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CrossMark
Abstract

Brownian coating thermal noise in detector test masses is limiting the sensitivity
of current gravitational-wave detectors on Earth. Therefore, accurate numerical
models can inform the ongoing effort to minimize Brownian coating thermal
noise in current and future gravitational-wave detectors. Such numerical mod-
els typically require significant computational resources and time, and often
involve closed-source commercial codes. In contrast, open-source codes give
complete visibility and control of the simulated physics, enable direct assess-
ment of the numerical accuracy, and support the reproducibility of results. In
this article, we use the open-source SpECTRE numerical relativity code and
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adopt a novel discontinuous Galerkin numerical method to model Brownian
coating thermal noise. We demonstrate that SpECTRE achieves significantly
higher accuracy than a previous approach at a fraction of the computational
cost. Furthermore, we numerically model Brownian coating thermal noise in
multiple sub-wavelength crystalline coating layers for the first time. Our new
numerical method has the potential to enable fast exploration of realistic mirror
configurations, and hence to guide the search for optimal mirror geometries,
beam shapes and coating materials for gravitational-wave detectors.

Supplementary material for this article is available online

Keywords: gravitational-wave detectors, brownian coating thermal noise,
numerical simulation, discontinuous Galerkin methods

(Some figures may appear in colour only in the online journal)
1. Introduction

Brownian coating thermal noise is the limiting noise source for current-generation, ground-
based gravitational-wave detectors in their most sensitive frequency bands. For instance, fol-
lowing the A+ upgrade anticipated for completion in the mid 2020s, the Laser Interferometer
Gravitational-Wave Observatory (LIGO) detector noise is dominated by Brownian coating
thermal noise at frequencies f ~ 100 Hz [1]. This noise arises from thermal fluctuations in the
reflective coatings of the detectors’ test masses [2].

Therefore, a reduction of the Brownian coating thermal noise directly increases a detector’s
sensitivity and thus its astronomical reach. Theoretical models of Brownian coating thermal
noise are important for working toward this goal. Thermal noise modeling typically follow the
approach pioneered by Levin [3], which computes the thermal noise in terms of an auxiliary
elasticity calculation using the fluctuation-dissipation theorem [4—6]. While an approximate
analytic solution is well known in the limit where coating thickness and edge effects can be
neglected, numerical calculations of thermal noise are necessary to study effects that arise from
the finite test-mass size, the finite coating thickness, and from crystalline materials.

In this article we calculate Brownian coating thermal noise by numerically solving the aux-
iliary linear elasticity problem. Such numerical simulations typically adopt a conventional
finite-element approach, as some of the authors did in [7]. These methods are widely used, but
achieving high accuracy with them can require significant computational resources and time,
because of their relatively slow rates of convergence.

For the first time to our knowledge, we apply a discontinuous Galerkin (DG) method to
model Brownian coating thermal noise. DG methods are well suited to this problem because
they can retain high-order convergence in the presence of discontinuities, which arise at the
interfaces between the mirror substrate and its reflective coatings. In this article, we extend
the DG method for elliptic equations presented in [8] to problems with discontinuous material
properties. With this extension, our method converges exponentially with resolution, allowing
us to solve coating thermal noise problems numerically at high accuracy using considerably
less computational resources and time than conventional finite-element methods.

We implement the numerical method and the elastostatic equations in SpECTRE [9], a new
open-source numerical relativity code. While SpECTRE’s primary aim is to model merging
black holes and neutron stars, the elliptic solver needed to construct initial data for such simula-
tions is also very well positioned to solve the DG-discretized elastostatics equations for thermal
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noise modeling [8, 10]. As an open-source code, our approach has advantages compared to
the closed-source and commercial solutions that are often adopted: we can directly control
the physics incorporated in the calculation, we can assess the accuracy and convergence rate
of our simulations in a straightforward way, and our results are reproducible with publicly
available software. Our code also benefits from SpECTRE’s task-based parallelism approach,
implemented using the Charm++- [11] library, enabling our code to efficiently scale to large
numbers of compute cores [12].

This article is organized as follows. Section 2 summarizes the elastic problem to be solved
and presents the DG numerical method. Section 3 presents our results using this method to
model thermal noise in cylindrical mirrors with thin coatings. We discuss our results and future
work in section 4.

2. Methods

In this section, we formulate the auxiliary elasticity problem based on [3, 7], discretize it with
the DG scheme developed in [8], and outline the numerical method we employ to solve the
discretized problem with the SpECTRE code [10]. Section 2.2.3 details a novel extension of
this method to handle discontinuous material properties at layer interfaces.

2.1. Auxiliary elasticity problem

We consider a gravitational-wave detector that measures the position of a test mass with a laser
beam with a Gaussian intensity profile
[y
p(r)=—=e /n, (1
Ty
Here, r is the cylindrical radial coordinate from the center of the beam with width rq. The
intensity profile is normalized so that

27 fe’e)
/ dqf)/ drrp(r)=1. 2)
0 0

The laser beam effectively measures a weighted average g of the displacement Z of the test
mass surface,

2 R
a(1) = /0 a6 /0 drrp(r, $)Z(r, .1). 3)

As shown by Levin [3], Brownian thermal noise can be calculated from the energy dissip-
ated in an auxiliary elastic problem. Specifically, to compute the thermal noise at frequency f,
one applies an oscillating pressure to the face of the mirror with frequency f, with a pressure
distribution profile p(r) equal to the beam intensity, and with an amplitude F. In this auxiliary
problem, the energy Wiss will be dissipated in each cycle of the oscillation. The fluctuation-
dissipation theorem relates this dissipated energy Wy;ss to the thermal noise, specifically to the
power spectral density S, associated with ¢,°

_ 2kpT Wiiss
9 77-2f2 F(Z) ’

“

where T is the mirror temperature and kg is Boltzmann’s constant. Because Wi;s o F%, it
follows that S, does not depend on the overall amplitude Fj.

6 See, e.g. equation (11.90) in [13].
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For frequencies f ~ 100 Hz much lower than the resonant frequencies f ~ 10* Hz of the test-
mass materials, the dissipated power can be computed using the quasistatic approximation. In
this approximation, a static pressure is applied to the mirror with amplitude Fy and profile p(r),
and the dissipated energy can be written as

Wiiss = U¢, (5)

where U is the potential energy stored in the deformation of the test-mass and ¢ is the material’s
loss angle determined by the material’s imaginary, dissipative elastic moduli.

Therefore, our goal in this article is to solve the equations of elastostatics for the deformation
of the test mass,

ViT? = f(x), (6)
when its surface is subjected to an applied pressure with profile p(r). Here, TV is the stress and
we adopt the Einstein summation convention so that repeated tensor indices are summed over.
The source f/ is the force density acting on each volume element of the mirror as a function of
position x, which vanishes in our situation, f/ = 0. The pressure acting on the external surface
of the test mass will be represented by suitable boundary conditions.

Equation (6) is an equation for the displacement vector field u'(x), which describes the
deformation of the elastic material as a function of the undeformed coordinates. The symmetric
part of the gradient of the displacement vector field is the strain

Skl == V(kul). (7)
For sufficiently small Fy, the strain is proportional to the applied stress,
T = —Y™sy, ®)

where the constitutive relation Y/ (x) captures the elastic properties of the material in the

linear regime. The constitutive relation is symmetric on its first two indices, on its last two

indices, and under exchange of the first pair of indices with the second pair of indices.
Inserting equations (7) and (8) into equation (6) yields the equations of linear elasticity,

—V YV = F (x), 9)

which we will solve numerically.

We consider materials with either amorphous or cubic-crystalline constitutive relations. The
coating may consist of only a single material, or of multiple layers with different materials.
The amorphous constitutive relation is isotropic and homogeneous,

Y = X6T8M 4 pu (6% 57 + §"67), (10)
with Lamé parameter \ and shear modulus .” A cubic-crystalline material is characterized
by the constitutive relation

Cl1 fori:j:k:l

Y = ey fori=jk=1i#k (11)

cy fori=kj=Li#jori=1Lj=ki#]

7 The Lamé parameter can also be replaced by the bulk modulus K = X+ 24/3. Alternatively, the two parameters can
be replaced by the Young’s modulus Y = 9Ku /(3K + ) = p(3A +2u) /(A + p) and the Poisson ratio o = (3K —
2p)/(2BK + 1)) = A/ 2(A+ ).
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where cy1, ¢12 and cy4 are three independent material parameters. The constitutive relation in
equation (9) is composed by discontinuously choosing either equation (10) or equation (11) in
each layer of the material.

After solving the linear elasticity equations, equation (9), the potential energy is evaluated
by an integral over the volume of the material,

1 y
U= —E/dVS,-jT”. (12)
|4

For a material with a thin, reflective coating with different elastic properties than the sub-
strate, the dissipated energy, equation (5), decomposes as [14]

Wiiss = Usub ¢sub + Ucoat (z)coatv (13)

where Uy, and ¢qyp are the potential energy and loss angle of the substrate, respectively, while
Ucoat and ¢y are the potential energy and the loss angle of the coating. Note that a material
can also have different loss angles associated with the different independent elastic moduli of a
material [15]. We do not consider further decompositions of the elastic potential energy in this
article, but note that such quantities can straightforwardly be extracted from our simulations.
The different loss angles only affect the computation of the thermal noise by equation (4)
from the elastic potential energy extracted from our simulations, but they do not affect our
simulations or our numerical method in any way.

An approximate analytic solution exists for amorphous materials in the limit where the
coating thickness d is small compared to both the size of the mirror and the width r( of the
pressure profile. The approximate coating thermal noise is®

kBiTl — O—gub i ¢coat
7T2f roYsub 7o Ysubycoat<1 - Ugoat)(] - Uszub)
X (Yeou (14 05ub)* (1 — 204u0)” + Yoo (1 + 0coa)* (1 — 20c0a) ).~ (14)

coat __
S, =

2.2. DG discretization

We employ the DG scheme detailed in [8] to discretize the elasticity problem, equation (9).
We summarize the discretization scheme in this section, and extend it to problems with dis-
continuous material properties.

2.2.1. Domain decomposition. =~ We simulate a cylindrical mirror in three dimensions with
radius R and height H. The cylinder axis coincides with the z axis of our coordinates, and the
plane z =0 represents the surface of the mirror on which the external pressure p(r) is applied.
We decompose the cylindrical domain 2 = [0,R] x [0,27) x [0, H] into a set of nonoverlapping
elements €, C (2 shaped like deformed cubes, as illustrated in figure 1(a) (% refinement). Each
element carries a coordinate map from the Cartesian coordinates x € {, in which the elasti-
city equation (9) are formulated, to logical coordinates & € [—1, 1]° representing the reference
cube, as illustrated in figure 1(b). The coordinate map to the reference cube is characterized

by its Jacobian,
;o ox
Ji= 26 (15)

8 See equation (22) in [14], where w = \/i 10, Q‘)H = (1)4, = ¢coat, and we consider only the coating contribution.
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l{ Laser

Qp e

(b) Element

Figure 1. Top: geometry of our layered cylindrical domain, with the laser beam indicated
in red. Four wedge-shaped elements envelop a cuboid. Another set of wedges extends
to the outer radius of the cylinder. In z direction the cylinder is partitioned into layers
that can have different material properties (black and gray). The substrate layer has a
logarithmic coordinate map in z direction and is split in two twice in this example (thin
horizontal lines). Bottom: the coordinate transformation & (x) maps an element to a ref-

erence cube £ € [—1, 1] with logical coordinate-axes & = (£,7,¢). In this example we
chose Ny ¢ = 3 and Ny, ,, = 4 LGL collocation points along £ and 7, respectively.

with determinant J and inverse (J~'), = 9¢//9x'. On the reference cube we choose a set of Ny ;
Legendre—Gauss—Lobatto (LGL) collocation points in each dimension i (p refinement).

Fields are represented numerically by their values at the collocation points. We denote the
set of discrete values for the displacement vector field ' within an element ) as

O = (W), (16)

and the collection of discrete displacement vector field values over all elements as u'. The
values at the collocation points within an element define a three-dimensional Lagrange inter-
polation,

N
WO = ) with xe 4
p=1

where the basis functions v,(£) are products of Lagrange polynomials,

3
Up(€) =[] 6(&) with £e[-1,1, (18)

i=1

based on the collocation points in the three logical directions of the element ). Since
equations (17) and (18) are local to each element, fields over the entire domain are discon-
tinuous across element boundaries.
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2.2.2. DG residuals. To formulate the elasticity equations in first-order form for the DG
discretization, we use the symmetric strain Sy as auxiliary variable. Following [8], we first
compute the discrete auxiliary variables on the computational grid as

Sy =D uy+L-((nuy)" —nuuy), 19)
where we make use of the discrete differentiation matrix D; := M~ 'MD;, the mass matrix
My = /[ D@38, (20)
—1,1
the stiffness matrix
oY, W,
MD; ;= / Up(€) &) (171 3d%, (€3))
[—1,1]? g
the lifting operator
My [ Eunerde @)
—1,1]2

and L := M~'ML on the element ) [8]. The integral in equation (22) is over the boundary
of the element, 9€), where n; is the outward-pointing unit normal one-form and J X is the
surface Jacobian. The symbol - emphasizes matrix multiplication with the field values over the
computational grid of the element. In a second step, we compute the DG residuals in strong
form [8],

—MD; - YHS, — ML ((n;Y™MS,)* —nYMS, ) =M-f, (23)

which represent the set of algebraic equations for the values 1’ of the displacement vector field
on the computational grid that we solve numerically.

2.2.3. Numerical flux. — The quantities (nu;)* and (n;YUS, )* in equation (23) denote
a numerical flux that couples grid points across nearest-neighbor element boundaries. We
employ the generalized internal-penalty numerical flux developed in [8], with one notable
extension. Contrary to [8] we allow neighboring elements to define different constitutive rela-
tions, meaning Y’ ikl (x) can be double-valued on shared element boundaries’. Therefore, we
define the quantity

) o
where ‘int’ denotes the interior side of an element’s shared boundary with a neighbor, and
‘ext’ denotes the exterior side, i.e. the neighbor’s side. With this quantity we can define the
numerical flux

1r .. .
(naey)* = 5 i = sy, (250)

ij * 1 int y,ijkl in xt ikl X
(Y™, = 5 [”i Vi D(k'ﬂl)[ —n [Yeﬁ(tD(k'ﬂ?) t}

*

_ intyyijkl_jint_int _ extysijkl ext ext
o[ni Y ngewy —ni Y ngouy | (25b)

where ¥ = —ni" for the purpose of this article. Equation (25) is the generalized internal-

i
penalty numerical flux defined in [8], with a choice between Y\, Y2, and Y2 for every

9 In the language of [8] we allow the fluxes F7, [ua,va;] to be double-valued on shared element boundaries.

7
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occurrence of the constitutive relation. The particular choice in equation (25) ensures that the
numerical flux remains consistent, meaning that (n;Y7'S,))* = —n™T% when both ni" Y\'D(; -
up! = —ntXt Y;JxkllD(k ug = —ni™T¥ and ni(‘;;g;‘)“ = —n?;(“.g?)’“. In particular, note that the penalty
term in equation (25b) vanishes when the displacement is continuous across the boundary, and
that the numerical flux admits solutions where the stress is continuous across the boundary but
the strain is not. Such solutions may arise in a layered material under stress, because the layers
remain ‘glued together’ but each layer responds to the stress differently.
The penalty function in equation (25b) is
max int ext +1 2
o — ¢ M p™) £ 17 (26)
mln(hmt’ hext)

where we make use of the polynomial degree p and a measure of the element size, 4, orthogonal
to the element boundary on either side of the interface, as detailed in [8]. We choose C = 100

in this article.

2.2.4. Boundary conditions.  We impose boundary conditions through fluxes, i.e. by a choice
of exterior quantities in the numerical flux (25). Specifically, on external boundaries we set

(ngety) )™ = (nayy)™ — 2nup,  and (27a)
(niYijkISk[)eX[ _ (H[Yijk@kl)im + Zn}nlztl;i’ (27b)

where we choose either u to impose Dirichlet boundary conditions, or n}‘“Téj to impose Neu-
mann boundary conditions on the boundary collocation points, and set the respective other
quantity to its interior value.

For the thermal noise problem we impose the pressure induced by the laser beam,

T = nip(r), (28)
as Neumann boundary condition on the z =0 side of the cylindrical mirror, where p(r) is the
laser beam profile given in equation (1). On the side of the mirror facing away from the laser
we impose

ul, =0 (‘fixed) (29)
as Dirichlet boundary condition, and on the mantle we impose

T =0 (‘“free’) (30)

as Neumann boundary condition. Equation (29) means that the back of the mirror is held in
place, whereas equation (30) implies no pressure on the sides, which however, are free to
deform in response to the pressure applied to the front.

2.3. SpECTRE elliptic solver

Once discretized, the linear algebraic equation (23) are solved numerically for the displace-
ment vector field values u' on all elements and grid points in the computational domain. As is
typical for discretized elliptic equations, equation (23) defines a matrix equation

Au=b, €29

where u denotes the set of all Npor = 3 X Npoinis = 3 X > « Nk displacement vector field val-
ues in the computational domain, and 4 is a matrix with Npor X NpoF entries. To solve
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equation (31) means inverting the matrix .A. However, as the resolution of the computational
domain increases, the matrix A easily becomes too large to construct explicitly, to store on an
ordinary computer, and to invert directly.

Therefore, we solve equation (31) with the elliptic solver component of the open-source
SpECTRE code [9, 10]. It employs an iterative generalized minimal residual (GMRES)
algorithm to solve equation (31) to the requested precision. A multigrid preconditioner accel-
erates the GMRES algorithm by supporting each iteration with an approximate solution from a
hierarchy of successively coarser grids. On every grid, an additive Schwarz smoother decom-
poses the problem into many overlapping subproblems, one per element in the domain, which
are solved independently and in parallel. The subproblems are distributed across the cores of
a computing cluster by a task-based parallelization paradigm. The elliptic solver is described
in detail in [10].

3. Results

Our simulations with SpECTRE were performed on one or more 16-core compute nodes, each
with 64 GB of memory and two eight-core Intel Haswell E5-2630v3 processors clocked at 2.40
GHz, connected with an Intel Omni-Path network. We distribute the elements that compose
the computational domain evenly among cores, leaving one core per node free to perform
communications.

We compare our results to previous work using an open-source finite element code to calcu-
late the Brownian coating thermal noise for amorphous and crystalline materials. Its methods
are described in sections 2.4-2.6 of [7]. The code was built using the deal.ii [16, 17] finite
element framework and we henceforth refer to it as deal . ii. It adopted a standard weak form
of the elastostatic equations, discretized them using a conventional finite element approach,
and solved them using deal.ii with the PETSc [18] conjugate gradient linear solver and
the ParaSAILS preconditioner in the hypre [19] package. The deal.ii code relies on the
message passing interface for parallelization.

3.1 Single-coating comparison

First, we consider the single-coating scenario investigated in [7] and demonstrate the super-
ior performance of our new approach. We choose the parameters listed in [7], table 1 for a
cylindrical mirror of radius R = 12.5 mm with a single d = 6.83 um thin effective-isotropic
AlGaAs coating. We simulate the scenario both with the deal.ii approach employed in [7]
and with our new approach with the SpECTRE code.

Figure 2 presents the numerical precision and computational cost of both approaches.
To assess the numerical precision we successively increase the resolution in both codes. In
SpECTRE we increase the resolution by incrementing the number of grid points in all dimen-
sions of all elements in the domain by one, and in deal.ii we employ an adaptive mesh-
refinement scheme [7]. We compute the error in the elastic potential energy relative to a high-
resolution reference configuration simulated in SpECTRE, for which we have split all elements
of the highest-resolution configuration included in figure 2 in half along all three dimensions
(see also figure 1(a)). Hence, the high-resolution reference configuration has ~79 grid points
per dimension.

We find that both codes converge to the same solution, but our new approach in SpECTRE
achieves about four orders of magnitude higher accuracy than the deal.ii approach using
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& dealit —-o- Coating energy a8 deaiit -e- Coating energy
“e-rq i v [
\

10° L . —e— Total energy o —e— Total energy

Relative error |U — Uret|/Uret

T T T T T T T T Ty T rororrrr T
10% 107! 10° 10t 10% 10%

Number of grid points per dimension (Npoints)*/? Core hours

Figure 2. Relative error of the potential energy in a single amorphous coating layer
(dashed lines) and in the full mirror (solid lines). Left: SpECTRE, with our discontinuous
Galerkin method, resolves the coating layer at high precision using only a fraction of
the number of grid points needed by the deal.ii approach. Right: SpECTRE solves
the elliptic problem using only a fraction of the computational resources needed by the
deal.ii approach.

the same number of grid points. Furthermore, our new approach simulates this scenario with
sub-percent error in only 30 s on 15 cores, for which the deal . ii approach required multiple
hours on 324 cores. Our new approach also achieves a fractional error below 1073 in only half
a core-hour, or two minutes of real time, which was prohibitively expensive with the deal.ii
approach.

3.2. Accuracy of the approximate analytic solution

Second, we study the accuracy of the approximate analytic solution for the single-coating
thermal noise, equation (14), using the superior numerical precision we can now achieve over
the results presented in [7]. The approximate solution holds for a thin coating, d/rp < 1, a
semi-infinite mirror, ry/R < 1 and d/R < 1, and for isotropic-homogeneous materials. There-
fore, it does not capture the finite-size effects included in our simulations, and approximates
the crystalline AlIGaAs coating as an amorphous material.

To assess the magnitude of the finite-size effects, we employ the simulations detailed in
section 3.1, which use the same effective-isotropic model for the AlGaAs coating that under-
pins the approximate analytic solution. Figure 3 presents both the thermal noise computed
from the simulations and the approximate analytic solution (black). Error bars are computed
as A /Sgoat/ | /Sgoat = | /2 AUcont/ Ucoat from the relative numerical error in the elastic poten-
tial energy. While [7] estimated the magnitude of finite-size effects for this problem to 7%,
we can now report that their simulations captured the effect to 7.5 +0.2%. With our new
numerical method, we can make this statement more precise and report a finite-size effect of
7.616649 £+ 0.000006%.

To assess the magnitude of the amorphous approximation to the crystalline coating material,
we repeat the simulations with a crystalline constitutive relation and the parameters listed in
[7], table 1. The thermal noise computed from these simulations is presented in figure 3 as well

10
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Relative numerical error |U — Uset|/Uret

Figure 3. Thermal noise in an AlGaAs-coated mirror computed from the approxim-
ate analytic solution (14) and from our numerical simulations. The effective-isotropic
simulation (black) retains the amorphous approximation for the material, but includes
finite-size effects. The crystalline simulation (red) eliminates this approximation. Pre-
vious simulations with the deal.ii approach are shown in lighter colors to the left.

(red). We refine the estimate of 4% from [7] to 4.5 £ 0.2%, and report 4.667 990 + 0.000006%
using our new numerical method.

Note that we report only numerical errors from our simulations here. However, the para-
meters that define our simulations, such as coating and substrate material properties, are typic-
ally measured experimentally and carry significant uncertainties. For example, elastic moduli
recently reported in [20] were measured on the percent level. Computing the thermal noise
by equation (4) also involves loss angles ¢ which can be measured on the percent level as
well [20]. Therefore, computational resources are spent most effectively to drive numerical
errors below sub-percent levels and no further. With our new numerical methods we achieve
sub-percent accuracy with a fraction of the computational resources required before (see
section 3.1).

3.3. Multiple sub-wavelength crystalline coatings

Finally, we apply our new computational approach to a scenario that presents many of the chal-
lenges we expect for applications to realistic mirror configurations. We simulate a cylindrical
mirror of the same radius R = 12.5 mm as before, but split the d = 6.83 pm thin coating into
nine layers, so the thickness of each coating layer is below the typical 1 ym wavelength of
the laser. The coating layers alternate between fused silica and crystalline AlGaAs, with the
elastic moduli ¢y, c17 and c44 listed in [7], table 1. Neither sub-wavelength coatings nor mul-
tiple layers were simulated in [7], but our new computational approach in SpECTRE achieves
both.

Figure 4 presents our numerical solution of this scenario. Our new computational approach
based on DG methods resolves the thin coating layers at high accuracy without spurious oscil-
lations. Figure 5 presents the numerical precision of the solution. We increase the resolution by
incrementing the number of grid points per element and dimension and compute the relative

1
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Figure 4. Elastic variables along the z-axis for a mirror with multiple thin coating layers,
simulated with SpECTRE. Gray layers are crystalline AlGaAs, and white regions are
fused silica. The nine coating layers have a combined thickness of 6.83 pum and the
material extends to z = 12.5 mm outside the range of this plot.
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Figure 5. Convergence test of the elastic potential energy in each coating layer, and in
the substrate. Our new numerical method achieves exponential convergence despite the
discontinuous material properties.

error to a high-resolution reference configuration, as we did in section 3.1. The error converges
exponentially, which is a feature of our DG method with grid boundaries placed at the layer

interfaces.
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4. Discussion

We have presented a new numerical method to model Brownian thermal noise in thin mir-
ror coatings based on a DG discretization. With our new method, we model thermal noise
in a one-inch cylindrical mirror with a microns-thick coating at unprecedented accuracy at
a fraction of the time needed in a previous, conventional finite-element approach [7]. Using
these high-accuracy simulations, we find that a commonly-used approximate analytic solution
overestimates the coating thermal noise for this problem by 7.6% when taking only finite-
size effects into account, and by 4.7% when modeling it as a crystalline material, which
refines a previous estimate in [7]. We also demonstrate that, unlike the approach in [7], our
new method is capable of resolving multiple sub-wavelength coatings, including coatings of
a cubic-crystalline material. Our new numerical method is implemented in the open-source
SpECTRE code and the results presented in this article are reproducible with the supplemental
input-file configurations.

We found that it is crucial for the success of our new method that the interfaces between
layers of different materials coincide with element boundaries in our computational domain.
Then, our DG discretization with a suitable choice of numerical flux converges exponentially,
achieving high accuracy with a small number of grid points. The scheme can potentially be
improved in future work. Most notably, an adaptive mesh-refinement (AMR) algorithm would
have great potential to further improve the accuracy and efficiency of the scheme, by distrib-
uting the resolution in the computational domain to regions and dimensions where it is most
needed.

Furthermore, the elliptic solver in the SpECTRE code that we employ to solve the discretized
problem numerically can be improved to accelerate thermal-noise calculations. The calcula-
tions we have presented in this article require a few hundred solver iterations to converge, or up
to ~1400 for our highest-resolution simulation with multiple sub-wavelength crystalline coat-
ings. While simple configurations complete in seconds or minutes of real-time on 15 cores,
where the previous approach needed hours on 324 cores, the more challenging configurations,
which were prohibitively expensive with the previous approach, solve in about an hour on 45
cores.

We expect additional speedup with further improvements to the elliptic solver algorithm in
SpECTRE. In particular, improvements to its multigrid preconditioner have great potential to
speed up the simulations. The multigrid algorithm relies on solving the problem approximately
on coarser grids to resolve large-scale modes in the solution. It currently cannot coarsen the
grid any further than the size of each coating layer because the layers define the material
properties. To accelerate the calculations, we intend to let the multigrid algorithm combine
layers with different materials into fiducial coarse layers with effective material properties.
This approach is possible because the partitioning of the domain into layers is necessary only
to define material properties, not to define the cylindrical shape of the domain. Vu et al [10]
shows that the multigrid algorithm can achieve resolution-independent iteration counts when
the domain can be coarsened sufficiently. Note that the fiducial coarse layers affect only the
convergence speed of the solver and do not change the solution once the solver has converged.

Our numerical models of thermal noise have the potential to inform upgrades that increase
the sensitivity of gravitational-wave detectors, using the advanced computational technology
that we develop for numerical-relativity simulations in the SpECTRE code. In the future, we
intend to apply our new numerical method to simulate Brownian thermal noise in more real-
istic mirror configurations and materials that are under consideration for current and future
gravitational-wave detectors, such as the optimized configuration found in [21]. While approx-
imate analytic solutions can provide useful estimates, only numerical models can precisely
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quantify the finite-size effects of changing the mirror geometry. In particular, finite-size effects
are more important for real gravitational-wave detectors than for tabletop experiments measur-
ing thermal noise. Tabletop experiments often use small beam sizes to enlarge the thermal noise
and hence make it easier to measure, whereas gravitational-wave detectors prefer large beam
sizes to minimize thermal noise. Therefore, we plan to employ our new numerical method to
explore realistic mirror configurations, with the goal of finding configurations that minimize
Brownian coating thermal noise.
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