of examples. In particular, we fully compute the Hochschild
cohomology of quantum complete intersection algebras, with any number of indeterminates.
One new tool which goes into the main theorem is orbit Hochschild cohomology, which can
be defined for algebras with a group action, and which satisfies twisted versions of the usual
Gerstenhaber algebra axioms.

1. INTRODUCTION

A twisted tensor product of two algebras is a very general construction which can be thought
of as a deformation of the ordinary tensor product. In this paper we consider the case in which
the multiplication is twisted by a bicharacter.

When the two factors are augmented, Bergh and Oppermann [3] completely describe the Ext
algebra as a twisted tensor product of the Ext algebras of the factors. Hochschild cohomology,
however, is more complicated, and they point out that the naive Kiinneth decomposition is
impossible. With the techniques at the time they were able only to describe a subalgebra of the
Hochschild cohomology ring, which may be thought of as the “untwisted part” of Hochschild
cohomology. It was left open how to describe the remaining truly twisted part; this we do
here. Moreover, we describe the full Gerstenhaber algebra structure in terms of that of the
component algebras.

Let R and S be algebras over a field k, graded by abelian groups A and B respectively. A
bicharacter t : A x B — k* determines a twisted tensor product algebra R ®' S, as explained
in Section 2 below. The following result combines Theorems 3.1, 4.7, and 5.1; all notation is
defined in Section 2.
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Theorem A. There is an isomorphism of Gerstenhaber algebras

HH*(R®'S)=~ @ HH'(R,R;)" ® HH*(S,,5)".
a€A, beB

Let M be an R-bimodule graded by A and let N be an S-bimodule graded by B. There is an
isomorphism of graded HH*(R @' S)-modules

HH*(R®'S,M @' N)= @5 HH"(R,M;)" @ HH*(S,aN)".
a€A, beB

The proof is elementary, and we give an explicit isomorphism at the level of Hochschild
cochain complexes. Nonetheless, the decomposition is somewhat unexpected and has nontrivial
consequences. In particular, it allows us to simplify drastically the calculation of Hochschild
cohomology for several classes of algebras, notably the quantum complete intersections, which
had previously required the combined efforts of a number of authors [2, 4, 5, 8] (see Section 6).

The fact that this decomposition is compatible with the cup product implies that the
Hochschild cohomology of twisted tensor products often has an extremely degenerate product
(see Corollary 4.8). The fact that it is compatible with the Gerstenhaber bracket means that it
can be used to simplify the often formidable task of computing brackets. Indeed, it allows one
to readily compute the Lie algebra HH! (R®"S) whose structure has been studied recently [14].

On the two factors appearing in the theorem we define a twisted cup product —; and twisted
Gerstenhaber bracket [, |; (coming from a chain level twisted circle product o;). These struc-
tures seem interesting in their own right, and we only begin to study them here. The rule for
combining these twisted structures together in the main theorem is a generalization of Manin’s
definition of the tensor product of two Gerstenhaber algebras [10]. We also indicate how this
decomposition can be thought of conceptually in terms of “orbit Hochschild cohomology” (see
Section 4).

Finally, we point out that bicharacter twisted tensor products are much more common than
they seem. Among the general twisted tensor products they can be thought of as the diago-
nalizable ones, with the gradings of R and S being thought of as eigenspace decompositions.
The perspective is applied to certain skew group algebras in Section 7.

Outline. Section 2 contains the necessary notation and homological notions. The main iso-
morphism is constructed in Section 3, at the level of graded vector spaces. In Section 4 we
handle the cup product and module structure, and then in Section 5 we treat Gerstenhaber
brackets, completing the proof of the above theorem. Finally, in Sections 6 and 7 we give
examples. After understanding the statement of the main theorem, the reader might skip to
the example sections to see how it is used.

2. PRELIMINARIES

Throughout this paper k is a field (but a commutative ring would be fine if everything in
sight is projective over k). All unlabeled tensor products and Homs are taken over k. We
denote by R® = R°®P ® R the enveloping algebra of a k-algebra R.
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Twisted tensor products of algebras. First we recall how the tensor product of two graded
algebras can be twisted by a bicharacter connecting their grading groups.
Let R and S be k-algebras that are graded by abelian groups A and B:

R:@Ra and sz@sb.

acA beB
Suppose also that ¢t : A x B — k* is a bicharacter, so that
t(a+d',b) = t(a,b)t(d,b), t(a,b+V') = t(a,b)t(a,b),
whenever a,a’ € A and b,b’ € B. For convenience we also use the notation
t(r,s) = t(a,b)
when r is in R* and s is in S, and similar notation for elements in graded modules.

With this data the twisted tensor product R ®' S is by definition the vector space R ® S,
with multiplication given by

(r@s) - (reos) =t s)rm ss

for homogeneous elements 7,7 € R and s,s’ € S.
Note that R ® S is naturally an A @ B-graded algebra with (R @' S)** = R* ® S° for all
a€ Aandbe B.

Example 2.1. If A and B are both Z and ¢ is the sign bicharacter ¢(a,b) = (—1), then this
construction yields the usual graded tensor product of two graded algebras (i.e. following the
Koszul sign rule).

Example 2.2. Let R = k[z]/(2™) and S = k[y]/(y") for some positive integers m,n > 2,
both graded by Z, with 2 and y in degree 1. Let ¢ € kX and t(a,b) = ¢ for a,b € Z. There
is a presentation

R ®t S = k<£[,‘, y>/(xm7 yn’ yxr — qu)‘
This is a quantum complete intersection in two indeterminates. The construction can be
iterated to obtain a quantum complete intersection in finitely many indeterminates. When
m = n = 2 and ¢ is not a root of unity, these are algebras of infinite global dimension

whose Hochschild cohomology is finite dimensional over k, as discovered by Buchweitz, Green,
Madsen, and Solberg [4].

We will present more examples in the final two sections.

Twisted tensor products of bimodules. Continuing in the setting of the last subsection,
suppose that M is an A-graded R-bimodule, and that N is a B-graded S-bimodule.

The twisted tensor product M ®! N is by definition the A @& B-graded R ®! S-bimodule
whose underlying graded vector space is M ® N, with R ®' S-action

(2.3) (res)-(men)=t(m,s)rm®sn and (Mn)-(rs)=tlr,n)mrns

for homogeneous elements r € R, s € S, m € M and n € N.

One may consider R ®' S as a bimodule over itself in the usual way, and this notation is
consistent in that R ®' S is indeed the bimodule twisted tensor product of the bimodules R
and S.
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Group actions. Let A= Hom(A, k*) be the group of linear characters of A. Since R is
graded by A, this group acts naturally on R by setting p-r = p(a)r for r € R* and p € A.

The bicharacter t induces a homomorphism B — E, which will be denoted b — b = t(—,b).
Through this, B acts naturally on R by ring automorphisms:

(2.4) b(r) = t(a,b)r forall re R®

Similarly, through the homomorphism A — B , denoted a — a = t(a, —), we obtain a natural
action of A on S. These actions allow us to twist the structures of R-bimodules and S-
bimodules as we describe next.

Twisting module structures along automorphisms. This is a separate (but, we will see,
related) use of the word “twist”.

Suppose that p is a graded k-algebra automorphism of R, and that M is a graded R-
bimodule. We denote by M, the graded R-bimodule obtained from M by twisting the right
R-module structure along p. That is to say, the left action of R is unchanged and the right
action is the composition

M,oR5 MeR - M,

where p is the given right module structure of M. In calculations we will need to distinguish the
old and new actions of R, so we will use -, to denote the twisted action and plain concatenation
for the original action:

(2.5) m -, =mp(r).

Similarly, one may twist the left module structure along p to obtain a bimodule ,M.

In particular, any R-bimodule M can be twisted by an element of B to produce a new
bimodule M;. And any S-bimodule N can be twisted by an element of A to produce a new
bimodule zN. It is these twists which appear in the main theorem.

The bar construction and Hochschild cohomology. Mostly in order to fix notation,
we quickly recap the usual construction of the Hochschild cochain complex, and some of the
structure that it enjoys.

Denote by BR the unreduced bar construction, which is a Z-graded vector space with B, R =
R®™. We use the bar notation 1 ® -+ ® ry, = [r1] -+ - |rm]. The bar construction comes with
a differential bg: By R — By 1R given by bg[ri|- - [rm] = S0 (1) | - - [ririca| - - [7m)-

The bar construction can be used to build resolutions. In particular, the bar resolution of
R is by definition the complex R ® BR ® R with the R-bilinear differential given by 9(1 ®
[ra]- - r] ©1) =

@ [ro - rm] @1+ 1@ bR[r1] - [rm] @ 1+ (=1)™1 @ [r1] -+ - [rm—1] @ T'm.
Using this differential we get a free resolution R ® BR ® R — R of R-bimodules. In Section
5 we will use the short-hand B(R) = R ® BR ® R for the bar resolution.

If M is an R-bimodule, the unreduced Hochschild cochain complex C*(R, M) is by defi-
nition Hom(BR, M). Its differential is inherited from the bar resolution by way of the iso-
morphism Hom(BR, M) = Hompge~(R ® BR ® R,M). Explicitly, if f € C™(R, M) then
Of)lrl- - lrmya] =

(2.6) riflral - [rmaa] + Forlr - frme] + (D)™ f ] [rm]rmea
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for r1,...,7m+1 in R. The homology of C*(R, M) is the Hochschild cohomology HH*(R, M)
of R with coefficients in M.

From the A-grading of R and M, each of BR and C*(R, M) and HH*(R, M) inherit an
A-grading.

All of the above applies just as well to S with its B-grading, and indeed R ®' S with its
A @ B-grading.

The twisted bar resolution. One may tensor together the bar resolutions of R and S, with
action as in equation (2.3), to obtain (by the Kiinneth Theorem) a quasi-isomorphism

(R BR®R)®'(S® BS®S) — R®'S.

The left-hand side has its usual tensor product differential here; the twist only affects the
bimodule structure.
Now, there is a unique R ®' S-bimodule isomorphism

(ROBR®R)®' (S®BS®S) = (R®'S)® BR® BS® (R®!S)
such that
@l rp]@) @A @ [s1]-[sp] ®1) = A1) @ [r1]-|rm] @ [s1]--[sp] @ (1 ®1).

If we write out in full what happens to the differential under this isomorphism we obtain the
following proposition.

Proposition 2.7. (R®'S)® BR® BS ® (R®'S) is naturally an R®"' S-bimodule resolution
of R®'S when equipped with the following differential:

0 (1)@ |rm] @ [s1] - [sn] ®@ (1®1)) =
(1 @1) @ [ra| - rm] @ [s1] -+ [sn] @ (1 @ 1)+

(1®1) @bgri| - |rm] @ [s1]-- - [sn] ® (1 ® 1)+

(=)™t (rm, ) A @ 1) @ [r1] -+ [rima] @ [s1] -+ [sn] @ (rm © 1)+

(=1)™t(a, 1) (1@ 81) @ [r1] -+ [rm] @ [s2] -+ [s0] @ (1@ 1)+

(D)"A®@1) @ [r1] - [rm] @ bg[s1]--[sp] ® (1 @ 1)+

(=D)™AR D) @ [r1] - |rm] @ [s1] -+ [sn—1] @ (1@ s).

Here a is the A-degree of [ri|---|rm] and b is the B-degree of [si|- - |sn].
Moving on, we also will need to use the diagonal map
(2.8) A: BR® BS — BR® BS @ BR® BS
from [8], which is by definition given by
Afry] - frm] @ [s1] -+ [sn] =

DD tan, b)) 7l ] @ Dl - 155] @ il 1] @ [sial -+ [sal,
1,J
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the sum over 1 < i < m, 1 < j < n, where a; is the A-degree of [r;11|---|rp], and b; is the
B-degree of [s1] - |s;].

The complex C/(R,S,M,N) and its structure. The differential described in Proposition
2.7 above induces a dual differential on

Hom(BR® BS,M @ N)
=~ Hom(pgrgye (R®'S) ® BR® BS® (R®"S), M &' N).

We will write Cf (R, S, M,N) for the complex Hom(BR ® BS, M ® N) equipped with this
differential. By construction, the homology of this complex is the A & B-graded Hochschild
cohomology HH*(R ®' S, M &' N).

Taking M = R and N = S the complex C;(R, S, R, S) has a natural product

f—g=pf®g)A

where p is the product on R ®' S and A is the diagonal map (2.8). In [8] it is explained why
this computes the usual cup product on HH*(R @' S, R @' S). In fact, one can check that
this makes C}(R, S, M, N) into a dg algebra quasi-isomorphic to the usual Hochschild cochain
algebra of R @' S.

Let us introduce some notation which will be useful for the rest of the paper. With enough
finiteness conditions (see the beginning of Section 3) any element of C} (R, S, M,N) can be
split into a sum of parallel tensor products of maps BR — M and BS — N. We use the
square X as our notation for this parallel tensor product, so

(2.9) (fRg)([r] @ [s]) = (=1)"™" flr] @ gls]

for elements f € C™(R, M), g € C™(S,N), [r] = [r1]| - |rm] € BmR and [s] = [s1|---|sn] €
B, S. With this notation, expanding the cup product explicitly on elements gives the following
lemma.

Lemma 2.10. Take elements f € C™(R,R)?, f' € C™(R,R)¥, g € C™(S,8)" and ¢ €
C™ (S, 8)Y. Then the cup product on Cf(R, S, R, S) satisfies
(FRg) — (f'®g) ([l Irmrm] @ [s1] - [snar])

= (_1)i RN A(STEEE ‘rm]f/[rm—i-l’ s Pyl @ gls1] - lsn]g/[sn—&-l‘ St

where i=mn +nn +m'n’ +mm’ +mn
and t* =t(d,b)t(d, s)t(r',b).

Here ' is the A-degree of [rm+1|- - |Pmams] and s is the B-degree of [s1| -+ |sp].

3. MAIN RESuULT

First we impose some finiteness conditions: we require each component R* of R to be finite
dimensional, and we require that the subset supp(R) = {a € A : R* # 0} C A satisfies the
condition that n-fold addition supp(R)*™ — A has finite fibers for all n. This just means that
R®" is degree-wise finite dimensional for each n. Certainly if R is finite dimensional (in total)
then there is nothing to worry about. We assume the same for S and its B-grading.
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Using the notation (2.9), we define a map of Z @& A @ B-graded vector spaces
¢: Hom(BR, M) ® Hom(BS, N) — Hom(BR ® BS,M @ N)

feg — [Hg
Theorem 3.1. Under the just stated finiteness conditions, ¢ induces an isomorphism

HH*(R®'S,M @' N)= @5 HH*(R,M;)" ® HH*(S,;N)"
a€cA, beB

of graded vector spaces.

In the next two sections we refine the theorem by describing cup products and Gerstenhaber
brackets on Hochschild cohomology of HH*(R @' S) in terms of this direct sum decomposition
when M = Rand N = S.

Remark 3.2. Let us note the difference between graded algebras and gradable algebras. In
some contexts the groups A and B may be considered only as auxiliary data allowing one to
encode the twist which constructs R ®' S. Then one might be interested in the ordinary Z-
graded Hochschild cohomology, computed by first forgetting the A& B-grading. This can be a
subtle issue with real consequences (Hochschild cohomology need not commute with forgetting
a grading), but under our finiteness assumptions one can safely do this by using Theorem 3.1
to compute the A @ B-graded Hochschild cohomology and then forgetting the grading.

Proof of Theorem 3.1. Since each of BR, BS, M and N is degree-wise finite dimensional by
hypothesis, ¢ is an isomorphism of Z @& A @ B-graded vector spaces. Our task is only to show
that

(3.3) 6: C*(R, M;)" @ C*(8,aN)" — C{(R, S, M, N)"*

is a chain map. This will be a slightly tedious matter of checking that all the twists match up.
Take f in C™(R, M;)® and g in C™(S,4N)°.
We first compute ¢9(f ® g) = pI(f) @ g+ (—1)"¢df @ I(g). We can split this computation
into two cases corresponding to the two summands here. Specifically, we can evaluate this:

(I) on elements of the form [ri|- - |rmy1] @ [s1]---|sn); and (II) on elements of the form
(1l frm] @ [s1] -+ - [sna]-

We first deal with case (I). In this calculation we use the short-hand notation [r] =
[r1] -+ |Tm+1] and [s] = [s1]---|sn]. We use our formula (2.6) for the Hochschild differential.

Also remember our action notation from equation (2.5). Note that d(g)[s] = 0, so

0 (f@g) (@ [s]) == (=)™ (=1 riflra] - [rmsa] @ gls]
D™ (1) fbg[r] @ gs]
D™ (=) (=)™ flr ] ] P © gls]

1) foplr] @ gs]

- (=1)

- (=1

= (=) flra] - [rimga] @ glls]
- (=1

— (=pmmEmE =)

Tm+1,0) flr1] - |rm]rme1 @ g[s].
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Similarly in case (II), with [r] = [r1|-- - |rm] and [s] = [s1]| - - [sn+1], we have O(f)[r] = 0 so
1) ¢o(f @ g)(Ir] ®[s]) =

— (=) (=)M=0TY flF @ s1a glsal - s
= (=)™ (=)™ f[r] @ gbs]s]
— (=)D =0T (=) fr @ glsi| - sl
— (=1)""""t(a, 51) flr] @ siglsa| -+ [sn41]
— (=)™ flr] @ gbsls]
= (=1 (=)™ firl @ gl [salsna.

Next we calculate 9(¢(f ® g))([r] ® [s]) in the same two cases.

In case (I) we take [r] = [r1] - |[rme1] in (BppiR)® and [s] = [s1] - |s,] in (B,S)Y. We
use Proposition 2.7 to compute the differential on C;(R,S, M, N), and as in our previous
calculation the choice of [r] and [s] means that half the terms described in Proposition 2.7
vanish.

@

Ao(f@g)(rl@[s]) == (=)™ (=)™ (@ 1) flra| - [rm+1] © gls]

(=)™ (=1)"™" fbp[r] @ g[s]

— (=)™ (=) (=) (g1, )T ] ] © gl8) (P @1)
(=)™ ey flrg| - ] @ gls]

(=) fbglr] @ gls]

— (1) ) (0, 0) [l ] rmg © gls)-

The last line comes from the fact that

tH(rma1, b/)ilf[rl‘ o rm] @g[s](rma1 ®1) = Hrma, b/)ilt(rm-i—la b+bl)f[r1’ )T 1 ®@gls],

since g[s] has degree b+ b in B, and then t(rp,11,b) (11, b+ ) = t(rmi1,b). The result
matches exactly the calculation of pd(f ® g)([r] ® [s]) in case (I).

It remains to compute d(¢(f @ ¢))([r] ® [s]) in case (II), with [r] = [r1] - - - |7 in (B R)®
and [s] = [s1]- - - |spe1] in (Bpi1S)Y.

(1)

o(¢(f @ g)([r] @ s]) = — (=)™ (=)™ (=1)"t(a’, sn41) " (1@ 51) f[r] @ glsa| -+~ [sn41]
(=)™ (=)™ (=1)™ flr] ® gbsls]
— (=)™ (=0T (=0T i) @ glsi] - [sn](1© sng)
— (=1)"™"(a, sn41) flr] @ siglsa| - [sn41]
(=1)™" " flr] @ gbsls]
(=" (=" fr] @ glsil- -+ |snlsna.

This matches the computation of pId(f ® ¢)([r] ® [s]) in case (II), so we are done. O
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4. THE Cupr PrRODUCT

In this section and the next we explain how to handle the algebraic structure in Theorem 3.1.
But first we make a construction which seems to be interesting in its own right.

Orbit Hochschild cohomology. The following construction applies to any algebra with a
group action, but we may as well use the same notation as above and consider the (right) action
of the group B on R. The orbit Hochschild cohomology of R is by definition B, HH* (R, R;).

We can define a cup product on this graded vector space by the following formula, in terms
of the standard Hochschild cochain complex. If f € C™(R, R;) and f' € C™ (R, Ry, ), then we
set

(4.1) (f = f) Il rmgme] = (1™ flrn] - I 0O T |- [,

where the automorphism b is given by (2.4). Then f —; f’ is an element of cmtm/ (R, R@).

One can think of this product as follows: from the B-action on R we form an “orbit
endomorphism ring” @, HH*(R, R;) = P, Hompgev) (R, R;). Just as for ordinary Hochschild
cohomology the product can be defined using the (derived) tensor product ® gz on D(R®), but
it must involve a twist. The automorphism b can naturally be considered as a map Ry — ; R;
and the composition

o
R~ Rop R L0 R op Ry 2250 R g Ry = Ry,

is the map f —¢ f': R — Ry.
It is straightforward to check that the product is associative. Moreover, orbit Hochschild
cohomology is always twisted commutative in the following sense.

Proposition 4.2. The product (4.1) satisfies
frei f' = ()™ 0 f s f
whenever f € HH™(R, R;)* and f' € HHm'(R, RE,)G/. In particular,
f—tf =0 unless t(a’,b) =t(a, b)) .

Note that this implies commutativity with respect to the braided monoidal structure given
by t.

The second statement above is useful in calculations. It will mean that the Hochschild
cohomology of a twisted tensor product often has a very degenerate cup product.

Sketch of proof. One can do this with a twisted version of the usual Eckmann-Hilton argu-
ment [16], working in D(R®). But it will be useful for us later to introduce the twisted circle
product, so we follow Gerstenhaber’s original argument.

Given f € C™(R, R;) and f' € C™ (R, Ry) we define an element f'o; f in cmtm' LR R
according to the rule

(f"or O]« [rmamr—1] =

Z(—l)i(mlﬂ)f/[m R L ALY R || VY Py | 7S

i

b
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With this, a computation reveals that
O o ) +0(f") or [+ (=1)™ f' 01 0(f) = f =1 (07 1'0) = (=)™ f" =4 f.
So at the level of Hochschild cohomology,
Jree £ = (0 = (07UD).

Another computation shows that b= f’b = t(a’,b) 1 f’. The second statement follows from the
first by exchanging f and f’ twice. O

All of this applies just as well to the (left) action of A on S. There is a natural product on
the orbit Hochschild cohomology . 4 HH*(S,45) given by g —; ¢’ = ag — ¢, that is

(4.3) (9 =0 9 lsal -+ lsnin] = (=1 alglsa] -~ Isul) ¢'lsmra] -+ |snin]

for g € C™(S,:5)P and ¢ € C™ (S, #S)?'. As before this is associative and twisted commutative
in the following sense.

Proposition 4.4. The product (4.3) satisfies
g—1g =(=1)""ta,V)g —i g

whenever g € HH™(S, 35)° and ¢ € HH™ (S, 45)" .

The proof uses an analogous twisted circle product for S. We record it here for use in the
next section:

(9" ot 9)ls1l -+ [sntn—1] =
D (1IN @ s [d silglsign| - sl sipnrsa] o S
i

Remark 4.5. Orbit Hochschild cohomology is closely related to the twisted Hochschild coho-

mology used by Bergh to define twisted support varieties [1]. In fact, the twisted Hochschild
cohomology of op. cit. is isomorphic to a subalgebra of @,z HH*(R, R;) in the case B = Z.

The cup product in the main theorem. Because of the non-twisted tensor product in the
enveloping algebra (R ®' S)°" @ (R ®' S) which underlies Hochschild cohomology, there must
be some kind of untwisting appearing in the main theorem. This is manifest in the following

cup product on
(DHH (R, &) ® (€D HH*(S,45)),

beB a€A
which we define by the formula
(4.6) (f@g)— (f@g) =" 07 (f = [)® (g = d)

where g € HH™(S, ;5)" and f € HH™ (R, R(;,)a/. This is an “untwisted cup product” because
the twist ¢(a’,b) ! is the inverse of the expected one.
With this product, the diagonal subalgebra
P HH'(R, R;)* @ HH*(S,,9)
a€A, beB

becomes graded-commutative in the usual sense, because the twists from Propositions 4.2
and 4.4 cancel out. Hence, the following statement makes sense.
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Theorem 4.7. With the just defined product (4.6) on the left-hand side, when M = R and
N =S, the isomorphism ¢ of Theorem 3.1 is one of algebras:

P HH*(R, R;)" ® HH*(S,45)" — HH*(R®' S).
a€A, beB

In order to establish fully that the second isomorphism in Theorem 3.1 is one of HH* (R®"S)-
modules, we should also define an action of HH*(R®"S) on @, , HH*(R, M;)* @ HH*(S, alN)?

at the chain level, and show that ¢, defined in (3.3), respects this action. Since this is formally
extremely similar to the case M = R and N = S described above, without any further
interesting features, we omit the proof.

Combining Theorem 4.7 and Proposition 4.2 yields the following consequence.
Corollary 4.8. If z € HH*(R®' S, R ®' S)*" and 2’ € HH*(R®' S, R ®' S)*Y, then

z—a' =0 unless t(a',b) =t(a,b') .

So, despite HH*(R ®' S, R @' S) being graded commutative, the fact that it is built out of

twisted commutative algebras implies that its product is often very degenerate.

Proof of Theorem 4.7. We will check that the product defined in this section agrees with the
expression obtained in Lemma 2.10. Let f, f’, g and ¢’ be as in the statement of Lemma 2.10.
Firstly

(4.9) S((f@g)— (f'@g)) = ()" 1a,b) " (f = [)B (g —+ ),
SO we compute
(f = /)R (g =1 d) [ril [P ] @ [s1] - [Sngnr] =
(=1)" - flra] -+~ o] B(f/[rm—&-l‘ ) @ alglsi| - Isn]) g [smal - [sn4]
where i = mm/ +nn’ 4+ (m + m’)(n +n'). This is by defintion

(_1)i A f[rl| T |Tm]f/[rm+1‘ e |Tm+m’] ® 9[51’ e ‘Sn]gl[8n+1| T ’5n+n’]
where t* = t(a’ 4+ 1/,b)t(a,b+ s), with ' being the A-degree of [y 41|+ |Fmim/] and s being
the B-degree of [s1] - |sp].
If we multiply this by the scalar (—1)™"¢(a’,b)~! appearing in (4.9), then we find that our
coefficient matches that of Lemma 2.10, so we are done. O

5. THE GERSTENHABER BRACKET

We start by defining a bracket on @,z HH*(R, R;). Once again we point out that this
applies to any algebra with a group action. If f € C™(R, R;)* and f’ € C™ (R, RI;,)a/, then
by definition

e =t7 @ W) for f/ = (=)D f o,
where the twisted circle product o; was defined in Section 4.
Similarly, when g € C"(S,;5) and g € C™' (S, 45)", we define

[979/]t =go; g/ _ (_1)(n71)(n/,1)t71(a/’ b)g/ o g.
We refrain from discussing the sense in which these brackets make @,.z HH*(R, R;) and
D,ca HH*(S,4S) into “twisted Gerstenhaber algebras”.
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In the following theorem we combine the two brackets, adapting and generalizing a definition
of Manin [10] to define a bracket in the setting of twisted tensor products.

Theorem 5.1. The isomorphism ¢ of Theorem 3.1 is one of Gerstenhaber algebras:
P HH'(R R;)" ® HH*(S,:9)" — HH*(R®'S),
a€A, beB
where on the left-hand side, the bracket is defined by [f ®@ g, f' ® ¢'] =

(=DM @ (g =i g) + (D)™ = ) @ 19,9

Before proving the theorem, we summarize some results from [8, 12] that we will need for
computing brackets. Our bracket formula generalizes that given by Le and Zhou [9], who
showed that the Hochschild cohomology ring of a tensor product of algebras is isomorphic, as
a Gerstenhaber algebra, to the graded tensor product of their Hochschild cohomology rings.
Our result is a twisted analogue.

Note that the diagonal map A of (2.8) is coassociative and counital by its definition. There-
fore the Gerstenhaber bracket of f X g and f’ X ¢/, representing elements of HH*(R &' S),
may be computed as follows [12]. The circle product (f X g)o (f' X g’) can be taken to be the
following composition:

(5.2) (fRg)P(1 Qpgrs (f'Wg') Qrats 1)A(2),

where A®) = (A ® 1)A, and where ® is the homotopy given in [8, Lemma 3.5] for twisted
tensor products, in accordance with the theory of [12]. It is given by

® = (Gpr) ® Fis) + Fhr) © Gp(s))o
with Gp(g), Fé(s), Fpr)» GB(s), 0 defined as below, and B(R), B(S) the bar resolutions for
R and S. Letting ur: B(R) — R be the natural quasi-isomorphism, set
(5.3) F]lg(R) =pr®1pr) and  Fpg = 1lpr) @ (R,
as maps from B(R)®@g B(R) to B(R), where 1pp) is the identity map on B(R), and similarly
for B(S). The map Gp(g): B(R) ®r B(R) — B(R)[1] is defined by
(54) Gpr((ro@r|---rp-1] ®@1p) Or (1 @ [rpga] -+ [rn] @ rny1))
= (=P o @[] -+ [rpoalrplrpea] - Irn] ® g
for all rg,...,rp+1 in R. The chain map
o: (B(R) ® B(S)) ®pets (B(R) ® B(S)) = (B(R) ®r B(R)) @' (B(S) ®s B(S5))
is an isomorphism of (R ®' S)®-modules in each degree given by
o((z@y)® (@' ©y)) = (-1 y)(z @) ® (y©y)
on homogeneous elements in (B;(R) ® B;(S)) @rgts (Bp(R) ® By(S)).

Proof of Theorem 5.1. Let f, f', g, ¢’ be as before. We will compute the bracket [f X g, f' X ¢']
on the right side of the isomorphism in the statement of the theorem by applying it to elements
of the form

[7’1‘-~'|Tm//]®[81|~'-’Sn//] in BR® BS
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where m” +n” =m+m'+n+n' —1and r,...,7 € R, s1,...,8,» € S. We will first
compute the circle product (5.2), canonically identifying f,g, f', ¢’ with the corresponding
bimodule homomorphisms:

(fRg) o (fRgNAR 1]+ [rmr]@1) @ (1@ [s1] -+ [swr] @ 1))
=(fXyg) (GB(R) ® ng(s) + Fpp) ® GB(S)) o(1®(f'Rg)®1)A®
(T[] rm] ®1) @ (1@ [s1]- - |spr] @ 1))
= (fXyg) (GB ®F’ )+ Fpr) © Gas )) c(le(fRg)o1)(A®1)

1"

(ZZ 1D gl o)

=

3

.

j=0
(Q@fn]--llel) @@ a[s] s ©1))@rsts
(A [rjpal - frmr] @ 1) @ (1@ [si4a] -+ |sn0] © 1)))

=(fXg) (GB(R) ® FlB(S) + Fpr) ® GB(S)) c(le(fRg)®1)

—_

m’ n 7 7
(Z D> DD PO [y s st (el gl [sa] -+ Ls))
j=0 i=0 p=0 1=0
(Q@fmf---nel) @@ a[si] [ ©1))@rgts
(@ [ra]---|rjl @ 1) @ (1@ [spa] -+ |si] © 1))@ Rgrs
(A [rjpl-frm] @ 1) @ (L@ [sig1] - |sar] @ 1)))-

We wish to apply (1® (f'K¢')®1) to the above sum, so it suffices to consider only terms for
which m’ = j — [, n’ =i — p. The sign involved is thus

(_1)(P+l)(m'+n’) _ (_1)(m’+n’)(jfm’Jrifn’)7
and the above becomes

= (fXg) (GB(R) ® Fps) + Fhr) ® GB(S)> o

( Z Z z(m j 1)(i—n’)m’(_1)(m’+n’)(j—m’+i—n’)

T (gl o] 1l - st (Irjmga ] =< ) [sal -+ [simnr])
(A [r]-rjom] @ 1) @ (1@ [s1] - [8i—n/] ® 1))@ pets
(f([rj—mrgrl - 175]) @ g'([Si—msa] - [51])) O Rree s

(A [rjg] - rmr ] ®©1) @ (1 ® [sit1] - |spr] @ 1)))-
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Now apply the module action, and apply o (which comes with the sign (—1)(i_”/)(m//_j )), to
obtain

=(fXg) ( ®FB )+F§(R)®GB(S))U
( Z Z z(m j 1)(i—n’)m’(_1)(m’+n’)(j—m/+i—n’)
Jj=m'i=n
7 (gl ) Isa ] st (rjmmsa ] - I, [s1] -+ [sion])

t(f' ([rj—megal - Irs])s sl - |sieae])
(A [r1] - rjem] @ f([rjemrga] 1)) @ L@ [s1] -+ [8imw] @ g ([Sicnr g1l -+ 8i])) R Rars
(A [rjpa] - rmr] @1) @ (1@ [si41] -+ [snr] ® 1)))

= (fXg) (GB(R) ® Fpsy + Fpr) © GB(S)>

1

( Z Z —n/(m" —j ( 1)(ifn’)m’(_1)(m’+n’)(jfm’+i7n’)
j=m/i=n’
(gl frme] 1l - [t (rmmrga | -+ gl [sa] -+ [sizp])

t(f ([rjmrgal - Irs])s sl - - sic DE(rjaal - lrme s 1@ [s1] - - [8imw] © ¢ ([Si-nr 1] -+ - 53]))
(@[l o] ® F([rjmmrgrl - 175]) @R (L@ [rjga] -+ - [rme] @ 1)@
(

1@ [s1] < Jsin] @ g/ (simwrsa |-+ [5i])) @5 (1@ [sis] -+ s ©1)).

Denote by t** the twisting coefficient in the above equation, which simplifies to:
" =t(d, [s1] - i Dt([rjsl - e ], V).

Next we will apply Gp(r) ® F' le( gt FE;( R ® Gp(s), and there are signs associated to each
term. In applying Gp(g) ® F ll?( sy necessarily i = n’ for the image to be non-zero, and the sign
is (—1)7=™'. In applying Fpry ® Gp(s), necessarily j = m” for the image to be non-zero, and
the sign is (—1)"~" with an additional sign (—1)7=™'*+m" =7 = (—1)""=m" = (—1)™ (as for this
term, we take m” = m +m’) since the degree of the map Gp(g) is 1. The above expression
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thus becomes

m'

= (1) (D2 (=)D )G (1 [y ], )

j=m’

(1 [7“1| | | f (g —mega el  lrme] @ 1) @ (g ([s1] -+ - [8i]) @ [siga] - - [sar] @ 1)

4 Z (7, n’ym’ 1)(m’+n’)(m+i—n’)(_1)i_”'(—1)mt(a', [81’ ce ‘Sifn’})

i=n'

Q@ [r] -+ [rm] @ f([rmaa| -+ rme])) @ L@ [s1] -+ [simw |9 ([Si—a| -+ [siDsiga] -+ [snr] @ 1))

"

= N () ) (g ) G qyi-m

3

/

/

([ml || (Irjemesa |- I Dlbrgal - brme]) @ @ (9 (s1] -+ [si])g([si1] -+ [swr])

I
3

J

+ Z (z n’ym’ 1)(m’+n’)(m+ifn’)(_1)1'711’(_1)171
([7"1| e )b ([ |- 1)) @ g((@'s1] - (655 wrlg ([si-nrga] -+ [si])siea] -+ [sp0])-

We wish to rewrite the sums. The first sum involves f o; f’, in which the term indexed by j
has a sign (—1)(m/_1)(3 ~m) The second sum involves g o; ¢’, in which the term indexed by i
has a sign (—1)(”/*1)(1'*"/). Accommodating these signs and rewriting, the above is equal to

(=)™ (f oy fYR(G i g) + () (f i [ R (g o g)
applied to the input. By Proposition 4.2, reversing the order of ¢/, ¢ in the first term, we
finally find that (f X g)o (f' X ¢’) is equal to

()" D a6 (for R (g =1 o) + ()™ (f — f)B (g oy g).
Similarly,
(f'® g)o(fXRyg)
= ()M D (f oy FYR (g <1 ) + ()™ V(= )R (g 01 g).

By Proposition 4.2, reversing the order of f’, f in the second term, we obtain
(—1)" D (f o FYB (g 1 ) + (—1)™ DN B)(f o )R (g o g).
We thus have found that
[fXg fHJ]
= (fRg)o(f'Ryg) — (~)m=D =D (' R g') o (f R g)
= (=1 @, V) (f o [ B (g =0 o)+ (=1 = f) R (g or g)
— (=)D (f oy [YR (gt g) — (=)D G b) (F o f) R (G 0 g).
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We are now ready to compare with the formula given at the start of this section, for [f ®
g, ' ® ¢'] on the left side of the claimed isomorphism in the theorem statement. This is

(1) =D @ (g =1 ¢) + (1™ D — f) @ 9, 9L
_ (_1)(m71)n’ (tfl(a7 b/)f oy f/ B (_1)(m71)(m/71)f/ oy f) ® (g - g/)
+ (1) (f Y@ (gor g — (1) DA b)g oy g).

Comparison with the previous calculation shows that

d(fog ffeod)=[fRg Ry =[(f®g),6(f @4 O

Remark 5.5. Bergh and Oppermann’s [3, Theorem 4.6] is a special case of our results. Their
result is recovered by restricting the isomorphism of Theorem 3.1 to the subspace graded
by kert(—, B) x kert(A,—) C A x B. This identifies exactly the part of @ HH*(R, R;)* ®
HH*(S, 45)° on which the twists act trivially. The Gerstenhaber bracket on HH*(R ®¢ S) was
partially computed by Grimley, Nguyen, and the second author in [8, Theorem 6.3] in terms
of Bergh and Oppermann’s decomposition. It is shown in loc. cit. that on the untwisted part
of HH*(R ®! S) (i.e. the restriction to kert(—, B) x kert(A, —)) the bracket can be computed
explicitly using the bracket on the two factors. Theorem 5.1 above extends this to all of
Hochschild cohomology, explaining how to account for the twists.

6. QUANTUM COMPLETE INTERSECTIONS AND ITERATED TWISTED PRODUCTS

In this section we present a series of examples, namely the quantum complete intersections,
as an application of our main theorem. We also explain how to extend the theorem to the case
of iterated twisted tensor product algebras.

We begin with the case of two indeterminates, continuing from Example 2.2 above. Fix q €
kE*. We consider the Hochschild cohomology of the quantum complete intersection Ag(m,n) =
k[z]/(z™) & k[z]/(2™). The two factors are graded by Z, generated in degree 1, and ¢ : ZxZ —
kX is the bicharacter t(a,b) = ¢®°. The Hochschild cohomology was computed for m = n = 2
in [4] , and then later for all m and n in [2, Theorem 3.3]. In [5] the cup product was computed
when m = n is the order of ¢ in £*. The Gerstenhaber brackets were computed fully in [8,
Section 5] in the case m =n = 2.

All of these results can be recovered using the main theorem of this paper, but for the sake
of novelty we deal with a new case here, and use Theorem 5.1 to calculate the Gerstenhaber
brackets on HH*(A,, ® A,,) for all m and n. There are many cases to consider, depending
on the characteristic of k and the order of ¢ in k™, and for the sake of brevity we will only
consider here the case that ¢ has infinite order. Let us emphasize however that all of the cases
can be dealt with readily (one only needs the patience to write them all out).

Theorem 6.1. If q is not a root of unity then as an algebra
HH*(Aq(m,n)) = k[U]/(U?) xx AL(V. W),

i.e. it is the fiber product of k[U]/(U?), U in degree 0, with an exterior algebra N\p(V,W), V,W
in degree 1. The bracket is given by

V,U]l = (m - 1)U, [W,U]=(n-1)U, and [V,W]=0.
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Proof. The algebra structure is known [2, Theorem 3.3], but we give the full calculation to
demonstrate Theorem 4.7.

Denote A(m) = k[z]/(z™) and take b € Z. We need to compute HH*(A(m), A(m);). There
is a well-known 2-periodic bimodule resolution of A(m):

Jj777, i—1 2t 2 _ =
OIS, (e [om] I A e [-1] S Ay,
where [i] denotes the shift in grading by i. Applying Hom ;) (—, A(m);) produces the complex

",

T z(1—q®
‘ TEE D ) £ Am),

ED N () m]

From this one can read off the cohomology (assuming that ¢® # 1 when b # 0):

7

A(m) if i =0,b=0
(1) if i =0,b%#0

(6.2) HH'(A(m), A(m);) = { (A(m)/(ma™1))[4 ] if i > 01is even,b=0
Anny () (ma™ ) [EEm + 1] if i > 0is odd,b=0
0 if i >0,b# 0.

The computation for HH (A(n), sA(n)) is essentially the same. When one comes to combine
these vector spaces according to the decomposition of Theorem 3.1, one finds that almost all
of the terms have at least one of the two factors equal to zero. The only surviving terms are

HH’(Ay(m,n))*™" = k(1 ®1)

HHO(Ag(m,n))" "1 = k(@™ ' @2 )
HH% J(m,n)?0 = k(1] ® 1)+ k(1 ® z[1))
HI? (Ag(m, n))*" = k(z[1] @ 2[1]).

This matches the desired result if we set U = 2™ @2 and V = z[1]®1 and W = 1@ z[1].
Lastly, [V, W] = 0 for degree reasons, and using Theorem 5.1,

V,U] = [z[1]®1,2™ @ 2"}
_ [x[lem—l]t ® xn—l o mm—l ® [xn—l7 l]t

=(m-1)z"tozs" ! -0,

where as usual, bracketing a degree 1 element with a degree 0 element amounts to applying
the corresponding derivation to the algebra element. Similarly [W,U] = (n — 1)a™ ! @ 2"~}
and this completes the proof. ([

Now we point out how the main result of this paper can be extended to the case of iterated
twisted tensor products. Suppose we have abelian groups Aj,..., A, and a collection t of
bicharacters t;; : A; x A; — k* for i < j. If Ry,..., R, are algebras graded by Ai,..., A,
respectively, we can form the twisted tensor product Ry ®'---®' R,,. As a graded vector space
this is R1 ® - - - ® R, and the multiplication is determined by (1®--- @ ®---®1)-(1®---®
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1@ - @rre---ol) ifi=j,
1@ - @rn®---Qre- 1) ifi<j
tjl'(’l“j,’l"i)(1®"‘®7“j®"‘®7“@'®"'®1) ifi>j.

Corollary 6.3. Let Ry,..., R, be algebras graded by abelian groups A, ..., A, respectively,
each satisfying the finiteness conditions from Section 3, and let t = {t;;} be a collection of
bicharacters as above. The Hochschild cohomology of R = Ry &' --- @' R, can be decomposed

n
HH*(R,R) = P QHH (Ri,ay.a, , (Ri)asia0)"
ai,...,an i=1
The cup product and Gerstenhaber bracket on HH*(R, R) can be computed from that of the
factors in this decomposition, in a similar way to Theorems 4.7 and 5.1.

We leave the last statement to be interpreted properly by the interested reader. We also
skip the proof, since it is a simple induction applying Theorem 3.1 repeatedly (using the fact
that Ry ®' --- ®' R,, can be viewed as an iterated twisted tensor product with two factors at
a time, in a similar way to [3, Lemma 5.1]).

As an application of Corollary 6.3 we compute the Hochschild cohomology of quantum com-
plete intersections with more than two indeterminates. This has yet wider applications; for
example, many Nichols algebras arising in the theory of pointed Hopf algebras have associ-
ated graded algebras that are quantum complete intersections, and this structure can have
important homological implications.

Let g be a collection of elements ¢;; in k* for i < j, and set t;; : Z x Z — k* to be the
bicharacter t(a,b) = qub. Extending our earlier notation from the case of two indeterminates
to many, we set

Ag(my,...,mp) = A(my) @ - @' A(my,).

Theorem 6.4. Assume that the scalars q;; freely generate a free abelian subgroup of k. Then
as an algebra

HH*(Ay(ma, ..., my)) 2 k[U/(U?) xi Af(Vi, -+, Vo),
i.e. it is the fiber product of k[U]/(U?), U in degree 0, with an exterior algebra N\j(Vi, ..., V),
V; in degree 1. The bracket is given by

Vi, U] = (m; = 1)U, and [V;,V;] =0.

The proof is very similar to that of Theorem 6.1, and so we will omit it. In the notation
there, U corresponds to 2™~ 1 ®---®@2™»~1 and each V; corresponds to 1 ®---®@2z[1]®---®1
(the z[1] in the ith position).

In general, the description of Hochschild cohomology of Ay(my,...,my) depends on what
kind of subgroup of £* the scalars g;; generate. Various other cases are easy to compute as
well, for example when all of the ¢;; are equal.

Bergh and Oppermann computed a part of Hochschild cohomology in the case of many
indeterminates, with its algebra structure. The authors of [2, 4, 5] do not treat the many
indeterminate case; it likely would not have been feasible with the methods available. Thus
Theorem 6.4 illustrates the usefulness of our main theorem.
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7. SKEW GROUP ALGEBRAS

In this section we give another large class of examples to which our main theorem applies,
including skew group algebras for which the group is abelian. We assume that k is algebraically
closed of characteristic 0, and we fix a finite abelian group G.

Let R be a finite dimensional algebra with an action of G, and let S be a finite dimensional
algebra graded by G. Then we can form the skew tensor product R X% S: as a vector space
this is the tensor product R ® S, and the multiplication is given by

(res)-(res)=rg(r') e ss

when s’ € S9. Let us explain how to see R x© S as a bicharacter twisted tensor product.
Recall that G = Hom(G, k*) denotes the group of linear characters of G, and there is a
natural bicharacter t : G x G — k™, t(¢,g) = ¢(g). Given ¢ € G we consider the eigenspace

R? = {r : g(r) = ¢(g)r for all g € G}.
Since k is algebraically closed of characteristic 0 we have a decomposition
R=PR?
el

(it would be sufficient to assume that k£ has enough roots of unity for this decomposition).
This makes R into a G-graded algebra. Putting all this structure together, we find that

Rx“S=R&"S.
Using this observation our main theorem immediately yields:
Corollary 7.1. In the above situation, there is an isomorphism of Gerstenhaber algebras
HH*(R x“ S, R x¢ §) = QO HH*(R, R;)® @ HH*(S, 4,5)".
®,9

For any finite dimensional algebra R with an action of G we can take S = kG with its natural
G-grading. The skew tensor product is in this case the well-studied skew group algebra

R#G =R x“ kG = R kG.

The next result can also be seen as resulting from a special case of a spectral sequence of Negron
[11] (which degenerates for us, by the assumption on k), although our statement accounts for
the full Gerstenhaber algebra structure.

Corollary 7.2. For any finite dimensional algebra R with an action of G, there is an isomor-
phism of Gerstenhaber algebras

HH*(R#G, R#G) = @ HH*(R, R;) = HH*(R, R#G)C.
g9

Proof. Since kG is semisimple, HH*(kG, kG) = kG, and HH*(kG, 4kG) = 0 if ¢ # 1. From
here the statement follows from Corollary 7.1. (|
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We remark that the algebra HH*(R, R#(G) appearing above is the orbit Hochschild coho-
mology which we considered in Section 4.

Finally, we apply this to the symmetric algebra on a vector space with a group action.
Let G be a finite abelian group acting on a finite dimensional vector space V. This action
extends naturally to an action on the symmetric algebra S(V') and we are in the situation of
Corollary 7.2, except that S(V') is not finite dimensional. However, because of the additional
Z-grading on S(V), all of the isomorphisms needed for Corollary 7.2 are valid in this context.
We recover—in the abelian case—a result of Buchweitz, proved independently in work of
Farinati [6] and Ginzburg and Kaledin [7].

Corollary 7.3. For any finite dimensional vector space V with an action of G, there is an
isomorphism of Gerstenhaber algebras

HH*(S(V)#G, S(V)#G) = HH*(S(V), S(V)#G)C.

Shepler and the second author investigated the cup product structure of the Hochschild
cohomology HH*(S(V)#G, S(V)#G) in [15]. Their description of this structure can be re-
covered by inspecting our proof above (but note that they work more generally with any
finite group). Similarly, Negron and the second author described Gerstenhaber brackets on
HH*(S(V)#G, S(V)#GQ) for any finite group G, and [13, Theorem 5.2.3] can be recovered, in
case G is abelian, from our Corollary 7.3 above.
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