HOMOTOPY LIFTINGS AND HOCHSCHILD COHOMOLOGY
OF SOME TWISTED TENSOR PRODUCTS

PABLO S. OCAL, TOLULOPE OKE, AND SARAH WITHERSPOON

ABSTRACT. The Hochschild cohomology of a tensor product of algebras is isomorphic to
a graded tensor product of Hochschild cohomology algebras, as a Gerstenhaber algebra.
A similar result holds when the tensor product is twisted by a bicharacter. We present
new proofs of these isomorphisms, using Volkov’s homotopy liftings that were introduced
for handling Gerstenhaber brackets expressed on arbitrary bimodule resolutions. Our
results illustrate the utility of homotopy liftings for theoretical purposes.

1. INTRODUCTION

Let A and B be algebras over a field k. Let HH* denote Hochschild cohomology. In this
paper we give a new proof of the isomorphism of Gerstenhaber algebras,

HH*(A ® B) = HH*(A) ® HH*(B)

(see Theorem 3.9). This isomorphism was proven by Le and Zhou [7] using Alexander-
Whitney and Eilenberg-Zilber maps on bar resolutions to handle the Gerstenhaber bracket
structure. In fact, we give a new proof of the more general isomorphism of Gerstenhaber
algebras,
HH*"®¢ (A @t B) = HH* (A) @ HH*Y'(B)

(see Theorem 3.5), for a twisted tensor product algebra A ®! B where the twisting ¢ comes
from a bicharacter on grading groups (notation defined in Section 2). This isomorphism
was proven by Grimley, Nguyen, and the third author [5] using twisted versions of the
Alexander-Whitney and Eilenberg-Zilber maps, building on a result of Bergh and Opper-
mann [1] about the associative algebra structure.

For our proofs, we use Volkov’s homotopy lifting technique [13], designed for use with
arbitrary projective resolutions. In comparison with proofs already in the literature, we do
not use bar resolutions and thus we do not need to use the unwieldy Alexander-Whitney
and Eilenberg-Zilber maps. These results illustrate the theoretical usefulness of homotopy
liftings. In some settings they are also computationally useful: see, for example, [4, 5] for
some quantum complete intersections and smash products with groups, [6] for the Jordan
plane, and [10] for polynomial rings and some types of cyclic group algebras. In particular,
in [5, 6], elementary methods allow the application of the techniques in [10] to compute
Gerstenhaber brackets on the Hochschild cohomology of twisted tensor products. This
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method relies on the construction of resolutions for twisted tensor product algebras given
n [12]. More specifically, the quantum complete intersections in [5] are algebras twisted
by bicharacters, thus providing a large class of examples to which our results in this paper
apply. In the last section, we illustrate by finding explicitly a homotopy lifting for a small
such example, a truncated polynomial ring.

2. TWISTED TENSOR PRODUCT AND GERSTENHABER BRACKET TECHNIQUES

In this section we summarize definitions, techniques, and results from [1, 5, 12, 13] on
twisted tensor products by a bicharacter, resolutions, and homotopy liftings. The results
that we mention here were generalized in [6] for a strongly graded twist using the bar and
the Koszul resolutions, but we remain focused here on the special case of twistings by a
bicharacter.

Throughout this paper, all algebras are over a field k. The use of the tensor product
® without any decorations usually means ®j, but in Section 3 some of the computations
are carried out where we tensor over a different ring. We have included a warning before
that, and we believe the context allows the reader to unequivocally determine the ring
over which the tensor products happen.

We will use the Koszul sign convention. Whenever V, W, V', W’ are graded vector
spaces and g : V. — V', h : W — W’ are graded k-linear maps, we define the graded
k-linear map g @ h: V@ V' — W @ W' by

(9® h)(vew) = (=1)""g(v) @ h(w)

for all homogeneous v € V, w € W, where |h|, |v|] denote the degrees of h, v, respec-
tively. As a consequence, it can be immediately checked that the same sign rule applies to
morphisms:

(2.1) (g@h) (g @h) = ()Ml (gg) & (hh).

Twisted tensor product by a bicharacter. We now recall the definition of the twisted
tensor product of algebras by a bicharacter in the sense of Bergh and Oppermann [1]: Let
A and B be algebras over the field k, graded by groups F' and G respectively, and let
t: F ®z G — k* be a homomorphism of abelian groups, also called a twisting. We write
tf19) = t(f @z g) for all f € F, g € G. Let A®' B denote the twisted tensor product of
algebras, that is A ® B as a vector space with multiplication given by

(a@b)t (@ @b):= 111 0! @ b

for homogeneous a,a’ € A and b,b' € B of degrees |al|,|a’| € F and |b],|V/]| € G. We will
usually write t(@'" instead of t{*'lltD . Observe that A ®* B is (F @ G)-graded.

Similarly, if M is an F-graded A°-module and N is a G-graded B¢-module, denote by
M @' N the (A ®' B)®-module given as a vector space by M ® N and module structure
given by

(2.2) (a®b)(m @n)(d @b) =t @M@ gma’ @ bnb’

for homogeneous a,a’ € A, b,/ € B, m € M, and n € N. It can be checked that if M and
N are projective modules, then M ®' N is a (F & G)-graded projective (A ®' B)-module.
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Twisted tensor product of resolutions. Let P be a projective resolution of A as an
Af-module, and let QQ be a projective resolution of B as a B®-module. We will assume
that for all ¢, P; is a finitely generated A®-module and Q); is a finitely generated B¢-module
or that at least one of A or B is finite dimensional as a vector space over k. These
hypotheses ensure that Hom and @ may be interchanged at a crucial step in the proof of
the isomorphism. We will consider the projective resolution P®Q of A® B as an (A® B)*-
module, and more generally we will consider the projective resolution P®!Q of A®!B as an
(A ®' B)¢-module. In the latter case, the authors of [5] constructed several isomorphisms
of modules that can be seen as a chain map between two resolutions of A®' B as (A®' B)*-
module, as showcased in Lemma 2.3 below. For this, they required the resolutions P and
Q@ to be free as A% and B®-modules respectively, as well as Py = A® A and Qp = B® B,
so we shall also assume these additional conditions.

Lemma 2.3. [5, Lemma 3.2] There is a chain map
0 (P®'Q)®agip (PR'Q) > (PoaP) o (Q®E Q)

that is an isomorphism of (A @' B)¢-modules in each degree, given by
o((z@y) ® (@' ©y)) = ()" Vo) e (yoy)

on (P; @' Qj) @ agtp (Puy @' Qu).

Clearly 071 : (P®4 P)®' (Q®5 Q) = (P ®' Q) ®4gtp (P &' Q) is given by
o zed)e@yey)) =)t " Meoy e @ oy)
on (P ®a P,) @' (Qj @B Qy).

Tensor product of Gerstenhaber algebras. We now recall the definition of a graded
tensor product of two Gerstenhaber algebras from Manin [9, Chapter V, Proposition 9.11.1]
(cf. Le and Zhou [7, Remark 2.3(2) and Proposition-Definition 2.2], which differs by signs
from that which we will use here). Let Hy, Hs be two Gerstenhaber algebras. Let f, f € Hy
and g,¢ € Hy be homogeneous elements of degrees m,m’,n,n’, respectively. Then the
graded vector space H; ® Ho is a Gerstenhaber algebra with product

(2.4) (f@g) — (fog)=ED""f—-feg—27)
and bracket

(25) [fogf@d]:= D" o= )+ ()™~ ) @lg, ]
This is exactly the definition of a graded tensor product of two Gerstenhaber-Batalin—
Vilkovisky algebras (GBV algebras) given by Manin [9, Chapter V Proposition 9.11.1]. At
this point we must exercise caution, since [7] omits the first name when referring to these
algebras and calls them Batalin—Vilkovisky algebras (BV algebras), in alignment with
the nomenclature by Getzler [3]. Moreover, as observed in [7, Definition 2.4], Batalin-
Vilkovisky algebras are a special case of Gerstenhaber algebras.

Hochschild cohomology of a twisted tensor product. Next we recall a standard
isomorphism on Hochschild cohomology rings: Due to the finiteness hypothesis on P and
@, there is an isomorphism of vector spaces for each m, n,

Hom(A®B)e(Pm ® Qn, A® B) =2 Homge(P,,, A) ® Hompe(Qn, B).
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These isomorphisms give rise to an isomorphism of complexes
Homggp)c (P ® Q, A® B) = Home(P, A) ® Hompg-(Q, B),
which in turn induces the standard isomorphism of associative algebras
HH*(A® B) ¥ HH*(A) ® HH*(B).

At this point we note that this isomorphism is in fact an isomorphism of Gerstenhaber
algebras, a theorem of Le and Zhou, stated as Theorem 3.9 below. More generally, as noted
n [5, Remarks 6.4], when taking into account grading by groups F,G and twisting by a
bicharacter ¢, this isomorphism of associative algebras in fact restricts to the subalgebras

HH*T' 9% (A o B) =~ HH*T (A) @ HH*Y'(B)
where F/ and G’ are subgroups of F' and G, defined respectively by

(2.6) = () Ker t"1" and ¢’ := (1] Ker tI7)
ueG veF

The indicated second grading on Hochschild cohomology is that induced by the grading of
A, B, by F, G, respectively. We restrict to these subalgebras of the Hochschild cohomology
algebras because the interchange of Hom and ® does not behave well with respect to
graded bimodules and degree shifts. (See [1, Remark 4.2 and Theorem 4.7] for details.)

Again, this isomorphism above is in fact an isomorphism of Gerstenhaber algebras, a
theorem of Grimley, Nguyen, and the last author [5], stated as Theorem 3.5 below.

Note that f € Hom e (P, A) is a cocycle representing a class in HH™"(A) where v € F’
if for all homogeneous = € Py, |f(x)| = |z| — v. Similarly ¢ € Homae(Qn, A) is a cocycle
representing a class in HH™"(B) for v € G, if for all homogeneous y € @y, |9(y)| = |y|—
Hence

@) =2ly) = {IF@I=l2lly) = p{=vlv) = =l = 1
(2.7) telg)—y) — @llgW)l=lvh) — p@l-w) — p—(=lw) — 1

Homotopy lifting. Next we summarize techniques from [10, 13|, as reformulated in [14,
Section 6.3], for understanding and computing Gerstenhaber brackets on the Hochschild
cohomology ring HH*(R) of any k-algebra R.

The graded Lie algebra structure on the Hochschild cohomology ring HH*(R) is defined
on the bar complex, with equivalent recent definitions on other resolutions. In this paper
we take the formula in (2.11) below to be our definition of the Gerstenhaber bracket, and
refer to the cited literature for details on equivalent definitions.

Let P & A be a projective resolution of A as an A¢-module with differential d and
augmentation map u : Py — A. We take d to be the differential on the Hom complex
Hom 4e (P, P) defined for all A°-maps f: P — P[—m)] as

d(f) :==df — (=1)" fd.
In the following definition, the notation ~ is used for two cohomologous cocycles, that
is, differing by a coboundary.

Definition 2.8. Let K & R be a projective resolution of R as an R®-module, let A :
K — K ®pr K be a chain map lifting the identity map on R, and let f € Hompe (K, R)
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be a cocycle. An R°-module homomorphism ¢y : K — K[1 —m)] is a homotopy lifting of
f with respect to A if

(2.9) d(vf) =(f®1—-1® f)A and
pipy ~ (=) fy
for some v : K — K[1] for which d(¢)) = (p® 1 —1® p)A.
We will make heavy use of the following theorem of Volkov.

Theorem 2.10. [13] Let K be a projective resolution of R as an R®-module. Let f €
Hompge (K, R) and g € Hompge (K, R) be cocycles on K, and let ¢ and 14 be homotopy
liftings of f and g , as in Definition 2.8. Then

(2.11) [f. 9] == fog — (=)D D gy,

is a function in Hompe (K, 1n—1, R) representing the Gerstenhaber bracket on Hochschild
cohomology at the chain level.

Proof. See [13] or [14, Section 6.3]. O

3. ISOMORPHISMS OF GERSTENHABER ALGEBRAS

In this section, we give a new proof of a result of Grimley, Nguyen, and the third
author [5]: A particular subalgebra of the bigraded Hochschild cohomology of a twisted
tensor product by a bicharacter A®! B of algebras A and B (under a finiteness condition) is
isomorphic, as a Gerstenhaber algebra, to a subalgebra of the graded tensor product of the
bigraded Hochschild cohomology algebras of A and B, with bracket given by formula (2.5).
The proof in [5] used bar resolutions combined with twisted versions of the Alexander-
Whitney and Eilenberg-Zilber maps. Here we dispense with bar resolutions altogether
and give a direct proof independent of choices of projective resolutions, illustrating the
theoretical value of Volkov’s homotopy lifting method [13].

Our proof will immediately translate to the case without the bigrading, showing that the
bracket given by formula (2.5) on the graded tensor product HH*(A) ® HH*(B) of the two
Gerstenhaber algebras HH*(A) and HH*(B) corresponds to the Gerstenhaber bracket on
HH*(A ® B). Although this is a special case of the general theorem by taking the grading
or the twisting to be trivial, it is enlightening to see how the proof does not rely on the
particulars of the grading nor the twisting, which suggests that it could be improved to
the setting discussed in [6].

We will use Volkov’s theory of homotopy liftings [13] as summarized in Section 2. We will
first find the homotopy liftings needed for the proof, in Lemma 3.1 below. Let Ap : P —
P®aPand Ag : Q = Q®pQ be diagonal maps induced by chain maps Ap:P PP
and AQ :Q — Q ® Q lifting the multiplication maps A ® A — A and B® B — B,
respectively. Let

Apgig =0 '(Ap &' Ag),
where o is the isomorphism given in Lemma 2.3, and so Apg:g is by construction a
diagonal map from P®"Q to (P®' Q) ®agtp (P®'Q). Moreover Apgi( is clearly induced
by the chain map

AP®tQ = 5_1(Ap (029 AQ)
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where 771 : (PR P)®(Q®Q) = (P®Q)® (P®Q) is defined by the “same” formula as
o1 (after the statement of Lemma 2.3).

Let f € Homye (P, A), f/ € Hompe(P,y, A), g € Hompe(Q,, B), ¢ € Hompe(Q,, B)
be cocycles representing elements of Hy := HH*' (4) and Hy := HH*Y(B). Denote
by f ®" g the element of Hom agtpye(Prn @ Qn, A ®" B) defined by (f @' g)(z ® y) =

(=1)™nt=l9) f(2) @ g(y) for all z € P, y € Qy, and similarly f’ @' ¢’. It can be checked
that f ®' g, f' ®! ¢’ are indeed (A ®' B)®-module homomorphisms due to the definitions
of the subgroups F’,G’ of F,G. Furthermore, f ®' g and f’ ®' ¢’ are cocycles due to the
definition of the differential on the tensor product of complexes.

Lemma 3.1. Let y,14 be homotopy liftings of f,g with respect to Ap, Agq, respectively,
and define

Vrorg = Yr @ (1@ 9)AQ + (=)™ (f @ 1)Ap © ¢y
as an element of Hom(ggtpye(P®'Q, PR'Q[1—m—n]). Then ¢ gy is a homotopy lifting
of [ ®" g with respect to Apgtg.

Note that we are using a slight abuse of notation: In the definition of 1 ;g:, the first
tensor symbol should be ®!, the second should be ®p, the third should be ®4, and the
fourth should be ®*. However this should be clear from the domains and codomains of the
maps used. When it does not cause any confusion, this abuse of notation will carry on in
the proofs.

Proof. First note that ¢ sgt, is indeed an (A ®! B)¢-module homomorphism as claimed.
We will next show that g, satisfies equation (2.9) with f replaced by f ®! g, that is,
we will show that

(32)  dibpgty — (—1)™ T Wrgiad = ((f © 9) ® Lpgig — Lpgig ® (f @' 9))Apgrqg-

Applying the definition of ¥ ;gt, given in the statement of the lemma, the left side of
equation (3.2) is

d(y ® (1®g)Ag) + (=1)™d((f ® 1)Ap ® 1)
+ (=)™ (r @ (1@ g)Ag)d + (=1)"((f @ )Ap @ ¢g)d

= dpr @ (10 9)Aq + (-1)" 'y @ d(1® 9)Aqg + (—=1)™d(f ® 1)Ap ® ¢y
+(fRDAp@dpy+ (—1)"Yrd ® (1® g)Ag + (—1)"™p; @ (1 ® g)Agd
— (f®1)Apd®@ g+ (—1)"(f @ 1)Ap ® 1)4d.

The maps (f ® 1)Ap and (1® g)Ag commute with the differentials d up to multiplication
by (—1)™ and (—1)", respectively. Thus four of the above terms cancel, leaving

(dipy = (=) 'ppd) @ (1@ 9)Aq + (f @ 1)Ap & (dipg — (=1)"")yd),
in which we use equation (2.9) for f and for g to obtain
(fe1-10NAP®(1®g)Ag+ (f®@1)AP®(g®1-1®g)Ag.

The right hand side of equation (3.2) acts on a general element of P ®' @, and applying
Ap®'Ag gives a finite sum of elements of the form (z®2")®(y®y') € (PR4P)'(Q®pQ).
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We can then compute this right hand side as
(f©'9) ®1pgig — lpeiq® (f&' 9oz @)@ (y@y))
= ((f @' 9) ® 1pagig — Lpatg ® (f © g) (-1 M= W @0y 0o ©y)
= (DI (1)l f ) @ gly) @ 2’ @
_ (_1)Ix’lly\t—<x’|y><_1)n|1‘\(_1)n\y|(_1)n\x’\(_1)mlr\(_l)mly\x ®y® f(2) @ gy).
This can only be nonzero when applied to elements whose degrees coincide with the degrees

of f and g, that is, we can assume that m = |z| = |2/| and n = |y| = |¢y/|. Hence the
computation simplifies to

W @) @ g(y) @' @y — @) W) oy @ f) @ g(y).
Projecting onto P ®' @ (that is, applying the module action (2.2)) yields
=@ 9w £ ()2 @ g(y)y — ¢~ @ W TE) (_qynlvitmlely £ @ yg(y)
= @9 =) (1)’ @ g(y)y — @)= (—yrlyltmizly £y @ yg(y')
(3:3) = f@)a’ @ g(y)y — (1"l f ') @ yg(y),

where the last equality holds because f and g represent cocycles in HH** (A) and HH*S'(B)
respectively, so equalities (2.7) apply.

Consider now the behavior of ((f ® 1) ®' (g ® 1) — (1® f) @' (1 ® g)) applied to an
element of the form (z ® 2') ® (y®y') € (P ®4 P) @ (Q ®p Q). We obtain

(fehe' (gel)-(1ef)e' (1ag)zereyay)

= ()" (=)l (@) @ 2 @ g(y) @ Y

— (Pl () @ faf) @ y @ g(y)

= f@)ed’ @gly) oy - ()" e f@) @y gy)
where we have again assumed that m = |z| = |2/| and n = |y| = |¢/| for the last equality.
Projecting onto P ®' Q (that is, applying the module action of A on P and B on Q)
yields f(z)z' @ g(y)y — (=1)"WHmIelz f(2') @ yg(y'), which is exactly what we obtained
in (3.3). This means that ((f ®' g) ® lpgtg — lpgtg @ (f @ g))o 1 (Ap @ Ag) and
(fe)e (gel) -1 f)®' (1®g))(Ap®'Ag) yield the same map after projecting onto
P®'(Q. Since these canonical projections that we use are isomorphisms, we can safely work
as if they were equal. In particular since by Lemma 2.3 the map upgtg can be identified
with up®' g, the above argument shows that (up@1QugR1—1@upR1Qug)(Ap&Ag)

and (upeQ ® lpeg — lreg ® preg)(Ap ® Ag) can be regarded as equal, a fact we will
use in (3.4) below. We now have

(fole' (gel)— (1 f)e' (1eg)(Ap & Ag)
=(fR1eI®R1I-feIeleg+fRI1IRI-1R[®1®g)(Ap®Ag)
=(fel)e@el-12g9)(ArpaAQ)+(f@l-1x f)® (1®g))(Ap @ Ag),

which agrees with what we calculated above for the left side of equation (3.2).
Next we take ¢p : P — P[1] and 9¢g : Q@ — Q[1] to be maps for which dyp + ¢pd =

(P ®1 =1 pup)Ap, dibg +vqd = (g @1 —1® pg)Aq, ppy ~ (=1)""' fyp, and
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Qg ~ (=1)" "' fiq. Set
Vpgtg = Vp @ (g ® 1)Ag + (1 ® up)Ap @ 9q.
Then, since (ug ® 1)Ag and (1 ® pp)Ap are chain maps, and noting |ug| =0 = |up|,
dYperq + Ypeied = d(p ® (1g ® 1)Ag + (1 ®@ pup)Ap ® ¥q)
+ (VP ® (g ®1)Aqg + (1 ® up)Ap ®Yg)d
=dyp ® (kg ®1)Aqg — Yp @ d(ng ® 1)Aqg + d(1 ® pp)Ap @ 1q
+ (1 ® up)Ap @ dipg + vpd @ (ug ® 1)Ag + 1p ® (1o ® 1)Agd
— (1@ pp)Apd® g + (1® up)Ap ® hod
= (dyp + 1pd) ® (g ® 1)Ag + (1 ® up)Ap ® (dpg + Yqd)
=(up®1 -1 up)Ap® (g ® 1)Ag + (1® up)Ap @ (o ® 1 —1® ug)Ag
=(upR1Quo®1 -1 up @ pug® 1
+1@ppRuo®1—-1®up ®1® ug)(Ap ® Ag)
34) =reloue®l-10up @1 uQ)(Ap®Aq)
= (1rPeq ® lrgq — 1Peq ® HPeQ)ApPstq
= (kpPetq ® 1pgtg — Lpetg ® 1pet@) Apstq:
where the second to last equality has already been discussed. Finally we check:
1petQ¥rety = (bp ® nQ) (Y ® (1@ g)Aq + (=1)"(f ® 1)Ap ® ¥y)
= iy @ pQ(1 ® 9)Aq + (=1)"up(f @ 1)Ap @ nqiby
~ (1) e @ po(1® 9)Ag + (1) up(f @ AP © gibg
= ()" fop @ gug ® DAg + (1) f(1® up)Ap @ giq
= (f@9((=1)""p © (hg ® )Ag + (1)1 (1 ® up)Ap @ ¥q)
= ()" @ 9)(p @ (ng @ 1)Ag + (1® pp)Ap @ Uq)
= (=)™ f @ 9)Ypetg-
We have again identified ppgtg with up®" pg, and used both po(1®9)Ag = 9(1Qug)Ag
and pp(f ® 1)Ap = f(1 ® up)Ag. Here we justify the first of these equalities, while the
second can be checked in an analogous way: These maps act on a general element of @,
where applying Ag gives a finite sum of elements of the form y ® ¢’ € Q ®p @, and now
11 ® g)(y ®y) = (=1)"uoy @ g(y)) = (1) ualyg(y) 1)
= (=" ug(y9(y)) = (=1)"Muo®)a(y') = 9(uoy)y)
=91 @ pueW)y) = 9(uey) ®y) = glue ® Ny ®@y),

since the canonical projections are isomorphisms.
In summary, we have shown that

pstQUrsty ~ (—1)™ T (f @' 9)bpgig

and dpgig + Vpgigd = (Lpgtg @ 1Peg — 1req @ Hpgiq)Apstg- Therefore gy is a
homotopy lifting for f ®' g with respect to A P&IQ-
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Next we state and give the promised new proof of the isomorphism of Gerstenhaber
algebras.

Theorem 3.5 (Grimley-Nguyen—Witherspoon [5]). Let A and B be algebras over a field
k, graded by groups F' and G respectively. Assume that there exist projective resolutions
of A as an A°-module and of B as a B®-module consisting of finitely generated modules or
that at least one of A or B is finite dimensional as a vector space over k. Then there is
an isomorphism of Gerstenhaber algebras

HH*T'9¢ (A @ B) ~ HH*'" (A) ® HH*Y'(B),

where F' and G’ are the subgroups of F and G defined in (2.6) and the algebra on the right
side is a graded tensor product with product and bracket given by formulas (2.4) and (2.5).

Proof. Let f, f' € HH*F'(A) and g, ¢ € HH*(B), be cocycles. By definition (2.5) and
under the isomorphism of graded vector spaces given by sending f ®'g to f®g, the bracket
[f &g, /' @' ¢'] on the graded tensor product HH**" (4) @ HH*'(B) corresponds to

(36) [f ®t g, f/ ®t g/] _ (*1)(m/_1)n[f7 f/] ®t (g _ g/) + (*1)m/(n_1)(f — f/) ®t [g’g/]‘
We may take f — f' = (f'® f)Ap and g — ¢ = (¢’ ® g)Ag, and we may take [f, f’]
and [g, ¢'] to be given in terms of homotopy liftings by formula (2.11). Then the right side
of (3.6) is equal to

(=)0 — (=)D ) @t (g © g')Ag
+ (=)™ (f @ AP @ (gig — (D) gly).
By Lemma 3.1, a homotopy lifting map for f ®! g is
Vratg = Y5 © (1@ 9)Aq + (=1)"(f @ 1)Ap @ y.

Define gt similarly for f’ ®" ¢'. Using formula (2.11) for [f @' g, f’ @' ¢'], the Gersten-
haber bracket via homotopy liftings in HH*¥'®% (4 ! B), we have

[f &g, f' @ g = (f & g)pgry — (=1 DN @ g o
= (f&" 9wy @ (1@ g)AQ) + (—1)™ (f &' 9)((f' @ )Ap @ 1hy)
— (—n)mEn= DD (£ @ ) (1 ® (1® g)Ag)
— (=)t @ g (f @ 1) Ap @ 1))
Now f(f' @ 1)Ap = (—=1)™(f' @ f)Ap and g(1® ¢')Ag = (9 ® ¢')Ag by (2.1), so the

above becomes
(=)D (fyp @ (g @ ¢)A) + (=)™ T (1 @ f)Ap @ giby
— (= 1)t mn =)=’ gy @1 (¢ @ g)Ag
(3.7) = (-t (f @ f)Ap @ gy,

Now (f' ® f)Ap ~ (=)™ (f @ f)Ap and (¢ @ 9)Ag ~ (—1)" (g ® ¢')Ag because
the cup product is graded commutative: Since f/ — f and (—1)™" f — f’ differ by a
coboundary we have

(f'e HAap=f — f~ DI — ¢ = (—1)™(f & f)Ap,
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and similarly for (¢ ® ¢’)Ag. So what we obtained in (3.7) differs by a coboundary from

()M @ (g @ g') Ag — (—1) NI £y @ (g @ g') Ag

+ (=)™ C(f @ f)Ap @ gy — (—1)DN (£ @ AR & g1,
= (—1)™ I (fpp — (1) DDy @ (g @ ¢') Ag

+ (=)™ (f @ AP @ (giby — (1) DO D gy,

This is equal to the expression (3.6) found before. We thus conclude that the two bracket
expressions agree in cohomology. O

Considering now the case without the bigrading, the setup is completely analogous with
two exceptions: First, instead of defining Apg:g we define AP®Q =1®T® 1)Ap & AQ,
where 7 is the graded flip map (i.e. 7(z®y) = (—1)*IWly @z for all homogeneous = € P and
y € Q). Then Apgg is a chain map lifting the multiplication map (A®B)®(A®B) — A®B
on the tensor product algebra A® B. Let Apgg be the induced diagonal map from P ® Q
to (PR®Q) R (P®Q), and second, we let f € Homge (P, A), f € Hompe (P, A), g €
Hompe(Qp, B), ¢ € Hompe(Q,, B) be cocycles representing elements of H; := HH*(A)
and Hy := HH*(B).

Lemma 3.8. Let
Vieg = 1r © (1®9)Aq + (1) (f @ 1)Ap @ thy.
Then Y rgq is a homotopy lifting of f ® g with respect to Apgg.

Proof. Note that in the proof of Lemma 3.1 the bicharacter does not appear at the end
of the computations, and it also would not appear in any of the canonical projections we
use. Thus that proof holds taking F' = 1,G = 1,t = 1, since 7(Ap ® Ag) behaves exactly
like 071 (Ap ®' Ag) with the only difference that in the former the bicharacter does not
appear. ]

Theorem 3.9 (Le-Zhou [7]). Let A and B be algebras over the field k. Assume that there
exist projective resolutions of A as an A°-module and of B as a B®-module consisting of
finitely generated modules or that at least one of A or B is finite dimensional as a vector
space over k. Then there is an isomorphism of Gerstenhaber algebras

HH*(A @ B) = HH*(A) ® HH*(B),

where the algebra on the right side is a graded tensor product with product and bracket
given by formulas (2.4) and (2.5).

Proof. Note that the proof of Theorem 3.5 holds, taking F = F' =1, G = G’ =1, t the
trivial bicharacter, and the homotopy lifting of Lemma 3.8. O

We want to remark that, although we can see Lemma 3.8 and Theorem 3.9 as special
cases of Lemma 3.1 and Theorem 3.5, we need not do so. We want to emphasize that the
formal expressions of the homotopy liftings of the two lemmas are identical, as well as the
formal expression (2.5) of the Gerstenhaber bracket to which each theorem refers. We also
want to emphasize that the formal computations that needed to be carried out to prove
both lemmas and both theorems are identical.
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Our results in this paper not only showcase the utility of Volkov’s homotopy lifting
techniques on a theoretical level, but also suggest that finding them in practice can be a
manageable task, as we show in the next section.

4. EXAMPLE

We illustrate our results by finding homotopy liftings for some Hochschild cocycles
in a small example: the truncated polynomial ring k[z,y]/(22,y?) where k is a field of
characteristic 0. We then compute a Gerstenhaber bracket (cf. [5, §5.2]).

Let A = k[x]/(z?), B = k[y]/(y?). Let P be the following projective resolution of A:

4.1 P B ARA S ARA B AA L ARA (X A
(4.1)

whereu =2®1—-1®z, v =2®1+ 1Rz and the augmentation map pp is multiplication.
For each i, let e; denote the element 1 ® 1 in A ® A in degree i and set e; = 0 whenever
i < 0. Analogously, define @) to be the projective resolution of B defined in a similar way
to P above with v/ =y®1—-1®y, v = y®1+1®y, and free basis element of Q); := B® B
denoted €] for each i. A diagonal map Ap: P — P ®4 P can be defined by

Ap(ei) = Z e; & e
=i

(cf. [11, Example 4.7.1] where there is a slightly different sign convention). We define a
diagonal map Ag for the resolution () analogously.

Similar to [14, Example 2.2.2] (or see [11, Example 4.7.1]), we now consider the Hochschild
1-cocycle f : P — A defined by f(e1) = x, f(e;) = 0 for i # 1 and the Hochschild 2-cocycle
g:Q — B given by g(ey) =y, g(e) = 0 for i # 2. We show that the maps f; : P, — P
defined by

filei) = ie;
and g; : Qj — Qj—1 defined by

g25(e3;) = €551,  g2j-1(€p;_1) =0

are homotopy lifting maps of f and g respectively (cf. [11, Example 4.7.1]). Since these
algebras are Koszul, we will only need to show that the first part of Equation (2.9) holds.
When we consider f, the right hand side of (2.9) applied to e; is

(f@l-1@ HAp(e)=(fR1-18f) > e D¢
jHI=i
=(fel)(e1®ei1) —(1® f)(ei1 @er)
=zei_1 + (—1)'e;i_1,
and the left hand side of Equation (2.9) applied to e; is
(ufi — fimru)(e;) = ulie;) — fi—1(zei—1 — ei—17)
= i(mei_l — ei_lx) — I'(Z — 1)61'_1 + (Z — 1)61'—11'

=Tei—1 — €;—1T
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whenever 7 is odd and
(vfi = fic1v)(ei) = v(ie;) — fi—1(vei—1 + ei—1x)
=i(xei—1 +ei1x) —x(i — 1)ej—1 — (1 — 1)ejq1x
=2xei—1t+ €1

whenever i is even. So we see that Equation (2.9) holds for f. In a similar fashion, when
we consider g, the right hand side of (2.9) applied to €, is

(901 -1®9)Aq(eh) = (9@1-109g) D €®e
JHI=2i
= (9@ 1)(eh ® ey _9) — (1® g)(€y;_p ® €)
= yehi_o — €hi oY,
and the left hand side of Equation (2.9) applied to €, is
(W' gai + g2i—10") (eh;) = u'(eh;_1) + g2i—1(yen;—1 + €h;_1Y) = yeb;_o — €h;_oy.
Again when we consider g, the right hand side of (2.9) applied to €}; ; is
(9©01-109)Ag(ey 1) =(g@1-10g) Y o
jHl=2i—1
=(g@1)(ea®@eh;_3) — (1@ g)(ey_3 @ €y) = yey; 3 — €h; 3y
and the left hand side of Equation (2.9) applied to €}, ; is

(V'g2i-1 + g2i—2u)(€h;_1) = v'(0) + g2i—2(yes;_o — €hi_sy) = yeh_3 — €5;_3y.
So Equation (2.9) holds for g. Thus the maps f; and g; defined above constitute homotopy
lifting maps ¢y and ¢, for f and g, respectively.

The truncated polynomial ring k[x, 3]/ (22, y?) is isomorphic to the tensor product A® B
of the algebras A and B. Let P® Q — A ® B be the tensor product resolution. Let f ® g
be a representative of the class in HH*(A ® B) corresponding to the tensor product of f
and g.

Lemma 3.8 gives an expression for a homotopy lifting ¢fgy : P ® Q — P ® Q[—2]. For
example, applied to e; ® €5,

Uragler ®ey) = (£ ® (1 9)Aqg — (f © 1)Ap ® g.)(e1 ® €3)
= file1) @ (1 ® g)(epy @ ey + €| ® e} + ey @ ef)
+ (f®1)(eo @e1+ €1 ® ep) @ ga(eh)
=e1® (1@ g)(eg@ey) + (f@1)(e1 ®en) @ el
=e1 @ epy + zeg @ €.

Alternatively, it can be verified directly that ;g4 as defined above is a homotopy lifting,
that is it satisfies Equation (3.2).

Similarly, we may let h : P — A be defined by h(e2) = 1, h(e;) = 0 for i # 2, a
Hochschild 2-cocycle [14, Example 2.2.2]. We may check that (h ® 1 —1® h)Ap(e;) =0
for all 4, and so we may take the zero function as a homotopy lifting of A with respect
to Ap. Take similarly f',h' : @ — B defined by f'(¢}) = vy, f'(e}) = 0 for i # 1, and
h'(eh) = 1, W'(e}) = 0 for i # 2. The zero function is a homotopy lifting for A’, and
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11 Qi — Q; defined by f/(e;) = ie] constitutes a homotopy lifting for f’. Similarly to the
above calculations, using Lemma 3.8 we find

wf@f’(‘f? ® eé) = 2e® eéy —3ze1 ® eg,
Vroples@ey) = 3e3®@ery — ez ® 2e).
Thus by formula (2.11), we obtain a nonzero bracket:
Fef hehleod) = (fo ) nerler®d) +(he Mo ®e)
= (h®h')(2e2 ® ey — 3wer @ €3)
= 2y,

[fef heles®ey) = (h@h)rap(es® e
(h@ h')(3e3 ® ey — zea @ 2¢h)
= —2z.

Compare with [5, §5.2] where Gerstenhaber brackets of all generators of Hochschild coho-
mology of k[z,y]/(x?,4?) were found with considerably greater effort. An advantage there
however is the additional information on brackets with elements in degree 0, something
not addressed currently in the homotopy lifting theory.

This small example shows that the homotopy lifting method is not only a valuable
theoretical tool, but also can be used for explicit computations of Gerstenhaber brackets
via formula (2.11).
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