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A B S T R A C T   

Background: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although 
various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is 
still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the 
LUAD patients. 
Methods: Survival analysis was used to identify the prognostic genes. Gene co-expression network analysis was 
used to identify the hub genes driving the tumor development. A profile-based drug repositioning approach was 
used to repurpose the potentially useful drugs for targeting the hub genes. MTT and LDH assay were used to 
measure the cell viability and drug cytotoxicity, respectively. Western blot was used to detect the expression of 
the proteins. 
Findings: We identified 341 consistent prognostic genes from two independent LUAD cohorts, whose high 
expression was associated with poor survival outcomes of patients. Among them, eight genes were identified as 
hub genes due to their high centrality in the key functional modules in the gene-co-expression network analysis 
and these genes were associated with the various hallmarks of cancer (e.g., DNA replication and cell cycle). We 
performed drug repositioning analysis for three of the eight genes (CDCA8, MCM6, and TTK) based on our drug 
repositioning approach. Finally, we repurposed five drugs for inhibiting the protein expression level of each 
target gene and validated the drug efficacy by performing in vitro experiments. 
Interpretation: We found the consensus targetable genes for the treatment of LUAD patients with different races 
and geographic characteristics. We also proved the feasibility of our drug repositioning approach for the 
development of new drugs for disease treatment.   

1. Introduction 

Lung cancer is the most lethal cancer worldwide, causing more than 
1.7 million deaths in 2020 [1]. Lung adenocarcinoma (LUAD) is the 
most prevalent histologic subtype in lung cancer, and accounts for half 
of all lung cancer deaths [2]. LUAD has a strong association with 

smoking history, while it also showed an increasing occurrence in 
non-smokers [2]. Patients with localized and early-stage tumor receive 
standard surgical resection, but the majority of patients are usually 
diagnosed at an advanced stage and recommended the conventional 
therapies including chemoradiotherapy, targeted therapy and immu-
notherapy. Various mutations in genes EGFR, ALK, KRAS, ROS1, BRAF, 
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NTRK1/2/3, MET, RET, and ERBB2 are observed in LUAD patients with 
relatively high coverages and these genes are involved in the molecular 
testing for patients’ targeted therapy recommendation in clinical prac-
tice [3]. For instance, the first-line treatment for patients with EGFR 
activating mutations includes tyrosine kinase inhibitors osimertinib, 
erlotinib, afatinib, gefitinib and dacomitinib. Despite these different 
therapy regimens, 5-year overall survival rate ranges from 4 % to 17 % 
depending on different tumor stages and regions [4]. Thus, there is need 
to discover new drug targets and develop effective drugs for LUAD 
treatment, and thus improve the survival outcomes of patients. 

Numerous studies have focused on the identification of biomarker 
genes based on the bioinformatics analysis of transcriptomics profiles of 
LUAD patients [5–13]. These studies validated the importance of the 
identified biomarkers by proving the prognostic value of these genes or 
linking these genes with some meaningful tumor hallmarks, e.g., im-
mune infiltration, cell differentiation or glycolysis. However, none of 
these studies attempted to find the potential drug candidates for tar-
geting the marker genes. Computational drug repositioning (CDR), aims 
to identify new uses of existing drugs based on data driven analysis, has 
now been widely used in drug discovery for development of treatments 
for different human diseases. Traditional drug discovery utilizes a de 
novo design approach, which requires high cost and many years of drug 
development before it reaches to the market. In contrast, CDR can 
dramatically decrease the overall cost, time duration and development 
risks of bringing the drug to market because it aims to reuse the clinical 
drugs or compounds under preclinical investigation, Moreover, the 
safety, pharmacokinetic profiles, formulation development and even 
bulk manufacturing of these drugs have been well-characterized in early 
medical investigation and these processes can be therefore by-passed. 
The recent meaningful examples were observed from the current 
Covid-19 outbreak. JAK inhibitor baricitinib and antiviral medicine 
paxlovid (nirmatrelvir /ritonavir) have been authorized for emergency 
use by FDA for the treatment of Covid-19 patients, which are previously 
used for treatment of rheumatoid arthritis and HIV infection, respec-
tively. CDR, including various data-driven approaches such as drug/-
protein structure-based similarity analysis and gene expression 
profile-based signature matching or pathway modulating, provides a 
systematic way to discover all possible pairs between the drugs and 
disease targets or pathways [14–17]. It also provides information about 
the mechanisms of action of a drug in disease treatment. Especially, 
profile-based CDR does not rely on the prior knowledge, and it increases 
the ability to discovery new drug-disease-target pairs [18]. It has been 
reported that drug repositioning accounts for approximately 30 % of the 
newly FDA-approved drugs and vaccines in recent years [19,20]. Huang 
et al. identified 1597 LUAD-related genes and applied a network-overlap 
and -distance based drug repositioning method to detect the potential 
drug candidates for targeting these genes [21]. However, this study did 
not provide any experimental validation for the drug efficacy. Bastiani 
et al. [22] and Kwon et al. [23] employed a profile-based drug reposi-
tioning approach by mapping the drug-induced and LUAD-associated 
gene expression profiles based on the hypothesis that a drug is consid-
ered to have a therapeutic worth if it can reverse the disease-associated 
molecular dysregulation. However, a drug identified by this method is 
supposed to have multiple gene targets, mixed with driver oncogenes 
and passenger genes, which limits the understanding and validation of 
the drug mechanism of action. To solve this problem, we recently pro-
posed a computational drug repositioning method to predict the drugs 
that can target a specific gene instead of general regulation of a set of 
disease-related genes [15]. Moreover, we have validated the feasibility 
of our drug repositioning approach for the treatment of kidney and liver 
cancers as well as non-alcoholic fatty liver disease [15,24,25]. 

In this study, we identified the hub genes that drives the LUAD 
development and repurposed the promising drugs that can target these 
genes. First, we identified consensus prognostic genes in two indepen-
dent LUAD cohorts based on survival analysis. Secondly, we constructed 
the cohort-specific gene co-expression networks based on their 

transcriptomics profiles and identified a set of gene modules associated 
with the patients’ prognoses. Further, we identified potential the 
promising drugs for these targets and validated the drug efficacy by 
performing in vitro cell line experiments. 

2. Methods 

The whole study design was shown in Fig. 1. To identify the thera-
peutic target genes and effective drugs for targeting these targets, we 
performed four steps of systems biology-based analyses based on the 
RNA-seq profiles of two independent LUAD cohorts. Step 1. Identify the 
prognostic genes by survival analysis. Step 2. Find the central prognostic 
genes based on the gene co-expression network analysis. Step 3. Rank 
the drugs based on a profile-based drug repositioning approach. Step 4. 
Validate the drug efficacy using an in vitro model. The methodology was 
described in detail as below. 

2.1. Data pre-processing 

The metadata and raw RNA-seq data of 497 LUAD patients from the 
TCGA cohort were downloaded from the GDC data portal (https://por-
tal.gdc.cancer.gov/) [26]. Another independent cohort is from 199 
non-small cell lung cancer patients surgically treated during 2006–2010 
at the Uppsala University Hospital, Uppsala, Sweden (NCBI SRA data-
base: SRP074349) [27,28]. From this cohort, we only used the RNA-seq 
data of 105 LUAD patients whose survival information was available. 
For both datasets, count and transcripts per million (TPM) values of 
transcripts were quantified by Kallisto based on the human reference 
genome Ensembl V103 [29]. Only protein-coding transcripts were 
filtered for further analysis. The sum count or TPM value of different 
alternative splicing transcripts from a gene was used as the gene 
expression value of this gene. Moreover, the genes with average TPM 
values > 1 were analyzed in this study. 

2.2. Survival analysis 

Cox proportional hazard regression was used to evaluate the asso-
ciation between gene expression levels and patients’ overall survival 
(OS) based on the ‘coxph’ function from the R package ‘survival’ [30]. 
P-value < 0.01 was used to identify the significantly prognostic genes. 

2.3. Functional enrichment analysis 

The ‘enrichGO’ function from the R package ‘clusterProfiler’ (version 
4.2.2) was used for the Gene ontology (GO) enrichment analysis, which 
detected the significantly enriched GO terms based on the hypergeo-
metric distribution [31]. The ‘org.Hs.eg.db’ database was used as the GO 
term source (version 3.14.0). GO terms with FDR < 0.05 were used for 
further analysis. P-values were adjusted based on the 
Benjamini-Hochberg method. 

2.4. Gene Co-expression network analysis 

Based on the TPM values of genes, we employed the Spearman cor-
relation to calculate the association of all possible gene pairs across all 
tumor samples in each cohort. Then, we constructed the gene co- 
expression network by extracting the gene-to-gene links ranked within 
top 1 % based on the highest correlation coefficients in each cohort. 
Then, a random walks-based algorithm, named Walktrap, was used to 
identify the gene modules with high transitivity [32]. The function 
“cluster_walktrap” in R package “igraph” was used to implement the 
Walktrap algorithm. Unweighted edges were used for community 
detection (weights=NULL) and the default settings recommended by 
this function were used for other parameters. Modules with more than 
50 genes and clustering coefficients higher than 0.5 were used for 
further analysis. Clustering coefficient ranges from 0 and 1, and value 
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higher than 0.5 is a commonly used cutoff which indicates that the 
partitions have a good cluster tendency and the genes involved in each 
module show a proper connectivity [33]. Degree, closeness, and 
betweenness values of genes were calculated in each module based on 
the R package ‘igraph’. 

2.5. Concordance analysis 

The accumulative hypergeometric model was used to determine 
whether two lists of prognostic genes had a significant overlap as pre-
viously described [15]. This model was also used to test to determine 
whether the genes involved in a module had a significant overlap with 
the prognostic genes. Jaccard indices were calculated as the size of the 
overlapped genes divided by the size of the union of two lists of genes. 

2.6. Essential scores of genes 

The essential scores of genes in 50 LUAD cell lines were obtained 
from the DepMap Portal (https://depmap.org/portal/), which were 
calculated based on the CRISPR-Cas9 essentiality screens while ac-
counting for the copy number-specific effect [34]. The score of a gene 
indicates the essentiality of this gene for cancer cell proliferation and 
survival after knockout of this gene by CRISPR-Cas9 technology. A more 
negative score indicates that the gene is more essential. 

2.7. Drug repositioning for target genes 

We applied our previously proposed drug repositioning approach to 
identify the potential promising drugs that can inhibit the target genes 

[15,24]. This method hypothesizes that a drug is considered to have an 
inhibitory effect on the expression of a target gene if this drug leads to a 
wide perturbation on the gene expression landscape in tumor cells 
which is similar to the effect of the knockdown of this target gene. The 
shRNA gene knockdown and drug perturbed transcriptomic gene 
signature profiles (level 5) of two LUAD cell lines A549 and HCC515 
were downloaded from the Expanded CMap LINCS Resource (version 
2020, https://clue.io/data/CMap2020#LINCS2020). The level 5 data 
provides the replicate-collapsed Z-scores, representing a consensus 
biological response of transcriptomics to the perturbation of drug 
treatment or gene knockdown derived from different replicates [35]. We 
performed the drug repositioning analysis for CDCA8, MCM6, and TTK 
since these genes had the available gene knockdown transcriptomic 
signature profiles. Each gene was knocked down by three different 
shRNAs, thus we obtained three gene knockdown perturbed signature 
profiles for each gene in both A549 and HCC515 cell lines. Meanwhile, 
we obtained 53,827 drug-perturbed signature profiles associated with 
13,945 unique drugs with different dosages and treatment durations in 
A549 cell line, and 16,133 drug-perturbed signature profiles associated 
with 5890 unique drugs in HCC515 cell line. 

In brief, there were four steps in the drug repositioning analysis. 
First, for a given gene, we created a drug-shRNA matrix by computing 
the Spearman correlation between this gene knockdown and drug 
treatment perturbed signature profiles in each cell line. In this matrix, 
each row represents a drug perturbagen with a specific dosage and 
treatment duration, and each column represents a gene knockdown with 
a specific shRNA. Second, we simplified the drug-shRNA matrix by 
selecting the optimal drug and shRNA perturbagens. A drug was added 
to the cells with different dosages and treatment durations in the CMap 

Fig. 1. Study design for the therapeutic target 
identification and drug repositioning for LUAD. 
Step 1. We identified a set of consistently 
prognostic genes based on the gene expression 
profiles of two independent LUAD cohorts and 
observed that the expression levels of these 
genes may indicate the survival outcomes of 
LUAD patients. Step 2. We constructed the gene 
co-expression network analysis in each of the 
two cohorts and identified the key gene mod-
ules that were also associated with patients’ 
survival outcomes. Further, the central prog-
nostic genes were identified based on the to-
pology analysis of these modules, which were 
denoted as the druggable targets. Step 3. We 
applied a profile-based drug repositioning 
approach and repositioned the drugs that can 
potentially inhibit the protein expression levels 
of these target genes. Step 4. We tested the drug 
toxicity and validated the drug efficacy using an 
in vitro model.   
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experimental setting. To maximize the drug effect, we only kept a 
unique and optimal dosage/duration which showed the highest corre-
lation coefficients with each shRNA perturbagen for each drug. Simi-
larly, a gene was knocked down by three different shRNAs. To maximize 
the gene knockdown effect, we only kept an optimal shRNA perturbagen 
for each gene, which showed the highest mean correlation coefficient 
across all drugs. After optimization, each coefficient in the drug-shRNA 
matrix represents the similarity between the effects induced by a specific 
drug treatment (row) and a specific gene knockdown (column). Higher 
coefficient value means high possibility of the inhibitory effect of a drug 
on its target gene. Third, we merged the drug-shRNA matrices from the 
two cell lines by extracting the common drugs. Drugs that were not 
presented in both cell lines were excluded. Finally, for each gene, the top 
five drugs with the highest mean coefficients from the two cell lines were 
selected as the most effective drugs. Meanwhile, the coefficients in both 
cell lines should be greater than 0.4 which was an empirical cutoff based 
on our previous in vitro experimental validation [15,25]. 

2.8. Cell culture, MTT, and LDH assay 

A549 cells were obtained from ATCC and cultured with culture 
medium (D0819 DMEM 10 % FBS 1% penicillin/streptomycin) at 37 ◦C. 
Cell viability was measured using an MTT assay. MTT ((3-[4,5-dime-
thylthiazol-2-yl]−2,5-diphenyltetrazolium bromide) (1×), at 5 mg/ml) 
was added for 1 h and formazan was dissolved with DMSO (dimethyl 
sulfoxide). Optical density at a wavelength of 570 nm was measured 
using a microplate reader (Hidex plate reader) to quantify the relative 
number of living cells. To determine treatment concentrations, cells 
were treated with serially diluted drugs until a concentration that 
reduced cell viability by around 50 %. As a result, 10 μM for CGP-60474 
(MedChemExpress, HY-11009), 10 μM for wortmannin (Sigma, W1628) 
and 100 nM mitoxantrone (Selleckchem, NSC-301739) were used. Cells 
were treated with the drugs at their designated concentrations for two 
days. 

Cytotoxic effect on the cells was measured with lactate dehydroge-
nase (LDH) assays that were performed in triplicates at the same con-
centrations as selected for the MTT assays following the LDH kit 
procedure (Abcam Cat# ab65393). 30 min after LDH (Abcam Cat# 
ab65393) administration, optical density at a wavelength of 450 nm was 
measured using a microplate reader (Hidex plate reader) to quantify the 
relative LDH activity which was released into the media via the drug’s 
cytotoxic effect. 

To normalize the quantification results, the mean negative control 
(untreated cells) reading was subtracted from each reading and then 
each was divided by the mean positive control (Cell Lysis Solution) 
reading minus the mean negative control reading. 

2.9. Western blotting 

Triplicates of drug treatments at the same concentrations as selected 
for the MTT assays were prepared for the Western blots. Whole cell 
lysate was extracted with CelLytic M (C2978, Sigma-Aldrich) lysis 
buffer. The protein content of each sample was measured using a 
Bradford assay and each sample was prepared for Western blotting using 
2x Laemmli buffer. Electrophoresis was run at 150 V for 40 min and 
membrane transfer was performed with the Trans-Blot Turbo Transfer 
System (Biorad). PVDF membranes were blocked for 30 min with 5 % 
skim milk and TBST (Tris Buffered Saline with 0.2 % Tween 20) and then 
treated overnight on a shaker plate at 4 ◦C with 0.5 % skim milk with 
TBST and MCM6 (Abcam Cat# ab201683) and TTK (Abcam Cat# 
ab187520) primary antibodies diluted 1:20000 and for 30 min with 
TUBA1A (Abcam Cat# ab7291, RRID:AB_2241126) primary antibodies 
diluted 1:20000. The solution was then replaced with a new solution of 
0.5 % skim milk with TBST and anti-rabbit (Abcam Cat# ab6721, RRID: 
AB_955447) or anti-mouse (Abcam Cat# ab6789, RRID:AB_955439) 
secondary antibodies diluted 1:20000 for 30 min. Luminata Forte 

Western HRP substrate (Thermofisher) was added before imaging. 
Western blots were imaged (LAS image) for 20 s, 1 min, or automatic 

exposure and quantification was performed using ImageJ [36]. MCM6 
and TTK expression levels were normalized by dividing by their corre-
sponding α-Tubulin expression levels and each drug treatment expres-
sion level was then normalized again by dividing by the mean 
normalized control expression level. 

2.10. Molecular Docking 

Molecular docking analyses were performed to comprehend the 
molecular interaction mechanisms between the target proteins and their 
correspondingly repositioned drug candidates. 3D-coordinates of the 
TTK protein were retrieved from the protein data bank (PDB ID: 4C4J) 
while alpha-fold structure of MCM6 was used [37]. Structures were 
optimized using quick prep tool of Molecular Operating Environment 
(MOE, V2019.01) suit to remove gaps, optimize angle, bond length, 
charges calculation and protonation of amino acids at physiological pH. 
The structures of the compounds were built using the MOE builder 
module and was charged and minimized by MMFF94x force field [38]. 
The standard default docking algorithm and scoring functions (triangle 
matcher algorithm, London dG and GBVI/WSA) were used. Hundred 
conformations were generated for each molecule that were analyzed 
based on clustering. Best suitable docked conformation was selected 
based on docking scores and interaction profile. 

3. Results 

3.1. Identification of prognostic genes 

We performed the univariate Cox survival analysis based on the gene 
expression profiles and patients’ OS in each cohort. As a result, we 
identified 1463 unfavorable genes whose high expression was associated 
with poor survival outcomes of patients and 166 favorable gene whose 
high expression was associated with good survival outcomes of patients 
in the TCGA cohort (p-value < 0.01). Similarly, we identified 1111 
unfavorable genes and 4 favorable genes in the Uppsala cohort, 
respectively (p-value < 0.01). We evaluated the concordance of these 
prognostic genes from the two cohorts and found that these two lists of 
unfavorable genes have a significant overlap (Fig. 2a, n = 341, hyper-
geometric test, p-value < 1.0E-12). GO enrichment analysis showed that 
the 341 overlapped unfavorable genes were significantly enriched in 
chromosome organization and segregation, cell cycle, nuclear division, 
and DNA replication pathways (Fig. 2b). Similar pathways were 
observed from the KEGG enrichment analysis (Fig. S1). A significant 
overlap was also observed between the two lists of favorable genes 
(Fig. 2a, n = 3, hypergeometric test, p-value < 1.0E-12). Since there 
were only three overlapped favorable genes, AMPD1, JCHAIN, and 
ZNF540, their functions were examined individually. AMPD1 encodes 
adenosine monophosphate deaminase which catalyzes AMP to IMP and 
it is a crucial enzyme in purine nucleotide and energy metabolism. It has 
been reported that AMPD1 expression level is positively correlated to 
immune cell infiltration level in LUAD [39]. JCHAIN encodes immu-
noglobulin J-chain which is essential in the formation and stabilization 
of polymeric IgA and IgM structures. The transcription of JCHAIN in the 
lungs substantially decreases during tumorigenesis, which can be 
explained by the immunosuppressing effect of tumor cells [40]. ZNF540 
acts as a transcriptional repressor, and it is associated with CD8+ T cells 
infiltrating in LUAD [41]. 

3.2. Identification of functional modules 

We performed Spearman correlation to estimate the association be-
tween each two genes based on their gene expression levels in each 
cohort. The top 1 % of the gene-to-gene links with the highest correla-
tions coefficients were extracted to construct the gene co-expression 
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network. We finally obtained around 2,012,288 gene-to-gene links with 
correlation coefficients ranging from 0.55 to 1 in the gene co-expression 
network of the TCGA cohort. Further, we used a random walks-based 
algorithm, Walktrap, to identify the gene modules with high transi-
tivity based on the topology of the CCN [32]. The modules with more 
than 50 genes and clustering coefficients higher than 0.5 were used for 
further analysis. In the TCGA gene co-expression network, we identified 
14 modules (M1-M14, containing 57–3466 genes) (Fig. 3a). We inves-
tigated the association of the modules with the 341 unfavorable genes 
based on concordance analysis (Table S1). We observed that M3 (455 
genes) and M4 (357 genes) had significant overlaps with these unfa-
vorable genes in the TCGA cohort (n = 126 and 20, respectively, hy-
pergeometric test, p < 0.01). Thus, these two modules were denoted as 
unfavorable modules. Functional enrichment showed that the genes 
involved in M3 were significantly enriched in the chromosome segre-
gation, DNA replication and repair, nuclear division, and cell phase 
transition related pathways (Table S2). The genes involved in the M4 
were significantly enriched in the extracellular organization and 
angiogenesis pathways (Fig. 3a). We obtained similar pathways by 
KEGG enrichment analysis (Table S3). 

Similarly, we obtained 1979,922 gene-to-gene links with correlation 
coefficient ranging from 0.57 to 1 in the gene co-expression network of 
the Uppsala cohort and found 12 modules (M1-M12, containing 
51–2664 genes). Among these modules, M4 (391 genes) and M7 (269 
genes) had significant overlaps with the unfavorable genes (n = 19 and 

99, respectively, hypergeometric test, p < 0.01, Table S4). Functional 
enrichment analysis showed that the two modules exhibited an identical 
set of GO and KEGG pathways resulting from the TCGA cohort (Fig. 3a, 
Table S5 and S6). Thus, we inferred that the unfavorable modules 
identified from the TCGA and Uppsala cohorts were highly consistent. 
Based on the concordance analysis, we observed that the TCGA M3 had a 
significant overlap with the Uppsala M7 (n = 242, hypergeometric test: 
p < 1.0E-12, Jaccard index = 0.5, Table S7). Similar result was observed 
for the overlaps of TCGA M4 and Uppsala M4 (n = 239, hypergeometric 
test: p < 1.0E-12, Jaccard index = 0.47, Table S7). These results sug-
gested that the unfavorable modules identified from the TCGA cohort 
were validated in the independent Uppsala cohort. In addition, a pair-
wise comparison was performed between the remaining modules iden-
tified in the two cohorts. Significant overlaps with high Jaccard indices 
were also found between TCGA M2 and Uppsala M3 which were 
enriched in adaptive immune system and cell differentiation pathways, 
TCGA M5 and Uppsala M8 which were enriched in angiogenesis and 
blood circulation pathways, TCGA M8 and Uppsala M9 which were 
enriched for extracellular transport and cilium assembly/organization 
pathways, and TCGA M11 and Uppsala M10 which were enriched in 
cytoplasmic translation, ribosome biogenesis, and p53 regulation path-
ways (Fig. 3b, Table S7). 

Fig. 2. Identification of prognostic genes. (a) Overlaps of prognostic genes from the two LUAD cohorts. (b) The top 20 most significant GO terms enriched with the 
341 overlapped unfavorable genes. 
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3.3. Identification of targetable genes 

To determine the hub genes that might drive the tumor development, 
we performed topological analysis to estimate the centrality of genes in 
these unfavorable modules. Degree, closeness and betweenness of genes 
were evaluated in each module. Then, we calculated the Spearman 
correlation of each centrality measurement between the pairwise 
matching of the unfavorable modules from the two cohorts. As a result, 
the correlation coefficients of degree, closeness and betweenness of 
genes were 0.86, 0.86 and 0.79 between TCGA M4 and Uppsala M4, and 

0.8, 0.8 and 0.58 between TCGA M3 and Uppsala M7 (all p-values <
1.0E-12, Figs. 4a and 4b). Further, we ranked the genes based on a 
descending order of each centrality measurement in each unfavorable 
module. The genes ranked within the top 20 in the matching unfavor-
able modules from the two cohorts were selected as the hub genes. Since 
the module sizes were 455, 357, 391, 269 for these unfavorable modules 
TCGA M3, TCGA M4, Uppsala M4 and Uppsala M7, respectively, we 
selected the top 20 ranking genes to balance the selection sensitivity and 
bias from different module sizes, and thus controlled the gene selection 
within the top 10 % (4–7 % in our cases) of genes with highest 

Fig. 3. Identification of functional modules. (a) Functional modules identified from the two cohorts. Module size indicates the number of genes involved in each 
module. Edge size indicates the number of correlations between genes from each two modules. Red filled module indicates it has a significant overlap with the 
unfavorable genes. Module border colors highlight different biological functions. Module without any annotation means its involved genes were not significantly 
enriched in any GO terms (FDR < 0.05). (b) Heatmap showing the overlaps between modules from different cohorts. Unfavorable modules and their overlaps were 
highlighted with red text and black border. Hypergeometric p-value significance codes: *< 0.05, ** < 0.01, ***< 0.001. 
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Fig. 4. Identification of the targetable genes. Spearman correlation of centrality measurements (a) between TCGA M4 and Uppsala M4, and (b) between TCGA M3 
and Uppsala M7. Each point represents a gene. The genes highlighted by red color indicate that these genes are ranked within the top 20 based on a descending order 
of the corresponding centrality measurement. The blue lines show a linear fit with the shaded region showing the 95% confidence intervals. In addition, r and p 
represent the Spearman correlation coefficient and p-value, respectively. (c) Essential scores of the selected genes in 50 LUAD cell lines. (d) Hazard ratios of the 
selected genes. Lines indicate 95% confidence intervals. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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centralities in each module. A union set of genes identified based on all 
the centrality measurements were used as the final hub genes. Totally, 
24 hub genes were identified. By including the three overlapped 
favorable genes, we finally obtained 27 hub genes. Further, we down-
loaded the essential scores of these genes in 50 LUAD cell lines from the 
DepMap data portal [34]. The essential score of a gene represents the 
essentiality of this gene for tumor cell proliferation and survival after 
knockout of this gene by CRISPR-Cas9 technology. A more negative 
score indicates worse survival of cells after the gene knockout. As shown 
in Fig. 4c, nine hub genes, KIF23, CDCA8, MAD2L1, MCM6, TPX2, 
NCAPH, CLSPN, TTK, and KIF4A, whose essential scores in 50 LUAD cell 
lines were smaller than 0, were selected as the targetable genes (Fig. 4c). 
These nine genes were all unfavorable for the patients’ prognoses, whose 
hazard ratios were higher than 1 (Fig. 4d). 

3.4. Drug Repositioning 

We applied our previously proposed drug repositioning method to 
identify promising drugs that can have an inhibitory effect on the 
expression of the targetable genes [15,24]. The algorithm is performed 
by comparing the similarity of molecular effect on tumor cells perturbed 
by a drug treatment and a gene knockout. This hypothesizes that a drug 
is considered to have an inhibitory effect on the expression of a target 
gene if this drug leads to a wide perturbation on the gene expression 
landscape in tumor cells which is similar to the effect of the knockout of 
this target gene (see details in the Method section). Among the nine 
targetable genes, only three genes CDCA8, MCM6, and TTK had the 
available transcriptomics signature profiles of two LUAD cell lines A549 
and HCC515 that were perturbed by the drug treatment and the corre-
sponding shRNA gene knockout from the LINCS database [42]. In brief, 
we first constructed the drug-shRNA matrix in which each element 
represents the similarity of the effect induced by a drug perturbagen and 
a shRNA gene knockdown perturbagen in each cell line. To maximize 
the drug treated and genetic perturbed effects, we simplified the 
drug-shRNA matrix by extracting an optimal dosage/treatment duration 
for each drug and an optimal shRNA for each gene. Further, we merged 
the two simplified drug-shRNA matrices from two cell lines by extract-
ing the same drugs. Finally, for each target gene, the top five drugs with 
the highest mean values of coefficients from two cell lines were selected 
as the potentially effective drugs (Table S8). Meanwhile, the coefficients 
in each cell lines should be higher than 0.4. As shown in Fig. 5a, we 
identified, as top candidate drugs, BRD-K43256821, EMF-BCA1–57, 
GSK-1059615, curcumin, and alvocidib for inhibiting CDCA8, oxetane, 
mitoxantrone, staurosporine, CGP-60474 and alvocidib for inhibiting 
MCM6, and mitoxantrone, wortmannin and NVP-BEZ235 for inhibiting 
TTK. Among them, only oxetane-containing drugs (e.g., taxol) and 
mitoxantrone are clinically used drugs, and others are pre-clinical drugs 
under medical investigation. 

3.5. Experimental validation of drug efficacy 

Among these repurposed drugs, we were able to obtain only CGP- 
60474, mitoxantrone, and wortmannin and tested these drugs in vitro 
model A549 cell line. First, we performed dose dependent MTT assays 
for each drug to select a proper concentration which could reduce the 
cell viability by 50 %. As a result, 10 µM for CGP-60474, 10 µM for 
wortmannin and 100 nM for mitoxantrone were determined (Fig. S2). 
Further, we tested MTT assay for cell viability and LDH assay for cyto-
toxicity. In MTT assay, cell viability was decreased to 29.1 % ± 0.7 by 
CGP-60474, 52.2 % ± 1.4 by mitoxantrone and, 62.3 % ± 2.4 by 
wortmannin (Fig. 5b). Interesting, LDH assays showed that 10 μM CGP- 
60474 and 10 µM wortmannin did not induce necrotic cell death, 
and100nM of mitoxantrone showed only 3.45% ± 0.4 necrotic cell 
death compared to the lysis positive control (100 %) and negative un-
treated group (0 %) (Fig. 5c). Taken together, cell viability and cyto-
toxicity assay results indicated that these drugs decreased the cell 

viability mainly by inhibiting the cell proliferation rather than inducing 
necrotic cell death procedure. To investigate whether the repurposed 
drugs could inhibit their corresponding genes we repurposed for, the 
protein expression levels of these target genes were evaluated in the 
A549 cell lines after drug treatment. Western blots showed that CGP- 
60474 and mitoxantrone significantly reduced the protein level of 
MCM6 (Fig. 5d and S3). Especially, mitoxantrone showed an extremely 
effective suppression on MCM6, with 95 % decrease of protein expres-
sion (Fig. 5d). In addition, mitoxantrone and wortmannin significantly 
inhibited the protein level of TTK by around 50 % (Fig. 5e and S3). 
Notably, CGP-60474, which was predicted to inhibit MCM6, also 
showed an inhibitory effect on TTK. These results suggested that the 
repurposed drugs effectively targeted the corresponding genes and 
reduced the tumor cell proliferation. 

3.6. Molecular docking 

We performed the molecular docking analyses to gain a deep insight 
of the binding mode between the validated drugs (mitoxantrone, CGP- 
60474, and wortmannin) and the target proteins (TTK and MCM6). 
The predicted docking scores for the binding interactions of mitoxan-
trone, CGP-60474 and wortmannin against TTK were − 9.39, − 8.18 
and − 7.28 (kcal/mol), respectively, representing moderate to strong 
interactions (Table S9). Furthermore, it was observed that there were 
mostly hydrophilic interactions between the hit compounds and the 
active site residues of TTK (Glu603, Gly605, Ser611, Ala651, Gln671 
and Met671) (Fig. 6a), while the aromatic ring of the compounds confers 
stability by forming hydrophobic interactions with the active site resi-
dues (Ile531, Val539, Ala551, Leu654, Ile663 and Asp664). The pre-
dicted docking scores for the binding interactions of mitoxantrone and 
CGP-60474 against MCM6 were − 7.54 and − 6.37 (kcal/mol), respec-
tively, representing moderate interactions (Table S10). Both drug can-
didates interacted with crucial residues of the protein by establishing 
hydrophilic (Gln212, Ala416, Arg217, Lys241, Ser413 and Arg573) and 
hydrophobic (Gln212, Ala213, Glu410 and Glu411) interaction 
(Fig. 6b). 

4. Discussion 

In this study, we employed an integrated approach to identify the 
therapeutic targets and repurposed the promising drugs for LUAD pa-
tients who cannot benefit from the clinically used chemotherapies or 
targeted therapies. As a result, we identified three druggable gene tar-
gets, CDCA8, MCM6 and TTK. CDCA8 encodes a component of the 
chromosomal passenger complex which is an essential regulator for 
mitosis and cell division. Supporting to our findings, it has been reported 
that the phosphorylation and activation of CDCA8 plays a key role in 
lung carcinogenesis and the suppression of CDCA8 significantly inhibits 
the growth of lung cancer cells [43]. MCM6 encodes one of the highly 
conserved mini-chromosome maintenance proteins that are essential for 
the imitation of eukaryotic genome replication. MCM6 was involved in 
the prognostic signatures for indicating the survival outcomes for 
particularly early-stage LUAD patients [5,6]. TTK encodes a dual spec-
ificity protein kinase with the ability to phosphorylate tyrosine, serine 
and threonine, which is a critical mitotic checkpoint protein for accurate 
segregation of chromosomes during mitosis [44]. It has been reported 
that TTK is overexpressed in tumor tissues compared to normal lung 
tissue and its selective inhibitor CFI-402257 shows significant antineo-
plastic activity in LUAD mouse models [45]. 

Further, we predicted that oxetane, mitoxantrone, staurosporine, 
CGP-60474 and alvocidib had a potential inhibitory effect on the 
expression of MCM6, and mitoxantrone, wortmannin, and NVP-BEZ235 
had a potential inhibitory effect on the expression of TTK. Among these 
drugs, we validated the drug efficacy of mitoxantrone and CGP-60474 
for targeting MCM6, and mitoxantrone and wortmannin for targeting 
TTK in in vitro model. Interestingly, CGP-60474 also suppressed the 
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Fig. 5. Drug repositioning and validation of drug efficacy in an in vitro model. (a) Correlation coefficients of the top drugs in A549 and HCC515 cell lines. The drug 
candidates were ranked by the mean values of correlation coefficients from the two cell lines. (b) Bar plot showing the cell viability of A549 cell line after drug 
treatment in MTT assays. (c) Bar plot showing the cytotoxicity on A549 cell lines after drug treatment in LDH assays. The ‘positive’ and ‘negative’ represent the lysis 
cells and DMSO treated cells, respectively. Difference between groups was estimated by the Student’s t-test. Western blots showing the inhibitory effect of drugs on 
the protein expression of (d) MCM6 and (e) TTK. Error bar represents standard error. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. 10 μM CGP-60474, 
10 µM wortmannin and 100 nM mitoxantrone were used for cell treatment. 
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protein level of TTK. In the drug repositioning analysis, we set that the 
correlation coefficient in both lung cancer cell line A549 and HCC515 
should be > 0.4 based on previously empirical setting in kidney cancer 
and liver diseases [15,24,25]. However, we found that the correlation 
coefficient of interaction between CGP-60474 and TTK was 0.3895 in 
the A549 cell line, which was in the border line but below the cutoff. 
Thus, unfortunately, we skipped this interaction based on above crite-
rion during the prediction. CGP-60474 is a potent inhibitor of CDK1 
which is one of the cyclin-dependent kinases [46]. Both CDK1 and TTK 
are involved the control of G1/S and G2/M phases [47,48] and these two 
genes showed a high correlation in expression across patients from 
LUAD TCGA cohort in our analysis (Spearman correlation coefficient 
= 0.88), which might explain that CGP-60474 can target TTK. Mitox-
antrone is an inhibitor of DNA topoisomerase II alpha (TOP2A), and it 
leads to cell deaths by the induction of double stranded DNA breaks 
[49]. It is currently applied in the treatment of breast and prostate 
cancers, lymphomas and leukemias. There were two phase II studies that 
failed to validate the antitumor activity of mitoxantrone in the treatment 
for lung cancer [50,51]. However, both studies had small sample sizes 
(each recruited 24 patients), and only advanced or metastatic 
non-small-cell lung cancer were involved. Based on our analysis, we 
suggest giving mitoxantrone for the treatment of LUAD patients with 
early-stage tumors, since its target gene MCM6 was particularly 
powerful for the classification of stage I tumors [5,6]. Wortmannin is a 

fungal metabolite that is identified as a potent and selective inhibitor for 
phosphoinositide 3-kinases (PI3Ks) [52]. It has been reported that 
wortmannin inhibits the growth of non-small cell lung cancer in in vitro 
and in vivo models [53] and its treatment reverses the cisplatin resis-
tance in lung cancer cells [54]. 

In this study, we used two different LUAD cohorts in which the pa-
tients had different geographic characteristics and cultural backgrounds. 
Despite these heterogeneities, we found the repeatable prognostic genes, 
functional gene modules and druggable targets. One limitation of this 
study is that we might ignore the drugs that do not affect the expression 
levels of target genes since our method is to check whether the drug 
perturbation is similar as the target gene knockdown/knockout/over-
expression perturbation on human cells. 

5. Conclusion 

This study demonstrated that our method is feasible in the thera-
peutic target identification and drug repositioning in LUAD. In this 
study, we identified nine targetable genes KIF23, CDCA8, MAD2L1, 
MCM6, TPX2, NCAPH, CLSPN, TTK, and KIF4A that were associated 
with patients’ survival outcomes and found that these genes play a 
central role in key functional modules, and they are essential for tumor 
cell growth. Moreover, we repositioned one clinically used drug 
mitoxantrone, and two pre-clinical drug candidates, including CGP- 

Fig. 6. Molecular docking analysis of predicted drugs and their corresponding targets. (a) Putative binding modes of mitoxantrone, CGP-60474, and wortmannin 
against TTK. (b) Putative binding modes of mitoxantrone and CGP-60474 against MCM6. Hydrogen bonds are presented as black dotted lines. 
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60474 and wortmannin, that are promising candidates for the treatment 
of LUAD patients to modulate MCM6 or TTK. For future work, it is 
worthwhile to validate the drug efficacy in in vivo animal models. 
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