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ARTICLE INFO ABSTRACT
Keywords: Background: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although
Lung adenocarcinoma various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is
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still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the
LUAD patients.

Methods: Survival analysis was used to identify the prognostic genes. Gene co-expression network analysis was
used to identify the hub genes driving the tumor development. A profile-based drug repositioning approach was
used to repurpose the potentially useful drugs for targeting the hub genes. MTT and LDH assay were used to
measure the cell viability and drug cytotoxicity, respectively. Western blot was used to detect the expression of
the proteins.

Findings: We identified 341 consistent prognostic genes from two independent LUAD cohorts, whose high
expression was associated with poor survival outcomes of patients. Among them, eight genes were identified as
hub genes due to their high centrality in the key functional modules in the gene-co-expression network analysis
and these genes were associated with the various hallmarks of cancer (e.g., DNA replication and cell cycle). We
performed drug repositioning analysis for three of the eight genes (CDCA8, MCM6, and TTK) based on our drug
repositioning approach. Finally, we repurposed five drugs for inhibiting the protein expression level of each
target gene and validated the drug efficacy by performing in vitro experiments.

Interpretation: We found the consensus targetable genes for the treatment of LUAD patients with different races
and geographic characteristics. We also proved the feasibility of our drug repositioning approach for the
development of new drugs for disease treatment.

1. Introduction smoking history, while it also showed an increasing occurrence in
non-smokers [2]. Patients with localized and early-stage tumor receive

Lung cancer is the most lethal cancer worldwide, causing more than standard surgical resection, but the majority of patients are usually
1.7 million deaths in 2020 [1]. Lung adenocarcinoma (LUAD) is the diagnosed at an advanced stage and recommended the conventional
most prevalent histologic subtype in lung cancer, and accounts for half therapies including chemoradiotherapy, targeted therapy and immu-

of all lung cancer deaths [2]. LUAD has a strong association with notherapy. Various mutations in genes EGFR, ALK, KRAS, ROS1, BRAF,
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NTRK1/2/3, MET, RET, and ERBB2 are observed in LUAD patients with
relatively high coverages and these genes are involved in the molecular
testing for patients’ targeted therapy recommendation in clinical prac-
tice [3]. For instance, the first-line treatment for patients with EGFR
activating mutations includes tyrosine kinase inhibitors osimertinib,
erlotinib, afatinib, gefitinib and dacomitinib. Despite these different
therapy regimens, 5-year overall survival rate ranges from 4 % to 17 %
depending on different tumor stages and regions [4]. Thus, there is need
to discover new drug targets and develop effective drugs for LUAD
treatment, and thus improve the survival outcomes of patients.

Numerous studies have focused on the identification of biomarker
genes based on the bioinformatics analysis of transcriptomics profiles of
LUAD patients [5-13]. These studies validated the importance of the
identified biomarkers by proving the prognostic value of these genes or
linking these genes with some meaningful tumor hallmarks, e.g., im-
mune infiltration, cell differentiation or glycolysis. However, none of
these studies attempted to find the potential drug candidates for tar-
geting the marker genes. Computational drug repositioning (CDR), aims
to identify new uses of existing drugs based on data driven analysis, has
now been widely used in drug discovery for development of treatments
for different human diseases. Traditional drug discovery utilizes a de
novo design approach, which requires high cost and many years of drug
development before it reaches to the market. In contrast, CDR can
dramatically decrease the overall cost, time duration and development
risks of bringing the drug to market because it aims to reuse the clinical
drugs or compounds under preclinical investigation, Moreover, the
safety, pharmacokinetic profiles, formulation development and even
bulk manufacturing of these drugs have been well-characterized in early
medical investigation and these processes can be therefore by-passed.
The recent meaningful examples were observed from the current
Covid-19 outbreak. JAK inhibitor baricitinib and antiviral medicine
paxlovid (nirmatrelvir /ritonavir) have been authorized for emergency
use by FDA for the treatment of Covid-19 patients, which are previously
used for treatment of rheumatoid arthritis and HIV infection, respec-
tively. CDR, including various data-driven approaches such as drug/-
protein structure-based similarity analysis and gene expression
profile-based signature matching or pathway modulating, provides a
systematic way to discover all possible pairs between the drugs and
disease targets or pathways [14-17]. It also provides information about
the mechanisms of action of a drug in disease treatment. Especially,
profile-based CDR does not rely on the prior knowledge, and it increases
the ability to discovery new drug-disease-target pairs [18]. It has been
reported that drug repositioning accounts for approximately 30 % of the
newly FDA-approved drugs and vaccines in recent years [19,20]. Huang
et al. identified 1597 LUAD-related genes and applied a network-overlap
and -distance based drug repositioning method to detect the potential
drug candidates for targeting these genes [21]. However, this study did
not provide any experimental validation for the drug efficacy. Bastiani
et al. [22] and Kwon et al. [23] employed a profile-based drug reposi-
tioning approach by mapping the drug-induced and LUAD-associated
gene expression profiles based on the hypothesis that a drug is consid-
ered to have a therapeutic worth if it can reverse the disease-associated
molecular dysregulation. However, a drug identified by this method is
supposed to have multiple gene targets, mixed with driver oncogenes
and passenger genes, which limits the understanding and validation of
the drug mechanism of action. To solve this problem, we recently pro-
posed a computational drug repositioning method to predict the drugs
that can target a specific gene instead of general regulation of a set of
disease-related genes [15]. Moreover, we have validated the feasibility
of our drug repositioning approach for the treatment of kidney and liver
cancers as well as non-alcoholic fatty liver disease [15,24,25].

In this study, we identified the hub genes that drives the LUAD
development and repurposed the promising drugs that can target these
genes. First, we identified consensus prognostic genes in two indepen-
dent LUAD cohorts based on survival analysis. Secondly, we constructed
the cohort-specific gene co-expression networks based on their
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transcriptomics profiles and identified a set of gene modules associated
with the patients’ prognoses. Further, we identified potential the
promising drugs for these targets and validated the drug efficacy by
performing in vitro cell line experiments.

2. Methods

The whole study design was shown in Fig. 1. To identify the thera-
peutic target genes and effective drugs for targeting these targets, we
performed four steps of systems biology-based analyses based on the
RNA-seq profiles of two independent LUAD cohorts. Step 1. Identify the
prognostic genes by survival analysis. Step 2. Find the central prognostic
genes based on the gene co-expression network analysis. Step 3. Rank
the drugs based on a profile-based drug repositioning approach. Step 4.
Validate the drug efficacy using an in vitro model. The methodology was
described in detail as below.

2.1. Data pre-processing

The metadata and raw RNA-seq data of 497 LUAD patients from the
TCGA cohort were downloaded from the GDC data portal (https://por-
tal.gdc.cancer.gov/) [26]. Another independent cohort is from 199
non-small cell lung cancer patients surgically treated during 20062010
at the Uppsala University Hospital, Uppsala, Sweden (NCBI SRA data-
base: SRP074349) [27,28]. From this cohort, we only used the RNA-seq
data of 105 LUAD patients whose survival information was available.
For both datasets, count and transcripts per million (TPM) values of
transcripts were quantified by Kallisto based on the human reference
genome Ensembl V103 [29]. Only protein-coding transcripts were
filtered for further analysis. The sum count or TPM value of different
alternative splicing transcripts from a gene was used as the gene
expression value of this gene. Moreover, the genes with average TPM
values > 1 were analyzed in this study.

2.2. Survival analysis

Cox proportional hazard regression was used to evaluate the asso-
ciation between gene expression levels and patients’ overall survival
(OS) based on the ‘coxph’ function from the R package ‘survival’ [30].
P-value < 0.01 was used to identify the significantly prognostic genes.

2.3. Functional enrichment analysis

The ‘enrichGO’ function from the R package ‘clusterProfiler’ (version
4.2.2) was used for the Gene ontology (GO) enrichment analysis, which
detected the significantly enriched GO terms based on the hypergeo-
metric distribution [31]. The ‘org.Hs.eg.db’ database was used as the GO
term source (version 3.14.0). GO terms with FDR < 0.05 were used for
further analysis. P-values were adjusted based on the
Benjamini-Hochberg method.

2.4. Gene Co-expression network analysis

Based on the TPM values of genes, we employed the Spearman cor-
relation to calculate the association of all possible gene pairs across all
tumor samples in each cohort. Then, we constructed the gene co-
expression network by extracting the gene-to-gene links ranked within
top 1 % based on the highest correlation coefficients in each cohort.
Then, a random walks-based algorithm, named Walktrap, was used to
identify the gene modules with high transitivity [32]. The function
“cluster_walktrap” in R package “igraph” was used to implement the
Walktrap algorithm. Unweighted edges were used for community
detection (weights=NULL) and the default settings recommended by
this function were used for other parameters. Modules with more than
50 genes and clustering coefficients higher than 0.5 were used for
further analysis. Clustering coefficient ranges from 0 and 1, and value



O.K. Graves et al.

Step 1: Identify prognostic genes

Uppsala cohort TCGA cohort

maa
i as e
v v
W "1_,
v v
[ Muns wsus smmss [ Msusuns unnas

Step 4: Validate in vitro

Step 2: Find central prognostic genes

Step 3: Rank drug candidates

Biomedicine & Pharmacotherapy 161 (2023) 114486

Fig. 1. Study design for the therapeutic target
identification and drug repositioning for LUAD.
Step 1. We identified a set of consistently
prognostic genes based on the gene expression
profiles of two independent LUAD cohorts and
observed that the expression levels of these
genes may indicate the survival outcomes of
LUAD patients. Step 2. We constructed the gene
co-expression network analysis in each of the
two cohorts and identified the key gene mod-
ules that were also associated with patients’
survival outcomes. Further, the central prog-
nostic genes were identified based on the to-
pology analysis of these modules, which were
denoted as the druggable targets. Step 3. We
applied a profile-based drug repositioning
approach and repositioned the drugs that can
potentially inhibit the protein expression levels
of these target genes. Step 4. We tested the drug
toxicity and validated the drug efficacy using an
in vitro model.
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higher than 0.5 is a commonly used cutoff which indicates that the
partitions have a good cluster tendency and the genes involved in each
module show a proper connectivity [33]. Degree, closeness, and
betweenness values of genes were calculated in each module based on
the R package ‘igraph’.

2.5. Concordance analysis

The accumulative hypergeometric model was used to determine
whether two lists of prognostic genes had a significant overlap as pre-
viously described [15]. This model was also used to test to determine
whether the genes involved in a module had a significant overlap with
the prognostic genes. Jaccard indices were calculated as the size of the
overlapped genes divided by the size of the union of two lists of genes.

2.6. Essential scores of genes

The essential scores of genes in 50 LUAD cell lines were obtained
from the DepMap Portal (https://depmap.org/portal/), which were
calculated based on the CRISPR-Cas9 essentiality screens while ac-
counting for the copy number-specific effect [34]. The score of a gene
indicates the essentiality of this gene for cancer cell proliferation and
survival after knockout of this gene by CRISPR-Cas9 technology. A more
negative score indicates that the gene is more essential.

2.7. Drug repositioning for target genes

We applied our previously proposed drug repositioning approach to
identify the potential promising drugs that can inhibit the target genes

[15,24]. This method hypothesizes that a drug is considered to have an
inhibitory effect on the expression of a target gene if this drug leads to a
wide perturbation on the gene expression landscape in tumor cells
which is similar to the effect of the knockdown of this target gene. The
shRNA gene knockdown and drug perturbed transcriptomic gene
signature profiles (level 5) of two LUAD cell lines A549 and HCC515
were downloaded from the Expanded CMap LINCS Resource (version
2020, https://clue.io/data/CMap2020#LINCS2020). The level 5 data
provides the replicate-collapsed Z-scores, representing a consensus
biological response of transcriptomics to the perturbation of drug
treatment or gene knockdown derived from different replicates [35]. We
performed the drug repositioning analysis for CDCA8, MCM6, and TTK
since these genes had the available gene knockdown transcriptomic
signature profiles. Each gene was knocked down by three different
shRNAs, thus we obtained three gene knockdown perturbed signature
profiles for each gene in both A549 and HCC515 cell lines. Meanwhile,
we obtained 53,827 drug-perturbed signature profiles associated with
13,945 unique drugs with different dosages and treatment durations in
A549 cell line, and 16,133 drug-perturbed signature profiles associated
with 5890 unique drugs in HCC515 cell line.

In brief, there were four steps in the drug repositioning analysis.
First, for a given gene, we created a drug-shRNA matrix by computing
the Spearman correlation between this gene knockdown and drug
treatment perturbed signature profiles in each cell line. In this matrix,
each row represents a drug perturbagen with a specific dosage and
treatment duration, and each column represents a gene knockdown with
a specific sShRNA. Second, we simplified the drug-shRNA matrix by
selecting the optimal drug and shRNA perturbagens. A drug was added
to the cells with different dosages and treatment durations in the CMap
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experimental setting. To maximize the drug effect, we only kept a
unique and optimal dosage/duration which showed the highest corre-
lation coefficients with each shRNA perturbagen for each drug. Simi-
larly, a gene was knocked down by three different shRNAs. To maximize
the gene knockdown effect, we only kept an optimal shRNA perturbagen
for each gene, which showed the highest mean correlation coefficient
across all drugs. After optimization, each coefficient in the drug-shRNA
matrix represents the similarity between the effects induced by a specific
drug treatment (row) and a specific gene knockdown (column). Higher
coefficient value means high possibility of the inhibitory effect of a drug
on its target gene. Third, we merged the drug-shRNA matrices from the
two cell lines by extracting the common drugs. Drugs that were not
presented in both cell lines were excluded. Finally, for each gene, the top
five drugs with the highest mean coefficients from the two cell lines were
selected as the most effective drugs. Meanwhile, the coefficients in both
cell lines should be greater than 0.4 which was an empirical cutoff based
on our previous in vitro experimental validation [15,25].

2.8. Cell culture, MTT, and LDH assay

A549 cells were obtained from ATCC and cultured with culture
medium (D0819 DMEM 10 % FBS 1% penicillin/streptomycin) at 37 °C.
Cell viability was measured using an MTT assay. MTT ((3-[4,5-dime-
thylthiazol-2-yl] —2,5-diphenyltetrazolium bromide) (1x), at 5 mg/ml)
was added for 1 h and formazan was dissolved with DMSO (dimethyl
sulfoxide). Optical density at a wavelength of 570 nm was measured
using a microplate reader (Hidex plate reader) to quantify the relative
number of living cells. To determine treatment concentrations, cells
were treated with serially diluted drugs until a concentration that
reduced cell viability by around 50 %. As a result, 10 pM for CGP-60474
(MedChemExpress, HY-11009), 10 pM for wortmannin (Sigma, W1628)
and 100 nM mitoxantrone (Selleckchem, NSC-301739) were used. Cells
were treated with the drugs at their designated concentrations for two
days.

Cytotoxic effect on the cells was measured with lactate dehydroge-
nase (LDH) assays that were performed in triplicates at the same con-
centrations as selected for the MTT assays following the LDH kit
procedure (Abcam Cat# ab65393). 30 min after LDH (Abcam Cat#
ab65393) administration, optical density at a wavelength of 450 nm was
measured using a microplate reader (Hidex plate reader) to quantify the
relative LDH activity which was released into the media via the drug’s
cytotoxic effect.

To normalize the quantification results, the mean negative control
(untreated cells) reading was subtracted from each reading and then
each was divided by the mean positive control (Cell Lysis Solution)
reading minus the mean negative control reading.

2.9. Western blotting

Triplicates of drug treatments at the same concentrations as selected
for the MTT assays were prepared for the Western blots. Whole cell
lysate was extracted with CelLytic M (C2978, Sigma-Aldrich) lysis
buffer. The protein content of each sample was measured using a
Bradford assay and each sample was prepared for Western blotting using
2x Laemmli buffer. Electrophoresis was run at 150 V for 40 min and
membrane transfer was performed with the Trans-Blot Turbo Transfer
System (Biorad). PVDF membranes were blocked for 30 min with 5 %
skim milk and TBST (Tris Buffered Saline with 0.2 % Tween 20) and then
treated overnight on a shaker plate at 4 °C with 0.5 % skim milk with
TBST and MCM6 (Abcam Cat# ab201683) and TTK (Abcam Cat#
ab187520) primary antibodies diluted 1:20000 and for 30 min with
TUBAI1A (Abcam Cat# ab7291, RRID:AB_2241126) primary antibodies
diluted 1:20000. The solution was then replaced with a new solution of
0.5 % skim milk with TBST and anti-rabbit (Abcam Cat# ab6721, RRID:
AB_955447) or anti-mouse (Abcam Cat# ab6789, RRID:AB_955439)
secondary antibodies diluted 1:20000 for 30 min. Luminata Forte
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Western HRP substrate (Thermofisher) was added before imaging.

Western blots were imaged (LAS image) for 20 s, 1 min, or automatic
exposure and quantification was performed using ImageJ [36]. MCM6
and TTK expression levels were normalized by dividing by their corre-
sponding o-Tubulin expression levels and each drug treatment expres-
sion level was then normalized again by dividing by the mean
normalized control expression level.

2.10. Molecular Docking

Molecular docking analyses were performed to comprehend the
molecular interaction mechanisms between the target proteins and their
correspondingly repositioned drug candidates. 3D-coordinates of the
TTK protein were retrieved from the protein data bank (PDB ID: 4C4J)
while alpha-fold structure of MCM6 was used [37]. Structures were
optimized using quick prep tool of Molecular Operating Environment
(MOE, V2019.01) suit to remove gaps, optimize angle, bond length,
charges calculation and protonation of amino acids at physiological pH.
The structures of the compounds were built using the MOE builder
module and was charged and minimized by MMFF94x force field [38].
The standard default docking algorithm and scoring functions (triangle
matcher algorithm, London dG and GBVI/WSA) were used. Hundred
conformations were generated for each molecule that were analyzed
based on clustering. Best suitable docked conformation was selected
based on docking scores and interaction profile.

3. Results
3.1. Identification of prognostic genes

We performed the univariate Cox survival analysis based on the gene
expression profiles and patients’ OS in each cohort. As a result, we
identified 1463 unfavorable genes whose high expression was associated
with poor survival outcomes of patients and 166 favorable gene whose
high expression was associated with good survival outcomes of patients
in the TCGA cohort (p-value < 0.01). Similarly, we identified 1111
unfavorable genes and 4 favorable genes in the Uppsala cohort,
respectively (p-value < 0.01). We evaluated the concordance of these
prognostic genes from the two cohorts and found that these two lists of
unfavorable genes have a significant overlap (Fig. 2a, n = 341, hyper-
geometric test, p-value < 1.0E-12). GO enrichment analysis showed that
the 341 overlapped unfavorable genes were significantly enriched in
chromosome organization and segregation, cell cycle, nuclear division,
and DNA replication pathways (Fig. 2b). Similar pathways were
observed from the KEGG enrichment analysis (Fig. S1). A significant
overlap was also observed between the two lists of favorable genes
(Fig. 2a, n = 3, hypergeometric test, p-value < 1.0E-12). Since there
were only three overlapped favorable genes, AMPD1, JCHAIN, and
ZNF540, their functions were examined individually. AMPD1 encodes
adenosine monophosphate deaminase which catalyzes AMP to IMP and
it is a crucial enzyme in purine nucleotide and energy metabolism. It has
been reported that AMPDI expression level is positively correlated to
immune cell infiltration level in LUAD [39]. JCHAIN encodes immu-
noglobulin J-chain which is essential in the formation and stabilization
of polymeric IgA and IgM structures. The transcription of JCHAIN in the
lungs substantially decreases during tumorigenesis, which can be
explained by the immunosuppressing effect of tumor cells [40]. ZNF540
acts as a transcriptional repressor, and it is associated with CD8" T cells
infiltrating in LUAD [41].

3.2. Identification of functional modules

We performed Spearman correlation to estimate the association be-
tween each two genes based on their gene expression levels in each
cohort. The top 1 % of the gene-to-gene links with the highest correla-
tions coefficients were extracted to construct the gene co-expression
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Fig. 2. Identification of prognostic genes. (a) Overlaps of prognostic genes from the two LUAD cohorts. (b) The top 20 most significant GO terms enriched with the

341 overlapped unfavorable genes.

network. We finally obtained around 2,012,288 gene-to-gene links with
correlation coefficients ranging from 0.55 to 1 in the gene co-expression
network of the TCGA cohort. Further, we used a random walks-based
algorithm, Walktrap, to identify the gene modules with high transi-
tivity based on the topology of the CCN [32]. The modules with more
than 50 genes and clustering coefficients higher than 0.5 were used for
further analysis. In the TCGA gene co-expression network, we identified
14 modules (M1-M14, containing 57-3466 genes) (Fig. 3a). We inves-
tigated the association of the modules with the 341 unfavorable genes
based on concordance analysis (Table S1). We observed that M3 (455
genes) and M4 (357 genes) had significant overlaps with these unfa-
vorable genes in the TCGA cohort (n = 126 and 20, respectively, hy-
pergeometric test, p < 0.01). Thus, these two modules were denoted as
unfavorable modules. Functional enrichment showed that the genes
involved in M3 were significantly enriched in the chromosome segre-
gation, DNA replication and repair, nuclear division, and cell phase
transition related pathways (Table S2). The genes involved in the M4
were significantly enriched in the extracellular organization and
angiogenesis pathways (Fig. 3a). We obtained similar pathways by
KEGG enrichment analysis (Table S3).

Similarly, we obtained 1979,922 gene-to-gene links with correlation
coefficient ranging from 0.57 to 1 in the gene co-expression network of
the Uppsala cohort and found 12 modules (M1-M12, containing
51-2664 genes). Among these modules, M4 (391 genes) and M7 (269
genes) had significant overlaps with the unfavorable genes (n = 19 and

99, respectively, hypergeometric test, p < 0.01, Table S4). Functional
enrichment analysis showed that the two modules exhibited an identical
set of GO and KEGG pathways resulting from the TCGA cohort (Fig. 3a,
Table S5 and S6). Thus, we inferred that the unfavorable modules
identified from the TCGA and Uppsala cohorts were highly consistent.
Based on the concordance analysis, we observed that the TCGA M3 had a
significant overlap with the Uppsala M7 (n = 242, hypergeometric test:
p < 1.0E-12, Jaccard index = 0.5, Table S7). Similar result was observed
for the overlaps of TCGA M4 and Uppsala M4 (n = 239, hypergeometric
test: p < 1.0E-12, Jaccard index = 0.47, Table S7). These results sug-
gested that the unfavorable modules identified from the TCGA cohort
were validated in the independent Uppsala cohort. In addition, a pair-
wise comparison was performed between the remaining modules iden-
tified in the two cohorts. Significant overlaps with high Jaccard indices
were also found between TCGA M2 and Uppsala M3 which were
enriched in adaptive immune system and cell differentiation pathways,
TCGA M5 and Uppsala M8 which were enriched in angiogenesis and
blood circulation pathways, TCGA M8 and Uppsala M9 which were
enriched for extracellular transport and cilium assembly/organization
pathways, and TCGA M11 and Uppsala M10 which were enriched in
cytoplasmic translation, ribosome biogenesis, and p53 regulation path-
ways (Fig. 3b, Table S7).
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highlighted with red text and black border. Hypergeometric p-value significance codes: *< 0.05, ** < 0.01, ***< 0.001.

3.3. Identification of targetable genes

To determine the hub genes that might drive the tumor development,
we performed topological analysis to estimate the centrality of genes in
these unfavorable modules. Degree, closeness and betweenness of genes
were evaluated in each module. Then, we calculated the Spearman
correlation of each centrality measurement between the pairwise
matching of the unfavorable modules from the two cohorts. As a result,
the correlation coefficients of degree, closeness and betweenness of
genes were 0.86, 0.86 and 0.79 between TCGA M4 and Uppsala M4, and

0.8, 0.8 and 0.58 between TCGA M3 and Uppsala M7 (all p-values <
1.0E-12, Figs. 4a and 4b). Further, we ranked the genes based on a
descending order of each centrality measurement in each unfavorable
module. The genes ranked within the top 20 in the matching unfavor-
able modules from the two cohorts were selected as the hub genes. Since
the module sizes were 455, 357, 391, 269 for these unfavorable modules
TCGA M3, TCGA M4, Uppsala M4 and Uppsala M7, respectively, we
selected the top 20 ranking genes to balance the selection sensitivity and
bias from different module sizes, and thus controlled the gene selection
within the top 10 % (4-7 % in our cases) of genes with highest
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centralities in each module. A union set of genes identified based on all
the centrality measurements were used as the final hub genes. Totally,
24 hub genes were identified. By including the three overlapped
favorable genes, we finally obtained 27 hub genes. Further, we down-
loaded the essential scores of these genes in 50 LUAD cell lines from the
DepMap data portal [34]. The essential score of a gene represents the
essentiality of this gene for tumor cell proliferation and survival after
knockout of this gene by CRISPR-Cas9 technology. A more negative
score indicates worse survival of cells after the gene knockout. As shown
in Fig. 4c, nine hub genes, KIF23, CDCA8, MAD2L1, MCM6, TPX2,
NCAPH, CLSPN, TTK, and KIF4A, whose essential scores in 50 LUAD cell
lines were smaller than 0, were selected as the targetable genes (Fig. 4c).
These nine genes were all unfavorable for the patients’ prognoses, whose
hazard ratios were higher than 1 (Fig. 4d).

3.4. Drug Repositioning

We applied our previously proposed drug repositioning method to
identify promising drugs that can have an inhibitory effect on the
expression of the targetable genes [15,24]. The algorithm is performed
by comparing the similarity of molecular effect on tumor cells perturbed
by a drug treatment and a gene knockout. This hypothesizes that a drug
is considered to have an inhibitory effect on the expression of a target
gene if this drug leads to a wide perturbation on the gene expression
landscape in tumor cells which is similar to the effect of the knockout of
this target gene (see details in the Method section). Among the nine
targetable genes, only three genes CDCA8, MCM®6, and TTK had the
available transcriptomics signature profiles of two LUAD cell lines A549
and HCC515 that were perturbed by the drug treatment and the corre-
sponding shRNA gene knockout from the LINCS database [42]. In brief,
we first constructed the drug-shRNA matrix in which each element
represents the similarity of the effect induced by a drug perturbagen and
a shRNA gene knockdown perturbagen in each cell line. To maximize
the drug treated and genetic perturbed effects, we simplified the
drug-shRNA matrix by extracting an optimal dosage/treatment duration
for each drug and an optimal shRNA for each gene. Further, we merged
the two simplified drug-shRNA matrices from two cell lines by extract-
ing the same drugs. Finally, for each target gene, the top five drugs with
the highest mean values of coefficients from two cell lines were selected
as the potentially effective drugs (Table S8). Meanwhile, the coefficients
in each cell lines should be higher than 0.4. As shown in Fig. 5a, we
identified, as top candidate drugs, BRD-K43256821, EMF-BCA1-57,
GSK-1059615, curcumin, and alvocidib for inhibiting CDCAS8, oxetane,
mitoxantrone, staurosporine, CGP-60474 and alvocidib for inhibiting
MCMB6, and mitoxantrone, wortmannin and NVP-BEZ235 for inhibiting
TTK. Among them, only oxetane-containing drugs (e.g., taxol) and
mitoxantrone are clinically used drugs, and others are pre-clinical drugs
under medical investigation.

3.5. Experimental validation of drug efficacy

Among these repurposed drugs, we were able to obtain only CGP-
60474, mitoxantrone, and wortmannin and tested these drugs in vitro
model A549 cell line. First, we performed dose dependent MTT assays
for each drug to select a proper concentration which could reduce the
cell viability by 50 %. As a result, 10 uM for CGP-60474, 10 uM for
wortmannin and 100 nM for mitoxantrone were determined (Fig. S2).
Further, we tested MTT assay for cell viability and LDH assay for cyto-
toxicity. In MTT assay, cell viability was decreased to 29.1 % + 0.7 by
CGP-60474, 52.2 % + 1.4 by mitoxantrone and, 62.3 % + 2.4 by
wortmannin (Fig. 5b). Interesting, LDH assays showed that 10 pM CGP-
60474 and 10 uM wortmannin did not induce necrotic cell death,
and100nM of mitoxantrone showed only 3.45% + 0.4 necrotic cell
death compared to the lysis positive control (100 %) and negative un-
treated group (0 %) (Fig. 5c). Taken together, cell viability and cyto-
toxicity assay results indicated that these drugs decreased the cell
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viability mainly by inhibiting the cell proliferation rather than inducing
necrotic cell death procedure. To investigate whether the repurposed
drugs could inhibit their corresponding genes we repurposed for, the
protein expression levels of these target genes were evaluated in the
A549 cell lines after drug treatment. Western blots showed that CGP-
60474 and mitoxantrone significantly reduced the protein level of
MCM6 (Fig. 5d and S3). Especially, mitoxantrone showed an extremely
effective suppression on MCM6, with 95 % decrease of protein expres-
sion (Fig. 5d). In addition, mitoxantrone and wortmannin significantly
inhibited the protein level of TTK by around 50 % (Fig. S5e and S3).
Notably, CGP-60474, which was predicted to inhibit MCM®6, also
showed an inhibitory effect on TTK. These results suggested that the
repurposed drugs effectively targeted the corresponding genes and
reduced the tumor cell proliferation.

3.6. Molecular docking

We performed the molecular docking analyses to gain a deep insight
of the binding mode between the validated drugs (mitoxantrone, CGP-
60474, and wortmannin) and the target proteins (TTK and MCM®6).
The predicted docking scores for the binding interactions of mitoxan-
trone, CGP-60474 and wortmannin against TTK were — 9.39, — 8.18
and — 7.28 (kcal/mol), respectively, representing moderate to strong
interactions (Table S9). Furthermore, it was observed that there were
mostly hydrophilic interactions between the hit compounds and the
active site residues of TTK (Glu603, Gly605, Ser611, Ala651, GIn671
and Met671) (Fig. 6a), while the aromatic ring of the compounds confers
stability by forming hydrophobic interactions with the active site resi-
dues (Ile531, Val539, Ala551, Leu654, 1le663 and Asp664). The pre-
dicted docking scores for the binding interactions of mitoxantrone and
CGP-60474 against MCM6 were — 7.54 and — 6.37 (kcal/mol), respec-
tively, representing moderate interactions (Table S10). Both drug can-
didates interacted with crucial residues of the protein by establishing
hydrophilic (GIn212, Ala416, Arg217, Lys241, Ser413 and Arg573) and
hydrophobic (GIn212, Ala213, Glu410 and Glu411l) interaction
(Fig. 6b).

4. Discussion

In this study, we employed an integrated approach to identify the
therapeutic targets and repurposed the promising drugs for LUAD pa-
tients who cannot benefit from the clinically used chemotherapies or
targeted therapies. As a result, we identified three druggable gene tar-
gets, CDCA8, MCM6 and TTK. CDCA8 encodes a component of the
chromosomal passenger complex which is an essential regulator for
mitosis and cell division. Supporting to our findings, it has been reported
that the phosphorylation and activation of CDCA8 plays a key role in
lung carcinogenesis and the suppression of CDCAS significantly inhibits
the growth of lung cancer cells [43]. MCM6 encodes one of the highly
conserved mini-chromosome maintenance proteins that are essential for
the imitation of eukaryotic genome replication. MCM6 was involved in
the prognostic signatures for indicating the survival outcomes for
particularly early-stage LUAD patients [5,6]. TTK encodes a dual spec-
ificity protein kinase with the ability to phosphorylate tyrosine, serine
and threonine, which is a critical mitotic checkpoint protein for accurate
segregation of chromosomes during mitosis [44]. It has been reported
that TTK is overexpressed in tumor tissues compared to normal lung
tissue and its selective inhibitor CFI-402257 shows significant antineo-
plastic activity in LUAD mouse models [45].

Further, we predicted that oxetane, mitoxantrone, staurosporine,
CGP-60474 and alvocidib had a potential inhibitory effect on the
expression of MCM6, and mitoxantrone, wortmannin, and NVP-BEZ235
had a potential inhibitory effect on the expression of TTK. Among these
drugs, we validated the drug efficacy of mitoxantrone and CGP-60474
for targeting MCM6, and mitoxantrone and wortmannin for targeting
TTK in in vitro model. Interestingly, CGP-60474 also suppressed the
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Fig. 5. Drug repositioning and validation of drug efficacy in an in vitro model. (a) Correlation coefficients of the top drugs in A549 and HCC515 cell lines. The drug
candidates were ranked by the mean values of correlation coefficients from the two cell lines. (b) Bar plot showing the cell viability of A549 cell line after drug
treatment in MTT assays. (c) Bar plot showing the cytotoxicity on A549 cell lines after drug treatment in LDH assays. The ‘positive’ and ‘negative’ represent the lysis
cells and DMSO treated cells, respectively. Difference between groups was estimated by the Student’s t-test. Western blots showing the inhibitory effect of drugs on
the protein expression of (d) MCM6 and (e) TTK. Error bar represents standard error. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. 10 pM CGP-60474,
10 uM wortmannin and 100 nM mitoxantrone were used for cell treatment.
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protein level of TTK. In the drug repositioning analysis, we set that the
correlation coefficient in both lung cancer cell line A549 and HCC515
should be > 0.4 based on previously empirical setting in kidney cancer
and liver diseases [15,24,25]. However, we found that the correlation
coefficient of interaction between CGP-60474 and TTK was 0.3895 in
the A549 cell line, which was in the border line but below the cutoff.
Thus, unfortunately, we skipped this interaction based on above crite-
rion during the prediction. CGP-60474 is a potent inhibitor of CDK1
which is one of the cyclin-dependent kinases [46]. Both CDK1 and TTK
are involved the control of G1/S and G2/M phases [47,48] and these two
genes showed a high correlation in expression across patients from
LUAD TCGA cohort in our analysis (Spearman correlation coefficient
= 0.88), which might explain that CGP-60474 can target TTK. Mitox-
antrone is an inhibitor of DNA topoisomerase II alpha (TOP2A), and it
leads to cell deaths by the induction of double stranded DNA breaks
[49]. It is currently applied in the treatment of breast and prostate
cancers, lymphomas and leukemias. There were two phase II studies that
failed to validate the antitumor activity of mitoxantrone in the treatment
for lung cancer [50,51]. However, both studies had small sample sizes
(each recruited 24 patients), and only advanced or metastatic
non-small-cell lung cancer were involved. Based on our analysis, we
suggest giving mitoxantrone for the treatment of LUAD patients with
early-stage tumors, since its target gene MCM6 was particularly
powerful for the classification of stage I tumors [5,6]. Wortmannin is a

10

fungal metabolite that is identified as a potent and selective inhibitor for
phosphoinositide 3-kinases (PI3Ks) [52]. It has been reported that
wortmannin inhibits the growth of non-small cell lung cancer in in vitro
and in vivo models [53] and its treatment reverses the cisplatin resis-
tance in lung cancer cells [54].

In this study, we used two different LUAD cohorts in which the pa-
tients had different geographic characteristics and cultural backgrounds.
Despite these heterogeneities, we found the repeatable prognostic genes,
functional gene modules and druggable targets. One limitation of this
study is that we might ignore the drugs that do not affect the expression
levels of target genes since our method is to check whether the drug
perturbation is similar as the target gene knockdown/knockout/over-
expression perturbation on human cells.

5. Conclusion

This study demonstrated that our method is feasible in the thera-
peutic target identification and drug repositioning in LUAD. In this
study, we identified nine targetable genes KIF23, CDCA8, MAD2L1,
MCMe6, TPX2, NCAPH, CLSPN, TTK, and KIF4A that were associated
with patients’ survival outcomes and found that these genes play a
central role in key functional modules, and they are essential for tumor
cell growth. Moreover, we repositioned one clinically used drug
mitoxantrone, and two pre-clinical drug candidates, including CGP-
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60474 and wortmannin, that are promising candidates for the treatment
of LUAD patients to modulate MCM6 or TTK. For future work, it is
worthwhile to validate the drug efficacy in in vivo animal models.
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