This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3291663

Geometric Deep Neural Network Using Rigid
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Abstract—Deep learning architectures, albeit successful in most com-
puter vision tasks, were designed for data with an underlying Euclidean
structure, which is not usually fulfilled since pre-processed data may
lie on a non-linear space. In this paper, we propose a geometric deep
learning approach using rigid and non-rigid transformations, named
KShapenet, for 2D and 3D landmark-based human motion analysis.
Landmark configuration sequences are first modeled as trajectories on
Kendall’s shape space and then mapped to a linear tangent space. The
resulting structured data are then input to a deep learning architecture,
which includes a layer that optimizes over rigid and non-rigid transforma-
tions of landmark configurations, followed by a CNN-LSTM network. We
apply KShapenet to 3D human landmark sequences for action and gait
recognition, and 2D facial landmark sequences for expression recogni-
tion, and demonstrate the competitiveness of the proposed approach
with respect to state-of-the-art.

Index Terms—Geometric deep learning, human behavior analysis,
Kendall shape space, transformation layer.

1 INTRODUCTION

UMAN behavior analysis via diverse data types has emerged
Has an active research issue in computer vision due to 1)
the wide spectrum of not yet fully explored application domains,
e.g., human-computer interaction, intelligent surveillance security,
virtual reality, etc., and 2) the development of advanced sensors
such as Intel RealSense, Asus Xtion and the Microsoft Kinect [1],
which yield various data modalities, e.g., RGB and depth image
sequences, and videos. Conventionally, these modalities have been
utilized solely [2], [3], or merged (e.g., RGB + optical flow), for
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the action recognition [4], [5], gait recognition and facial expres-
sion recognition tasks using multiple classification techniques, and
have resulted in excellent results. With the development of human
pose estimation [6], [7] and facial landmark detection [8], [9] algo-
rithms, the problem of human landmark (or key-point) localization
was solved, and reliable acquisition of accurate 2D/3D landmark
data became possible. In comparison with former modalities,
landmark data, a topological representation of the human body
or face using key-points, appears to be less computationally
expensive, and more robust in front of intricate backgrounds and
with respect to variable conditions including viewpoints, scales
and motion speeds [10]. An efficient way to analyze datasets
composed of 2D/3D landmark observations is to consider their
shapes independently of undesirable transformations; the resulting
representation space of landmark data is non-linear.

Accordingly, we represent 2D/3D landmarks in the Kendall
shape space [11] that defines shape as the geometric information
that remains after location, scaling and rotational effects are
filtered out. A sequence of landmarks is then modeled as a
trajectory on this space. Thus, to analyze and classify such data,
it is more suitable to consider the geometry of the underlying
space. This remains a challenging problem since most commonly
used techniques were designed for linear data. Deep learning
architectures, despite their efficiency in many computer vision
applications, usually ignore the geometry of the underlying data
space. Therefore, geometric deep learning architectures have been
introduced to remedy this issue.

To the best of our knowledge, the main previous geometric
deep learning approaches on manifolds were designed on feature
spaces (e.g., space of symmetric positive definite (SPD) matrices,
Grassmann manifold, Lie groups [12], [13]) or on the 3D human
body manifold [14], [15]. The literature that considers this prob-
lem on shape spaces is scarce. An extension of a conventional
deep architecture on Kendall’s pre-shape space has been recently
proposed in [16], and an auto encoder-decoder has been extended
to a shape space for gait analysis in [17].

In this work, we extend the KShapeNet geometric deep
learning approach on Kendall’s shape space [18] to 2D or 3D
landmark sequences for human motion analysis. In [18], we
considered the problem of 3D skeleton-based action recognition.
Here, we further adapt this framework to the problems of gait
(3D landmark sequences) and facial expression (2D landmark
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sequences) recognition. The generality of KShapeNet allows us to
address various recognition tasks based on landmark sequences.
Landmark sequences (representing the human body or face)
are first modeled as trajectories on Kendall’s shape space by
filtering out scale and rigid transformations. Then, the sequences
are mapped to a linear tangent space and the resulting structured
data are input to a deep learning architecture. The latter includes a
novel layer that learns the best rigid or non-rigid transformation to
be applied to the landmark configurations to accurately recognize
the motion. In light of this, our main contributions are as follows.

1) We define a novel deep architecture on Kendall’s shape
space for landmark-based human motion analysis. In
particular, we extend the framework introduced in [18]
for action recognition based on 3D landmark sequences
to gait and facial expression recognition tasks based on
3D and 2D landmark sequences, respectively.

2) The proposed deep network includes a novel transforma-
tion layer that optimizes over rigid and non-rigid trans-
formations of landmark configurations, which increases
recognition accuracy for human motion analysis.

3) The proposed architecture is applied to 3D landmark-
based motion analysis, namely action recognition and
gait recognition, as well as 2D landmark-based motion
analysis, namely facial expression recognition. We report
state-of-the-art results on five large scale publicly avail-
able datasets: NTU-RGB+D and NTU-RGB+D120 for
3D action recognition, CMU Mocap dataset for 3D gait
recognition, and CK+ and Oulu-CASIA datasets for 2D
facial expression recognition.

The rest of the paper is organized as follows. In Section 2, we
briefly review existing research on action recognition, gait recog-
nition, facial expression recognition and geometric deep learning.
Section 3 describes geometric modeling of landmark configu-
ration trajectories on Kendall’s shape space. In Section 4, we
introduce the proposed geometric deep architecture, KShapeNet.
Experimental settings, results and discussions for human action
recognition, gait recognition and facial expression recognition are
provided in Sections 5.1, 5.2 and 5.3, respectively. Finally, Section
6 concludes the paper and summarizes directions for future work.

2 RELATED WORK
2.1 Human action recognition

Presently, deep learning methods for human action recognition
are preferred over traditional skeleton-based ones, which tend to
focus on extracting hand crafted features [19], [20]. The former
methods can be categorized into three major sets: methods based
on a Recurrent Neural Network (RNN) [21], methods based on
a Convolutional Neural Network (CNN) [22], and methods based
on a Graph Convolutional Network (GCN) [23].

Since RNNs are convenient for time series data processing,
RNN-based methods consider skeleton sequences as time series
of coordinates of the joints (landmarks). For the purpose of
improving the capability of learning the temporal context of
skeleton landmark sequences, Long Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU) have been introduced as efficient
alternatives for skeleton landmark-based action recognition. Zhu et
al. [24] used an LSTM network and characterized joints through
the co-occurrence between actions. In [25], geometric joint fea-
tures were applied to a multi-layered LSTM network instead of
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directly passing in the joint positions. The pitfall of some of
these methods [26], [27] is their weak ability in spatial modeling,
resulting in non-competitive results. A novel two-stream RNN
architecture was recently proposed by Hong and Liang [28].
This architecture models both the temporal dynamics and spatial
configurations of skeleton landmark data by applying an exchange
of the skeleton axes at data level pre-processing. Relatedly, Jun and
Amir [29] focused on extracting the hidden relationship between
the two domains, spatial and temporal, using a traversal approach
on a given skeleton landmark sequence. Unlike the general method
where joints are arranged in a simple chain ignoring kinetic
dependency relations between adjacent joints, this tree structure-
based traversal does not add false connections between body
joints when their relation is not strong enough. Many RNN-based
methods in this context suffer from issues related to the gradient
exploding or vanishing over layers. Some new RNN architectures
[30], [31] were proposed to address this particular limitation.
CNN models have excellent capability to extract high level
information and semantic cues. Multiple works [32], [33], [34]
have exploited CNN models for action recognition by encoding
the skeleton joints as images or pseudo-images prior to feeding
them to the network. In [34], Zhang et al. map a skeleton
landmark sequence to an image, referred to as the skeleton map,
to facilitate spatio-temporal dynamics modeling via the ConvNet.
The challenge with CNN-based methods is the extraction and
utilization of spatial as well as temporal information from 3D
skeleton landmark sequences. Several other problems hinder these
techniques, including model size and speed [35], occlusions, CNN
architecture definition [36], and viewpoint variation [34]. Skeleton
landmark-based action recognition using CNNs, that overcomes
these challenges, thus remains an open research question.
Recently, the GCN has been adapted to action recognition.
This network represents human 3D skeleton data as a graph
(landmarks and connections between them). There are two main
types of graph related neural networks: the graph recurrent neural
network, and the graph convolutional neural network [37], [38].

2.2 Gait recognition

Gait is an appealing biometric modality. Gait recognition aims
to identify individuals based on the way they walk. Thus, sev-
eral approaches to this problem have been proposed in different
application areas including user identification [39], [40], sport
science [41], and healthcare [42], [43]. From the perspective of
body representation taxonomy, these approaches can be organized
into two categories: silhouettes or skeletons. The second category
exploits motion capture technology to estimate 3D positions of
anatomical landmarks. As opposed to silhouette-based methods,
skeleton-based gait recognition methods are generally more robust
against viewpoint and appearance changes [44]. 3D skeletal data
allow the extraction of static and dynamic anthropometric and gait
features, e.g., stride length, speed, distances and angles between
joints, from the body joints and their connections [45]. For clus-
tering, the authors in [46] select the mean, standard deviation and
maximum value of three angles for each of the left and right legs,
hips, knees and ankles. Ding et al. [47] extract Horizontal Distance
Features (HDFs) and Vertical Distance Features (VDFs), based on
distances between ankles, knees, hands and shoulders. Ortiz et
al. [48] compute the mean and standard deviation in the signals of
lower joint (hips, knees and ankles) angles. The authors in [49] use
geometric features, such as body-derived parameters, joint angles
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and inter-joint distances, along with various statistics, to construct
seven different feature sets. Preis et al. [50] define 13 biometric
attributes among which 11 are static body parameters and two are
dynamic parameters (step length and speed). In [51], Sinha et al.
combine features introduced in [46] and [50] with a set of other
gait features, namely areas of upper and lower body and inter-
joint distances. The authors in [52] consider skeleton sequences
as trajectories parameterized by time and use Functional Principal
Component Analysis (FPCA) to create uncorrelated variables for
identity classification from gait data.

2.3 Facial expression recognition

Facial expression recognition refers to the identification of basic
emotions, e.g, fear, sadness, disgust, etc., from videos of faces.
The availability of reliable facial landmark detectors [8], [9],
and the potential applications, prompted development of many
ad-hoc approaches [53] for this task. Recent works increasingly
focus on addressing facial expression recognition with the use of
deep neural networks, mainly CNNs [54] and RNNs [55]. Among
these, many approaches exploit geometric features, i.e, summaries
extracted from the locations of salient facial landmarks. Wang et
al. [56] proposed a unified probabilistic framework built on top
of an Interval Temporal Bayesian Network (ITBN) allowing the
representation of spatial dependence among the facial landmarks’
movements. In [57], the authors proposed two deep networks:
the Deep Temporal Appearance Network (DTAN), used to extract
temporal appearance features, and the Deep Temporal Geometry
Network (DTGN), which captures geometric information about
the motion of facial landmarks. These two models were integrated
in a network called the Deep Temporal Appearance-Geometry
Network (DTAGN). Aiming to capture subtle facial motions,
Jain et al. [58] modeled temporal dynamics of face shapes and
proposed a new recognition approach using discriminative Latent-
Dynamic Conditional Random Fields (LDCRFs). As another ge-
ometric approach [59], 2D facial landmarks were represented as
time parameterized trajectories via a mapping into the Riemannian
manifold of positive semi-definite matrices. A geometry aware
dissimilarity measure, provided by temporal alignment between
trajectories, was then used to train a pairwise proximity function
SVM (ppfSVM) classifier.

Apropos of deep learning methods, Kim et al. [60] proposed to
first learn the spatial feature representation of the micro-expression
using a CNN. These features of all input frames were then encoded
using the LSTM network. In [61], a two-dimensional landmark
feature for effectively recognizing facial micro-expression was
proposed. This landmark feature, defined by expressing relative
distances between facial landmarks, was used as an input image
to a CNN-LSTM-based classifier. Similarly, focusing on micro-
expressions, Tanfous et al. [62] proposed to encode 2D facial tra-
jectories using Riemannian extrinsic sparse coding and dictionary
learning (SCDL). These sparse time series were then classified
using a Bi-LSTM network.

2.4 Geometric deep learning

Compared to previous techniques, geometric deep learning is
a nascent research area. As mentioned earlier, it studies the
extension of existing deep learning frameworks and algorithms to
effectively process graph and manifold data. Some manifold-based
techniques have proven their success in 3D human action recogni-
tion due to view invariance of the manifold-based representation of

3

skeletal data. As examples, we cite the projection on Riemanian
manifold [16], shape silhouettes in Kendall’s shape space [63],
and linear dynamical systems on the Grassmann manifold [64].
Geometric deep learning approaches can be categorized into two
main classes: approaches on manifolds and approaches on graphs.
This paper is related to deep approaches on manifolds, and thus,
we give a quick review of the state-of-the-art in this category.

Manifold-based geometric deep learning approaches extend
deep architectures to Riemannian manifolds, interpreted either as
feature spaces [12], [65], [13] or the human body shape, i.e., the
human body is viewed as a manifold [14], [15]. Huang et al.
proposed several networks on non-linear manifolds. In [12], they
introduced the first network architecture to perform deep learning
on the Grassmann manifold. They presented competitive results on
three datasets of emotion recognition, action recognition and face
verification. Along similar lines, an architecture on the manifold
of SPD matrices was proposed in [65], and similar experimental
evaluation proved the effectiveness of this approach. Recently, the
same authors proposed an architecture on Lie groups with applica-
tion to skeleton-based action recognition [13]. These approaches
investigated the non-linearity of various feature spaces, but did not
consider shape spaces. Limited efforts have recently been made to
design deep architectures on some shape-preshape spaces. Friji et
al. [16] proposed a deep architecture on the sphere for modeling
unit-norm skeletons with application to action recognition. Along
similar lines, Hosni et al. [17] extended the auto-encoder to a
shape space with application to gait recognition.

3 MODELING OF SHAPE SPACE TRAJECTORIES

Shape spaces are abstract representation spaces on which each
point is a specific shape and the distance between two such
points captures the magnitude of shape discrepancies between the
respective shapes. Kendall’s shape space theory [11] defines shape
as the property of an object that remains after variations due to
translation, scale and rotation are factored out. Let {X t}te{l,m »}
denote a sequence of p sets of n k-dimensional landmarks corre-
sponding to a human motion. First, we perform data interpolation
via cubic splines, to have the same number of frames for each
sequence, rather than the commonly used zero-padding technique.
Next, we briefly describe the mathematical framework behind
Kendall’s definition of shape, and the associated shape space.

Let X = X' € RFX™ denote a set of n landmarks in
R¥, k = 2,3 at time t. The shape of the landmark configuration
X, as proposed by Kendall [11], is extracted by filtering out all
shape-preserving transformations: translation, rotation, and global
scaling. Translation and scale variabilities can be removed from
the representation space via normalization as follows. Let H
denote the (n — 1) X n sub-matrix of a Helmert matrix, as
detailed in [66], where the first row is removed. In order to center
a 2D/3D landmark configuration X, we pre-multiply it by H,
HX € R-Dxk ; then, HX contains the centered Euclidean
coordinates of X. Let Cy = {HX € RO~ DxFk| X ¢ R*F},
which can be identified with R¥("~1  the k(n — 1) dimen-
sional vector space. Using the standard Euclidean inner product
(norm) on Cj, we scale all centered landmark configurations to
have unit norm. As a result, we define the pre-shape space as
C = {HX € Cy||HX|? = (HX)T(HX) = 1}; due to
the unit norm constraint, C' is a (kn — (k + 1))-dimensional
unit sphere in R’i(”*l). Henceforth, we will refer to an el-
ement of C' as X, ie., a centered and unit norm landmark
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configuration. The tangent space at any pre-shape X is given by
T3 (C) ={V e RF*= DV, X) = VT X = 0}; this tangent
space captures all possible perturbations of the pre-shape X.

A sequence of p normalized k-dimensional landmark config-
urations, {Xt}te{lﬁ_.. b is considered as a trajectory on C'. In
subsequent analysis, our representation of landmark sequences
further passes to a tangent space. Thus, it is useful to define
three Riemannian geometric tools [67], [68] that allow one to map
points 1) from the pre-shape space to a tangent space, 2) from
a tangent space to the pre-shape space, and 3) between different
tangent spaces. Task 1) can be achieved via the logarithmic map,
logg : C — T (C), defined as (for X, Y € C):

logx (V) = gy = cos(60)X), (1)

where § = cos™! ((X , ?)) is the arc-length distance between

X and Y on C. Task 2) is carried out via the exponential map,
expg : Tg(C) — C, defined as (for X € C'and V € T'; (C)):

Y = cos(||[V1]) X +sin(|| V) =+ )

v’
where |V|| = VVTV as before. Finally, for task 3), we use
parallel transport, which in short defines an isometric mapping
between tangent spaces. The parallel transport along a geodesic
path from X to Y on C, PTy_ ¢ : T (C) — Ty (C) is defined
as (for X, Y € Cand U € T (C))
log4(Y),U - ~
%% <logf,(X) + logX(Y)) ,
3)
where (-, -) and 6 are the standard Euclidean inner product and the
distance between X and Y on C, respectively, as before.

PTX%Y(U) =U-—

While translation and scale can be dealt with through nor-
malization, rotation variability in Kendall’s framework is removed
algebraically using the notion of equivalence classes. The rotation
group in R¥ is given by SO(k) = {O € R¥*0TO =
I, det(O) = 1}. For O € SO(k) and X € C, the action
of the rotation group is given by matrix multiplication, i.e., 0X
is a rotation of X. Let [X] = {OX|O e SO(k), X € ¢}
denote an equivalence class of a pre-shape X. Then, Kendall’s
shape space is the quotient space C'//SO(k). Rotation variability
is removed in a pairwise manner (or with respect to a given
template), by optimally aligning two configurations X and Y
via Procrustes analysis [66]; we omit the details of this process
here for brevity. After optimal rotation, one can use the same
Riemannian geometric tools as on the pre-shape space C, e.g.,
Equations 1-3, to model shapes of landmark configurations.

4 SHAPE SPACE DEEP ARCHITECTURE

An overview of the proposed deep learning architecture on
Kendall’s shape space for human landmark-based motion analysis
is given in Fig. 1. 2D/3D landmark configuration sequences are
first modeled as trajectories on C, after which each landmark
configuration X is mapped to a common tangent space Ty (C)
at a reference shape X,. The reference shape X, is deﬁned as a
pre-selected landmark configuration representing the neutral pose
or facial expression. Then, a transformation layer is built in this
tangent space to increase global or local dissimilarities between
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class motions. This layer is followed by a CONV Block and a
one-layer LSTM network, which learns the temporal dynamics of
the landmark sequences. As output, a fully connected block yields
the corresponding motion class. In the case of 3D landmark-based
tasks, the CONV block consists of two 1D convolution layers
followed by a pooling layer for dimensionality reduction. For end-
to-end network training, we use the cross-entropy loss.

4.1 Optimization over rigid transformations

To optimize over rigid transformations, rotations are applied to in-
dividual 2D/3D landmark configurations across sequences within
this layer, and are updated during training. Throughout, we use
k to denote the dimension of the landmark points. Let Y; denote
the i*" centered, unit norm landmark configuration in a sequence
S, and Y; its representative in the tangent space, reshaped from
a k(n — k) vector into a k X (n — 1) matrix represented in the
ambient coordinates. The transformation layer is performed on
each sequence resulting in a hidden output A, given by:

hi = O;Y; “

where O; € SO(k). In the back-propagation phase, the gradient
descent adapts the kernels O; directly so that they may not lie
in SO(k). To ensure that the updated kernels lie in SO(k), we
propose a second variant of this layer, called angle-based, where
the optimization is performed over the rotation angles (one rotation
angle for O € SO(2) and three rotation angles for O € SO(3)).
Rotation matrices are then generated in the feed-forward pass.

Fig. 2 depicts the optimization over the rigid transformation
layer on the human body 3D landmark-based representation and
on the facial 2D landmark-based representation. We illustrate that
this first category of optimization deals with a 2D/3D landmark
configuration as a single rigid entity, i.e., the same rotation is
applied to the entire landmark configuration.

4.2 Optimization over non-rigid transformations

The optimization over local transformations is performed by
finding the best rotations of individual landmarks within each
configuration. This more flexible modeling approach tends to
improve performance on the motion analysis task. As before, let
Y, denote the zth centered, unit norm landmark configuration in
a sequence .S, Y its representative in the tangent space (reshaped
from a k(n — k) vector into a k X (n — 1) matrix represented in
the ambient coordinates), and q € R” the j*" landmark of Y
The transformation layer is performed on each landmark resulting
in a hidden output h, given by:

hi = {0:;4] Y71, )

where O; ; € SO(k). Similarly to the rigid transformation case,
an angle-based optimization variant is proposed to ensure that each
0;,; is a rotation matrix. In Section 5.1.4, we perform a study that
compares the two variants for optimization over rigid and non-
rigid transformations: 1) the variant that allows the network to
use general kernels as k& X k matrices (not necessarily elements
of SO(k)), and 2) the angle-based approach that constrains the
network to allow rotation matrices only.

Fig. 3 depicts the optimization over the non-rigid transforma-
tion layer on the human body 3D landmark-based representation
and on the facial 2D landmark-based representation. We illustrate
that, in contrast to optimization over rigid transformations, this
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Fig. 2. lllustration of optimization over rigid transformations: rotations of
the entire landmark configuration are applied during training.

second category of optimization treats each 2D/3D landmark
configuration as a non-rigid object, i.e., different rotations are
applied to each individual landmark within each configuration.

5 EXPERIMENTAL RESULTS

5.1 3D human action recognition

In Section 5.1.1, we first describe the datasets and experimental
settings used to validate our architecture for the action recognition
task. For the demonstration of KShapeNet efficiency, an ablation
study is presented in Section 5.1.2 with a discussion of the impact
of intermediate layers, i.e., the transformation layer and logarith-
mic map layer (projection to tangent space). Then, in Section
5.1.3, we compare the performance of action recognition based on
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Fig. 3. lllustration of optimization over non-rigid transformations: rota-
tions are applied to individual landmarks during training.

the KShapeNet architecture to state-of-the-art approaches on the
same datasets. We conclude in Section 5.1.4 with a comparison
and discussion of pre-processing techniques, effects of nuisance
variation, different variants of the transformation and projection
on tangent space layers. The implementation code for KShapeNet
will be publicly released upon acceptance of the paper.

5.1.1 Datasets and implementation settings

We evaluate the effectiveness of KShapeNet on two large scale
state-of-the-art datasets, NTU-RGB+D and NTU-RGB+D120.
NTU-RGB+D (NTU) [69] is one of the largest 3D human action
recognition datasets. It consists of 56,000 action clips of 60
classes. 40 participants were asked to perform these actions in a
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constrained lab environment, with three camera views recorded
simultaneously. Kinect sensors estimated and recorded the 3D
coordinates of 25 joints in the 3D camera’s coordinate system.
For standard assessment, we utilize two state-of-the-art protocols:
cross-subject (CS) and cross-view (CV). In the CS protocol, the
40 subjects are split into training and test sets (20 subjects each)
made up of 40,320 and 16,560 samples (sequences), respectively.
In the CV protocol, we select the samples from cameras 2 and 3
for training, and the samples from camera 1 for testing. Thus, the
training set consists of the front and two side views of the actions,
while the test set consists of the left and right 45 degree views. For
this protocol, the training and test sets contain 37,920 and 18,960
samples (sequences), respectively.

NTU120-RGB+D (NTU120) [70] is an extension of NTUG60. It is
the largest RGB+D dataset for 3D action recognition with 114,480
skeleton sequences. It contains 120 action classes performed
by 106 distinct human subjects. NTU120 was built using 32
collection setups; over different setups, location and background
were changed. Specifically, in each setup, three cameras were used
at the same time to capture three different horizontal views for the
same action sample. For this dataset, the two protocols used for
evaluation are cross-subject (CS) and cross-setup (Cset). For the
CS setting, half of the 106 subjects are used for training and the
rest for testing. For the Cset evaluation, all of the samples with
even collection setup IDs are chosen for training, and those with
odd setup IDs are used for testing, i.e., 16 setups are used for
training and the other 16 setups are reserved for testing.

For the KShapeNet implementation, we set the number of
frames to p = 100, and the batch size to 64 for the NTU
dataset and 32 for the NTU120 dataset. To estimate the model’s
parameters, we use cross-entropy loss and set the number of
epochs to 30. The Adam optimizer is adapted to train the network,
and the initial learning rate is fixed to 1 x 10~* for both datasets.
For training, we used a machine with a processor speed of 3.40
GHz, memory of 32 GB and an NVIDIA GTX 1070 Ti GPU.

5.1.2 Ablation study

To validate the effectiveness of the proposed framework and
highlight the impact of each processing block, we performed an
ablation study by gradually adding 1) the logarithmic map block
(projection to tangent space), and 2) the transformation layer.

Table 1 reports the results of this study on the NTU and
NTUI120 datasets. In the first row, labeled “Baseline”, we report
the results generated by the deep network (CNN-LSTM used in
KShapeNet) using input data represented directly on Kendall’s
pre-shape space (without moving to the linear tangent space), and
without the optimization over rigid or non-rigid transformations.
The baseline architecture provides satisfactory results. However,
they are not competitive with respect to those produced by state-
of-the-art approaches.

[ Dataset [ NTU-RGB+D | NTU-RGB+D120 |
[ Protocol [CS JCV JCS T Cset |
Baseline 85.1% | 91.2% | 56.0% | 63.5%
Transformation layer only | 89.6%| 91.5%| 57.2% | 63.8%
Logarithmic map only 94.1% | 95.5% | 63.9% | 65.3%
Proposed (KShapeNet) 97.0%| 98.5%| 90.6%| 86.7%
TABLE 1

Ablation study results on the NTU and NTU120 datasets.
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The second row of Table 1 depicts the results achieved by
adding the transformation layer to the baseline architecture. The
transformation layer adopted here considers optimization over
non-rigid transformations using the angle-based variant. Further
discussion about the choice of this configuration is presented in
Section 5.1.4. Compared to the “Baseline” results, the transfor-
mation layer improves recognition performance by 4.5% for CS
and 0.3% for CV on the NTU dataset, and by 1.2% for CS and
0.3% for Cset on the NTU120 dataset. As explained in Section 4,
this configuration of the transformation layer optimizes over non-
rigid transformations, hence urging the network to find the best
local rotations that are applied to the skeleton joints within each
landmark configuration; this justifies the improvement in action
recognition accuracy.

In the third row of Table 1, we present the results obtained
by only adding the projection to tangent space block, via the
logarithmic map, to the baseline model. Linearization via tangent
space projection provides significant improvements in recognition
performance, increasing from 85.1% to 94.1% for the CS protocol
on the NTU dataset. The increase in accuracy is due to a new
skeleton landmark configuration representation in the Euclidean
tangent space, allowing for the definition of a linear metric
between skeleton landmark configuration shapes.

In the fourth row of Table 1, we report the final results pro-
duced by the KShapeNet framework, including both the logarith-
mic map block and the non-rigid transformation layer. KShapeNet
results in a significant improvement over the baseline model,
and most importantly, further increases recognition accuracy over
the two models with individually added components (logarithmic
map block or transformation layer). The combination of both
components empowers the network to properly discriminate action
classes. For instance, for the CS protocol on the NTU dataset,
the accuracy increase due to the additional transformation layer
was only 4.5% and the increase due to the logarithmic map
block was only 9%. However, the addition of both components
increased recognition accuracy by more than 11%. Accordingly,
we conclude that the efficiency of KShapeNet is not only due
to the advanced feature extraction capacity of the CNN-LSTM
network, but equally due to the convenient data representation of
skeleton landmark configuration shapes in the linear tangent space,
and the optimization over local rotations.

5.1.3 Comparison to state-of-the-art approaches

In this section, we compare the performance of the proposed
framework to state-of-the-art approaches on the two datasets,
NTU and NTU120. Table 2 reports recognition results of state-
of-the-art approaches on the NTU dataset, and compares them to
the result generated by KShapeNet. In this table, we distinguish
between three classes of action recognition methods: deep learning
methods, Riemannian methods, and hybrid (deep Riemannian)
methods; our framework, KShapeNet, falls into the third category.
The results demonstrate that KShapeNet consistently outperforms
deep learning (leveraging CNNs and RNNs), Riemannian and even
hybrid approaches. Indeed, our method outperforms the best of
these state-of-the-art approaches by 7.3% and 0.1% on the CS
and CV settings, respectively. Comparing to the hybrid method
presented in [13], which incorporates the Lie group structure into
a deep network architecture using rotation mapping layers, our
approach increases recognition accuracy by more than 35%.
Table 3 compares KShapeNet recognition accuracy to state-of-
the-art approaches on the NTU120 dataset. KShapeNet achieves
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competitive recognition results under the Cset protocol, and out-
performs the top competitor (MS-G3D Net) under the CS protocol
by 3.7%.

5.1.4 Additional studies

Next, we present intermediate experiments that were performed
during the design of KShapeNet. In particular, we discuss the
different configurations that were tested in terms of data pre-
processing, and the variants of the transformation layer and the
logarithmic map block.

Comparison of preprocessing techniques: We used the code
of Maosen et al. [38] to generate input data for our algorithm,
which is composed of three main steps: 1) extraction of skeleton
landmark configurations across frames, 2) extraction of joint
coordinates for each configuration, and 3) splitting of sequences
into training and test sets for the different protocols. As an
additional data processing step, we interpolated the sequences,
using cubic splines, to estimate equally-spaced skeleton landmark
configuration trajectories, with constant time change between
frames. For comparison, we tested the network by zero padding
the missing frames. Since this operation results in frames that
contain “wrong” data, the network is misled during the learning
stage and recognition performance deteriorates significantly. Table
4 reports recognition results, on the NTU dataset, obtained with
zero padding and with cubic spline interpolation.

Effects of nuisance variation: As detailed previously, the rep-
resentation in Kendall’s shape space consists of filtering out the
three sources of nuisance variation: translation, scale and rotation.
In this section, we report recognition performance when only a
subset of the nuisance variations is accounted for.

Table 5 contains recognition accuracies when two out of the
three nuisance variations are filtered out from the representation
space, for both the NTU and NTU120 datasets. The first row in
Table 5 reports the accuracy obtained when translation variation is
retained while filtering out scale and rotation. The second row
reports the accuracy when keeping the initial rotations of the
landmark configurations while filtering out scale and translation.
Finally, the third row reports the accuracy when keeping scale
while removing translation and rotation. From these results, it is
clear that accounting for nuisance variation due to rotation and
translation is an important aspect of the proposed approach.
Comparison of transformation layer variants: Table 6 presents
a comparison of recognition results computed using the four differ-
ent variants of the transformation layer, for the NTU and NTU120
datasets. Each row in the table refers to one of the four variants:
1) optimization over rigid rotations using the matrix-based variant
(Rigid Matrix), 2) optimization over rigid rotations using the
angle-based variant (Rigid Angle), 3) optimization over non-rigid
rotations using the matrix-based variant (Non-rigid Matrix), and 4)
optimization over non-rigid rotations using the angle-based variant
(Non-rigid Angle).

At a global level, we notice that each version of the transfor-
mation layer preserves state-of-the-art results on the NTU and
NTUI120 datasets. Further, performance is generally better on
the CV protocol than the CS protocol for NTU, and on the CS
protocol than the Cset protocol for NTU120. At a granular level,
we highlight two different behaviors of the optimization over rigid
transformations and the optimization over non-rigid transforma-
tions, with regards to the two different variants: rotation matrix-
based and angle-based. On the one hand, the rotation matrix-based
variant, which gives the network the liberty to optimize matrix
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coefficients without any constraints (updated matrices may not be
in SO(3)), yields better results for the optimization over rigid
transformations than for the optimization over non-rigid ones. On
the other hand, the angle-based variant, which only updates the
angles resulting in elements of SO(3), performs worse for rigid
transformations than non-rigid ones.

Rigid transformations, i.e., rotations of the entire skeleton
landmark configuration, are characterized by preserving the skele-
ton landmark configuration’s shape, distance and angle properties,
i.e., all joints move in the same direction by the same amount.
We argue that, for this reason, the rotation matrix-based variant is
more adequate for optimization over such transformations. In other
words, the rigid transformation is not subject to shape and angle
variations, and the network tends to perceive the transformations
applied to the skeleton landmark configuration as a one entity
operation. Therefore, it is more efficient to allow the network
to freely optimize over matrices during the back forward phase
without the orthogonality constraint. As a result of the non-rigid
transformations, i.e., different rotations applied to all of the joints,
the shape and angle properties of the skeleton landmark configura-
tions are not preserved at each pass. Beyond the first feed forward
pass, the network will alter the representation of each sequence.
Thus, for the optimization over non-rigid transformations, it is
more convenient to constrain the network to allow rotations only.
The rotation matrices are generated based on updated rotation
angles, always resulting in elements of SO(3).

In light of these results, we chose to optimize over non-

rigid transformations using the angle-based variant for the final
configuration of KShapeNet. This allows for flexible modeling of
inter-joint transformations; the corresponding recognition results
are highlighted in bold in Table 6.
Study of the combination of rigid and non-rigid transfor-
mation layers: Up to this point, the rigid and non-rigid trans-
formation layers were considered separately. However, they are
not complementary. A rigid transformation, inducing a global
rotation of a 3D landmark configuration, is a special case of a
non-rigid transformation where all local joints are rotated in the
same exact manner. The present section aims to validate this and
experimentally investigate the non-complementary nature of the
two transformation layers. To do this for each of the two variants
of the transformation layers (matrix-based and angle-based), we
merge the rigid and non-rigid transformations by implementing
two subnetworks, each applying a specific transformation (rigid
or non-rigid) to the input landmark configurations, followed by
the convolution and LSTM layers. We then concatenate the output
features before using them as input into the fully connected layer.
The combination of features is applied on the linear functions of
the two subnetworks.

Table 7 summarizes the recognition results of this study,
for the NTU and NTU120 datasets, and compares them to the
KShapenet accuracy. Comparing recognition accuracies reported
in Table 7 to those in Table 6, we observe that, for the matrix-based
variant, the combination approach generates a slight improvement
over rigid transformations alone. For the angle-based variant,
the combination approach decreases accuracy compared to rigid
and non-rigid transformations applied separately. In all cases, the
proposed KShapeNet architecture, based on the non-rigid angle-
based transformation layer, yields the best recognition accuracy.
Comparison of different methods for projection to tangent
space: As another intermediate experiment, we tested two ap-
proaches for the projection to tangent space block. The first

Authorized licensed use limited to: The Ohio State University. Downloaded on August 28,2023 at 15:25:53 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3291663

8
NTU-RGB+D Dataset
Deep learning methods [ Cross Subject [ Cross View
Directed Graph Neural Networks [71] 89.9% 96.1%
Two stream adaptive GCN [72] 88.5% 95.1%
LSTM based RNN [34] 89.2% 95.0%
AGC-LSTM(Joints&Part) [73] 89.2% 95.0%
Riemannian methods Cross Subject Cross View
Lie Group [74] 50.1% 52.8%
Intrinsic SCDL [56] 73.89% 82.95%
Deep Riemannian methods Cross Subject Cross View
Deep learning on SO(3)™ [13] 61.37% 66.95%
Proposed (KShapeNet) 97.0% 98.5%
TABLE 2

Comparison of KShapeNet to state-of-the-art approaches on the NTU dataset.

NTUI120-RGB+D Dataset
Method Cross Subject Cross Setup
Tree Structure + CNN[75] 67.9% 62.8%
SkeleMotion[76] 67.7% 66.9%
Body Pose Evolution Map[77] 64.6% 66.9%
MS-G3D Net[78] 86.9% 88.4%
Proposed (KShapeNet) 90.6 % 86.7 %
TABLE 3

Comparison of KShapeNet to state-of-the-art approaches on the NTU120 dataset.

NTU-RGB+D Dataset
Protocol [ CS [ CV
Zero padding 81.3% 85.1%
Proposed (KShapeNet: | 97.0% 98.5%
Interpolation)
TABLE 4

Comparison of recognition accuracy, on the NTU dataset, when data
was pre-processed by zero padding and cubic spline interpolation.

Dataset NTU-RGB+D | NTUI120-RGB+D
Protocol CS [cCv CS [ Cset
Scale and rotation 89.6% | 96.6% | 82.1% | 82.5%
Scale and translation 75.2% | 74.3%| 70.6% | 63.1%
Rotation and translation 92.3%| 952% | 89.7% | 84.3%
Proposed (KShapeNet: | 97.0%| 98.5%| 90.6% | 86.7%
three variabilities re-
moved)

TABLE 5

Impact on recognition accuracy when accounting for only a subset of
nuisance variation when computing Kendall’s shape space coordinates
of the landmark configurations. Each row lists the two sources of
nuisance variability that were removed from the representation space.

approach uses the logarithmic map to project all landmark config-
uration sequences to a single tangent space defined at a common
reference configuration. In this variant, the distances between
landmark configuration shapes computed in the tangent space
are different than those computed directly on Kendall’s pre-shape
space (the only distances that are preserved after the projection
are those from the reference to each projected shape). The issue is
exacerbated when projecting landmark configuration shapes that
are far away from the reference configuration.

To push the capabilities of our model, we next tried to incor-
porate parallel transport (PT) (refer to Section 3) as an alternative
approach to map the landmark configuration sequences from the
pre-shape space to the tangent space. In this approach, we first

Dataset NTU-RGB+D | NTUI120-RGB+D
Protocol CS [cCv CS [ Cset
Rigid matrix 97.0% | 97.1% | 90.2% | 85.9%
Rigid angle 96.9% | 96.3% | 89.1% | 84.9%
Non-rigid matrix 96.8% | 96.9% | 90.6% | 84.3%
Proposed (KShapeNet: | 97.0%| 98.5%| 90.6%| 86.7%
Non-rigid angle)

TABLE 6

Comparison of recognition accuracy based on the four different
variants of the transformation layer.

Dataset NTU-RGB+D | NTU-RGB+D120
Protocol CS [cCv CS [ Cset
Matrix-based combination | 96.9% | 98.3% | 90.4% | 86.6%
Angle-based combination | 96.5%| 96.1%| 88.9% | 84.1%
Proposed (KShapeNet: | 97.0%| 98.5%| 90.6% | 86.7%
Non-rigid angle)

TABLE 7

Impact of the combination of rigid and non-rigid transformation layers.

computed the shooting vectors between each consecutive frame
within each sequence (using the logarithmic map). We then used
PT to map these shooting vectors to the tangent space at the
reference landmark configuration.

Table 8 presents the results of applying the one-shot logarith-
mic map and the PT approach, on the NTU dataset. Theoretically,
PT should perform better than the direct projection to a tangent
space at a reference landmark configuration since it remedies
the distortion issues mentioned earlier. Nevertheless, as shown
in Table 8, the simpler approach, logarithmic map, paradoxically
tends to outperform the PT approach based on overall accuracy. In
our implementation, the PT-based mapping to the tangent space
iterations were not performed along the whole geodesic path,
because this would have been computationally expensive. This in
part justifies the better performance of the simple logarithmic map
projection at a common reference point over the more complicated
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[ Dataset [ NTU-RGB+D |
Protocol CS CV
Parallel transport 96.8% 96.7%
Proposed (KShapeNet: Logarithmic map | 97.0% 98.5%
w.r.t. a reference frame)

TABLE 8
Comparison of recognition accuracy when projecting to tangent space
using parallel transport and the logarithmic map at a reference
landmark configuration.

PT approach.

Convergence of loss function: Lastly, we study the speed of
convergence in two scenarios: 1) using raw input data, i.e., without
translation and scale normalization, projection to the tangent space
or transformation layer, and 2) using input data mapped onto
the tangent space via Kendall’s shape space coordinates with a
non-rigid angle-based transformation layer, i.e., the KShapeNet
implementation. Figure 4 shows the (a) training and (b) test loss,
as a function of epochs, for scenario 1) (green) and scenario 2)
(red) for the NTU dataset under the CS protocol. Under both
scenarios, we observe convergence to a final error value. However,
convergence under scenario 2) (KShapeNet) is faster and to a
lower error value, resulting in higher recognition accuracy.

To summarize, at the end of the various experiments, we
decided to adopt the following configurations for KShapeNet:
projection on the tangent space using the logarithmic map with
respect to a reference frame and optimization over non-rigid
transformations using the angle-based variant (corresponding re-
sults are cited in Table 2 and Table 3). For precision, since
the first frame in all of the landmark configuration sequences
in the two datasets is neutral, i.e., they are very close to each
other on Kendall’s pre-shape space, we alternatively considered an
approximation of the reference frame with the first frame of each
sequence. In other words, we chose to map each sequence to the
tangent space defined at the landmark configuration corresponding
to its first frame, using the logarithmic map for this projection.

5.2 3D gait recognition

In this section, we use KShapeNet for the gait recognition task.
As described in Section 4, input gait landmark configuration
sequences are first represented as trajectories on C, after which
each landmark configuration X is mapped to a common tangent
space TXO(C) at a reference X, which is defined as a pre-
selected configuration representing the neutral pose. Then, the
transformation layer is built in this tangent space and followed
by a CONV Block and a one-layer LSTM network. As output, a
fully connected block yields the corresponding class. We train the
network for 50 epochs and use cross-entropy as the training loss.

5.2.1 Dataset and implementation settings

For gait recognition, we evaluate the KShapenet framework on the
CMU Mocap 3D gait dataset.

CMU Mocap is a database from the CMU Graphics Lab that
contains multiple human motion sequences such as playing, run-
ning and walking. Motions of 144 subjects were recorded with
an optical marker-based Vicon system. Subjects wore a black
jumpsuit with 41 markers taped to it. The tracking space of 30m?
was surrounded by 12 cameras with a sampling rate of 120Hz at
heights ranging from 2m to 4m. In our work, we used the CMU
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Mocap 3D gait dataset extracted and released by Balazia et al.
[79], [80], which includes 3843 gait cycles for 54 subjects.

Following the "Homogeneous” experimental setup described
in [80], we used 10-fold cross validation to assess the recognition
performance by dividing the evaluation set into one unlabeled fold
as a test set and nine other labeled folds as a gallery set.

5.2.2 Ablation Study

To confirm the efficacy of the proposed KShapeNet architecture
for 3D gait recognition, we conducted an ablation study on the
CMU Mocap dataset in the same fashion as described in Section
5.1.2. Table 9 reports the recognition results. The adopted evalu-
ation metric is average recognition accuracy across the different
folds. These results, being in line with the results obtained for
action recognition, consolidate our conclusion about the efficiency
of KShapeNet due to the convenient data representation of 3D
landmark configuration shapes in the linear tangent space, and the
optimization over local rotation transformations.

[ Dataset [ CMU Mocap |
Baseline 82.30%
Transformation layer only | 87.50%
Logarithmic map only 92.10%

Proposed (KShapeNet) 96.02%

TABLE 9
Ablation study results on the CMU Mocap dataset.

5.2.3 Comparison to state-of-the-art approaches

Next, we compare the performance of KShapenNet to state-of-the-
art approaches on the CMU Mocap dataset. Table 10 reports these
results. Again, KShapeNet consistently outperforms all of the
competing deep learning-based architectures for gait recognition.
Indeed, it outperforms the top competitor [§1] by a small margin
(96.02% vs. 95.97%).

5.2.4 Additional studies

As in the case of action recognition, we performed similar interme-
diate experiments using the CMU Mocap dataset for gait recogni-
tion. Here, we only focus on the comparison of the transformation
layer variants and the comparison of the different methods of
projection to the tangent space. Table 11 summarizes the results
of these studies. The two columns in Table 11 correspond to the
two approaches that can be used to map sequences to a tangent
space, as discussed in Section 5.1.4: using the logarithmic map to
a tangent space at a reference configuration and using PT. We can
see that projection via the logarithmic map to a common reference
frame outperforms projection via PT. Each of the four rows in
Table 11 correspond to the four different transformation layer
variants. We observe that the optimization over rigid transforma-
tions and the optimization over non-rigid transformations behave
slightly differently compared to the action recognition applica-
tion, with regards to the two different variants: rotation matrix-
based and angle-based. The angle-based variant still performs
better for non-rigid transformations than rigid ones. However, the
matrix-based variant yields lower accuracy for optimization over
rigid transformations. Similarly to action recognition, the non-
rigid angle-based transformation layer outperforms the three other
transformation variants.

As a final setting, we adopt the same configuration of
KShapeNet: projection on the tangent space using the logarithmic
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Using raw data
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Fig. 4. lllustration of the (a) training and (b) test loss, as a function of epochs, for the NTU dataset under the CS protocol. Green: Baseline model
for raw input data without projection to tangent space or transformation layers. Red: KShapeNet with non-rigid angle-based transformation layer.

[ Method Year [ Accuracy |
Kwolek et al. [82] 2014 90.99%
Andersson et al. [83] 2015 77.87%
Balazia et al. [79] (PCA+LDA) 2016 83.14%
Balazia et al. [79] (MMC) 2016 91.02%
Hosni et al. [81] 2018 92.23%
Hosni et al. [81] 2020 95.97%

[ Proposed (KShapeNet) 2021 [ 96.02% |

TABLE 10

Comparison of recognition performance on the CMU Mocap gait
dataset with respect to state-of-the-art.

Logarithmic map w.r.t. a | Parallel transport
reference frame
Rigid matrix 89.34% 72.82%
Rigid angle 91.36% 73.63%
Non-rigid matrix | 90.23% 72.45%
Non-rigid angle 96.02 % 77.56%
TABLE 11

Comparison of recognition accuracy based on different transformation

layer variants and methods of projection to the tangent space on the
CMU Mocap dataset.

apex frames). Each video shows a facial shift from the neutral
expression to a targeted peak expression. The 118 subjects were
divided into ten groups by ID in ascending order. Nine subsets
were used for training the network, and the remaining subset was
used for validation. This process is the same as the 10-fold cross
validation protocol in [85].

Oulu-CASIA [86] is a dataset that includes 480 image sequences
performed by 80 subjects. They are labeled with one of the six
basic emotions (the same as in CK+, except contempt). Each
sequence begins with a neutral expression and ends with the
expression apex. The imaging hardware worked at the rate of 25
frames per second and the image resolution was 320240 pixels.

5.3.2 Ablation study

To confirm the efficacy of the proposed KShapeNet architecture
for 2D facial expression recognition, we conducted an ablation
study on the CK+ and Oulu-CASIA datasets in the same fashion
as described in Section 5.1.2. Table 12 reports the recognition
results. The conclusions here are very similar to the previous two
ablation studies that were conducted in the context of activity and
gait recognition.

map with respect to a reference frame and optimization over non-
rigid transformations using the angle-based variant.

5.3 2D facial expression recognition

In this section, we use KShapeNet for the facial expression
recognition task based on 2D landmark configurations. We use
50 epochs to train the network as in the previous section.

5.3.1 Datasets and implementation settings

For the facial expression recognition task, we evaluate the
KShapeNet framework on two datasets: CK+ and Oulu-CASIA.
As the first frame of all sequences in the two datasets is neutral,
the first frame is considered as an approximation of the common
reference frame.

Cohn-Kanade Extended (CK+) [84] is a dataset consisting of
327 video sequences of facial expressions performed by 118
subjects with seven emotion labels: anger, contempt, disgust, fear,
happiness, sadness and surprise. Each sequence contains the two
first temporal phases of the expression, i.e., neutral and onset (with

[ Dataset [ CK+ [ Oulu-CASIA |
Baseline 83.64% 74.15%
Transformation layer only 87.58% 76.04%
Logarithmic map only 93.84% 79.36%
Proposed (KShapeNet) 96.91% 82.70%

TABLE 12

Ablation study results on the CK+ and Oulu-CASIA datasets.

5.3.3 Comparison to state-of-the-art approaches

We compare the recognition performance of the KShapeNet ar-
chitecture to state-of-the-art approaches for the facial expression
recognition task on the two datasets, CK+ and Oulu-CASIA, in
Table 13. While it does not yield the best performance on either
of the two datasets, the KShapeNet framework provides very
competitive results.

5.3.4 Additional studies

As for the action recognition and gait recognition applications, we
report results of intermediate experiments for the facial expression
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Method CK+ Oulu-CASIA
(G) DTGN [57] 92.35% 74.17%
(A+G) DTAGN [57] 97.25% 81.46%
(R) Gram matrix trajectories [59] 96.87 % 83.13%
(R) Extrinsic SCDL (SVM) [56] 95.62% 77.06%
(R) Extrinsic SCDL (Bi-LSTM) [56] | 95.73% 73.09%
[ Proposed (KShapeNet) [96.91% [ 82.70% |
TABLE 13

Comparison of KShapeNet to state-of-the-art approaches on the CK+
and Oulu-CASIA datasets. (A) Appearance-based approach. (G):
Geometric approach. (R): Riemannian approach.

Dataset CK+ Oulu-CASIA

Rigid matrix 88.98% 78.84%

Rigid angle 89.01% 79.15%

Non-rigid matrix | 91.40% 80.78%

Non-Rigid angle 96.91% 82.70%
TABLE 14

Comparison of recognition accuracy based on different transformation
layer variants for the CK+ and Oulu-CASIA datasets.

recognition task based on the CK+ and Oulu-CASIA datasets.
Here, we focus only on comparing the four different transforma-
tion layer variants and use the logarithmic map for projection to a
tangent space at the reference configuration. Results for the CK+
and Oulu-CASIA datasets are summarized in Table 14.

We observe that the optimization over rigid transformations
and the optimization over non-rigid transformations behave the
same way as for gait recognition, but slightly differently compared
to action recognition, with regards to the two different variants:
rotation matrix-based and angle-based. The angle-based variant
still performs better for non-rigid transformations than rigid ones.
However, the matrix-based variant yields lower results for the op-
timization over rigid transformations. Similarly to action recogni-
tion and gait recognition, the non-rigid angle-based transformation
layer outperforms the three other transformation variants.

As a final setting, we adopt the same configuration for
KShapeNet: projection on the tangent space using the logarithmic
map with respect to a reference frame and optimization over non-
rigid transformations using the angle-based variant.

6 CONCLUSION

In this paper, we proposed a geometric deep architecture,
KShapeNet, for human motion analysis based on modeling land-
mark sequences on Kendall’s shape space. As part of the frame-
work, we introduced a novel transformation layer to increase
global or local dissimilarities between different types of motion.
In the transformation layer, we optimize over rigid or non-rigid
transformations. In addition, we explored the use of two optimiza-
tion variants: 1) rotation matrix-based, and 2) angle-based. We
showed that the matrix-based variant yields better performance
when optimizing over rigid transformations, while the second
yields better performance when optimizing over non-rigid trans-
formations. Extensive experiments on challenging datasets, two
for action recognition, one for gait recognition and two for facial
expression recognition, demonstrate that the proposed framework
performs very well compared to state-of-the-art approaches.

As future work, we will use the landmark shape sequence
representation and optimization methods proposed in this paper to
develop an unsupervised system for motion analysis, which will
enable us to move beyond tasks which require labeled data.
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