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ABSTRACT. We study rational surfaces on very general Fano hypersur-
faces in P", with an eye toward unirationality. We prove that given any
fixed family of rational surfaces, a very general hypersurface of degree d
sufficiently close to n and n sufficiently large will admit no maps from
surfaces in that family. In particular, this shows that for such hyper-
surfaces, any rational curve in the space of rational curves must meet
the boundary. We also prove that for any fixed ratio «, a very general
hypersurface in P" of degree d sufficiently close to n will admit no gener-
ically finite maps from a surface satisfying H> > oHK, where H is the
pullback of the hyperplane class from P and K is the canonical bundle
on the surface.

1. INTRODUCTION

There are many competing notions for what it means for a variety to be
“like” projective space. Three of the most common are: rational, mean-
ing birational to P™; unirational, meaning admitting a dominant morphism
from P"; and rationally connected, meaning for two general points, there
exists a rational curve through both. Celebrated results of Griffiths-Harris,
Artin-Mumford, and Iskovskikh-Manin [CG, AM, IM] show that there are
unirational varieties that are not rational. However, it remains an open
question whether rationally connected varieties are always unirational.

Question 1.1. Does there exist a variety that is rationally connected but
not unirational?

Due to the classification of surfaces, any counterexample would need to
have dimension at least three. It is generally expected that the answer
to Question 1.1 is yes, and an often-discussed source of examples is Fano
hypersurfaces of large degree. A smooth hypersurface of degree d in P" is
Fano if d < n, and every Fano variety is rationally connected. It is known
that smooth hypersurfaces of degree d in P™ are unirational when 2% < n
(see [BR2] and [HMP]), but it is expected that very general hypersurfaces
of large degree, specifically those with degree approximately n in P”, are
not unirational. Schreieder [Sch] has recently proved that the degree of a
unirational parametrization of a Fano hypersurface of large degree must be
extremely large by showing that it should be divisible by every integer m
such that m < d —logyn.
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Since any unirational variety will be swept out by rational surfaces, we
can answer Question 1.1 negatively by finding a rationally connected variety
that is not swept out by rational surfaces, as proposed by Kollar. To that
end, there has been a lot of past work studying rational surfaces on Fano
hypersurfaces. Testa [Te] generalizes work of Beheshti and Starr [BS] and
proves that a smooth complete intersection of index 1 is not swept out by
rational surfaces S with wg nef. Observe that a rational curve in the space
of rational curves on X corresponds to a rational surface in X. Beheshti
[Be] proves that spaces of rational curves of low degree are not uniruled,
and in [BR1] the authors generalize that work by showing that there are no
rational surfaces in X ruled by low-degree rational curves, the generic one
of which is smooth.

In this paper, we prove several results restricting the types of rational
surfaces that lie in a general hypersurface. Roughly speaking, we show that
given a fixed surface or family of surfaces, a general Fano hypersurface of
degree approximately n in P™ admits no generically finite maps from these
surfaces. More precisely, we prove the following.

Theorem 1.2. Let X be a hypersurface of degree d in P¢. Then:

(1) (cf Corollary 3.8) If n > d > (2*\/5)(#4_2 and X is very general
with respect to some fixed k-dimensional family of rational surfaces
S — B, then X admits no generically finite maps from a fiber of
S — B. In particular, X contains no Hirzebruch surfaces, so there
1s no complete rational curve in the locus parametrizing embedded
smooth rational curves in the Kontsevich space Mo (X, e).

(2) (¢f Corollary 3.6) If « is a fixed positive number and X\ < 1 is fized
with A > %(2 —V/2), then for sufficiently large n, a very general
hypersurface of degree d > n\ admits no generically finite morphisms
from a rational surface S with H-K < aH?, where H is the pullback
of the hyperplane class to S and K is the canonical class on S.

For particular types of surfaces, we prove stronger restrictions. See Corol-
lary 2.9 for a statement about del Pezzo surfaces and Corollary 2.11 for a
statement about blowups of P? at general points.

The basic idea of the proofs is to study the normal sheaf Ny, x of a mor-
phism f from a rational surface to X and understand the Euler characteristic
of its twists. A direct calculation shows that N, x (kH) must have negative
Fuler characteristic for small positive integers k. However, a careful analy-
sis of globally generated sheaves on rational surfaces shows that in fact this
Euler characteristic must be positive. In Section 2, we lay out the core of
this technique, working with twists of Ny, y. This allows us to find d and
n so that a very general degree d hypersurface X in P" will not be swept
out by rational surfaces with H? larger than some fixed multiple of HK. In
Section 3, we reduce mod p and apply a similar argument to the restricted
tangent bundle f*T’x. We show how techniques from [CR] then imply the
statement of Theorem 1.2.
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2. FAMILIES OF RATIONAL SURFACES

By a family of smooth rational surfaces we mean a smooth and projective
morphism g : S — B such that B is a quasi-projective variety and the fibers
of ¢ are rational surfaces. Let X be a smooth hypersurface of degree d < n
in P*. Let S be a fiber of ¢ and f : § — X a generically finite morphism.
We denote by Ny the normal sheaf of f, that is the cokernel of the injective
map Ts — f*T'x. To emphasize the range, we sometimes write Ny x instead
of N fe

We start with a positivity result about the normal sheaf of f when X is
a very general hypersurfaces. The result and technique come from work of
Voisin [Vo96] and Pacienza [Pa], although we give a proof for completeness.

Proposition 2.1. Let X — H%(Opn(d)) be the universal hypersurface on
P" and let ¢ : S — B be a family of rational surfaces with morphisms
¢:8— X and g : B — H°(Opn(d)) commuting with the natural projection
maps. Assume that ¢ is dominant and its restriction f to a general fiber
S =&y of q is generically finite. Then Ny is generically globally generated
and N¢(H) is globally generated, where H is the pullback of the hyperplane
section under f.

Proof. Let f : S — X be the restriction of ¢ to a general fiber of q. The fact
that Ny is generically globally generated follows from basic deformation
theory and the fact that X is swept out by images of surfaces from this
family. Indeed, let Bx = g '([X]) and ¢x : Sx — X the restriction of
¢ to the fiber over Bx. Then ¢x is dominant by our assumption. So
by generic smoothness, for a general point (b, s) of Sx, the induced map on
Zariski tangent spaces T, (.s) — Tx.o = f*Tx|s is surjective. Therefore the
map Ts, s — Nyls is surjective as well. There is a map from Ts, ) to
H°(Ny) (see for example [Se, Theorem 3.4.8]), and the map Ts, 5y = Nyl
factors through the map Ts, s — H (N +), so the desired result follows.

For the second claim, we only use the assumption that for a general
hypersurface X, there exists a generically finite morphism from a fiber of ¢
to X.

We can take an étale base change U — H%(Opn(d)) to obtain a fam-
ily Xy — U of hypersurfaces with a family )V — U of rational surfaces
parametrized by ¢ mapping to fibers of Xy — U via a map ¢ : Y — Ay
such that Y admits a natural PGL,4; action. Denote by 7 the projection
map from Xy to P" and let 7/ = wo1). The induced map on tangent bundles
Ty — 7"*Tpn is surjective because of the PGL, invariance of )). We have
the following commutative diagram:
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0 0

T I

'* Tpn ;> TF,*TPn

! |

0 —— Ty —— P'Ty, —— Npay —— 0

I 1 =1

0 —— Typn — $*Taypn —— N —— 0

1 1

0 0

If w is a general point of U and f : Y, — X, is the restriction of ¥ to the fiber
over u, then Ny x|y, = Ny x,, so to show Ny x, (H) is globally generated,
it is enough to show T, jpn @ 7*Opn (1) is globally generated. Consider the
following diagram

0 0
T T
0d) —=— O(d)

I T

0 —— 0®Sy —— I 0®Sy —— 7Ipn —— 0

I 1 =1

0 —— Tx,pn — T, — a1 pn —— 0
0 0

Using the eight lemma and looking at the first column, it follows that
T, /pn is the kernel of the map O ® Sy — 7*O(d). Such bundles are called
Lazarsfeld-Mukai bundles, and so we may say T, jpn = My, the pullback of
the Lazarsfeld-Mukai bundle of Opn(d).

We can similarly define M; to be the kernel of the natural map O ® .57 —
7*O(1). The bundle M, admits a surjection from a direct sum of copies of
M, with maps given by multiplication by a general degree d — 1 polynomial.
It follows that Nj, x;, admits a surjection from a direct sum of copies of M.
Taking the second wedge power of the sequence

0—-M - 0®5—=0(1)—=0

we see that Mj(1) is globally generated, and hence Mjy(1) is too, so the
global generation result follows.
O
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We will use the above proposition to give a lower bound on the Euler
characteristic of the twists of the normal sheaf of f. To do so, we will need
the following result.

Proposition 2.2. Let S be a rational surface over an algebraically closed
field and 7 : S — P! a dominant morphism whose general fibers are isomor-
phic to PL. Let E be a coherent sheaf of rank m on S which is generically
globally generated. Assume A and D are divisors on S such that A is nef
and big, and

(a) E(A) is globally generated,
(b) deg D|c > deg E|¢ for a general fiber C of w,
(c) H'(0s(D)) =0.

Then x(E(A+ D)) > m x(Os(A + D)).

Proof. Since E is generically globally generated, choosing m general sections
of F, we get an injective map O¢ — E. The cokernel of this map, denoted
by T, is a torsion sheaf. Since E(A) is globally generated, there is a surjective
map O — E(A) for some [. This in turn gives a surjective map O — T(A)
whose kernel we denote by M.

0

0 0.

We claim HY(T(A + D)) = 0. By our assumption H'(Og(D)) = 0, so
applying the long exact sequence of cohomology to the first sequence twisted
with Og(D), the claim follows if we show H?(M(D))) = 0. Applying the
Leray spectral sequence corresponding to the map p, it is enough to show
that H'(M(D)|c) = 0 where C is a general fiber of 7. Since C is a general
fiber, the first short exact sequence above remains exacts after restricting
to C, so M|¢ is torsion free. If M|c = O(a1) ®---® O(q;), then since M|c
injects into OL, we have a; < 0 for each i. Also,

z:aZ = —deg(T(A))|c = —degT|c = —deg E|c



6 R. BEHESHTI AND E. RIEDL

since T'|¢ is torsion. If a; < —1 — D - C for some i, then

0> Zaj =—degFE|c —a; >—degE|c+ D -C+1,
J#i
contradicting assumption (b). So a; > —1 — D - C for every i and therefore
H'(M(D)|c) = 0.
This shows that H(T(A+ D)) = 0, so x(T(A+ D)) > 0, and the desired
result follows from the short exact sequence

0—0s(A+D)" - E(A+D)—=T(A+D)—0.

Corollary 2.3. With the same assumptions as in Proposition 2.1,
(n+2—d)2H2+(n+2—d)H-K+
2

Proof. By Proposition 2.1, for a general f : § — X, Ny is generically
globally generated and Ny (H) is globally generated. We apply Proposition
22to E= Ny, D= (n+1—-d)H+ K, and A = H. After possibly blowing
up S at a point, we may assume there is a morphism 7 : S — P! whose
general fibers are smooth rational curves. Condition (a) of Proposition 2.2 is
satisfied by our assumption. Since deg N¢|c = (n+1—d)H-C—2 for a general
fiber C of 7, condition (b) is satisfied. By the Kawamata-Viehweg vanishing
theorem, condition (c) is also satisfied, so x(Nf((n +2 — d)H + K)) >
(n—3) x(Os(n+2—d)H + K). Applying the Riemann-Roch theorem we
get the desired inequality.

X(Np((n+2=d)H + K)) > (n=3)( 1).

O

In the next lemma, we calculate the Fuler characteristics of the normal
sheaf of f : S — X twisted with tH + K directly.

Lemma 2.4. Let X be a smooth hypersurface of degree d in P", and let
f: 8 —= X be a morphism from a smooth rational surface S. If H denotes
the pull-back of the hyperplane section, K the canonical divisor of S, and
Ny the normal sheaf of f, then we have

X(N¢(tH + K)) = %((n — 32 +2t(n+1—d)+n+1—d*) H?

1
+ ot =) +n+1—d) H K

—K?>4+n+09.

Proof. This is a straightforward computation using the pullback of the Euler
sequence on P" and twisting it with tH + K:

0— Og(tH + K) = O((t + 1)H + K)"™ — f*Tpn(tH + K) — 0
and the short exact sequence

0= f*Tx(tH + K) = f*Tpn(tH + K) = O((d + t)H + K) — 0.
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O
Theorem 2.5. With the same assumptions as in Proposition 2.1, we have
(2.1) (2(n+1—d)(n+2—d)+n+1—d?) H*+(3n—3d+5) H-K—2K?+24 >0
where K 1is the canonical divisor on S.

Proof. This follows from comparing Corollary 2.3 with Lemma 2.4 when
t=n+2-d. O

Corollary 2.6. Let a be a fized positive number and X\ be a number satisfying
1> X>2—+/2. Then for sufficiently large n, a very general hypersurface
of degree d > An is not swept out by images of generically finite morphisms
from a rational surface S with H - K < aH? on S.

To prove the corollary, we use Reider’s theorem [Re].

Theorem 2.7. (Reider) Let X be a smooth projective surface and L a nef
divisor on X with L? > 5. If |L + Kx| has a base-point x € X, then there
is an effective divisor D containing x satisfying

L-D=0, D?>=-1

or
L-D=1, D?=0.

Proof of Corollary 2.6. Suppose to the contrary that a very general hyper-
surface X is covered by images of such morphisms. Blowing down S, we can
further assume f : S — X does not contract any (—1)-curve. Applying The-
orem 2.5 to the hypotheses given we conclude that there is a generically finite
morphism f : S — X which does not contract any (—1)-curve and satisfies
the inequality of Theorem 2.5. Since H is nef, applying Reider’s theorem
to 3H we see that 3H + K is base-point free. Therefore (3H + K)? > 0, so
—2K? < 18H? +12H - K. Since d > \b and A > 2 — /2, the coefficient of
H? in 2.1 becomes arbitrarily negative compared to the coefficient of H - K,
so we get a contradiction. O

Remark 2.8. Unfortunately, there exist examples of rational surfaces con-
taining divisors H with H? small relative to H - K.

Take a general pencil of degree b curves in P2, and let S be the blowup of
P? along the b? base points of the pencil. Let H = (b+1)L—Y", E;, where the
sum ranges over all of the exceptional divisors. Then H is base-point free and
big. Moreover, H? = (b+1)2—b? = 2b+1, while H-K = —3b+b? = b(b—3).
Thus, H - K grows faster than H? as b becomes large, and so we cannot hope
to obtain a linear bound for H - K in terms of H?.

For another example, consider Example 2 from [CKLLMMT]. The au-
thors describe a blowup S of P? at 19 points together with a sequence of big
and nef divisors D,, such that Kg - D,, goes to infinity while D2 = 2 for all
n.
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Corollary 2.9. If X is a very general hypersurface in P¢ of degree d >

(2 — V2)n + 3, then the images of generically finite morphisms from del
Pezzo surfaces to X cannot sweep out X.

We remark that 2 — /2 ~ .59, so the result holds for d > 3?” + 3.

Proof. Suppose to the contrary that X is covered by images of generically
finite morphisms from del Pezzo surfaces. Then by Theorem 2.5 there exist
a del Pezzo surface S and a generically finite morphism f : .S — X for which
inequality (2.1) holds. We show this is not possible. Let B be the coefficient
of H? in inequality (2.1). We first show B < —5n — 4. To see this note that
since d > (2—v2)n+3,n—d< (vV2—1)n—3, s0

B<2((V2-1n—-2)(V2—1)n—1)+n+1—((2—V2)n+3)? < —5n—4.

Since S is a del Pezzo surface, —K is effective, so H-K < 0, and K2 > 0. So
the left hand side of inequality (2.1) is at most —bn—4—(3n—3d+5)—2+24
which is negative since d < n and n > 3. This gives a contradiction. O

Next we apply Theorem 2.5 to the blow-up of P? in general points. Recall
the following conjecture of Harbourne and Hirschowitz ([Har| and [Hi)).

Conjecture 2.10. (Harbourne-Hirschowitz) Let S be the blow-up of P? at
k general points and L a line bundle on S. Then h'(L) # 0 if and only if
there is a (—1)-curve E in S such that

deg(L|g) < —2.

It is known that the Harbourne-Hirschowitz conjecture holds for m < 9
[Ci, Theorem 5.1].

Corollary 2.11. Suppose d > (2—\/§)n+4, n >4, and X is a very general
hypersurface of degree d in P¢. If the Harbourne-Hirschowitz Conjecture
holds true, then the images of generically finite morphisms from blow-ups of
P2 in general points do not cover X.

Proof. Suppose to the contrary that a very general hypersurface X of degree
d is covered by the images of generically finite morphisms from blow-ups of
P? in general points. Then by Theorem 2.5, there is a rational surface S
obtained by blowing up P? in general points and a generically finite mor-
phism f : S — X such that inequality (2.1) is satisfied. We can assume
f does not contract any (—1)-curve since otherwise we can consider the in-
duced morphism from the blow-down of S to X instead. By the Harbourne-
Hirschowitz conjecture, H'(S,Os(H)) = 0, so by the Riemann-Roch theo-
rem, H(H — K) = 2x(H) — 2 > —2. Therefore H - K < H? 4 2.

By [RY, Theorem 2.3] if n < %, then there is no rational curve on
the space of lines in X. Our assumption on the degree implies this inequality
is satisfied, so we can assume the image of S under f is not covered by a
pencil of lines. In particular, the image of S has degree at least 2 and so
H? > 2. Since the image of S is not covered by lines, and since H is big
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and nef, by Reider’s theorem [Re], 2H + K is base-point free. Therefore
(2H+K)? > 0,s0 —2K? < 8H? +8H - K < 16H? +16. So if we denote the
left hand side of inequality 2.1 by A, then we have

A<2m+1-d)(n+2—d)+n+1—d*+ 3n—3d+5)+16) H* +2(3n — 3d + 5) + 40.

Denote the coefficient of H? in the above inequality by B. We claim B <
—(3n—3d+5)—20. This is because by our assumption n—d < (v2—1)n—4,
o)

B+ (3n—3d+5)+20<2((vV2—=1)n—3)((V2—1)n—2)+n+1—((2—V2)n +4)>
+6((V2—1)n —4) +46
= (V2 —11)n+19
<0,

Where the last line follows from the assumption n > 4. Since H? > 2, we
get A < 0, a contradiction.
O

3. MORPHISMS FROM A FIXED RATIONAL SURFACE

Here we consider maps from a fixed rational surface S. Let S be a smooth
rational surface, and let Hom(S, X) denote the open locus in Hom(S, X)
parametrizing generically finite morphisms from S to X. We say that S
strongly sweeps out a variety X if the natural map HomO(S, X)xS = XxS
given by (f,p) — (f(p),p) is dominant. In other words, X is strongly swept
out by S if for any pair of a general points p € S and ¢ € X, there is a
generically finite morphism S — X sending p to q.

Proposition 3.1. Suppose that X is a very general hypersurface of degree
d in P¢ and X is strongly swept out by S. Then there is f € Hom?(S, X)
such that f*Tx is generically globally generated and f*Tx(H) is globally
generated.

Proof. Consider the map Hom(S, X) x S — X x S. Then for any (f,p) €
Hom?(S, X) x S we have the following diagram.

THom0(8,X) xS, (p,f) — Txxs,(f(p)p)
m | v |
i 8
Thom0($,x),f = H(f*Tx) —— Tx,1(p)

Let (p, f) be a general point of an irreducible component of Hom®(S, X) x
S which dominates X x S. Then if U,..q is the largest reduced subscheme
of Hom" (5, X), generic smoothness shows that /g, o) 18 surjective, and
hence 7y o «v is surjective. It follows that 3 is surjec‘Eieve, and hence, f*Tx is

generically globally generated.
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To prove f*T'x(H) is globally generated, we repeat the argument of
Proposition 2.1 with X replaced by X x S. We can find a dominant mor-
phism U — H%(Opn(d)) and a morphism ¢ : U x S — Xy x S such that if
7' : U x S — P" is the natural morphism, then the induced map on tangent
spaces Tyxg — m*Tpnyg is surjective. The same argument as in Propo-
sition 2.1 shows that T, «s/pnxs(H) is globally generated, and therefore
Ny.x,xs(H) is globally generated. if f : S — X is the restriction of v to
{u} x S for a general point u of U, then Ny x, xsluxs = Nfxxs = f*Tx,
the desired result follows. (]

Proposition 3.2. Suppose S is a fized rational surface. If d > (2—+/2)n+2
and X is a very general hypersurface of degree d in P, then X is not strongly
swept out by S.

Proof. Assume to the contrary that X is strongly swept out by S. Then
by Proposition 3.1, there is f : S — X such that f*Tx is generically glob-
ally generated and f*Tx(H) is globally generated. Passing to finite char-
acteristic, we can assume there is a sufficiently large prime number p, a
rational surface S, a smooth hypersurface X,, of degree d, and a morphism
fp + Sp — X, all defined over an algebraically closed field of characteristic p
such that f;Tx, is generically globally generated and f;Tx,(H) is globally
generated.

For a coherent sheaf F' on S, let F®) denote the pullback of F under
the absolute Frobenius morphism of X (see [Ha, Proposition 6.1].) Since
f>Tx,(H) is globally generated, (f;T Xp)(p) (pH) is also globally generated.
Since f; T, is generically globally generated, ( f;TXp)(p) will be as well. Let
K denote the canonical divisor of Sp,. A similar computation as in Lemma
2.4 shows that
(3.1)

X(f;T)(fp)(tpH+K)) = %(pQ(n(t+1)2+2t+1—(d—|—t)2)H2—|—p(nt+n+1—d—t)HK)+(n—1).

We can now apply Proposition 2.2 with £ = f;T)(?p), A=pH,and D =
p(n +2 —d)H + K to get a contradiction. Since S is a rational surface,
by [Mu, Theorem 3], H*(D + pH) = 0, so condition (c) of Proposition
2.2 is satisfied. After possibly blowing up S, at a point, we can assume
there is a morphism S, — P! whose general fibers are smooth rational
curves. If C' denotes a general fiber of this morphism, then deg(f,7T )(fp) o =
p(n+1—d)H-C <p(n+2—d)H -C — 2, so condition (b) is also satisfied.
Therefore,
XHETE(n+3 = d)pH + K)) > (n— 1)x(Os,((n+3 — d)pH + K))

- %(pz(n ) (n+3—d)’H? +p(n—1)(n+3—d)HEK) + (n—1).

Comparing the coefficients of H? in this equation and Equation (3.1) when
t = n+ 3 — d, and letting p increase, we see if the above inequality holds
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then we must have
nt+1)2+2t+1—(d+t)> > (n—1)(n+3—d)>
Letting t = n 4+ 3 — d, this gives
n+n+3-d)?+2n+3-d)(n+1)+1—-(n+3)2>0.

But since we assume d > (2 —v/2)n + 2, we have n —d < (v/2 — 1)n — 2, so
the left hand side of the above inequality is smaller than

n+((V2-1)n+1)24+2((vV2—1)n+1) (n+1)+1—(n+3)* = —5—(6—4v2)n < 0,
a contradiction. O

We now implement a technique from [CR] to show that a very general X
admits no generically finite morphisms from S. We recall some terminology.
Let U, q be the space of pairs (p, X) where X is a degree d hypersurface in
P" and p € X C P". Given a subset B, C U, 4, we let the tower of induced
varieties of B, be defined inductively by Bji1 C Ujy1,4 is the set of pairs
(p, X) such that some linear section of the pair (p, X) is in B, j > r.

In our setting, we are interested in proving that B, has high codimension
in Uy, q, from which it will follow that a very general hypersurface will contain
no points of B,. The tool we use is the following.

Theorem 3.3 (Theorem 4.8 from [CR]). Let B, C U,q4 be an integral,
PGL,41-invariant subvariety, and let By,n > r, be the tower of induced
subvarieties of B.. Then if By, is not dense in Uy, 4 for some m > r, either:
(1) codim B,, C Uy, 4 is at least 2(m —n) + 1 for every r <n <m, or
(2) There is some By C Uy q such that By, is in the closure of the tower
of induced subvarieties of By, or
(3) Bp,a is the space of pairs (p, X) with p contained in a line ¢ lying in
X.

We wish to show that in our setting, we need only consider case (1).

Corollary 3.4. Let B, C U, q be an integral, PG L, 1-invariant subvariety,
and let By, 4 be the tower of induced subvarieties of B, for n > r. Then if
B, is not dense in Uy, q for some m > d+1 > r, codim B,, C U, q is at least
2(m —mn) + 1.

Proof. First observe that for m > d 4 1, the space of lines in any degree
d hypersurface in P" will sweep out X, so case (3) of Theorem 3.3 cannot
occur. We next show that case (2) cannot occur. Let By C U4 and let
B, C Uy be the tower of induced varieties. It suffices to show By is
dense in Ug41,4. If a general element of By has at least 2 distinct points,
it follows from [CR| Proposition 4.10(1) that B, is dense in U, 4, which
contradicts the hypothesis. Thus, it remains to consider the cases where
B consists of d-fold points, and show that the tower of induced varieties is
dense in U, 4. To see this, let (p, V(F')) € U, q4 be a general point. Expand
the equation of F' around p to get F' = I} + - - - Fy, where F; is the ¢th order
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part of F' near p. Then the space of lines in P meeting V(F') to order d
near p is V(F1,...,F;_1). This is nonempty for d < n — 1, so the result
follows.

U

Using this result, we can prove a series of results about non-existence of
rational surfaces in a very general hypersurface X, using our previous work.

Theorem 3.5. Let d,n and c be integers with d < n + c. If a very general
hypersurface of degree d in P%Jrc s not swept out by rational surfaces from a
certain class (e.g., images of generically finite morphisms from Hirzebruch
surfaces), then for a very general hypersurface X of degree d in P", surfaces
in this class sweep out a subvariety of X of codimension at least 2c+ 1. In
particular, if ¢ > "773, then X contains no surfaces in this class.

Proof. Let B, 4 be the locus in U, 4 swept out by surfaces in the given class,
and let B, 4 be the tower of induced varieties from B,, 4. Then by assumption,
we have that B,,;. 4 has codimension at least 1 in U, 4. 4. By Corollary 3.4,
it follows that B,, 4 has codimension at least 2c+1 in U, 4 and the first part
of the result follows. Since generically finite morphisms from a surface to
X must sweep out a subvariety of dimension at least 2, we see that X will
admit no such morphisms if 2c+1>n—1—1=n — 2. The second result
follows O

Corollary 3.6. Let a be a fized positive number and X < 1 another real
number with A > %(2 —V/2). Then for sufficiently large n, a very gen-
eral hypersurface of degree d > nA contains no images of generically finite
morphisms from a rational surface S with H - K < aH? on S.

Proof. This is a direct application of Theorem 3.5 to the results of Corollary
2.6, replacing A with % [l

Corollary 3.7. Let S be a rational surface and X C P{ a very general
hypersurface of degree > (2 —+/2)(n+ 1) +2. Then X is not covered by the
images of generically finite morphisms from S.

Proof. Observe that the result is immediate for d > n, so we may assume
d < n. Let p € S be a general point, and let B, 4 be the locus of images
of p under a generically finite morphism S — X. Let B, 114 be part of
the tower of induced varieties of B, 4. Then by Proposition 3.2, B,1 4 has
codimension at least 1 in U, 1 4. By Corollary 3.4, it follows that B, 4 has
codimension at least 3 in U, 4. Thus, the locus in X swept out by the images
of p under generically finite morphisms from S is codimension at least 3 in
X. It follows that the images of .S under generically finite morphisms sweep
out a subvariety of codimension at least 1, as required. O

Corollary 3.8. Let S — B be a family of rational surfaces of dimension

dim B = k and n and d be integers satisfying n > d > w + 2.
Then iof X C P¢ is a very general hypersurface of degree d, X admits no
generically finite morphisms from any surface in the fibers of S — B.
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Note that 3(2%&) < 1%, so the result holds for d > % + % + 3.

Proof. As we saw in the proof of Corollary 3.7, for any fixed surface S in
the fibers of S — B, we can construct B, 4, the tower of induced varieties
on the locus in U, 4 swept out by generically finite images from S. We
have already seen that B,, 4 has codimension at least 1 in U, 4 for some m
satisfying d > (2 — v/2)(m + 1) + 2. Thus, B,,_.4 will have codimension at
least 2¢ + 1 in Uy, q for r in this range. If we let B;md be the union of all
the By, q over all the different possible S, then B/ __, will have codimension
at least 2c+1—kinUp—cq. f 2¢+1 -k >m — c,’then we see that a very
general X of degree d in P™~¢ will admit no generically finite maps from the
fibers of S. Using m — ¢ = n and rearranging, we see that the result holds
as claimed. O

Corollary 3.9. If X is a very general hypersurface of degree d in P" and

n>d> w + 2, then X admits no generically finite maps from
Hirzebruch surfaces. In particular, any rational curve in the space of rational
curves on X has to meet the boundary.
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