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Abstract. We revisit a textbook example of a singularly perturbed nonlinear boundary-value prob-
lem. Unexpectedly, it shows a wealth of phenomena that seem to have been overlooked
previously, including a pitchfork bifurcation in the number of solutions as one varies the
small parameter, and transcendentally small terms in the initial conditions that can be
calculated by elementary means. Based on our own classroom experience, we believe this
problem could provide an enjoyable workout for students in courses on perturbation meth-
ods, applied dynamical systems, or numerical analysis.
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I. Introduction. In many parts of mathematics, physics, engineering, and the
life sciences, researchers have developed ingenious techniques for gaining insight into
difficult problems by exploiting the presence of a small parameter in them. These
techniques, known as perturbation methods, have shed light on all sorts of fascinating
phenomena in fluid dynamics, mathematical biology, optics, chemical engineering,
quantum mechanics, plasma physics, climate science, and many other disciplines. See
[2, 11, 12, 16, 18, 19, 22] for just a few of the textbook introductions to perturbation
methods and their applications.

This is the story of a textbook problem that has surprised us over and over again,
and for which we have come to feel genuine affection. The problem is to solve the
following nonlinear differential equation, subject to the given boundary conditions:

(1.1) ey =yy' —v, y(0) =1, y(1) = —1.
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Here we use the notation y’ = dy/dz, and we want to solve for y(z) on the domain
0 < z <1 under the assumption that the parameter € is small: 0 < ¢ < 1.

We first met problem (1.1) in the classic textbook by Mark Holmes [12]. Soon
after that book appeared in 1995, one of us (Strogatz) decided to discuss (1.1) in
an introductory course on asymptotics and perturbation methods. It quickly became
clear the problem contains unexpected subtleties and riches.

In the years since then, whenever Strogatz has had a chance to teach that course,
he has revisited problem (1.1) and has always learned something new about it, thanks
to the questions and insights of the students, postdocs, and colleagues in attendance,
most notably the coauthors on this paper. Together we think we may have finally
gotten to the bottom of it.

But because this is meant to be an Education paper, we will also be pointing
out some of the false turns we took along the way. Confusion is a natural part of
doing mathematics. We did not land on the right way to think about (1.1) initially;
it required lots of trial and error and a willingness to be open and vulnerable about
what puzzled us at any given time. Experienced researchers know this is all part of
the process, but we mention it for the sake of students who may be misled by the
confident presentations and pristine appearance of the mathematics they see in most
textbooks and journal articles. We want to be a little more honest here about how
the sausage is actually made.

Our analyses have relied on three parts of applied mathematics: perturbation
theory, nonlinear dynamics, and numerical analysis. As such, we think problem (1.1)
could be useful to students or teachers in any of those subjects. We assume that
the reader is comfortable with asymptotics and perturbation methods at the level of
the books by Holmes [12] or Bender and Orszag [2], as well as nonlinear dynamics at
the level of the book by Strogatz [24]. Not much exposure to numerical analysis is
required; a basic knowledge of what it means to solve an ordinary differential equation
numerically should be sufficient, say, at the level of someone who knows how to use
Mathematica or MATLAB to solve an initial-value problem. For readers who want
to immerse themselves in the details, we also provide supplementary notebooks: a
jupyter notebook for the numerical methods and a Mathematica notebook for the
analytical calculations [1].

Although we have grown enamored of problem (1.1) for its pedagogical value, it
would be even more appealing if it also had some real-world applications. Alas, we
have not found any so far, but it does have some close relatives of scientific interest.
For example, if we change the sign of the right-hand side of the differential equation
in problem (1.1), we get an equation known as the Lagerstrom—Cole equation [16, 19],
which has been studied in aerodynamics and fluid dynamics as a model problem in
connection with shock layers [19]. The differential equation in (1.1) also pops up in
the study of delicate nonlinear phenomena known as canards [3, 7, 8, 9, 14, 17, 18]. As
defined by Krupa and Szmolyan [17], “a canard solution is a solution of a singularly
perturbed system which is contained in the intersection of an attracting slow manifold
and a repelling slow manifold.” In applications, canards often arise in the analysis of
nonlinear oscillations having both fast and slow time scales, as seen in chemistry,
neurobiology, electronics, and many other fields [18].

2. The Surprises. So what are some of the surprises in problem (1.1)? The first
is how many solutions it has. Holmes [12] argued that it has a unique solution, but
it turns out that it actually has three. Figure 1 shows their graphs. We call these
solutions B0, M, and B1, with the names chosen to indicate that they have a boundary
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Fig. | Three numerical solutions of problem (1.1) for e = 0.03: two with boundary layers, and one

with an interior layer. Under the symmetry (z,y) — (1—z, —y), the left and right boundary-
layer solutions B0 and B1 trade places, and the interior-layer solution M is unchanged.

layer at = 0, an interior layer in the middle, or a boundary layer at x = 1.

The graph of the B0 solution has a very negative initial slope y'(0) at the left
endpoint of the domain, while the other two solutions have y'(0) extremely close to 1.
In fact, those slopes differ from 1 by a “transcendentally small” term, meaning a term
that goes to zero faster than any positive power of € as ¢ — 07. A common example
is an exponentially small term of the form exp(—c/e€), where ¢ > 0 is a constant. Nor-
mally, such transcendentally small terms are beyond the reach of basic perturbation
theory (although sometimes they can be handled by more sophisticated techniques
known as exponential asymptotics, superasymptotics, hyperasymptotics, or asymp-
totics beyond all orders [4, 5]). What especially surprised us about problem (1.1) is
that the leading-order asymptotics of the initial slope 3’(0) could be found by elemen-
tary means, even when the difference between 3'(0) and 1 is transcendentally small.
As we show in section 6,

for the M solution, while for B1 it is given by
24 3
1—19'(0) ~ = —— .
v (0) € P ( 26)

These transcendentally small terms can be calculated using nothing more than higher-
order matching, phase plane analysis, and a constant of motion for the associated flow.
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Not only were we surprised by this good fortune, we were also delighted and relieved
by it, given that none of us knew anything about the more sophisticated techniques
mentioned above!

Yet another surprise is the behavior of the solutions with respect to €. In section 7
we’ll see that as we increase € from zero, the three solutions persist until a critical
value €. =~ 0.216, at which point they collide in a pitchfork bifurcation. For larger
values of €, problem (1.1) has a unique solution that resembles the M solution above.

3. Locating the Layers: Holmes’s Analysis. Our initial thinking about prob-
lem (1.1) was greatly influenced by what Holmes [12] had to say about it. So we
summarize his analysis here. We are not going to show the mathematical details yet;
they will appear in later sections. For now we just want to emphasize a question that
arises whenever one confronts a differential equation like (1.1) with a small parameter
€ multiplying its highest derivative.

QUESTION 1: Does problem (1.1) have any layers (meaning regions of rapid
variation in y or its derivatives), and if so, where are they located?

This issue comes up midway through Holmes’s chapter on matched asymptotic
expansions (Chapter 2 in [12]). Earlier in the chapter he has already introduced the
basic ideas of inner and outer solutions, boundary layers, matching, and uniformly
valid composite solutions. There is also a discussion of higher-order matching and
examples with multiple boundary layers. In all these prior examples, the layers occur
at the endpoints of the domain; in other words, they are genuine “boundary layers.” In
contrast, problem (1.1) is offered as the first instance of a problem having an “interior
layer.” Holmes writes:

Generally, when one first begins trying to solve a problem it is not known
where the layer(s) is. If we began this problem as we did the previous
two and assumed there is a boundary layer at either one of the endpoints,
we would find that the expansions do not match. This is a lot of effort
for no results, but fortunately there is a simpler way to come to the same
conclusion.

He then offers a convexity argument to rule out boundary layers at either x = 0 or
x = 1, but is careful to note that “these are only plausibility arguments and they do
not prove anything. What they do is guide the analysis and hopefully reduce the work
necessary to obtain the solution.”

3.1. Holmes’s Plausibility Argument. Holmes first considers a possible bound-
ary layer at x = 0. He looks at the governing equation ey” = yy’ — y along with its
left boundary condition, y(0) = 1. Then he sketches the graph of a candidate solution
that looks like our BO solution in Figure 1, except that he also assumes that ¢y’ > 0
in the boundary layer; in other words, y(z) is assumed to be concave up for all small
x > 0. On the other hand, although y” (hypothetically) has one sign in the layer, y
itself clearly changes sign from positive to negative as it drops from y(0) = 1 at the
boundary to a value y =~ —2 where it matches the outer solution. With those sign
considerations in mind, Holmes [12] continues:

If the solution behaves like the other example problems we have examined,
then near x = 0 it would be expected that ¢’ < 0 and ¢’ > 0. This means
that ey” > 0 but y(y’ — 1) is both positive and negative in the boundary
layer. This is impossible . ... It is possible to rule out a boundary layer at
x =1 in the same way.

Having ruled out (convex or concave) boundary layers at either end, Holmes [12]
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next considers the possibility of an interior layer centered at a point 0 < zg < 1.
He works out three possible forms for the inner solution (depending on whether a
certain constant of integration is positive, negative, or zero) and shows that only one
of these can be matched to the outer solution. Then he uses a symmetry argument
to conclude that the layer must be centered at the midpoint of the domain, zo =
1/2, and demonstrates that the inner solution must have odd symmetry about that
point. Finally, he matches the inner and outer solutions, constructs a uniformly
valid composite solution, and shows it agrees with a numerical solution obtained for
€ = 0.01. In this way, Holmes convincingly demonstrates the existence and properties
of the solution we called M above, a solution of (1.1) with an interior layer in the
middle of the domain.

But what about the possibility of nonconvex or nonconcave boundary-layer solu-
tions? Recall that the plausibility argument only rules out solutions with " having
strictly one sign in the layer. As Holmes’s careful wording suggests, that loophole
could potentially allow for sneakier solutions where ¢ changes sign within a bound-
ary layer. As we will see in the next section, that little finesse is precisely what allows
the solutions B0 and B1 to exist.

4. Another Approach to Locating the Layers: Phase Plane Analysis. As we
worked through Holmes’s analytical approach to problem (1.1), we began to wonder
if it might be helpful to supplement it with a more geometric style of reasoning known
as phase plane analysis. After all, the equation appearing in (1.1), ey = yy’ — vy, is a
nonlinear, second-order, autonomous differential equation, and phase plane analysis is
a powerful tool for illuminating how the solutions to such equations behave. Plus, we
have to admit, we have more experience with nonlinear dynamics than perturbation
theory, so it felt like a more secure way to approach an unfamiliar problem.

4.1. Phase Portraits. To recast the problem into the language of dynamics, we
replace the independent variable z with ¢, which we think of as time. Then the
dependent variable y becomes a function of time ¢. The advantage of this approach
is that it allows us to use our physical intuition about time and motion and the
difference between fast versus slow. Abstract solutions to the differential equation
turn into easily pictured trajectories of (imaginary) particles moving around in a
two-dimensional space known as the phase plane.

To construct the phase plane, we convert the second-order equation ey’ = yy’ —y
into a pair of first-order equations, which we then view as defining a vector field on the
plane. We perform the first step by introducing a new dependent variable z, defined
as z = ¢/, and then we rewrite ey’ = yy’ — y in terms of z to get ez’ = yz —y. By
solving for y' and 2z’ and placing them on the left-hand side of a pair of first-order
differential equations, we obtain the following vector field:

y =z,

4.1 1

(4.1) 2 =—ylz—1).
€

Next we interpret (4.1) as a dynamical system. From this perspective, the vector
(y',2") then tells us the instantaneous “velocity” that an imaginary particle at (y, z)
would have at time t. As the imaginary particle moves around in the (y,z) phase
plane, it traces out a trajectory (y(t), z(t)), which is the geometric counterpart of a
solution (y(z),y’(z)) to the original problem (1.1).

This construction allows us to visualize how the solutions to (4.1) behave by
imagining how particles move around in the phase plane. There is no need to be
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Solutions on phase plane (e = 0.1)

W

slow

fast!

Fig. 2 Phase portraits for (4.1) with e = 0.1. The left panel shows three qualitatively different kinds
of trajectories, as well as fast and slow regions in the flow. An imaginary particle moves
with O(1) speed in the slow region (the thin gray strip around the invariant line z = 1).
Outside the strip, the particle zips around much faster, with enormous vertical speeds of
order O(1/€). The right panel shows a quantitatively accurate phase portrait. Notice how
tightly packed the trajectories become as they squeeze into and out of the slow region near
z=1.

quantitatively precise just yet; a qualitatively correct picture is enough at this stage.
By looking at the signs of ¥’ and 2’ in (4.1) and sketching a few vectors in various
parts of the (y, z) plane, we are led to the picture shown in the left panel of Figure 2.
This picture is called the phase portrait for the system. It shows that there are three
qualitatively different types of trajectories for (4.1): parabolic-looking trajectories
that flow from left to right above the horizontal line z = 1; a straight trajectory
that flows from left to right along the invariant line z = 1; and periodic trajectories
below z = 1 that form closed loops, and on which a particle would circulate round
and round, always moving clockwise. The right panel of Figure 2 shows the same
information quantitatively.

Incidentally, we can prove that the periodic-looking trajectories in Figure 2 are
truly periodic and are not merely slowly winding spirals in disguise. There are two
standard ways of proving this, so we will not dwell on the details; see sections 6.5 and
6.6 in [24] for an introduction. Briefly, one way is to note that (4.1) is a “conservative”
system. To see this, rewrite it as y'/z’ = dy/dz = ez/[y(z — 1)] and then separate
variables and integrate to obtain 2¢[z + log(1 — z)] — y? = constant. This implicit
equation can be shown to define closed curves for all z < 1. Another way is to
observe that (4.1) is also a “reversible” system: the vector field (4.1) is unaltered by
the change of variables (z,y,z) — (—z, —y, z), which corresponds to a time reversal
combined with a mirror reflection across the z-axis in Figure 2. From this symmetry
we can conclude that the trajectories lying below z = 1 are composed of two left /right
mirror-image halves that together form a bilaterally symmetric loop.

4.2. An Important Symmetry. A stronger reversibility symmetry of (4.1) is
worth noting: Both the differential equation ey” = yy’ —y and its boundary conditions
y(0) = 1,y(1) = —1 are left unchanged by the transformation

(z,y) = (1 -2, —y).
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B0 solution M solution B1 solution

Fig. 3 Phase plane plots of the three solutions of the boundary-value problem (1.1) for e = 0.1. The
vertical coordinate z denotes y'. The red, green, and blue trajectories correspond to the BO,
M, and B1 solutions having layers at x = 0, v = 1/2,and x = 1, respectively. The beginning
(x = 0) of each trajectory is denoted with a circle, and the end (x = 1) is denoted with a
square; the flow is clockwise on each trajectory. All trajectories start on the dashed vertical
line y = 1 and end on the dashed vertical line y = —1, corresponding to the original boundary
conditions. Note that the BO and B1 trajectories form a symmetric pair. As such, both of
them lie on the same periodic orbit in the phase plane. The slow part of each trajectory (the
“outer solution”) occurs at the top, close to z = 1, while the much faster part (the “inner
solution” in the layer) occurs everywhere else below that.

Hence the possible solutions of the original boundary-value problem (1.1) either come
in symmetrical pairs y(x) and §(z), where §(x) = —y(1—z), or the pair degenerates to
a single solution with the symmetry y(z) = —y(1 — ). We saw a visual manifestation
of this symmetry in Figure 1, where BO and Bl form a symmetric pair and M is
self-symmetric. Likewise, when those same solutions are plotted in the phase plane
shown in Figure 3, the red and blue curves are paired under the symmetry and the
green curve is self-symmetric.

4.3. Boundary Conditions. What about the boundary conditions y(0) = 1 and
y(1) = =1 in (1.1)? How do they enter the phase plane picture? Well, the condition
y(0) = 1 means that at time ¢ = 0 our imaginary particle must start somewhere on
the vertical line y = 1 in the phase plane (Figure 3). Its z coordinate on that line,
however, is unspecified and remains to be determined; indeed, the key to solving (1.1)
is to figure out the initial value of z that will enable the moving particle to satisfy
the other boundary condition, y(1) = —1. In dynamical terms, this other boundary
condition y(1) = —1 is a final condition, not an initial condition. It says that the
particle must reach the vertical line y = —1 in the (y, z) plane after exactly one unit
of travel time.

Thus, we see what a difficult challenge our imaginary particle is facing. It must
find exactly the right place to start on the line y = 1, such that after it gets carried
along by the flow determined by the vector field, somewhat like a tiny speck of leaf
being carried downstream by a gentle brook, it manages to land somewhere on the
line y = —1 precisely when the clock strikes time ¢t = 1.

Figure 2 immediately implies that the trajectories on the line z = 1 or above it are
disqualified as candidate solutions because there’s no way they can satisfy the bound-
ary conditions: A particle starting on any one of them would move monotonically to
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the right, and so would have no chance of making the leftward journey required to
get from y = 1 to y = —1. That leaves the closed loops below z = 1 as our only hope.
And indeed, we can imagine a particle starting somewhere on the line y = 1 and then
flowing along an arc on one of the closed loops such that if everything is chosen just
right (i.e., we pick the right loop to start on), the particle will reach y = —1 after
exactly one unit of travel time. Figure 3 shows three arcs that do the trick.

4.4. Slow-Fast Structure. So far we have not used the assumption that € is
small, but now we will. For e < 1, we see from (4.1) that the vector field has large
regions where the flow is very fast in the vertical direction, with vertical velocities 2’
of order O(1/€) occurring at all points in the (y, z) plane where z — 1 = O(1). This
region of fast variation, as we will soon see, corresponds to the “inner region” in a
perturbation treatment via boundary-layer theory. In the phase portrait, it consists
of all points outside the thin gray strip shown schematically in Figure 2. The strip
does not have well-defined edges, but its blurriness does not matter; the key thing is
that its thickness is O(e), however we define it. (To check its thickness, observe that
if yis O(1) and z—1 = O(e), then ¢ and 2’ are both O(1) in (4.1), indicating that the
flow is slow compared to the O(1/¢) speeds achieved everywhere outside the strip.)
This strip in the phase plane where the motion is comparatively slow corresponds to
the “outer region” in a boundary-layer treatment.

It was by contemplating the slow-fast structure of the flow that we originally
came to suspect that there might be more than one solution to problem (1.1). As
we reconsidered the solution discussed by Holmes, with its interior layer centered at
x = 1/2, we pictured it as a particle moving with a slow-fast-slow trajectory in the
phase plane, as shown in the middle panel of Figure 3. Our imaginary particle spends
about half of its travel time dawdling through the initial slow region at the top of the
green arc in Figure 3, then rockets down and around and up again through the fast
region in almost no time at all, and then dawdles through the remaining slow region
for the remaining half of its travel time. Why, we wondered, couldn’t a particle spend
nearly all its time in a slow region at the beginning? Or at the end? If the particle
started sufficiently close to the invariant line z = 1, or ended up near there, it seemed
like these sorts of solutions should also be possible.

This intuition turned out to be correct: such solutions do exist. The blue and red
curves in Figure 3 show what they look like as trajectories.

4.5. More Back Story: Puzzling over the Initial Slope. It took us considerable
trial and error to find these boundary-layer solutions numerically the first time we
looked for them using the computer, more than a decade ago. They eluded us com-
pletely when € was very small. Fortunately, for € only moderately small it was not
difficult to find them. For € = 0.1, for example, we found that y’(0) ~ 0.9999 yielded
a trajectory that was slow at the beginning and fast at the end (the B1 solution),
whereas ¢/ (0) ~ —10.6942 gave a trajectory that was fast and then slow (the B0
solution).

The strikingly small difference between 0.9999 and 1 made us wonder what the
formula for y'(0) as a function of € might be for the Bl solution. Likewise, given
the size of —10.6942, we were curious how negative 3’(0) might get for smaller values
of € as we continued tracking the B0 solution. Our numerics couldn’t answer these
questions at the time, since some of us were naive about computational methods, so
we did not know how to solve the boundary-value problem reliably for € < 1.

Perhaps the initial slope could be found by asymptotic analysis? We felt sure it
could but did not immediately see how to do it. We pose that as our next big question
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and call it the puzzle of the initial slope.

QUESTION 2: For the three solutions of problem (1.1), how do their initial slopes
y'(0) depend on € for 0 < e < 17

We will work toward answering that question in the next few sections. But
before we leave the phase plane, we should notice that it tells us one more thing
of interest. It reveals that the BO and B1 solutions sneak through the loophole in
Holmes’s plausibility argument by having layers that are nonconvex. To see how that
conclusion follows from the phase portrait, observe that on any of the trajectories
shown in Figure 3, the value of 2’ (the vertical velocity) evidently changes sign as the
particle goes down and then back up on its journey through the fast region. Since
2/ = 9", that change of sign means the concavity of y(x) changes sign in the layer!

5. Perturbation Theory. In this section we solve problem (1.1) for ¢ < 1, both
inside and outside the boundary layers or interior layers. Then we match the inner
and outer solutions and find composite solutions that give uniformly valid asymptotic
approximations of y(x) over the whole domain 0 < 2 < 1. We perform the match to
first order in € (i.e., we go beyond the leading order of perturbation theory) because
it turns out we need this higher-order information to solve the puzzle of the initial
slope (Question 2). In that sense, the following analysis provides a motivational case
study of why one would ever want to do higher-order matching. The details of this
analysis are included in the supplementary Mathematica notebook [1].

5.1. Outer Solution. First we consider the outer region, where regular pertur-
bation theory applies. In this region, we expand y(z,€) in the regular perturbation
series

(5.1) y(,€) ~ yo(x) + eyr (@) + O(?),

insert this into the differential equation ey’ = yy’ — y appearing in (1.1), and collect
terms having like powers of €. At leading order we find

(5.2) Yoyy —yo =0.

This equation has two possible solutions: yg = 0 (which cannot satisfy the boundary
conditions) or ¥, = 1, yielding yo(z) = x + a for some real constant a. In fact, a bit of
study shows that the higher corrections all satisfy y/, = 0 for n > 0, and thus y,, = a,
for some constants a,,. But the leading-order solution yo () already fixes the constant
by satisfying the boundary condition, so all the higher constants vanish: a,, = 0 for
all n > 0. Therefore yo(x) = = + a is not merely the zeroth-order approximation
to the outer solution; it is the outer solution at all orders of e. We can also reach
this conclusion by noting that yo(z) = x + a satisfies the original differential equation
ey” = yy' — y exactly for all values of e.

For an outer solution that includes = 0 in its domain, we can determine the
constant a by applying the boundary condition at that endpoint, and similarly for an
outer solution that includes z = 1. These two potential outer solutions that satisfy
either the left or right boundary condition are

(5.3) ye(x)=1+a, ylx) =2 —2.

5.2. Inner Equation. Now we move on to the inner solutions. Suppose there is
a layer at © = x¢. Holmes [12] shows that 2o = 1/2 is the only possible location for
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an interior layer, and we are going to show that boundary layers can occur at g =0

or g = 1 as well. As before, we refer to these three cases as M (layer in the middle),

BO (layer on the boundary at = 0), and B1 (layer on the boundary at z = 1).
Introduce a layer thickness d, which is a function of € to be determined. Let

(5.4) x=2"%

)
be a scaled independent variable that describes positions in the layer, and let
(5.5) Y(X) = y(@) = y(zo + 6X)

be a new dependent variable that describes how y varies in the layer. Derivatives of
the new variable are

av ., d’Y @
Now our original differential equation ey” = yy’ — y becomes
e d?Y 1dY
. LYY _y (2 ).
(5:7) 02 dX? ((5 dXxX )

If § is chosen correctly, then Y and all its derivatives should be O(1) as € — 0. Thus
we find a distinguished limit when ¢/ = 1/§, or simply § = e. Therefore the inner
equation in the layer is given by
A’y dy
Xz = Y X €Y .

5.3. Leading-Order Inner Solution. To solve the inner equation (5.8) asymp-
totically, we expand Y as

(5.9) Y (X, €) ~ Yo (X) + eY1(X) + O(e?).
Inserting this series into (5.8) yields, at leading order,
d2Y, Y, d (1.,
1 — =Yy, — = — | =Y?).
(5.10) dx2 ~ "%dx  dx <2 0)

This can be integrated to obtain

(5.8)

dYo 1_,
(5.11) ox =Yt A,
where A is an integration constant.

This result has a nice geometrical interpretation. If we recall that 3’ = z in the
phase plane, then (5.11) shows that, to leading order, the trajectories in the (y, z)
plane follow parabolic arcs as they move through the inner region where the motion
is fast. From the phase plane pictures shown earlier, we know that the only parabolic
arcs of interest are those with a negative z-intercept, as these are the arcs that lie on
the closed loops. Hence we see that A should be negative, say, A = —1b%

Then separating the variables in (5.11) and integrating gives
dYy 1

— dx
ve—p2 27

(5.12)

(5.13) Yp(X) = btanh <c - ZX> ,

with an additional integration constant c. The two constants b, c are determined by
matching to the solution in the outer region.
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5.4. Zeroth-Order Matching for the Symmetric Solution M. Let’s see how
the matching goes for the interior layer at zy = 1/2. We know we have a symmetric
solution that satisfies y*(1/2) = 0 = Y (0) (we could also learn this from the
matching alone). This symmetry condition tells us that Y is an odd function of X
and hence ¢ = 0. To find the value of b, we need to look at the large-X asymptotic
behavior of the inner solution and match it to the asymptotic behavior of the outer
solution as = approaches o = 1/2 from either side. Thus we need to take the limit
limx 4o, YM(X) and match it to y&(1/2) = 3/2 and y{*(1/2) = —3/2. If we recall
that tanh z is odd and lim,_, o, tanh z = 1, we see that both limits agree if and only
if b = £3/2. For either choice of b, our inner solution at zeroth order becomes

3 3
(5.14) YM = — tanh <4X) :

Finally, we can construct a composite solution y. by the usual recipe: y. =
Youter + Yinner — Ymatch- Carrying out those steps for the zeroth-order approximation
to M yields

(5.15) yM =2 — 1 §tanh {3@ — %)] +O(e).

’ 2 2 4e
5.5. Zeroth-Order Matching for the Asymmetric Solutions B0 and Bl. We
can proceed similarly for the BO and B1 cases. In fact, we only need to do the work
for one of them, since we can get the other one from the symmetry transformation
(z,y) = (1 — x,—y). Let’s focus on the BO case, which has a layer at xo = 0. Its

zeroth-order inner solution (5.13) needs to be matched to yf*(0) = —2, which tells us
that b = —2. We also need to satisfy the boundary condition y(0) = 1, which is now
inside the layer, so Y?9(0) = 1 determines the value of ¢ as ¢ = —tanh™! % Hence
(5.16) YP? = —2tanh (X — tanh ! 1.

Similarly, for B1 we get
(5.17) VP! = —2tanh (X + tanh ™' 1) .
Now, constructing the leading-order composite solutions, we get

(5.18) yP8 = x — 2tanh (% —tanh™! %) +O(e),

x

-1
(5.19) yfé =2z —1—2tanh <6 + tanh ™" ;) + O(e).

5.6. Remarks about the Zeroth-Order Composite Solutions. The leading-
order composite solutions for M, B0, and B1 look extremely similar to the numerical
solutions plotted in Figure 1. They are also uniformly valid, as can be checked by
looking at the difference between the numerical and analytical solutions, as plotted
in Figure 4 for BO. Moreover, the layers for all of the zeroth-order solutions are
nonconvex, as we expected from our earlier phase plane analysis. For example, the
BO solution (5.18) has an inflection point at z = etanh ™" 1.

Yet informative as these leading-order solutions are, they are not accurate enough
to allow us to calculate the initial slope y’(0) correctly. So, let’s proceed to the next
order.
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Error in B0 leading analytical solution

0.16
- 0.08
0.04
0.02
0.01

5_1 (ynum - Z/CB(?)

Fig. 4 Scaled error in the composite zeroth-order asymptotic solution (5.18) for the case with a
boundary layer at € = 0. The error is defined as the difference between the asymptotic
solution (5.18) and a very careful numerical solution (taken as a surrogate for the unknown
ezact solution). The scaled error is defined here as the error divided by €; this scaling is
appropriate because we expect to incur errors of size O(€) in a leading-order solution. We
examine the error within the boundary layer, x = O(e), i.e., the layer has a width linear
in € (the error outside of the layer is transcendentally small). Notice that the composite
solution is uniformly valid and the error is proportional to €, as is expected from a zeroth-
order solution. The error behavior is similar for the other two asymptotic solutions with
layers at x = 1/2 and x = 1.

5.7. First-Order Matching for the Symmetric Solution M. As we noted ear-
lier, the outer solutions are yo(x) =  + a to all orders in €; only the inner solution
and the matching change as we proceed to higher orders. To study the first-order
correction €Y in the inner solution, we insert the series (5.9) into our inner equation
(5.8) and collect the first-order terms. We find that Y;(X) satisfies

2y, dy; dYy
S8y, 80y Ly =0,
dxX? ax 0T gx =0

(5.20)

Compared to the asymmetric B0 and B1 solutions, the symmetric solution M yields
the simplest expressions for Y7, so we focus on that calculation now and relegate the
others to Appendix A.

Using the zeroth-order solution for Y from (5.14), we find that Y™ satisfies
the following second-order inhomogeneous linear differential equation with variable
coefficients:

?yM 3 3X\ dyM 9 3X 3 3X
(5.21) L+ Ztanh () L " sech? () YM = = tanh <) .

dx? 2 4 dX 8 4 2 4

We must solve this beast subject to the side condition that ¥;(0) = 0 (a condition
that follows from symmetry, as Y is an odd function). Impressively, Mathematica
obliges and produces a long expression that we give in (A.1) of Appendix A. Of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/13/23 to 68.175.156.83 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SURPRISES IN A CLASSIC BOUNDARY-LAYER PROBLEM 303

the two free constants of integration appearing in (A.1), we fix the constant ¢y by
imposing the side condition Y;* (0) = 0, giving cy = 72/18. To determine ¢;, we need
to perform a first-order match to the outer solution 3 on the right (there’s no need
to worry about additionally matching to y&', the outer solution on the left; matching
on the right automatically takes care of matching on the left, by the odd symmetry
noted above).

To perform the matching on the right, we need to know the asymptotic behavior
of Y as X — +oo. The relevant asymptotics are

(5.22) sinh z ~ cosh z ~ %ez (z = +00),
(5.23) log(1+2)~z (z—0),
(5.24) Lig(z) ~ 2z (z—=0),

where Li;(z) is a special function called a “polylogarithm” of order s [21]. The poly-
logarithms can be defined by their power series or recursively from an integral:

(5.25) Li @)—izk—/zm 2
. =2 m T s-1(t) -

For s < 2, they are elementary functions; for example, Li; (z) = —log(1 — z).
With further help from Mathematica, we eventually find

(5.26) Y M~ X+ ;(Cl —1—1log4) (X = o0).

Miraculously—and yet not miraculously at all, if one believes in perturbation theory—
this function has exactly the right large-X behavior, Y{¥ ~ X, needed to match
onto the outer solution, if the constant is correct! Recall that at zeroth order,
limy 00 Y¢¥ (X) = —3/2 already matches the value of lim,, g o+ ylt(x). Therefore
we want the additive constant above to vanish (or else we would make an O(e) error
in the matching). Hence

(5.27) cp=1+log4.

Finally, by again invoking the recipe ¥. = Youter + Yinner — Ymatch for forming a compos-
ite solution, we obtain the composite solution up to terms of order ¢2. Remarkably,
the Ymatcn that we need to subtract here is simply the exact outer solution yé%. So
the whole composite solution boils down to the inner solution Yg + eY{™. Thus, the
first-order composite solution for M is

3 3X

72 4

(5.28) + 48sinh (3‘2)() log (2 cosh <3f>> } L0,

where X = (z — 3)/e.
We proceed similarly for the BO and B1 solutions, collecting the results in Ap-
pendix A. Figure 5 confirms that the error between the first-order asymptotic solution

3X
+ 5 sech? () {47r2 + 48Liy (—e—3X/2) +9X(8+3X)
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Error in B0 higher order analytical solution

Fig.5 Scaled error, now defined as error divided by €2, in the composite first-order asymptotic
solution for the case with a boundary layer at x = 0, given in Appendiz A. Notice that the
composite solution is uniformly valid and the error is now proportional to €2, as is expected
for an asymptotic solution matched to first order.

for BO and a numerical solution (presumed to be close to exact) truly does shrink in
proportion to €2, as it should for a first-order match. This sort of test provides a
reassuring check when doing complicated numerics and asymptotics.

6. Solving for the Initial Slope. Now that we have constructed asymptotic ap-
proximations to the three solutions M, B0, and B1 of our original problem (1.1), we
can use those approximations to estimate the initial slope y/(0) in each case. Knowing
this initial slope is theoretically interesting since (as we’ll see) it depends on € in an
intriguing way. But it’s also practically useful information: having a good approxima-
tion of the initial slope helps us solve the boundary-value problem (1.1) numerically.

One computational approach to solving a boundary-value problem is called the
“shooting method.” A more thorough discussion can be found in several textbooks
on numerical methods, for example, [23]. We also provide a supplementary jupyter
notebook which implements the numerics described in this section [1].

Figure 6 shows an example of how shooting applies to our problem. We start a
trial solution at y(0) = 1 and launch it with some initial slope y’(0), somewhat like
shooting an artillery shell at an intended target. In our case, the target is the point
at the other boundary condition: z = 1,y = —1. Incorrect choices of the initial slopes
at « = 0 will produce solutions that fail to hit the boundary condition at x = 1. The
three curves shown on the left in Figure 6 indicate what happens if we aim too high
or too low or just right.

If we compute where we hit for many possible ¢’ (0)’s and plot the resulting y(1)’s
versus 3'(0), we get the graph of the target function shown in the right panel of
Figure 6. To find a numerical solution of our problem, then, we just have to figure
out where the graph crosses the dashed horizontal line y = —1. This is a standard
numerical task; it amounts to a root-finding problem in a small neighborhood of the
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Trial solutions in shooting method (e = 0.1) Target function for shooting (e = 0.1)

y'(0)
— 096 H0.25
— 0.9056358...
— 0.7

r0.00
0.5
r—0.25

Y00 F—0.50
y(1)
t—0.75
—0.5 M
—1.00
B0 Bl
—1.0 r—1.25
: ; ; ; ; ; —1.50
0.0 0.2 0.4 0.6 0.8 1.0 —18 —14 0.695 0961 09951 0.9994 0.9999 0.99999

k] y'(0)

Fig. 6 Solving the boundary-value problem via shooting. Different initial slopes lead to different
final values of y. The red, green, and blue trial solutions in the left panel have certain initial
slopes y'(0) and final y(1) which correspond to the three filled circles plotted in the right
panel. If we were to vary the initial slope continuously over a broader range, we would build
up the curve in the right panel. Note that the horizontal axis in the right panel is uniform
in log(1l —y'), to expand the exponentially bunched region near y'(0) = 1. The initial slopes
for the BO, M, and B1 solutions are marked with letters in the right panel; they occur at the
three values of y'(0) where the graph of the target function crosses the dashed horizontal line

y(1) = —1.

solution. Notice that for the value ¢ = 0.1 used to make Figure 6, the graph of the
target function crosses the dashed line in three places. Those are the desired initial
slopes of our three solutions.

To find analytical estimates of these slopes, we will see next why we needed to go
to the trouble of doing higher-order matching.

6.1. Initial Slope for B0O. Let’s start by evaluating the value and slope of the
zeroth-order composite solution for BO:

3
(6.1) yE(0) = 1, yE'(0) = o= + 1.

The leading behavior here is yz, ~ —3/(2¢), and this is indeed correct, as we will
soon see. However, the slope in (6.1) has an error that is O(1). This can be seen
graphically in Figure 4: Within the layer of width O(e), there is an O(e) error in the
value of y, leading to an O(1) error in the slope. Or, reiterating the point in another
way, the derivative of a function’s asymptotic series (at some order) is not necessarily
the asymptotic series of the derivative of the function (to the same order). Since we
have the composite solution to higher order, we can easily check what the correction
is by using the results for BO in Appendix A. Evaluation and differentiation of the
first-order composite solution at x = 0 yield

3
(6.2) y20) =1, y5P(0) = —5, +1410g16 +0(e) .

This is now the full result for y5,(0) up to errors of order O(e). As shown by the top
curve of Figure 7, this asymptotic result agrees nicely with the value of y'(0) produced
by the shooting method.
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6.2. Initial Slope: The Tempting but Wrong Way. For the B0 case, we saw
that the O(1) term in the initial slope changed from 1 to 1 4 log 16 when we went to
first order. This change in the O(1) term is a rather small effect as e — 0, since the
—3/(2¢) term dominates in this limit anyway. But to our surprise (probably because
of our inexperience in these matters), we soon discovered that the B1 and M cases
are much more subtle: differentiating the first-order composite solution does not give
the correct initial slope, not even at leading order in e.

It’s an instructive trap to fall into, so let’s take the plunge. For simplicity, let’s
work with M. If we calculate the initial value and initial slope of the zeroth-order
composite solution y% given in (5.15), we find

1 3 3 _3

(6.3) y%(O):—i—kitanhgwl—i’)e i + TST,
9 3 9 _ s

(64) y%/(O) = ]. — g SeCh2 g ~ ]. — ?66 de + TST,

where TST stands for “transcendentally small terms,” i.e., terms that are smaller than
any power of € times the smallest reported term.

Should we trust these results? Let’s check by going to the next order of pertur-
bation theory. Our first-order composite solution yields

(6.5) yM(0) ~ 1 — e i Li +4+0(e)] +TST,
3 9 9 71'2
M B i R - ~ 2
(6.6) Yer (0) ~1—e73 |:1662 + 9c + 3 +O(e )} + TST.

This doesn’t look good at alll Going to the next order in y has resulted in a change
at a lower order to the values of y(0) and y/(0). Apparently we can’t trust this. So
for this problem at least, naively differentiating the composite solution does not give
us the correct initial slope.

6.3. Initial Slope: The Right Way. Instead of the approach above, let’s turn
to a more global analysis, using our knowledge of the structure of solutions in the
phase plane. The key insight is that we can use a conserved quantity (also known
as a constant of motion, or a first integral) to transfer trustworthy information from
inside a layer to a distant point outside the layer where we want to calculate an initial
slope. For example, we can transfer information from the M layer at zp = 1/2 all
the way over to = 0; this trick is how we are going to extract the leading (but still
minuscule!) transcendentally small term in M’s initial slope. The advantage of using
a conserved quantity is that it is exact; it allows us to shuttle information around in
the phase plane with perfect fidelity.

6.3.1. Conserved Quantity for the Trajectories. To set the stage to perform
the desired transfers of information, we need to gather a few facts about the conserved
quantity.

We have already mentioned that our vector field (4.1) is conservative. Recall that
at each point in the (y, z) phase plane,

dz  Z/(t) ylz—1)

6.7 — ==
(6.7) dy  y'(t) ez
which can be separated and integrated to yield
(6.8) 2¢[z + log(1 — 2)] = 9> — C2,
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where C' is a constant that labels the trajectories. Since C' is constant, the quantity
2¢[z + log(1 — 2)] — °

remains unchanged as y(t) and z(t) flow along a trajectory and hence is a “conserved
quantity.”

For a given value of C, we can generate two explicit formulas for the trajectories
as curves in the (y, z) plane. Either we can write y(z) in the right or left half plane
by solving for y and using the relevant branch of the square root, or we can solve for
z(y) if we allow ourselves to use the implicitly defined Lambert W function, which
satisfies

(6.9) W(z)exp(W(z)) = z.

This equation has multiple solutions, giving the multiple branches W, (z). For more
on the Lambert W function, see [6]. From (6.8) the explicit solution for z is

2 _ 2
(6.10) z=14+W, ( exp (1 + y2€C)> .

For 0 < z < 1, we want the branch W;. For z < 0, we want the branch W_;.

The existence of a conserved quantity for (4.1) suggests that the dynamical system
might actually be a Hamiltonian system in appropriate coordinates. Indeed, (4.1) is
Hamiltonian for z < 1: Canonical variables are Q = y and P = log(1 — 2), in terms
of which the vector field corresponding to (4.1) becomes Q' =1 —ef’, P = Q /e, with
a corresponding Hamiltonian H(P,Q) = P — ¥ — Q?/(2¢).

6.3.2. Using the Conserved Quantity to Transfer Information about Slopes.
Having set the stage, we're now ready to explain how to transfer slope information
reliably with the help of the conserved quantity 2e[z +log(1 — 2)] —y?. Here’s the idea:
Recall that, by definition, z = 3/, so z represents a slope 3’ on a graph of y versus .
Suppose we have one point (y1,21) on a solution where we trust the slope z;. Then,
by using the constancy of C, we can use this information to get the slope 2y at some
other yo on the same solution. For the M and B1 solutions, we will take (y1,21) to be
a convenient point inside the layer where the inner solution is trustworthy and then
we can compute z; = O(e~!) accurately. Then we will transfer this information over
to the initial condition at x = 0, where yy = 1, and seek zj.

Taking two copies of (6.8) on the same curve of constant C' and eliminating C,
we find that our two points are related by

(6.11) 2¢e[zp + log(1 — z0)] — yg = 2¢[z1 + log(1l — z1)] — y% .

Let yo = 1. Solve for the desired initial slope zg by using the appropriate branch of
the Lambert W function:

(6.12) 1= 2 = — Wy (—[1—z1]exp<1g€y% —(1—21))> .

Equation (6.12) is the key formula for transferring information from one point to
another.

Now if we can find trustworthy values of y; and z; to plug in, we’ll be in business.
Let’s illustrate the idea with the B1 solution. Remember that B1 is related to the B0
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solution by the symmetry transformation (z,y,z) — (1 — z, —y, z). That means that
the final slope in B1’s layer at = 1 is the same as the initial slope in B0’s layer at
2 = 0. But we have already calculated B0’s initial slope reliably! It’s given in (6.2).
(It’s reliable because it was calculated inside a layer, namely, the layer at = 0 for
the BO solution.)

Hence the trustworthy point (1, 21) to pick for the B1 solution is

3

When we plug this point into (6.12), we soon discover something fascinating about
the initial slope zp1(0): it deviates from 1 by a transcendentally small quantity. To
see this, however, takes a few more steps. Upon performing the substitution we first
obtain

(6.14) 1— 25(0) = — W, ({—236 +log 16+ 0(5)} exp (—236 +log 16+ 0(@)) ,

which may look opaque to anyone unfamiliar with the Lambert W function. For-
tunately this expression can be simplified by using the fact that Wy(z) is analytic
at z = 0 and its power series is convergent within a radius |z| < 1/e (see [6] for a
thorough treatment). The first few terms are

(6.15) Wo(z) =z —2° + O(z%),

as can be verified by substituting back into the defining equation (6.9). We only need
to keep the first term since the second term is already transcendentally small in e
relative to the first term, in light of the form of the argument of Wy in (6.14).

Thus, we finally arrive at the correct asymptotic behavior for B1’s initial slope,

3 3

(6.16) 1 —yz(0) = [2 —log 16 + O(e)} exp (—2 +log 16 + O(e)) + TST,
€ €

which can be further simplified to

(6.17) 1= (0) = [264 + 0(1)] exp <—23€) +TST.

To obtain this last equality, we simplified (6.16) by replacing exp(log 16) with 16 and
exp(O(e)) with 1 4+ O(e). That relative error at O(e) in (6.16) times the leading
¢! term results in our ignorance of the subdominant O(1) term in the prefactor
multiplying the controlling exponential in (6.17). Nevertheless, we still have enough
information to nail down the leading-order e-dependence of the initial slope, given by
the term [24/€] exp(—3/2¢).

In retrospect, these error considerations clarify why we needed go to the bother of
approximating the inner solution with higher-order perturbation theory: It’s because
we needed the error in the argument of the exponential in (6.16) to be O(e), which
necessitated an error of O(€?) in the inner solution.

For the M solution, we redo the calculation above, except now we use the slope in
the layer at x = 1/2 as our trustworthy value of z;. We get that slope with sufficient
precision by simply evaluating the derivative of the first-order composite solution
(5.28) at = 1/2. We also recall that y vanishes at = 1/2, by the odd symmetry of
M about its midpoint. Hence the trustworthy values of y and its slope are

(6.18) yn(1/2) =0, yﬁw(l/z)z—%+1+1og4+0(e).
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Fig. 7 Comparison of the initial slopes y'(0) determined from the asymptotic solutions (dashed
curves) and numerical solutions found via the shooting method (solid curves). The vertical
azis plots 1 —y’(0) to highlight the tiny (transcendentally small) deviation of the initial slope
from 1 for two of the solutions. From top to bottom, the curves give the behavior of the
solutions labeled BO (boundary layer at © = 0), M (interior layer at x = 1/2), and Bl
(boundary layer at © = 1). Notice the vast difference in scale for the three initial slopes.

Plugging this phase space point into (6.12), we find

(6.19) 1 — 1y, (0)

W, Q—Sge +logd + O(e)] exp (-856 +logd + 0(e)>>

(6.20) _ [56 ~log4 + 0(6)] exp (-856 +log 4 + O(e)) +TST
(6.21) _ [296 4 0(1)] exp (‘si) +TST.

Here, as in (6.16), we have enough precision to nail the leading-order term after
expanding exp(O(e)), but not enough to determine the subleading O(1) correction.

Figure 7 compares these analytical initial slopes against numerical results obtained
from the shooting method. In all three cases, the agreement between asymptotics and
numerics is excellent. And for both M and B1, the agreement extends over more than
twenty orders of magnitude. Wow!

7. Pitchfork Bifurcation. As we’ve seen, the nonlinear boundary-value problem
(1.1) has three solutions when e is sufficiently small. The final surprise in this problem
comes when we examine what happens to the three corresponding initial slopes, 3'(0),
as we increase € away from 0. We can mull over the three equations (6.2), (6.16), and
(6.21), or examine Figure 7 that summarizes all three. For sufficiently small €, we have
the ordering y5,(0) < v3,(0) < y31(0). As € increases, y5,(0) increases (becomes less
negative) and moves toward zero, while both y,(0) and y/5,(0) decrease away from 1
and also move toward zero.

This behavior suggests that at sufficiently large €, there is a possibility that two
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Fig. 8 A pitchfork bifurcation occurs in the space of solutions to the boundary-value problem (1.1).
Each point corresponds to integrating the initial-value problem with y(0) = 1, y'(0) de-
termined by the vertical coordinate on the plot, at a certain value of € determined by the
horizontal coordinate on the plot. The color denotes the value of 1+y(1), with reds denoting
positive values and blues denoting negative values. The curves where 1 + y(1) = 0 lie be-
tween the reds and blues; these curves define the set of all (¢,y’(0)) that yield solutions of the
boundary-value problem. For each ¢ < e, there are three initial values satisfying 1+y(1) = 0,
corresponding to the B0, M, and B1 solutions, which coalesce at e, = 0.2159869288903 . ..
and y'(0) = 0. The zoom in the lower panel expands the neighborhood of the bifurcation
point, showing that it has the form of a cubic, as is expected from the mormal form of a
pitchfork bifurcation.

or even three solutions might approach each other and merge. It also suggests that
the initial slopes of the merging solutions might lie somewhere close to y'(0) = 0. We
first discovered experimentally that this actually happens; a three-way merger occurs
through a pitchfork bifurcation precisely when y'(0) = 0. After the fact, we were able
to establish the analytical conditions that describe the bifurcation and identify the
critical value e, where it occurs.

7.1. Visualizing and Explaining the Pitchfork Bifurcation. We visualize the
merger of solutions by plotting contours of 1+ y(1) in the (¢, 4'(0)) plane in Figure 8.
Satisfying the boundary-value problem means finding the contours where y(1)+1 = 0,
which occurs at the boundary between reds and blues in the figure. Below the critical
value € < €., there are three solutions; these bifurcate at ¢ = €. and y’(0) = 0. For
large values of ¢, there is only one solution. In the broad view shown in the top panel,
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there is a rather obscure shape for the solution set. In the bottom panel, we zoom in
to the sixth decimal place in € and see a classic pitchfork shape, which we will explain
below.

The first condition for the bifurcation comes from understanding the relationship
between the initial and final slopes for the BO and B1 solutions, which are paired
under the symmetry (x,y,2) — (1 —xz, —y, z). Let’s return to (6.11), the relationship
between two points (yo, z0) and (y1, z1) on the same trajectory. Take these two points
to be the endpoints of the trajectory, where ¢y = 1 and 3; = —1. Then the y? terms
cancel, leaving a simpler condition relating the two endpoint slopes:

(7.1) z0 +1og(1 — 2z9) = 21 +log(1 — 21) .
For convenience, let us define a function
(7.2) f(z) =z+log(l—2),

whose domain is z < 1. Equation (7.1) says that f(z9) = f(z1). Now there are two
possibilities. For the self-symmetric solution M, the slopes at the endpoints agree
automatically, so zp = z; and (7.1) is vacuously satisfied. This case tells us nothing
new. However, for the asymmetric solutions BO and B1, there are two distinct slopes,
zo # 21, and we can show that they must have opposite signs.

This result follows from the shape of the graph of f. Note first that f'(z) =
1—1/(1—=%), so f has only one local extremum, at z = 0, where f(0) = 0. The second
derivative f”(z) = —(1 — z)~2 is strictly negative everywhere, so z = 0 is in fact a
global maximum. For z < 0, f(z) is monotonically increasing, while for 0 < z < 1,
f(2) is monotonically decreasing. Therefore, in the case where we have two distinct
slopes f(z0) = f(z1) but zg # z1, we can deduce that they must lie in the intervals
zp < 0 and 0 < z; < 1, or vice versa, and hence have opposite signs, as claimed.

Graphically, every horizontal slice through the graph of f(z) below its global
maximum cuts it in two places: one value at zg < 0 and the other value at 0 < z; <
1. As we increase our horizontal slice toward the maximum, these two roots both
approach and ultimately coalesce at z = 0.

Finally, let’s apply this knowledge to the slopes zp¢ and zp1, when both solutions
exist. The B0 solution has endpoint slopes y'(0) = zpo and y'(1) = zp1, and the
B1 solution exchanges these two. By the previous analysis, f(zpo) = f(zp1) with
zpo < 0, while 0 < zp; < 1. We know that as e increases, these two slopes approach
one another. The only place they can merge is at zpg = zp1 = 0, which happens at
some € = €.

What about the intermediate M solution? How does its slope compare to the
other two? We know that the three slopes are the three roots of the target function
plotted in the right panel of Figure 6. Is it possible for zp; to coalesce with one of
zBo or zp1 before the outer two roots meet one another? No: the M solution has the
same slope at each endpoint, so if it coalesces with either of the other two roots, all
three must coalesce simultaneously. Generically, this leads us to expect that in a small
neighborhood of the bifurcation point, the error function y(1) 4+ 1 plotted in Figure 6
should be approximately a cubic of the form

(7.3) y(1) +1~ A(y'(0)° + B(e — e)y'(0).

We further expect A > 0 and B > 0 by examining the shape of the curve in Figure 6.
For € > €., there is only one real solution; for € < €., there are three real solutions;
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and as € — ¢, from below, these three solutions degenerate into a triple root. All of
these expectations are confirmed by the classic pitchfork scenario seen in the lower
panel of Figure 8.

7.2. Calculating the Pitchfork Bifurcation Value. The preceding analysis told
us that the bifurcation happens when (1.1) admits a solution with ¢'(0) = 0. We can
now use that result to determine ..

To do so, we first observe that the solution of (1.1) when € = ¢, must satisfy the
boundary condition y(0) = 1 as well as the bifurcation condition y'(0) = 0. These
conditions then uniquely determine the corresponding critical trajectory: it starts at
(y(0), 2(0)) = (y(0),%'(0)) = (1,0) and also satisfies 2¢[z + log(1 — 2)] = y?> — C? by
(6.8). So by plugging in y(0) = 1 and z(0) = 0 we see that C' = 1 on the critical
trajectory.

Next, we use C' =1 to find two conditions on ¢.. Both conditions relate €. to z,
defined as the minimum (i.e., most negative) value of z on the critical trajectory. By
solving those two conditions simultaneously, we find z. and €., as follows.

To obtain the first condition on €., we note that 2’ = 0 when z(t) reaches its
minimum along the trajectory, which implies (from (4.1)) that y = 0 there. Like all
other points on the critical trajectory, this point (y,z) = (0, z.) must satisfy (6.8)
with C' = 1. This gives us our first condition on e.:

(7.4) 2¢. [zc + log(1l — z.)] = —1.

The second condition is that the time required for the critical trajectory to go
from y = 1 toy = —1ist = 1, just as it is for every solution of our original
boundary-value problem. But for the critical trajectory, we can say more. The critical
trajectory is self-symmetric, which implies that the time to go halfway is simply
t = 1/2. And at that halfway point, the trajectory is at the point we have just been
discussing, (y,z) = (0, z.). To translate these observations into the condition we seek,
we need to find a formula for the travel time. The trick is to write dt in terms of
z on the trajectory and then integrate. Recall that 2z’ = y(z — 1) /e, from (4.1), so
dt =dz/z' = edz/[y(z — 1)]. Thus

/ g — / ecdz
z—l

where we are thinking of y as a function of z on the critical trajectory. That function
can be written explicitly by using the fact that C = 1 on the critical trajectory;
solving 2e¢.[z +1og(1 — 2)] = 2 — 1 for y and noting that y > 0 on the first half of the
trajectory, we take the positive square root and obtain

y= \/1 + 2e.[z + log(1 — 2)].

Hence our travel time condition becomes

1 0 €.dz
(7.5) 2= /Z (1—2)y/1+ 2¢.[z +log(1 - 2)]

Now we have two conditions, (7.4) and (7.5), in terms of 2. and ¢.. We use (7.4)
to eliminate €., leaving an integral equation for z. alone to satisfy. After a bit of
algebra, this combined condition is

_ _ztlog(l—2)

0 dz
(7.6) 0=g(zc) = z. + log(1l — z.) + /
(1 - Z) 1 ze+log(1—z.)
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This is now a root-finding problem for the function g(z.). We find z. &~ —3.9052637703.
Plugging this root back into (7.4) yields ¢, = 0.2159869288903.

7.3. A Deeper Look at the Pitchfork Bifurcation. In retrospect, there were at
least two reasons to expect that a pitchfork bifurcation could occur in our problem.
The reasons have to do with the symmetry of the problem itself and the special
structure of the associated vector field.

First, recall that the differential equation ey’ = yy’ — y and its boundary con-
ditions y(0) = 1, y(1) = —1 are left unchanged by the transformation (z,y) —
(1 — z,—y). If we apply this transformation a second time, we get back to (z,y), as
if toggling a switch or reflecting an image in a mirror twice. Such a transformation
is known as a Zs symmetry. Now it turns out that the occurrence of a pitchfork
bifurcation in a boundary-value problem with Zs symmetry is a codimension-1 phe-
nomenon [20], which means that we should expect to see it in a generic one-parameter
family of such problems. So we should not be surprised to find a pitchfork occurring
in our problem as we vary its single parameter, €.

Second, recall from section 6.3.1 that the dynamical system (4.1) is Hamiltonian
for = < 1. McLachlan and Offen [20] give the generic bifurcations for Hamiltonian
boundary-value problems and find that a pitchfork can be codimension-1 in planar
problems even without the kind of symmetry seen in our system.

So if we had known what we know now, we should have expected a pitchfork all
along. As always, everything becomes clearer in hindsight. Fortunately, before clarity
comes, we have the pleasure of being surprised.

Appendix A. Higher-Order Asymptotics. Here we collect the long expressions
obtained at higher orders of perturbation theory. For the middle-layer solution M, at
first order, we find

1 3X
vM = i sech? (4) [16 Lis (—6_3X/2) + 24c¢o +3X (3X +4 + 4c; — 8log2)

(A1) + 8sinh (3;() (2 log cosh <3f) -1+ cl>

where X = (z — 1/2)/e. As discussed in the main text below (5.21), after matching,
the integration constants take the values ¢; = 7%/18 and ¢y = 1 + log4.

For the B0 case, we condense the notation a bit by defining X = z/¢ and X =
X — tanh™! %, SO we can write

i

1 —
Y20 = 1 sech? X

4eo + ZY(Y—% 1+c¢ — log4)

(A.2) + sinh(2X) (cl —1+2log cosh(Y)> +2Liy (7672Y) ] .
After matching we fix the integration constants as ¢; = 1 + log 12 and

1 . 5 4
(A.3) =g —4Lis(—3) + (log 3)° + 3 log 6912 | =~ 2.594.

As discussed in the main text below (5.27), the outer solution and the overlap solution
cancel out when we form the composite solution, leaving only the inner solution. Thus
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the first-order composite solution for B0 is just
(A4) yff = —2tanh X + €Y;PY,

where, as above, X = - tanh ™! %
For the B1 solution, we can use the symmetry to write y?!(z) = —y?°(1 — ).
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