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REAL AND SYMMETRIC MATRICES

TSAO-HSIEN CHEN AND DAVID NADLER

ABSTRACT. We construct a family of involutions on the space gl (C) of n x n matrices
with real eigenvalues interpolating the complex conjugation and the transpose. We deduce
from it a stratified homeomorphism between the space gl (R) of n x n real matrices with
real eigenvalues and the space p!,(C) of n x n symmetric matrices with real eigenvalues,
which restricts to a real analytic isomorphism between individual GL,,(R)-adjoint orbits
and O, (C)-adjoint orbits. We also establish similar results in more general settings of Lie
algebras of classical types and quiver varieties. To this end, we prove a general result about
involutions on hyper-Kéahler quotients of linear spaces. We provide applications to the
(generalized) Kostant-Sekiguchi correspondence, singularities of real and symmetric adjoint
orbit closures, and Springer theory for real groups and symmetric spaces.
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1. INTRODUCTION

1.1. Main results. A key structural result in Lie theory is Cartan’s classification of real
forms of a complex reductive Lie algebra g in terms of holomorphic involutions. It amounts
to a bijection

(1.1)  {complex conjugations 7 of g}/isom <— {holomorphic involutions € of g}/isom

between isomorphism classes of complex conjugations and holomorphic involutions of g. For
example, in the case g = gl,,(C), the complex conjugation (M) = M with real form consist-
ing of real matrices gr = gl,,(R) corresponds to the involution 8(M) = —M* with (—6)-fixed
points consisting of symmetric matrices p = p,,(C). The interplay between the real gg and
symmetric p pictures plays a fundamental role in the structure and representation theory
of real groups, going back at least to Harish-Chandra’s formulation of the representation
theory of real groups in terms of (g, K')-modules.

One of the goals of the paper is to get a better understanding of Cartan’s bijection and
also the real and symmetric pictures for real groups from the geometric point of view. To
this end, let  be a conjugation on g and let 6 be the corresponding involution under (1.1).
For simplicity, we assume 7 is the split conjugation. Then the subspace g’ of g consisting of
elements with real eigenvalues' is preserved by both 1 and —f and the first main result in
the paper, Theorem 1.4, is a construction of a real analytic family of involutions on g’

(1.2) a,: 9 — g a€e]0,1]

interpolating the conjugation n and the holomorphic involution —6, that is, we have ay =7
and a; = —0, in the case when g is of classical type. Using the family of involutions above
we prove the second main result of the paper, Theorem 1.3, which says that there exists a
stratified homeomorphism

(1.3) g —

!Elements z € g such that the the adjoint action ad, : g — g has only real eigenvalues.
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between the 1 and (—6)-fixed points on g’ compatible with various structures.? The family of
involutions in (1.2) and the homeomorphism (1.3) can be thought as geometric refinements
of Cartan’s bijection (1.1).

We deduce several applications from the main results. Assume g is of classical types. In
Corollary 1.9, We show that there exists a stratified homeomorphism

N]R — Np

between the real nilpotent cone Ng C gr and the symmetric nilpotent cone N, C p providing
a lift of the celebrated Kostant-Sekiguchi correspondence between real and symmetric nilpo-
tent orbits. In particular, it implies that Ng and N, have the same singularities, answering
an open question (see, e.g., [He, p354]). In Corollary 1.16, we show that Grinberg’s nearby
cycles sheaf on N, is isomorphic to the real Springer sheaf given by the push-forward of the
constant sheaf along the real Springer map, establishing a conjecture of Vilonen-Xue and
the first author.

The key ingredients in the proof are the hyper-Kahler SU(2)-action on the space matrices
arising from the quiver variety description in [KP, KS, M, MV, Nakl], and a general result
about involutions on hyper-Kéhler quotients of linear spaces (see Theorem 1.6). The tech-
niques used in the proof are not specific to matrices and are applicable to a more general
setting. For example, we also establish a quiver variety version of the main results.

We now describe the paper in more details.

1.1.1. Real-symmetric homeomorphisms for matrices. Let us first illustrate our main results
with a notable case accessible to a general audience.

Let gl (C) ~ C™ denote the space of n x n complex matrices. Let gl (R) C gl (C) denote
the real matrices, i.e. those with real entries, and p,(C) C gl,,(C) the symmetric matrices,
i.e. those equal to their transpose. Introduce the following subspaces

gl (R) = {z € gl,(R)| eigenvalues of x are real}

p.(C) = {z € p,(C)| eigenvalues of z are real}.

The real general linear group GL,(R) and complex orthogonal group O, (C) naturally act
by conjugation on gl (R) and p/ (C) respectively. The real orthogonal group O,(R) =
GL,(R) N O,(C) acts on both gl/ (R) and p/ (C). We also have the natural linear R*-
actions on both gl (R) and p/ (C). Consider the adjoint quotient map x : gl,(C) — C"
which associates to each matrix = € gl,,(C) the coefficients of its characteristic polynomial.
Equivalently, one can think of it as giving the eigenvalues of the matrix (with multiplicities).

Here is a notable case of our general results.

Theorem 1.1. There is an O,(R) x R*-equivariant homeomorphism

(1.4) gl (R) —=,(C)

2Tt is necessary to consider the subspace g’ C g but not the whole Lie algebra g in the main results because
in general the fixed points gr = g” and p = g~% have different dimensions and hence can’t be homeomorphic
to each other.
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which 1s compatible with the adjoint quotient map. Furthermore, the homeomorphism re-
stricts to a real analytic isomorphism between individual GL,(R)-orbits and O,,(C)-orbits.

We deduce Theorem 1.1 from the following more fundamental structure of linear algebra.
Consider the subspace

gl (C) = {z € gl,,(C)| eigenvalues of x are real}.
Let X' : gll (C) — C" be the restriction of the adjoint quotient map to gl (C).
Theorem 1.2. There is a continuous one-parameter family of O, (R) x R* -equivariant maps
(15) 00t gl (C)—=gl(©)  ac0,1]
satisfying the properties:

(1) a2 is the identity, for all a € [0,1].

(2) ag commutes with X' : gl (C) — C".

(3) aq takes each GL, (C)-orbit real analytically to a GL,(C)-orbit, for all a € [0, 1].
(4) At a =0, we recover conjugation: ag(A) = A.

(5) At a = 1, we recover transpose: a;(A) = A’

1.1.2. Real-symmetric homeomorphisms for Lie algebras. To state a general version of our
main results, we next recall some standard constructions in Lie theory, in particular in the
study of real reductive groups.

Let G be a complex reductive Lie group with Lie algebra g. Let ¢ = g//G be the categorical
quotient with respect to the adjoint action of G on g. The adjoint quotient map y : g — ¢
is the Chevalley map.

Let Gr C G be a real form, defined by a conjugation 1 : G — G, with Lie algebra gg C g.
Choose a Cartan conjugation § : G — G that commutes with 7, and let G. C G be the
corresponding maximal compact subgroup.

Introduce the Cartan involution § = don: G — G, and let K C G be the fixed subgroup
of 6 with Lie algebra ¢ C g. The subgroup K is called the symmetric subgroup. We have
the Cartan decomposition g = £ @ p where p C g is the —1-eigenspace of §. Let a C p be
a maximal abelian subspace contained in p and let t C g be a #-stable Cartan subalgebra
containing a. Let Wg = Ng(t)/Z5(t) be the Weyl group of G and W = Nk (a)/Zk(a) be the
little Weyl group of the symmetric pair pair (G, K). We denote by pr = p N gg, tr = €N gg,
ar = a gg, etc.

One can organize the above groups into the diagram:

(1.6) G

AN

K G. Gr

NS

Kr
4



Here Kp is the fixed subgroup of 6,4, and n together (or any two of the three) and the
maximal compact subgroup of Gg with complexification K.

Let gp C gr (resp. p’ C p) be the subspace consisting of elements = € gg (resp. x € p)
such that the eigenvalues of the adjoint map ad, : g — g are real. The real from Gr and
the symmetric subgroup K act naturally on gp and p’ by the adjoint action. The compact
subgroup Kg = Gg N K and R* act both on g and p’.

Theorem 1.3 (Theorem 4.1). Suppose g is of classical type. There is a Kg x R* -equivariant
homeomorphism

(1.7) g ——

which is compatible with the adjoint quotient map. Furthermore, it restricts to a real analytic
isomorphism between individual Gg-orbits and K -orbits.

We deduce Theorem 1.3 from the following. Let ¢, g C ¢ be the image of the natural map
ag — ¢ =t//W¢. Introduce g’ = g X ¢, g and let x’ : g’ — ¢, be the projection map.

Theorem 1.4 (Theorem 4.2). Under the same assumption as Theorem 1.3, there is a con-
tinuous one-parameter family of Kr X R*-equivariant maps

(1.8) Qg g —=¢ a€[0,1]
satisfying the properties:

(1) o2 is the identity, for all s € [0, 1].

(2) o, commutes with X' : g’ — ¢, .

(3) aq takes each G-orbit real analytically to a G-orbit, for all a € [0, 1].
(4) At a =0, we recover the conjugation: oy = 1.

(5) At a = 1, we recover the anti-symmetry: a; = —0.

Remark 1.5. The special case of Theorems 1.3 and 1.4 stated in Theorems 1.1 and 1.2 is
when G = GL,(C), g ~ gl,(C), Ggr = GL,(R), K = 0,(C), and Kg = O,(R).

1.1.3. Involutions on hyper-Kdhler quotients. We deduce Theorem 1.3 and Theorem 1.4 from
a general result about involutions on hyper-Kahler quotients of linear spaces.

Let H =R ® Ri ® Rj ® Rk be the quaternions and let Sp(1) C H be the group consisting
of elements of norm one. Let M be a be a finite dimensional quaternionic representation of
a compact Lie group H,. We assume that the quaternionic representation is unitary, that
is, there is a H,-inner product (,) on M which is hermitian with respect to the complex
structures I, J, K on M given by multiplication by i, j, k respectively. We have the hyper-
Kahler moment map

w:M—=ImH® b,

vanishing at the origin. Using the isomorphism ImH = R @& C sending x1i + x2j + x3k to
(21,9 + x3i), we can identify In H® b = b @ h* and hence obtain a decomposition of the
moment map

p=pr® puc: M — b, @b
5



of 1 into real and complex components. We consider the hyper-Kéhler quotient
Mo = p~'(0)/H, = pg' (0)//H
where the right hand side is the categorial quotient of pz'(0) by the complexification H of
H,, and the second isomorphism follows from a result of Kempf-Ness [KN].
The hyper-Kahler quotient 9%, has the following structures: (1) it has a orbit type strat-

ification
My = |_| Mo,(1)
(L)

where a stratum 9 1) consists of orbits through points x whose stabilizer in H, is conjugate
to L, (2) there is a hyper-Kéhler SU(2) = Sp(1)-action on 9, denoted by ¢(q) : My — My,
q € Sp(1), coming from the H-module structure on M.

In Section 2, we prove the following general results about involutions on hyper-Kahler
quotients.

Theorem 1.6 (Proposition 2.9 and Example 2.13).

(1) Let ny and nar be complex conjugations on H and M which are compatible with the
unitary-quaternionic representation of H, on M (see Definition 2.4 for the precise
definition). Then ng and npr induce an anti-holomorphic involution

(1.9) n: My — My

such that the composition of n with the hyper-Kahler SU(2)-action of g, = cos(% )i+
sin(4 )k € Sp(1) on My, a € [0,1], gives rise to a continuous family of involutions

(1.10) ag My — My a€]0,1]

interpolating the anti-holomorphic involution ay = ¢(i) o n and the holomorphic in-
volution ay = ¢(k) on.

(2) Let Mo(R) and MY™ (C) be the fized points of ag and oy on My respectively. Then the
intersection of the stratum Mo 1y with Mo(R) (resp. My (C)) define a stratification
of My(R) (resp. M™(C)) and there exists a stratified homeomorphism

(1.11) Mo (R) —— "™ (C)
which s real analytic on each stratum.

Remark 1.7. Let G,Gg,G,, Kg be as in Section 1.1.2. Suppose that M is a unitary
quaternionic representation of the larger group H, x G, and the conjugations ny X ng and
nv on H x G and M are compatible with the unitary-quaternionic representation. Then
the hyper-Kéhler quotient 9t carries an action of Kg such that the involutions (1.9), (1.10),
and homeomorphism (1.11) are Kr-equivariant.

It is well-known that the complex nilpotent cone N,,(C) C gl,(C) is an example of hyper-
Kéhler quotients known as Nakajima’s quiver varieties (see [KP], [KS], [M], [Nakl]). Ap-
plying Theorem 1.6 to this particular example, we obtain a family of O, (C)-equivariant
involutions
(1.12) g : Np(C) — N, (C)  a€]0,1]
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interpolating the complex conjugation ag(M) = M and the transpose a;(M) = M, and a
O,,(C)-equivariant homeomorphism

(1.13) N,y (R) —> Nsvm(C)

between real and symmetric nilpotent cone which restricts to a real analytic isomorphism
between individual GL, (R)-orbits and O,,(C)-orbits. This establishes a special case of Theo-
rems 1.3 and 1.4 for the fiber of the adjoint quotient map X’ : gl, (C) — C™ over 0 € C", that
is, matrices with zero eigenvalues. To extend the results to matrices with real eigenvalues,
we prove a version of Theorem 1.6 for the family of hyper-Kahler quotients

Mz = pg' (0) N ug'(Ze)/Hy — Ze

where Z¢ C bh* is the dual of the center of h and then deduce the results using the description
of general adjoint orbits closures as quiver varieties in [MV]. Finally, we check that the
constructions are compatible with inner automorphisms and Cartan involutions and then
deduce the case of Lie algebras of classical types from the case of gl,,(C).

We would like to emphasize that the keys in the proof of Theorems 1.3 and 1.4 are the
symmetries on adjoint orbit closures (or rather, the symmetries on the whole family gl (C) —
C™) coming from the hyper-Kahler SU(2)-action. Those symmetries are not immediately
visible in their original definitions as algebraic varieties.

Remark 1.8. The use of hyper-Kéhler SU(2)-actions in the study of geometry of nilpotent
orbits goes back to the celebrated work of Kronheimer [Kr| where he used those symme-
tries to gave a differential-geometric interpretation of Brieskorn’s theorem on sub-regular
singularities.

1.2. Applications. We discuss here applications to the Kostant-Sekiguchi correspondence,
singularities of real and symmetric adjoint orbit closures, and Springer theory for symmetric
spaces.

In the rest of the section, we assume g is of classical type.

1.2.1. Generalized Kostant-Sekiguchi homeomorphisms. The celebrated Kostant-Sekiguchi
correspondence is an isomorphism between real and symmetric nilpotent orbit posets

(1.14) |Gr\Ng| «— |K\N,|.

The bijection was proved by Kostant (unpublished) and Sekiguchi [S]. Vergne [V], us-
ing Kronheimer’s instanton flow [Kr|, showed the corresponding orbits are diffeomorphic.
Schmid-Vilonen [SV] gave an alternative proof and further refinements using Ness’ moment
map. Barbasch-Sepanski [BaSe| deduced the bijection is a poset isomorphism from Vergne’s
results.

We shall state a lift /generalization of the Kostant-Sekiguchi correspondence to stratified
homeomorphisms between adjoint orbits closures in the real Lie algebra gr and symmetric
subspace p whose eigenvalues are real but not necessarily zero.

Denote by Ne = x () the fiber of the Chevalley map y : g — ¢ over £ € ¢. In [Kol],

Kostant proved that there are finitely many G-orbits in N¢ and there is a unique closed
7



orbit O consisting of semisimple elements and a unique open orbit Of consisting of regular
elements. Moreover, we have N¢ = O_E

Assume £ € ¢,g C ¢. Then ¢ is fixed by the involutions on ¢ induced by n and —6 and
hence the fiber N¢ is stable under n and —6. We write

N&R = N& N gr N&p = Ng Np.

for the fixed points. There are finitely many Gr-orbits and K-orbits on Ngr and Ne,,
Ner = |_| Or; Nep = |_| Oyt
! !

Corollary 1.9. There is a Kr-equivaraint stratified homeomorphism
(1.15) Ne r - Nep

which restricts to real analytic isomorphisms between individual Gg-orbits and K -orbits. The
homeomorphism induces an isomorphism between Ggr-orbits and K -orbits posets

(1.16) |Gr\Ne r| ¢— [K\Ng |-

Proof. 1t follows immediately from Theorem 1.3. U

Remark 1.10. Thanks to the work of Vergne [V], it is known that under the Kostant-
Sekiguchi bijection the correspondence orbits are diffeomorphic. It is an open question
whether the corresponding orbit closures have the same singularities (see, e.g., [He, Intro-
duction]). Corollary 1.9 gives a positive answer in the case of classical Lie algebras.

Remark 1.11. In [Bie| and [Biq], the authors proved an extended Kostant-Sekiguchi cor-
respondence for certain adjoint orbits. We expect that their correspondence is compatible
with the one in (1.16).

Remark 1.12. In Theorem 3.2, we also establish a Kostant-Sekiguchi correspondence be-
tween real and symmetric symplectic leaves for quiver varieties.

1.2.2. Derived categories. Let Dg, (Ner), Dk (Nep) denote the respective equivariant derived
categories of sheaves (over any commutative ring). Since Kg — Gg, Kg — K are homotopy
equivalences, the forgetful functors D¢, (Ng) — Dk, (Nr), Dxk(Ny) — Dk, (N,) to Kg-
equivariant complexes are fully faithful with essential image those complexes constructible
along the respective orbits of Gg and K.

Transport along the homeomorphism of Theorem 1.9 immediately provides:

Corollary 1.13. Pushforward along the homeomorphism (1.15) provides an equivalence of
equivariant derived categories

(1.17) Dgy(Ner) =~ D (Nep)
8



1.2.3. Vanishing of odd dimensional intersection cohomology. Theorem 1.9 implies that the
singularities of symmetric nilpotent orbit closures @p C N, are homeomorphic to the sin-
gularities of the corresponding real nilpotent orbit closures Og C Ng. Thus we can deduce
results about one from the other.

Here is a notable example. Let IC(Og, Lg) be the intersection cohomology sheaf of a real
nilpotent orbit Ogr C Ng with coefficients in a Gg-equivariant local system Lg. (Recall that
all nilpotent orbits O C N have even complex dimension, so all real nilpotent orbits Og C Ng
have even real dimension, hence middle perversity makes sense.)

Corollary 1.14. The cohomology sheaves H'(IC(Og, Lg)) vanish for i — dimg Or /2 odd.

Proof. Using the equivalence (1.17), it suffices to prove the asserted vanishing for the inter-
section cohomology sheaf IC(O,, £,) of a symmetric nilpotent orbit O, C N, with coefficients
in a K-equivariant local system £,, and i — dim¢ O, odd. This is proved in [LY, Theorem
14.10].3 O

Remark 1.15. The proof of [LY, Theorem 14.10] makes use of Deligne’s theory of weights
and the theory of canonical bases, and hence does not have an evident generalization to a
real algebraic setting.

1.2.4. Formula for the sheaf of symmetric nearby cycles. Consider the quotient map x, :
p — ¢, = p//K. According to [KR], the generic fiber of y, is a single K-orbit through a
semisimple element in p and the special fiber over the base point x,(0) € ¢, is the symmetric
nilpotent cone N,. Following Grinberg [G1] (see also [G2, GVX]), we consider the sheaf
F, € Dg(N,) of nearby cycles along the special fiber N, in the family x, : p — ¢, (see
Section 5.3 for the precise definition). We will call &, the sheaf of symmetric nearby cycles.

Let Br C G be a minimal parabolic subgroup with Lie algebra bg = mg + ag + ng where
mg = Z, (ag) and ng is the nilpotent radical. Consider the real Springer map

WRZJA\TR—)NR

where ﬂR = Gr xP* ng and mr(g,v) = Ad,v.
We have the following formula for the sheaf of symmetric nearby cycles:

Corollary 1.16 (Theorem 5.3). Under the equivalence D (N,) =~ D¢, (Ng) (1.17), the sheaf
of symmetric nearby cycles F, becomes the real Springer sheaf 8g := (mr)C[dimg Ng/2]. In
particular, the real Springer map mr : Ng — Ngr s a semi-small map and the real Springer
sheaf Sg is a perverse sheaf.

In fact, Theorem 5.3 is slightly stronger than the one stated here. We also prove a formula
for the sheaf of symmetric nearby cycles with coefficients in K-equivariant local systems and
we show that, for any gr (not just for classical types), the real Springer sheaf is isomorphic
to the sheaf of real nearby cycles Fg introduced in Section 5.2.

Remark 1.17. The formula above for symmetric nearby cycles was originally conjectured
by Vilonen-Xue and the first author. It can be viewed as a symmetric space version of the

3n fact, [LY] establishes the odd vanishing in the more general setting of graded Lie algebras.
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well-known result that the sheaf of nearby cycles along the special fiber N in the family
X : @ — ¢ is isomorphic to the Springer sheaf.

Remark 1.18. In [CVX], the authors used the sheaves of symmetric nearby cycles (with
coefficients) to produce all cuspidal complexes on N, and use them to establish a Springer
correspondence for the split symmetric pair of type A (see [VX] for the cases of classical
symmetric pairs). The formula established in Corollary 1.16 provides new insights and
methods into the study of Springer theory for general symmetric pairs and real groups. We
will give one example below. The details will be discussed in a sequel [CN2].

1.2.5. Real Springer theory and Hecke algebras at roots of unity. In [G1], Grinberg gave a
generalization of Springer theory using nearby cycles. One of the main results in loc. cit. is
a description of the endomorphism algebra End(JF,) of the sheaf of symmetric nearby cycles
as a certain Hecke algebra at roots of unity.* To explain his result, let (®, a}) be the root
system (possible non-reduced) of (gr,ar). For each a € ® we denote by gro C gr the
corresponding a-eigenspace. Choose a system of simple roots A C ® and let S C W be
the set of simple reflections of the little Weyl group associated to A. Consider the following
algebra
Hay = C[Bw]/(Ts — 1)(Ts + (_l)ds)ses

where C[By] is the group algebra of the braid group Bw of W with generators Ty, s € S,
and d; is the integer given by

do= > dimg(gra),
a€A,50=5

where s, denotes the reflection corresponding to the simple root o € A®. For examples, if
Gr is a split real from, then we have d; = 1 for all s € S and H,, is isomorphic to the Hecke
algebra associated to W at ¢ = —1. On the other hand, if Gy is a complex group, then we
have ds; = 2 and H,, is isomorphic to the group algebra C[W].

In [G1, Theorem 6.1], Grinberg showed that there is a canonical isomorphism of algebras
(1.18) End(%F,) >~ Heg,-
Since the algebra He,, is in general not semi-simple, as an interesting corollary of (1.18), we
see that the sheaf of symmetric nearby cycles F, is not semi-simple in general.

Now combining Corollary 1.16 with Grinberg’s theorem, we obtain the the following result
in real Springer theory:

Corollary 1.19. We have a canonical isomorphism of algebras
End(8g) ~ Hey-

In particular, the real Springer sheaf Sg is in general not semi-simple and, for any x € N,
the cohomologies H*(B,, C) of the real Springer fiber B, = 75" () carry a natural action of
the algebra Hey, .

In fact, he works in a more general setting of polar representations.
SSince the root system might not be reduced, there might be more than one simple root a such that
Sa = S.
10



Remark 1.20. In [CN2], we will give an alternative proof of Corollary 1.19 (for all types)
following the classical arguments in Springer theory. In particular, combining with Corollary
1.16, we obtain a new proof of Grinberg’s theorem on the endomorphism algebra of F,.

1.3. Previous work. In our previous work [CN1], we establish Corollary 1.9 in the case of
nilpotent cone using the geometry of moduli space of quasi-maps associated to a symmet-
ric pair (G, K). In more detail, we use the factorization properties of the moduli space of
quasi-maps to establish a real-symmetric homeomorphism in the setting of Beilinson-Drinfeld
Grassmannians (for any reductive group GG) and then deduce Corollary 1.9 using the Lusztig
embedding of the nilpotent cone for gl,(C) into the affine Grassmannian for GL, (C). The
result in the present paper suggests that there should be a hyper-Kahler geometry interpre-
tation of the results in [CN1]. This will be discussed in detail in a sequel.

We conclude the introduction with the following conjecture.

Conjecture 1.21. Theorems 1.3 and 1.4 remain true when g is of exceptional type.

1.4. Organization. We briefly summarize here the main goals of each section. In Sect. 2
immediately to follow, we study involutions on hyper-Kahler quotients of linear spaces.
In Sect. 3, we apply the results established in the previous section to the case of quiver
varieties. In Sect. 4, we establish our main results Theorems 4.1 and 4.2. In Sect. 5, we
discuss applications to Springer theory for real groups and symmetric spaces.

1.5. Acknowledgements. The authors would like to thank Marco Gualtieri for inspiring
discussions about symmetries of hyper-Kahler quotients and Jeffrey Adams for useful dis-
cussions about Kostant-Sekiguchi correspondence. We also would like to thank Kari Vilonen
and Ting Xue for useful comments.

The research of T.H. Chen is supported by NSF grant DMS-1702337 and that of D. Nadler
by NSF grant DMS-1802373.

2. A FAMILY OF INVOLUTIONS ON HYPER-KAHLER QUOTIENTS

In this section we introduce a family of involutions on hyper-Kahler quotients of linear
spaces with remarkable properties. The main references for hyper-Kéhler quotients are [Hi]
and [HKLR].

2.1. Quaternions. Let H =R ® Ri & Rj & Rk be the quaternions. For any z = xg + z1t +
x9] + x3k € H we denote by T = xg — 219 — x5 — x3k. Then the paring (z,2’) = Re(zZ’)
defines a real-valued inner product on H. We denote by Im(H) = Ri & Rj & Rk, the pure
imaginary quaternions, and Sp(1) = {z € H|(z,x) = 1} the group of quaternions of norm
one.

2.2. Hyper-Kahler quotient of linear spaces. Let H be a complex reductive group
with compact real form H,. Let M be a quaternionic representation of H,, that is, M is
a finite dimensional quaternionic vector space together with a H-linear action of H,. We
assume that the quaternionic representation is unitary, that is, there is a H,-inner product

(,) on M which is hermitian with respect to the complex structures I, J; K on M given by
11



multiplication by 7, j, k respectively. We have a natural complex representation of H on M
preserving the complex symplectic form we(v,v) = (Jv,v') + i(Kv,v") on M.
We have the hyper-Kéahler moment map
w:M—ImH®g b

satisfying
(& n(9) = (169, 9)i+ (JEP, 9)j + (K&h, p)k € ImH

where £ € b,, ¢ € M, and (,) is the paring between h* and h,. The map p has the
following equivariant properties: (1) it intertwines the Sp(1) x H, action on M and the one
on Im(H) ®g b given by (¢, h)(w,u) = (Ad, w,Ady-1u) (2) we have u(tv) = t*u(v) for
te R ve M.

Using the isomorphism ImH = R @ C sending z1i + x5j + 3k to (x1, x5 + 231), we can
identify InH ® b = b @ h* and hence obtain a decomposition of the moment map

p=pr ® pc: M — by, & b”

of p into real and complex components. The map pc : M — h* is holomorphic with respect
to the complex structure I on M and satisfies

(€, 1c(9)) = we (o, ¢)

where £ € h and ¢ € M. Moreover, it is H-equivariant with respect to the complex repre-
sentation of H on M and the the inverse of the adjoint representation on h*.

Let Z ={v € h}| Adp(v) = v for all h € H,} and Z¢z = C®gZ. Then we have In H®r Z =
Z @ Z¢. For any (¢ € Z¢, we can consider the hyper-Kahler quotient
(2.1) Mee = pg' (0) N pg' (=Ce)/Hu
We have the holomorphic description
M. = pg' (—Cc)//H

where the right hand side is the categorial quotient of uz'(—(c) by H. One can form a
perturbed hyper-Kéhler quotient

m(CR,Cc) = Mﬂgl(_CR) N N((_:l(_CC)/Hu
with not necessarily zero real component (g. The composition ,uﬂgl(—CR) N M(El(—gc) -
,U(El(—QC) — ,u(El(—Cc)//H gives rise to a map
(2'2) T m(@RvCC) - m@c

which is holomorphic with respect to the complex structure I.

From now on we will fix a real parameter (g. For any subset S C Z¢ we can consider the
following family of hyper-Kéhler quotients

Xs @ Mg = p " (0) N pg ' (=S)/Hy — S
Xs : M5y = pig (—Ce) Npg' (=8)/Hu = S
Then the map (2.2) gives rise to a map
(2.3) TS : m(CR,S) — i)ﬁg
12



compatible with the projection maps to S.

2.3. A stratification. Let (¢ € Z¢. Let L be a subgroup of H,. We denote by M/, be
the set of all points in M whose stabilizer is conjugate to L. A point in 9, is said to be of
stabilizer type (L) if it has a representative in M(z). The set of all points of stabilizer type
(L) is denoted by M. (). We have a orbit type stratification

(2.4) M. = | My
(1)

where the union runs over the set of all conjugacy classes of subgroups of U. Each stratum
M. (1) is a smooth hyper-Kéhler manifold, moreover, it is an affine symplectic variety with
respect to the complex structure 1.

2.4. Symmetries of hyper-Kahler quotients. Let G be another complex reductive group
with a compact real form G,. Consider a unitary representation of G, on M commuting
with the H,-action on M. Then for any S C Z¢, the action of the complexification G on
M descends to an action on the hyper-Kéhler quotient 9tg which is compatible with the
projection map to S and holomorphic with respect to the complex structure I.

Assume S C Z¢ is a R-linear subspace. Then the action of R* on M descends to a
G-equivaraint R*-action on IMg:
(2.5) gb(t) Ms — Mg, te R*.

Moreover, we have a commutative diagram

Ms o(t) Mo

oo |

S——S9
where the bottom arrow is the multiplication by #2.

Let ¢ € Sp(1) such that Ad,(S) € S. Here Ad; : ImnH® Z — ImH ® Z is the map
Ad,(w,u) = (Ad, w,u) and we identify Z¢ = (Rj ¢ Rk) ® Z, and hence 5, as a subspace of
Im H® Z with zero i-component. The action of ¢ € Sp(1) on M gives rise to a G,-equivaraint
map

(2.6) é(q) : Mg — My

commuting with the R*-actions. In addition, we have the following commutative diagram

Mo #(q) Mg

L

S——S

where the bottom arrow is Ad, : S — S.

It is straightforward to check that the stratum 9. ) in (2.4) is stable under the G and

R*-actions. Moreover, for any ¢ € Sp(1) (resp. t € R*) and S as above the map ¢(q) (resp.
13



#(t)) is compatible with the stratifications in the sense that it maps the stratum 9. ;) in
the fiber x5'(Cc) = M. to the corresponding stratum M, () in the fiber X5 (¢) = M,
where (. = Ad, (c (resp. (¢ = t*(c).

Example 2.1. Let S = 0. Then we have Ad,(0) = 0 for all ¢ € Sp(1) and the family
of maps ¢(q) in (2.6) gives rise to a (G, x R*)-equivarint Sp(1)-action on My, called the
hyper-Kahler Sp(1)-action. Moreover the stratum 9, () is stable under the Sp(1)-action.

2.5. Conjugations on M.

Definition 2.2. Let ng and ny be conjugations on H and M respectively. We say that ngy
and np are compatible with the symplectic representation of H on M if the following holds:

(1) we have ny(hv) = ng(h)nv(v) for all h € H and v € M.
(2) we have we(nam(v), nv(v')) = we(v,v’) for all v,v" € M.

Lemma 2.3. Let nyg and npr be conjugations on H and M compatible with the symplectic
representation of H on M. Then the complex moment map puc : M — b* intertwines nas
and g .

Proof. For any ¢ € h,v € M, we have

(€, peimu(v)) = we(Emm(v), mm(v)) = we(a (e (§)v), Mm(v)) = we(na(§)v,v) =

= (&), ne(v)) = (€ nu(pc(v))).
This implies uc(nm(v)) = nu(pc(v)) for all v € M. The lemma follows. O

Let ng and my be as in Lemma 2.3. Then the center of b, and hence Z, is stable under
ng. It follows that, for any (¢ € Z¢, the conjugation ny on M descends to a map

(2.7) M. = pg' (=Ge)//H = My, (o) = ng' (—nu(Ce))//H

which is anti-holomorphic with respect to the complex structure I. Moreover, it maps the
stratum M. (1) to the corresponding stratum M. ). As (¢ varies over Zc, the map (2.7)
organize into a map

(28) Nze - mzc — mzc

making the following diagram commute

(2.9) My — My .
P

e — Z¢

We will call 7. the conjugation on M. associated to the conjugations ny and nug.
14



2.6. Compatibility with symmetries. Recall the R-subspace Z C Z¢. For any s €
0, 27], let

qs = cos(s)i+sin(s)k € Sp(1).

A direct computation shows that Ad,, preserves the subspace Z = Rj ®r Z C ImH ®p Z°
and its restriction to Z is given by —idz. Consider the family of hyper-Kéahler quotients

(2.10) My = g (0) N pgc'(=2)/Hy
over Z. Then the discussion in the previous section shows that there is a family of maps
(211) ¢s = ¢(q5) : mz — mz S € [0, 27’(‘]

making the following diagram commute

(2.12) My 2, .

b

A A

—idgz

Consider j € Sp(1). Since Ad; =idy on Z we have a map
making the following diagram commute

o(5)

727
Note that
(2.15) 03 = 0(j) = o(—1).

In particular, if ¢(—1) is equal to the identity map then ¢, and ¢(j) are involutions on .

Our next goal is to study the compatibility between the maps ¢, ¢(j), and the conjugation
Nz, introduced in Section 2.5.

Definition 2.4. Let ny and ny be conjugations on H and M respectively. We say that
ng and ny; are compatible with the unitary quaternionic representation of H, on M if the
following holds:

(1) the pair (ng,mm) is compatible with the symplectic representation of H on M (see
Definition 2.2)

(2) mv preserves the inner product (,), that is, we have (na(v),nm(v')) = (v,v’) for
v,v" € M.

(3) ng commutes with the Cartan conjugation dy.

SNote that Zc = (Rj + Rk) ®g Z is not stable under the family of maps Ad,, .
15



Proposition 2.5. Let ng and npp be conjugations on H and M compatible with the unitary
quaternionic representation of H, on M. Letnz. : Mz, — M. be the conjugation in (2.8)7.
Then the subspace Mz C My is stable under nz.. Moreover if we denote by

(2.16) Nz : Mz — My
the resulting map, we have the following equality of maps on My

(2.17) ¢sonz =d(=1)onzods ¢s00(j) =d(—j)ods  ¢(j)onz =mnz0¢(j)

Proof. Since ny commutes with the Cartan conjugation dg, the center of h,, and hence
its real dual Z C b, is stable under ny and (2.9) implies that 9, is preserved by the
conjugation nz..

We claim that conditions (1) and (2) in Definition 2.4 imply that 7y commutes with J and
preserves iz (0). Assume the claim for the moment. Then using the equality Tony = —npol
and K = IJ, a direct computation shows that we have the following equality of maps on

12 (0) 0 i (= 2):
(cos(s)I +sin(s)K) o = —nm o (cos(s)I + sin(s)K)

(cos(s)I + sin(s)K) o J = —J o (cos(s)I + sin(s)K)

Jonu=1nmoJ
compatible with the H,-action. The desired equality (2.17) follows.
Proof of the claim. For any £ € b, and v € M, we have

(&, pr(nv(v)) = (I&nm(v), mv(v)) = = (Inm (§)v), ma(v)) = —(Inu (§)v,v) = (=nu(E), pr(v)) =

= (& —nu(pr(v)))
Thus we have g (7m(v)) = —ng (ur(v)) and it follows that uz'(0) is stable under the conju-

gation ny. Recall that we (v, v') = (Jv,v")+i(Kwv,v"). Thus the equality we(nav(v), nv(v')) =
we(v,v') is equivalent to
(Sma(v), ma(v’) + i(Knm(v), mm(v') = (Jo, o) — i(Kv,v")
which implies
(), mu(v')) = (Ju,v").
Since m preserves (, ), the above equality implies
(v (v), ma (V') = (v (v), (V')
and it follows that J o ny = v o J. This finishes the proof of the claim. U

Remark 2.6. The proof above shows that condition (2) in Definition 2.4 is equivalent to
the condition that nyg commutes with J.

777Zc is well-defined since ng and nn are compatible with the symplectic representation of H on M.
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2.7. A family of involutions. Let ny and n\ be conjugations on H and M compatible with
the unitary quaternionic representation of H, on M. Let G be another complex reductive
group with a compact real from G, and let ng be a conjugation on G with real form Gg.
Suppose that M is a unitary quaternionic representation of the larger group H, x G, and the
conjugations ng X ng and nyp are compatible with the unitary quaternionic representation.
Then the maps 1z, ¢s, ¢(j) in Proposition 2.5 are Kg-equivaraint where Kg = Gg NG, is a
maximal compact subgroup of Gg.

Definition 2.7. Consider the following maps
(1) aa:Qﬁ%Onzimz—)mz, &E[O,l]
(2) B=0¢(j)onz: Mz — M.
Proposition 2.8. We have a, 0 3 = o a, for all a € [0,1].

Proof. Set s = “F. By Proposition 2.5, we have
aa05:¢son20¢(j)on2 :¢so¢(j)

and
a0 =¢(j)onzopsong =¢(j)od(—1)o ¢, = ¢s0d(j).
The result follows. O

Proposition 2.9. The continuous family of maps
aaimz—)mz, QE[O,I]
satisfies the following:

(1) a2 is equal to identity, for all a € [0,1].
(2) o is Kr-equivariant and commutes with the R* -action.
(3) g commutes with the projection map My — Z and induces involutions on the fibers
gt M — M, (e € Z preserving the stratification M, = || 1) M (1)
(4) At a =0, we have ag = ¢(i) o nz which is an anti-holomorphic involution.
(5) At a =1, we have oy = ¢(k) o ng which is a holomorphic involution.
Proof. Note that ¢ = —1 and hence ¢? = ¢(¢?) = ¢(—1). By Proposition 2.5 we have

s

(¢s0mz)* = dsomzods0ny = ¢ 0 d(—1) ony =id.
Part (1) follows. Part (2),(3),(4),(5) follow from the construction. O

Proposition 2.10. The map
ﬁ : gﬁz — gﬁz
satisfies the following:

(1) % = ¢(-1).
(2) B is Kr-equivariant and commutes with the R* -action.
(3) B induces a holomorphic map between fibers B : M. — M_¢. which takes the stratum

Mo,z to the stratum M_q. 1.
17



Proof. Since 3% = ¢(j)onzod(j)ong = ¢(j)* = #(—1), part (1) follows. Part (2), (3) follow
from the construction. O

Remark 2.11. Unlike the family of involutions «y, the map [ is well-defined on the whole
family 9 ...

2.8. A stratified homeomorphism. Our aim is to trivialize the fixed-point of the family
involution «a,. To that end, we will invoke the following lemma.

Recall that a subset S of a real analytic manifold M (resp. real algebraic variety M) is
called semi-analytic (resp. semi-algebraic) if any point s € S has a open neighbourhood U
(resp. a Zariski affine open neighbourhood U) such that the intersection S N U is a finite
union of sets of the form

{reUlfilz) =--- = filx) = 0,q1(z) > 0,..., gi(x) > 0},
where the f; and g; are real analytic functions on U (resp. polynomial functions on U).

Lemma 2.12. Let M and N be two semi-analytic sets and let f : M — N be a continuous
map. Let
ag: M — M, a€l0,1]

be a continuous family of involutions over N.

(1) Assume «, preserves a semi-analytic stratification of M® and restricts to a real an-
alytic map on each stratum. Then the fixed-points of the strata are real analytic
manifolds and the a,-fized points M“ is stratified by the fized-points of the strata.

(2) Assume further that there is a continuous R-g-action on M (resp. N ) real analytic
on strata and a proper continuous map ||—||: M — Rsq such that (i) f: M — N is
R.g-equivariant (ii) the Rsg-action on M has a unique fized point opy € M, which is
also a stratum (iii) |[tm]|= t||m|| and ||ae(m)||= ||m]|| fort € Rsg,a € [0,1],m € M.
Then for any a,a’ € [0, 1] there is a Rsg-equivariant stratified homeomorphism

(2.18) M o~ MO

which 1s real analytic on each stratum and compatible with the natural maps to N.

(8) Assume further that there is a continuous action of a compact group L on M satisfying
(i) the action commutes with the map f : M — N, the involutions o, and the
R.o-action, and is real analytic on each stratum (ii) the map ||—||: M — Rsq is
L-invariant. Then the homeomorphism in (2.18) is L-equivariant.

Proof. Proof of (1). Only the first claim requires a proof and it follows from the general fact
that the fixed points M of a real analytic involution a on a real analytic manifold M is
again a real analytic manifold.

Proof of (2). Step 1. Let My = M \ {on} and C = {m € M,|||m||= 1}. Since ||—||:
M — R is a,-invariant and proper, C' is compact and stable under the a,-action. Since

R.q acts freely on M, and ||—|| is Rsgp-equivariant, the restriction ||—|||aq : Mo — Rsg is a
stratified submersion (where R.q is equipped with the trivial stratification). It follows that
C = ||-]|7%1) € M, is stratified by the intersection of the strata with C.

8A stratification of a semi-analytic set is called semi-analytic if each stratum is a real analytic manifold.
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Step 2. We shall show that there exists a stratified homeomorphism
(2.19) v: (% ~ C%
which is real analytic on each stratum and is compatible with natural maps to N. Consider
the involution « : [0,1] x C' — [0,1] x C, a(a,m) = (a,a,(m)). Let w be the average of the
vector field 0, x 0 on [0, 1] x C' with respect to the Z/2Z-action given by the involution .
Since [0, 1] x C'is compact and the Z/2Z-action is real analytic on each stratum, the vector
field w is complete and the integral curves of w defines the desired stratified homeomorphism
v:(C% ~ (C% a,d € |0,1] between the fibers of the a-fixed point ([0, 1] x C')* along the
projection map to [0, 1].

Step 3. We have a natural map My* — C% sending m to ”—2” Consider the following
map

a m

(2.20) Mg — My~ m — Hm||u(w)
Note that M is homeomorphic to the cone C'(Mg*) = Mg U {op} of Mg*. Thus by the
functoriality of cone, the map (2.20) extends to a homeomorphism

(2.21) M — M
sending oy to oy It is straightforward to check that (2.21) is a Ryg-equivariant stratified
homeomorphism which are real analytic on each stratum and compatible with the natural

maps to N. This finishes the proof of part (2). Part (3) is clear from the construction
of (2.21). O

Example 2.13. We preserve the set-up in Section 2.7. The map ||—||: My = uz'(0) N
uz'(Z)/H, — Rsq given by [|m||= (m,m)z, where m € pug'(0) N puc'(Z) is a lift of m,
is a Kg X a,-invariant proper real analytic map satisfying ||¢(t)m||= t||m||,t € R~o. Let
Mo = p1(0)/Hy, g : My — My be the family of involutions in Proposition 2.9, and
o(t) : My — My be the R.p-action in (2.5). Denote by

Mo(R) = Mmg* M (C) = M

the fixed points of ag and a; on 9y respectively. Applying Lemma 2.12 to the case M = 901,
with the stratification Mo = | |y Mo,z), N =0, L = K, and the restriction ||—|[|ar : M =

My — Rsg of the function ||—|| above to My C My, we see that there is a Kr X Rsg-
equivariant stratified homeomorphism
(2.22) My(R) ——= M (C)

which are real analytic on each stratum. Note that whereas 9t""(C) is complex analytic
My(R) is not, it is a real form of M.

3. QUIVER VARIETIES

In this section we consider the examples when the hyper-Kahler quotients are Nakajima’s
quiver varieties. We show that any quiver variety has a canonical conjugation called the
split conjugation and hence has a canonical family of involutions «, introduced in Section

2.7. The main reference for quiver varieties is [Nak1].
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3.1. Split conjugations. Let @ = (Qo, Q1) be a quiver, where Q) is the set of vertices
and ()1 is the set of arrows. For any (Qp-graded hermitian vector space V = @ker Vi,

we write GL(V) = [, GL(Vi) and U(V) = [[,cq, U(Vk) where U(V4) is the unitary
group associated to the hermitian vector space V. We denote by gl(V') and u(V') be the Lie
algebras of GL(V') and U(V') respectively.

Let V = @, Vi and W = P, Wi be two Qp-graded hermitian vector spaces. Define
(3.1)
M = M(V, W) = @5 Hom(Vyn), Vigwy) & Hom(Vign Vo)) €D Hom (Wi, Vi) & Hom (Vi Wy).
heQ: k€Qo

Here o(h) and i(h) are the outgoing and incoming vertices of the oriented arrow h € @
respectively.

We consider the H-vector space structure on M given by the original complex structure I
together with the new complex structure J given by

(3.2) J(X,Y,z,y) = (YT, XT, —yf af)
where (X, Y, z,y) € Hom(Vy1), Vi) ® Hom(Vigy, Vo)) ® Hom(Wy, Vi) @ Hom(V;,, W) and
(—) is the hermitian adjoint.

The hermitian inner products on Vj, and W, induces a hermitian inner product on Hom(V},, W)
(resp. Hom(V}, Vir)) given by (f, g) = tr(fg'). We consider the hermitian inner product on
M induced from the ones on V}, and Wj.

Let H = GL(V) and G = GL(W) with compact real from H, = U(V) and G, = U(W).
Then action of H x G = GL(V) x GL(W) on M give by the formula

(9. 9)(X.Y,2,y) = (9Xg™" . gYg™",g92(¢") ", g'yg™")
defines a unitary quaternionic representation of U(V) x U(W) on M. The holomorphic
symplectic form we is given by

(3.3) we((X, Y, z,y), (XY 2 y)) =tr(XY' = YX') + tr(zy — 2'y)
We denote by
(3.4) p:M— Im(H) @ u(V)* = Im(H) @ u(V)

the hyper-Kahler moment map with respect to the U(V')-action. Here we identify u(V') with
its dual space u(V')* via the above hermitian inner product. We have the following formulas
for the real and complex moment maps

pa(X,Y2,y) = S(XXT =YY 4 aal —yly) € u(v),
uc(X,Y,z,y) =X, Y]+ a2y € gi(V) = Cog u(V).
The hyper-Kahler quotient 9, is called the quiver variety.

Lemma 3.1. Let ny and ny be conjugations on' V. and W compatible with the Qo-grading’
and let ng, ng, and nar be the induced conjugations on H = GL(V), G = GL(W), and M
respectively. Assume ng and ng commute with the Cartan conjugations on H and G given

9That is, we have 1y (Vi) = Vi, nw (Wi) = Wy, for all k € Qo.
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by the hermitian adjoint. Then the conjugations ng X nNg and nar are compatible with the
unitary quaternionic representation of H, x G, on M.

Proof. ng X ng commutes with the Cartan involution on H x G by assumption. Using (3.2)
and (3.3), it is straightforward to check that nyg commutes with J and ng x ng and gy are
compatible with the symplectic representation of H x G on M. In view of Remark 2.6, we
see that ng X ne and ny satisty (1), (2), (3) in Definition 2.4. The lemma follows. O

Choose Vv = (Vi)kego: W = (Wi)keg, € 293 and let M(v,w) = M(V, W) where V =
Dico, C* and W = P, .o, C* equipped with the standard hermitian inner products. The
standard complex conjugations on V' and W induce the split conjugations on H = GL(V)
and G = GL(W) commuting with the Cartan conjugations, and hence give rise to involutions
g, Ng and my compatible with the unitary quaternionic representation. We will call the
conjugation

Nze - mzc — mzc

on the family of quiver varieties 9. associated to ng X ng and nwm the split conjugation.

3.2. Real-symmetric homoemorphisms for quiver varieties. Let O(Wg) = U(W) N
GL(Wg) be the real orthogonal group. By Propositions 2.5 and 2.9, the split conjugation 7,
on My, preserves the subspace My C M. and gives rise to a family of O(Wg)-equivariant
involutions

(35) Qg . mz — mz ac [0, 1]

interpolating the anti-holomorphic involution oy = ¢(i) oz and the holomorphic involution
ay = ¢(k) oz, and preserving the strata M. 1y of the fiber M. for (¢ € Z.

The involutions in (3.5) restricts to a family of involutions «, : 9y — My. Write M(R) =
M° and MY (C) = MG* for the fixed-points of ap and «;. The intersections of the stratum
Mo, () with Mo(R) and M?™(C) are unions of components

My N Mo(R) = | [O,(R) Moy M (C) =| | 0;"(C)

In [BeSc, Theorem 1.9], Bellamy-Schedler proved that the strata 9y (1) are symplectic leaves
of My. We will call the components O;(R) and 0;¥"(C) above the real symplectic leaves and
symmetric symplectic leaves respectively.

The following proposition follows from Example 2.13:

Theorem 3.2. There is a O(Wg) x R*-equivaraint stratified homeomorphism
(3.6) Mo (R) — MW" (C)

which restricts to real analytic O(Wg)-equivariant isomorphisms between individual real and
symmetric symplectic leaves. The homeomorphism induces a bijection

(3.7) {0(R)} «— {0, (C)}

between real and symmetric leaves preserving the closure relation.
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In the next section we shall see that the nilpotent cone N,,(C) in gl,(C) is an example of
quiver variety and the homeomorphism (3.6) in this case becomes an O,,(R) x R*-equivariant
homeomorphism

N,y (R) = N2¥m(C)

between the real nilpotent cone in gl,(R) and the symmetric nilpotent cone in the space
of symmetric matrices p,(C) and the bijection (3.7) is the well-known Kostant-Sekiguchi
bijection between GL,(R)-orbits in N, (R) and O, (C)-orbits in N2¥"(C). Thus one can
view (3.6) as Kostant-Sekiguchi homeomorphisms for quiver varieties.

4. REAL-SYMMETRIC HOMEOMORPHISMS FOR LIE ALGEBRAS

4.1. Main results. Let us return to the Cartan subgroup 7' C G, stable under n and 6,
and maximally split with respect to 7. Let t C g denote its Lie algebra, Wg = Ng(t)/Zc (%)
the Weyl group and introduce the affine quotient ¢ = g//G = Spec(0(g)%) ~ t//Wqg =
Spec(O(t)Wé). Let x : g — ¢ be the natural map.

Next, let a = tNp be the —1-eigenspace of 8, and write ag = a N gg for the real form of a
with respect to . Let W = Ny (ar)/Zk,(agr) = Nk (a)/Zk(a) be the “little Weyl group”,
and introduce the affine quotient ¢, = p//K = Spec(O(p)X) ~ a//W = Spec(O(a)V). Let
Xp : P — ¢, denote the natural map.

Let ¢y, g C ¢ be the image of the natural map ag — ¢. Since the map ag — ¢ is a polynomial
map, by Tarski-Seidenberg’s theorem, its image ¢, g is semi-algebraic. For example, if gr =
sl5(R) then ¢ = C and ¢, g = Ry

Consider the following semi-algebraic subsets of g, gr and p:

(4.1) g =g x Cp,R gf{& = OR X¢ R p'=p X Cp,R-
We have

(4.2) gr = {x € gr| eigenvalues of ad, are real}
(4.3) p' = {x € p| eigenvalues of ad, are real}

Note that G, Gg and K naturally act on g’, g and p’ respectively, and the actions are along
the fibers of the natural projections

(4.4) g —cr Or —Gr P 2GR

Theorem 4.1. Suppose all simple factors of the complex reductive Lie algebra g are of
classical type. There is a Kgr-equivariant homeomorphism

(4.5) g — P’

compatible with the natural projections to ¢y r. Furthermore, the homeomorphism restricts
to a real analytic isomorphism between individual Gg-orbits and K -orbits.

We deduce the theorem above from the following.
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Theorem 4.2. Suppose all simple factors of the complex reductive Lie algebra g are of
classical type. There is a continuous one-parameter families of maps

a,: g — ¢, ael0,1]
satisfying the following:
(1) a2 is the identity, for all s € [0, 1].
(2) At a =0, we have ag(M) = n(M).
(3) At a =1, we have ay (M) = —60(M).

(4) oy is Kgr-equivaraint and take a G-orbit real analytically to a G-orbit.
(5) o commutes the with projection map g’ — ¢, .

4.2. Quiver varieties of type A and conjugacy classes of matrices. Consider the type
A, quiver:

1 2 3 n—2 n—1
Q:e . o . o

o3

Let v.= (n,n—1,..,2,1) € Z% and w = (n,0,...,0,0) € ZZ,. Consider the unitary
quaternionic representation M(v, w) of H, = [[;_, U(k) in Section 3.1. A vector in M(v, w)
can be represented as a diagram

(4.6) cn

yT lx X X X X X Y
Ccn - C"_l C"_2 L. (C3 C2 (Cl

-
Y Y Y Y Y Y

Let My, = pe'(0) N uc'(=Zc)/H, — Zc be the family of quiver varieties associated to
M(v,w).

Denote by g, = gl,,(C), t, C g, the subspace of diagonal matrices, ¢, = g,//GL,(C),
and x, : g, — ¢, the Chevalley map. We will fix an identification ¢, = C" so that the map
Xn @ @n — ¢, = C" is given by x,(M) = (c1,...,c,), where T + ;T 1 + - - - + ¢, is the
characteristic polynomial of M. Consider the following maps

(4.7) Gne i Mze = 9o Xty [X,Y,2,y] = (yz, ()

(48) lnC * Z(C -t C(C - (Clv EES) CTL)

where (c = (Ci,-.-,(y) is the image of [X,Y,z,y] € Mz, under the projection map xz. :
My, — Ze and ¢; = G+ -+ -+ ¢, 1 < i < n. Note that the map ¢, ¢ intertwines the
GL,(C) x R*-action on My, with the one on g, X t, given by (g,a)(M,t) = (¢Mg~', a’t).

Proposition 4.3. Let w7, : Mgy z0) — Mz, be the map in (2.3) and let M, C My, be its
image. Assume ¢ = ((r,0) is generic in the sense of [Nakl, Definition 2.9].

(1) The fiber M, of the projection M. — Zc over (¢ € Zc is a union of strata.

(2) M, is connected and invariant under the GL,(C) x R*-action.
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(3) The map ¢ (4.7) restricts to a GL,(C) x R*-equivariant isomorphism
¢n,(C . m/ZC = On ch tn
of complex algebraic varieties making the following diagram commute

Pn,C
/ il
Ze  On Xe, by .

oL

Ze—" o,

Furthermore, the map ¢, c induces stratified isomorphisms between individual fibers
of the projections M, — Zc and @, X, tn, — t,. Here we equipped the fibers of
On Xo, th — t, with the GL, (C)-orbits stratification.

Proof. Part (1) follows from [Nakl, Corollary 6.11]. Proof of (2) and (3). Since each stratum
I (1) is invariant under the GL,, (C) x R*-action part (1) implies I, also has this property.
Moreover, since the R*-action on EJJI’ZC is a contracting action with a unique fixed point,
9N, is connected. By the result of Mirkovic-Vybornov [MV, Theorem 6.1}, which is a
generalization the earlier results of Kraft-Procesi [KP] and Nakajima [Nakl], the map ¢, ¢
induces isomorphisms between individual fibers of the projections M, . — Zc, g, X, th — ta,
and hence is a bijection. Since g, X, t, is normal and 9, is connected it follows that
®n,c is an isomorphism algebraic varieties. We claim that ¢,c maps each strata M. (1)
isomorphically to a GL,(C)-orbit. For this we observe that there are only finitely many
GL,(C)-orbits on the fibers of g, X, t, — t, and the closure of any non-closed orbit is
singular. Since each stratum 9. (1) is smooth and connected it follows that ¢, c(Me. (1))
is a single GL,(C)-orbit. The claim follows and the proofs of (2) and (3) are complete.

U

4.3. Reflection functors. Let C = (Cy;)1<x,1<n be the Cartan matrix of type A,,. Identify
Z¢ with C" and consider the reflection representation of the Weyl group W on Z¢. For
any simple reflection si, k € [1,n] and (¢ = ((1,-..,(n) € Zc, we have s((c) = (( where
G =G —Cr G

In [Nakl], Nakajima associated to each k € [1,n] a certain hyper-Kahler isometry Sy :
M. (v, w) =~ M (V/, w) called the reflection functor. Here (¢ = sx((c) and v’ is given by
v, =g — > Cuvy +wy, vy = v if L # k for v = (vq,...,0,), w = (wy, ..., w,,). Moreover, it
is shown in loc. cit. that the reflection functors S, satisfy the Coxeter relations of the Weyl
group.

In the case v = (n,n —1,...,1) and w = (n,0...,0), a direct calculation shows that, for
k € [2,n], we have v = v/ and hence Sy : M (v, w) ~ M (v,w). Let S, C W be the
subgroup generated by the simple reflections ss, ..., s,. As (¢ varies over Z¢, the reflection
functors S, .., S,, define a S,-action on M. = Uccezc M. (v, w) such that the projection
map My. — Zc¢ is S,-equivariant.

Lemma 4.4. The subset QJT’ZC C My, is invariant under the S,-action and the isomorphism
Gn,c : My, =~ g X, b, 08 Sp-equivariant.
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Proof. We first claim that the map gz~5n7<c : Mz — gn X 4, (4.7) is Sj-equivariant. Recall the
isomorphism ¢, ¢ : Z¢ ~ t, in (4.8). A direct computation shows that ¢, ¢ intertwines the
action of s; and the simple reflection o;_;1, € S, for £ > 2. On the other hand, the formula
for the reflection functors in [Nak2, Section 3(i)] implies that, for any [X,Y, z,y] € M., we
have Si([X,Y,z,y]) = [X,Y,z,y] for k > 2. All together we see that

Gnc(Se([X, Y, 2,9]) = buc((X, Y 2, 9)) = (47, ok-1.4(tnc(Cc))) = o1k (Y2, tne((c)) =

= Ok-1k(Gnc((X, Y. 2, 9)).

The claim follows. To complete the proof of the lemma, we need to show that 9, is S,-

invariant. Let Z C Z¢ (resp. t2 C t, )be the open dense subset consisting of vectors with

trivial stabilizers in S,,. The isomorphism ¢, ¢ induces an isomorphism 9, ~ g, x 0
Z

Cn "N

where im’Z% = M, Xz, Z¢, and it follows that i)ﬁ’zg is open dense in M, and the fibers of the

projection 9, — Z¢ are smooth. According to [Nak2, Theorem 4.1], the map 7z, : 9z —
Z

M. is an isomorphism over Sﬁzg =My, Xz Z(g and it follows that EJJI’ZO = My, Xz Z(g,
Z

which is S,-invariant. On the other hand, the same argument as in the proof of [Nak2,

Theorem 4.1(1)] shows that the map 7z. : M(q, z.) — Mz, is proper and hence its image

e = T2:(Mz,z0)) T My, is a closed subset. Thus MY, is equal to the closure of i)ﬁ’z(g in
M. and, as im’Zg is S,-invariant, it implies M, is S,-invariant. The lemma follows.
O

4.4. Involutions on the spaces of matrices with real eigenvalues. Let 0, C M,
be the image of 7z : M, — M, and let g, X, it, g where it, g C t, is the R-subspace
consisting of diagonal matrices with pure imaginary entries. Then the isomorphisms ¢, ¢
and ¢, ¢ above restricts to isomorphisms

(4.9) "™ Gn X, ity R Z ~it, g

Consider the family of involutions a, : MM, — M, in Proposition 2.9 associated to the split
conjugations in Section 3.1 and the map S : My — M, in Proposition 2.10. Note that the
action of —1 € R* on My is trivial (it becomes the action of 1 = (—1)% on g, X, it,r)
thus, by Proposition 2.10 (1), £ is an involution. Note also that the fibers of the projection
M', — Z are union of strata (Proposition 4.3 (1)), thus Proposition 2.9 (3) and Proposition
2.10 (3) imply that 9, is invariant under the involutions «, and g.

To relate M, with matrices with real eigenvalues let us consider the following composition

, (49) .

(410) ¢n : mz >~ gn X, Ztn,R >~ On X, tn,R
4.9

(411) ln - 7 (2 ) itn,R ~ tn,R
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where the second isomorphisms are given by g, X, it,r >~ g, X, tur, (¥,v) = (iz,iv) and
it, g = t,r,v — 1. Note that the following diagram is commutative

(4.12) M, —2 g X, bog
A - tur

where the vertical arrows are the natural projections.

Now the isomorphism ¢,, : MM, >~ g,, X., t,r gives rise to involutions on g,, X, t,r:

Cn

(413) O~4n,a = ¢n O Qg © ¢;1 S On X, tn,]R — On X, tn,]R ac [07 1]

(414> Bn:¢noﬁo¢;1 S On X, tn,R_>gn Xen tn,R
Lemma 4.5.

(1) The involutions B, is given by BH(M, v) = (=M"', —v). In particular, B, commutes
with the action of the symmetric group S, on g, X, t,r.
(2) The involution &, , commutes with the action of the symmetric group S, on g, X, t, g

Proof. Let (M,v) € g, X¢, tng. Choose [X,Y,z,y] € M such that

¢n([X> Y> z, y]) = Z(y$a Ln(C(C)) = (M> 'U)'
According to Definition 2.7 and Proposition 2.10, we have
ﬁ([Xv }/7 €, y]) = ¢(]) o nZ([Xa }/7 Z, y]) = [_YTv XTv _gT’ jT] = m,—@c
It follows that
Bu((M,0)) = du([=VT, X1, =", #1]) = i((@)(=5"), =ta(Ce)) = (=M, —0).
Part (1) follows.
According to Definition 2.7, we have

0u([X, Y, 2,3]) = (cos(5)(0) + sin(s)g(k) o (X, ¥, 2,]) = [X', V", 2", /] € M.,
where

2’ =icos(s)z —isin(s)y’, o =icos(s)y+ isin(s)z'.
On the other hand, we have Sy([X,Y,z,y]) = [X,Y,z,y]. Thus

(4.15) g0 SK([X, Y, 2,y]) = [(X), (V)2 ¢/],  Skoaa([X,Y,z,y]) = [(X), (Y"), 2",y
Since ¢, commutes with the S,-action (Lemma 4.5), we obtain
Gna © Sk((M,0)) = Gng o Sk o ¢n([X, Y, 2,9]) = ¢y 0 g 0 Sk([X, Y, 2, y]) = i(y'2, s, (v))
Sk 0 Q. o((M,v)) = Sk o ay 0 ¢n([X,Y,2,y]) = ¢y 0 Sk o ([ X, Y, 2, y]) = i(y'2, sr(v)).
Part (2) follows. The proof is complete.
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Let ¢, g C ¢, be the image of the map t,g — ¢, and let g/, = g, X, ¢, r C g,. Note that
both ¢, g and g/ are semi-algebraic sets. We have

(4.16) g, = {z € g,| eigenvalues of z are real}.

Since the natural map g, X, tag — @), = @n X¢, Cnr 18 Sp-equivariant (where S,-acts trivially
on g/ ), Lemma 4.5 implies that the involutions &, , and (3, in (4.13) and (4.14) descend to
a continuous family of involutions on g,

(4.17) nga G — O,
compatible with projections to ¢, r and an involution
(4.18) Bt n = O
Moreover, f3, is equal to the restriction of the Cartan involution on g, to g:
(4.19) Bu(M) = — M
Theorem 4.6. The continuous one-parameter families of maps
Qpa s Gy — G, a €10,1]

satisfying the following:

(1) ai , is equal to the identity map, for all a € [0,1].

(2) At a =0, we have a,o(M) = M.

(3) At a =1, we have o, (M) = M".

(4) . is On(R)-equivaraint and take a GL,(C)-orbit real analytically to itself.

(5) an.a commutes both with the Cartan involution [3,, and with the projection map g, —

Cur, for all a €10, 1].
Proof. Part (1) follows from the construction and Part (5) follows from the commutative
diagram (4.12). Let ¢, : I, 2 On X¢, twr — @, where the last map is given by g, X, t,x —
On X¢, thr = @,,. Let M € g,. Choose [X,Y,z,y] € 9, such that
M= ¢ ([X,Y,z,y]) = iyx
By Definition 2.7, we have
oo([X, Y, z,y]) = ¢(i) 0 nz([X, Y, 2, y]) = [iX,iY, iz, if]
It follows that o o
ano([X, Y, 2, y]) = ¢, ([iX, 1Y, iz, ig]) = i(—yz) = M
~t T I Lt T .
an1 ([X, Y, 2,9]) = ¢,([=Y,iX ', —ig',iz")) = i(z'y") = i((yx) ) = i(yx)' = M".

Part (2) and (3) follow.

By Proposition 4.3 (3), the isomorphism ¢, : MM, — g, X, t, g maps each stratum M. (1)
real analytically to a GL, (C)-orbit. Now part (4) follows from the fact the involution «a, on
M, is O, (R)-equivariant and M. (1) is invariant under a.

U
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Let g;, r be the space of n x n real matrices with real eigenvalues. Let p;, be the space of
nxn symmetric matrices with real eigenvalues. It is clear that g;, p = (g;,)* and p;, = (g;,)™

Theorem 4.7. There is an O,(R) x R*-equivariant homeomorphism
(4.20) Onr — P,

compatible with the natural projections to ¢, g. Furthermore, the homeomorphism restricts
to a real analytic isomorphism between individual GL,,(R)-orbits and O,,(C)-orbits.

Proof. Consider the Lusztig stratification of g,. The stratum through ¢ with a Jordan
decomposition g = s+ u consists of all GL,(C)-orbits through u + Z,.(I) where [ = Z; (s) is
the centralizer of s in g,, and Z,(l) = {x € Z(1)|Z,, (x) = [} is the regular part of the center
Z(l) of [. Tt is clear that the Lusztig stratification restricts to the orbits stratifications on
the fibers of the Chevalley map x,, : g, — ¢, and a stratification on g/, = g,, X., tnR.

Recall the U(n)-invariant function ||—||: 9z — Rso in Example 2.13. The restriction

of ||—|| along the closed embedding g, X, t, 2 M, C My gives rise to a function g, X,
t, — R>¢. Its average respect to the S,-action on g, X cn t, defines a S,-invariant function
On Xe, t — R>o which descends to a function ||—||y : g/, = R>o. It follows from Theorem
4.6 and the construction of ||—||g that the function ||—||y together with the real analytic
map g, — ¢, r and the Lusztig stratification on g/, satisfy the assumption in Lemma 2.12,
and hence we obtain a stratified O,,(R)-equivariant homeomorphism

(4.21) Gor = Ph

which are real analytic on each stratum and compatible with the maps to ¢, g. Since each
stratum in @), (resp. p;,) is a finite union of GL,(R)-orbits (resp. O,(C)-orbits) and
O, (R)-acts simply transitively on connected components of each orbits, it follows that the

homeomorphism (4.28) restricts to a real analytic isomorphism between individual GL,,(R)-
orbits and O,,(C)-orbits. O

4.5. Proof of Theorem 4.2. We shall deduce Theorem 4.2 from Theorem 4.6.

Let g be a simple Lie algebra of classical type with real form ggr. Recall the classification
of real forms of classical types:

Lemma 4.8. [OV, Section 4] Here is the complete list of all possible quadruple (gg,¥€,n,0)
(up to isomorphism):
(a) g = s1,(C):

(1) gr = sl,(R), t = 50,(C), n(g) =g, 0(g) = —¢".

(2) gr = sl (H), € = sp,,(C), 1(g) = AdSn(9), 0(9) = —AdSn(g") (n=2m).

(3) or = Supn—p, t = (81,(C)Bgl,_,(C))Ng, n(g) = — Ad Ln—p(7"), 0(g9) = AdLpnp(9).

(b) g = s0,(C):

(1) 9r = 50, p, t = 50,(C) © 50, _,(C), n(g) = Ad L, ,(9), O(9) = Ad L, p(9).
(2) gr = u;,(H), € = gl,,(C), n(g9) = Ad S,.(9), 0(9) = AdSp(g) (n=2m).

(¢) g =5p,(C), n=2m:
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(1) gr = 5o, (R), € = gl,,(C), n(g) =g, 0(g9) = AdS,u(9).
(2) Or = SPpn—ps € = 5P2, (C)DSPyy, 0,(C), 1(g9) = — Ad Kpm(7"), 0(9) = Ad Kpm—p(9)-

_ 0 —Id, _( 1d, 0 _( foms 0
Here Sm = < [dm 0 ); ]p,n—p - ( 0 _Idn—p ), and Kp,m—p - < 0 Ip,m—p )

Consider the following commutative diagram

Lg

(4.22) g— 0

lx | lxn

c——=¢,

where ¢4 : g — @, is the natural embedding and ¢, : ¢ = g//G — ¢, = g,,//GL,(C). We have
the following explicit description of x and ¢.. For any M € g, let
T"+aT" ' + oI 4+,
be the characteristic polynomial of M. In the case g = sl,(C), we have ¢; = 0 and one can
identify ¢ with C"~! so that
X(M) = (627 C3yeny Cn)
te(cry ey cn) = (0,¢2, ..., ¢)
In the case g = sp,(C) or s0,(C) we have ¢, = ¢3 = --- = 0 and one can choose an
identification of ¢ = C"/? such that y : g — ¢ = C"/? is given by
X(M) = (co,¢4y..0i¢) if g =s5p,(C)

X(M) = (ca,¢4y.e0s0n1)  if g=50,(C) n=2m+1

X(M) = (co,Cqy .y Cpo, &) if g=50,(C) n=2m
where ¢, = Pf(M) is the Pfaffian of M satisfying Pf(M)? = det(M) = ¢, and the map ¢ is
given by

te(co,Cay oy cn1) = (0,¢9,0,¢4,..0,¢c,1) if g=s5p,(C)

LC(CQ,C4,...,Cn_1) = (0,02,0,04,...0,Cn_1) if 8] :EOn(C) n:2m+1,l =1m

(4.23) Le(Ca,Cay vy Cpa, E) = (0,¢9,0,¢4,...,0,82) if g=150,(C) n=2m,l=m.

Remark 4.9. It follows that the map ¢, : ¢ — ¢, is a closed embedding except the case
g =50, n=2m.

Recall the semi-algebraic sets ¢, g C ¢ and g’ = gx.c,r C g introduced (4.1). Since for any
x € g’ the eigenvalues of ad, are real, the embedding g’ — g, factors through ¢’ — g/, C g,
and diagram (4.22) restricts to a digram
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Note that Proposition 2.8 implies a,, © 8, = B, © apq. On the other hand, since
Sms Lpn—ps Kpm—p € On(R), Proposition 4.6 (4) implies that the involutions Ad S,,, Ad I, ,,—,
and Ad K, ,,,—, on g/, commute with both «, , and 3,. Now a direct computation, using the
formula of # in Lemma 4.8, shows that the compositions

(4.25) nsofBpob g, —g, se[01]

are involutions. We claim that the subspace g’ C g/, is invariant under the involutions (4.25).
Consider the involution ¢ on g, such that (g,)” = g, that is, o is given by ¢ = 3, if
g = 50,(C) and o = Ad(S,,) o 5, if g = sp,,(C). Since the map (4.25) commutes with the
involution o, the o-fixed points (g),)? is invariant under the map (4.25). The claim follows.

The diagram (4.24) implies that g’ is equal to the base-change

(4.26) g = (8,)7 Xeng te(Cpr).

of (g],)? to the subspace t(¢,r) C ¢, g and hence the maps (4.25) restrict to a family of
involutions

(4.27) a9 =g a€l01]

We shall show that the map «, above satisfies properties (1) to (5) in Theorem 4.2.
Properties (1), (2), (3) of a4 in Theorem 4.6 immediately implies that o, satisfies properties
(1), (2), (3) in Theorem 4.2. Property (4) follows from the fact that the intersection of an
adjoint orbit of g,, with g is a finite disjoint union of G-orbits and each G-orbit is a connected
component. We now check property (5). We need to show that «, preserves the fibers of
X : ¢ — ¢pr. Assume g is not of type D. Then by Remark 4.9, the map ¢, g — ¢, is a closed
embedding and property (5) follows from the one for o, ,. Assume g = §0,,3,,. Then from
the diagram (4.24) we see that the involution «, preserves the fibers of t.ox : g = ¢, g = ¢, k.
Let ¢ = (ca, ¢4y .., Cn) € ¢pr. According to (4.23), if ¢, = 0 then x7'(c) = (tc 0 x) " (ee(c))
and if ¢, = 0 then (1.0 x) 7 (tc(c)) = x 1)U x1(¢)) where ¢ = (co, 4, ..., Cn2, —Cp). In the
first case, x~!(c) is equal to a fiber of ¢, o x and hence is invariant under a,. Consider the
second case. Since x'(c) contain a vector in ag and ag(M) = M for M € ag, it follow that
ap(x1(c)) = x7t(c). Since x(c) and x~1(¢/) are connected components of (. o x)™*(t(c))
we must have a,(x7'(c)) = x7!(c) for all a € [0,1]. We are done. This finishes the proof of
Theorem 4.2.

4.6. Proof of Theorem 4.1. The proof is similar to the one of Theorem 4.7. Since g =
(g,)? is the fixed-points subspace of the involution o on g, and the stratum of the Lusztig
stratification of g,, are invariant under o (the stratum are invariant under the adjoint action
and transpose), we obtain a stratification of g given by the o-fixed points of the strata. The
stratification on g induces a stratification on g’ = g X, ¢, g, moreover, the intersection of each
stratum with the fibers of g' — ¢, g, if non-empty, is a finite union of G-orbits.

Let ||—||g: ¢ — R be the restriction of the function ||—||y to g’ C g, in the proof of
Theorem 4.7. It follows from Theorem 4.2 and the construction of the function ||—||y that
the real analytic map g’ — ¢, g together with the stratification of g’ described above and

the function ||—||y satisfy the assumption in Lemma 2.12, and hence we obtain a stratified
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Kg-equivariant homeomorphism
(4.28) g = (8)% = p' = (g)™

which are real analytic on each stratum and compatible with the maps to ¢, . Since each stra-
tum in g (resp. p')is a finite union of Gg-orbits (resp. K-orbits) and Kg-acts simply tran-
sitively on connected components of each orbits, it follows that the homeomorphism (4.28)
restricts to a real analytic isomorphism between individual Gg-orbits and K-orbits. The
proof of Theorem 4.1 is complete.

5. REAL AND SYMMETRIC SPRINGER THEORY

5.1. The real Grothendieck-Springer map. Let Ag = expar which is a closed, con-
nected, abelian, diagonalizable subgroup of Gg. Let (®,ay) be the root system (possible
non-reduced) of (gg,ag). For each v € ® we denote by gr, C gr the corresponding a-
eigenspace. Choose a system of simple roots A = {ay, ..., .} C ® and denote by ®* (resp.
®~) the corresponding set of positive roots (resp. negative roots). We have the following
decomposition:

gr = Mg @ ag @ ng O ng.

where MR = Z’C’R(QR)> nr = 69o¢6<1>+g]R,on ngp = @aECD*gR,a-

Let bg = mgr @ ar @ ng be a minimal parabolic subalgebra of gg and we denote by
Br = MgAgrNg the corresponding minimal parabolic subgroup, here Ng = exp(ng) and
Mg = Zk,(Ag) is a group (possible not connected) with Lie algebra mg. We write F' =
T O(MR)-

An element x € gg is called semi-simple (resp. nilpotent) if ad, is diagonalizable over C
(resp. nilpotent). An element x € gg is called hyperbolic (resp. elliptic) if it is semi-simple
and the eigenvalues of ad, are real (resp. purely imaginary). For any = € gg we have the
Jordan decomposition x = x. + x + x, where x. is elliptic, z;, is hyperbolic, x,, is nilpotent,
and the three elements x., xj, x,, commute.

Consider the adjoint action of Gg on gg. By a result of Richardson and Slodowy [RS],
there exists a semi-algebraic set gg//Gr whose points are the semi-simple Gg-orbits on gg.
Furthermore, there are maps yr : gr — gr//Gr and gr//Gr — ¢, such that the restriction
of the Chevalley map x : g — ¢ to ggr factors as

gR — =8

QR/l/?R — lx

For any z € gg its image yg(x) is given by the Gg-orbit through the semi-simple part x.+x,
of z. We also have an embedding ag//W — ggr//Gg, whose image consists of hyperbolic
Gg-orbits in gg, such that the restriction of xg to ag factors as ag — ar//W — gr//Gr.

Recall the subspace gr C gr consisting of elements in gg with hyperbolic semi-simple

parts (4.2). By a result of Kostant [Ko2, Proposition 2.4], any hyperbolic element z in gg is
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conjugate to an element in ag. Moreover, the set of elements in ag which are conjugate to x
is single W-orbit. It follows that the embedding g — gr factors through an isomorphism

(5.1) Or = Or Xgg//Ge Or//W
In particular, we have a natural projection map
(5.2) gr — ar//W

such that the composition g — ag//W — ¢ is equal to the map gp — ¢, C ¢ in (4.4).
Introduce the real Grothendiek-Springer map

(5.3) gr = Ge x™bg = gr  (g9,v) = Ady(v).

Note that unlike the complex case, the real Grothendiek-Springer map (5.3) in general is not
surjective. Consider the base change of the real Grothendiek-Springer map to gg:

(5.4) O = Or

where g = gr Xg k- By [Ko2, Proposition 2.5], an element = € gg is in g if and only if
it is conjugate to an element in ag + ng'®. It follows that

Or = Gr xP* (ag + ng)
and the map (5.4) is surjective. Moreover we have the following commutative diagram
(5.5) 0 — 0k
arp — ap / / W

where the map gy — ag is given by (g,v = v, + v,) — Vg.
Consider the real Springer map

(56) TR - jqu = GR XBR ng — NR

We have the following cartesian diagrams
(5.7) Ne —= g — OR
Ng —=gp — gr
Since (5.4) is surjective, the real Springer map (5.6) is also surjective.

Lemma 5.1. We have a Kgr-equivariant isomorphism g ~ Np X ag commutes with projec-
tions to ag.

01 loc. cit., the claim is proved in the setting of adjoint action of Gg on Gg. But the same argument
works for the case of adjoint action of Gr on the Lie algebra ggr, and hence gg.
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Proof. The Iwasawa decomposition Gg = KrAgr Ng gives rise to Kg-equivariant isomorphism
g = Gr x Br (ag + ng) ~ Kg x Me (ag + ng).
Since Mpg acts trivially on ag, we obtain
O ~ (K xM* ng) x ag.
On the other hand, we have
Ng = Gg xB2 np ~ Kz xM2 ng.
Combining the isomorphisms above we get the desired Kg-equivariant trivialization
O ﬂR X AR
commutes with projections to ag. The proof is complete. U
5.2. Sheaves of real nearby cycles. Fix a point ag € af with image &g € ag//W.
Let Og, be the semi-simple Gg-orbit through ag. The centralizer Zg, (ag) is isomorphic to
MrAg and it follows that the Ggr-equivariant fundamental group of Og, is isomorphic to

mo(MgrARr) =~ mo(Mg) = F. For any one dimensional character x of F' we denote by Lg , the
Gr-equivariant local system on Og, corresponding to x.

Consider the path vg : [0,1] = ag//W given by 7r(s) = ség and denote by
Z’R = ng XaR//W [07 1]

the base change of g — ag//W (5.2) along vg. Note that 4g is an embedding and hence
Zg is closed subvariety of gi. The fibers of the natural projection f : Zg — [0, 1] over 0
and 1 are isomorphic to the nilpotent cone Ng in gr and semi-simiple orbit O, respectively.
Moreover the R-¢-action on g induces a trivialization

(5.8) Oge ¥ (0,1] = Zrloy  (9:5) = (s9,5).
Consider the following diagram
(5.9) O X (0,1] ~ Zg|1] — Zr =—— Ng
| ]
(0,1] [0,1] =— {0}

where u and v are the natural embeddings. Note that all the varieties in the diagram above
carry natural Gg-actions and all the maps between them are Ggr-equivariant. Define the
nearby cycles functor:

(510) \IIR : DGR(OSR) — DGR(N]R) \DR(?) = ’Qbf(?& C(OJ]) = U*U*(?& C(OJ]).
For any character x of I, consider the sheaf of nearby cycles with coefficient £,
(5.11) Try = Ur(Ly)

We will call Wg the real nearby cycles functor and I, the sheaf of real nearby cycles.
We shall give a formula of the nearby cycles sheaves in terms of the real Springer map

mr : Ng — Ng (5.6). Since the Ggr-equivariant fundamental group of Gr/Bg, and hence
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that of N, is isomorphic to m(Bg) = mo(Mg) = F, any character x of F gives rise to a
Gr-equivariant local system £, on Ng. Introduce the real Springer sheaf

(5.12) Spy = (TR)ILy.

Theorem 5.2. We have Fg, ~ Sg .

Proof. Consider the path Ag : [0, 1] — ag given by 4r(s) = s(agr) and let

Zp = fr Xag [0, 1]

to be the base change of the map gr — ag along the path jg. The fiber of the projection
f ZR — [0,1] over 0 and 1 are given by N and O, respectively. Moreover, there is a
trivialization

(5.13) Zeloa =~ Og x (0,1] ((g,v),5) — (Ady(s™"0), 5)

It follows that the real Grothendieck-Springer map gr — gr restricts to a map g : ZR — Zr
which is an isomorphism over Zg|(o1]. Consider he following commutative diagram

(5.13) =~ Qo 5

(5.14) Oc, % (0,1 2% Zel oy — 2 Zp <2 Ng

Lid ‘/TR LT]R lm
(5.8)

Ogp % (0,1] — Zg(01] —— Zr <—— Ng

~ ]

(0,1] ——1[0,1] =—{0}

Consider the nearby cycles functor
Ug : Dg,y(0e,) = Day(Ne)  Wp(F) = 0", (F R Co,yy)

Since 7 is proper and (7g)1(FXC o)) >~ FXCg 1), the proper base change for nearby cycles
functors implies that there is a Canomcal isomorphism

(5.15) (1) VR(F) = (m)5(F B Cloy) = s () F B Co))) = ¥p(F R Co) = V().

On the other hand, the Kg-equivariant trivialization in Lemma 5.1 gives rise to a Kg-
equivariant isomorphism

(5.16) Zr ~ Ng x [0, 1]
commutes with projections to [0, 1]. In addition, there exits a Kg-equivariant isomorphism
q : Nr >~ Og, such that ¢*£, ~ £, and making the following diagram commute

(5.16) ~
Z-R|01]%NRX(O 1]

lid quid

(5.13)
ZR| 0,1 — Og x (0,1]
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It follows that
(5.17) Tg(Ly) = Y7(Ly B C) = ¢f(EX X Co)) =~ Ly

as object in DKR(J:fR). Since DGR(ﬂR) C DKR(ﬂR) is a full subcategory (as Gr/Kg is
contractible), we conclude that

~  (517) ~ (5.15)
Sry = (me)iLy = (M) Wr(Ly) =~ Yr(Ly) = Try € Dgz(Nr)

The proof is complete. O

5.3. Sheaves of symmetric nearby cycles. The discussion in the previous subsection has
a counterpart in the setting of symmetric space. Recall the subspace p’ C p consisting of
elements x in p such that the eigenvalues of ad, are real. In [KR], Kostant and Rallis proved
that for any such z, its semi-simple part x, € p is conjugate to an element in ag, moreover,
the set of elements in ag which are conjugate to x, is single W-orbit. It follows that the
subspace p’ is equal to the base change

p=p X ar//W
of xp : p — ¢, along ag//W C c,.
Let a, € af with image & € ar//W. Let O be the K-orbit through a,. We have
Z(ay) = MA and it follows that the K-equivariant fundamental group of O, is isomorphic
to mo(Zk (ap)) = mo(MA) = mo(M) = F. For any character x of F' we denote by £, the K-

equivariant local system on Og,. Consider the path 7, : [0,1] — ag//W given by 7,(s) = s&,
and define

Zp = p/ XaR//W [O, 1]
The fibers of the natural projection f, : Z, — [0, 1] over 0 and 1 are isomorphic to the nilpo-
tent cone N, in p and the K-orbit O,. Moreover the R g-action on p’ induces a trivialization

(5.18) O, X (0,1] ~ Zylo)  (9,5) = (sg, ).
Consider the following diagram
(5.19) Og, x (0,1] = Zpl01) —= Zpy =—— N,

| b

(0, 1] [0, 1] =— {0}

where u and v are the natural embeddings. Note that all the varieties in the diagram above
carry natural K-actions and all the maps between them are K-equivariant. Introduce the
nearby cycles functor:

(520) \pr : DK(O&) — DK(Np) \ij(:}‘) = ’Qbfp (?& C(OJ}) = 'U*U*(g:& C(O,l])-
For any character x of F', consider the nearby cycles sheaf with coefficient £, ,
(5.21) Fox = \I]P(LI%X)

We will call ¥, the symmetric nearby cycles functor and JF, ,, the sheaf of symmetric nearby

cycles.
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Recall the Kgr-equivariant stratified homeomorphism

(5.22) gr = b’

in Theorem (4.1). Since the homeomorphism (5.22) commutes with projection to ¢, and
the natural map ag//W — ¢, is a finite map"', for any & € afy /W there exists a unique
& € afy//W such that (5.22) restricts to a Kg-equivariant real analytic isomorphism between
individual fibers

Og, > Oﬁp‘
Since (5.22) is R-g-equivariant, the isomorphism above and the trivializations (5.8) and (5.18)
imply that (5.22) induces a Kgr X Rsg-equivariant homeomorphism

(5.23) Za ~ 2,

commutes with projections to [0,1]. The homeomorphism above gives rise to a canonical
commutative square of functors

(5.24) D (0,) —2= D, (Ng)

A

Dg(0Og,) —— Dr(N,)

where the upper and lower arrows are the real and symmetric nearby cycles respectively and
the vertical arrows are the equivalences in (1.17). Since the equivalence D¢, (Og,) ~ Dg(Og,)
maps Lg, to Ly, the diagram (5.24) and Theorem 5.2 imply the following:

Theorem 5.3. Assume g is of classical type. Under the equivalence Dy (Ny) =~ Dg, (Ng)
in (1.17), the sheaf of symmetric nearby cycles F,, becomes the the sheaf of real nearby
cycles Tg y, which is also isomorphic to the real Springer sheaf 8w . In particular, the real

Springer map TR : ﬂR — Nr is a semi-small map and the real Springer sheaf S, is a
perverse sheaf.
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