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Introduction

Figure 1. Gigantic Jets captured from ground-based cameras. (left) From Boggs et al. 2019 
(middle) from passenger on an airliner (right) from Yang et al. 2020. 
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In this presentation we will provide an overview and present preliminary results from a multi-
institutional collaborative project, which seeks to detect gigantic jets over hemispheric scales 
using a combination orbital and ground-based sensors and machine learning. Gigantic jets are a 
type of transient luminous event (TLE, Pasko 2010, doi: 10.1029/2009JA014860) that escape the 
cloud top of a thunderstorm and propagate up to the lower ionosphere (80-100 km altitude), 
transferring tens to hundreds of Coulombs of charge. Our detection methodology primarily uses 
the Geostationary Lightning Mapper (GLM), which is a staring optical imager in geostationary 
orbit that detects the 777.4 nm (OI) triplet commonly emitted by lightning (Goodman et al. 2013, 
doi: 10.1016/j.atmosres.2013.01.006).  Gigantic jets have been shown to have unique signatures 
in the GLM data from past studies (Boggs et al. 2019, doi: 10.1029/2019GL082278; Boggs et al. 
2022, doi: 10.1126/sciadv.abl8731). Thus far, we have built a preliminary, supervised machine 
learning model that detects potential gigantic jets using GLM, and begun development on a 
series of vetting techniques to confirm the detections as real gigantic jets. The vetting techniques 
use a combination of low frequency (LF) and extremely low frequency (ELF) sferic data, in 
combination with stereo GLM measurements. When our detection methodology grows in 
maturity, we will deploy it to all past GLM data (2018-present), with the potential to detect 
thousands of events each year, allowing correlation with other meteorological and atmospheric 
measurements. We will share the database of gigantic jet detections publicly during and at 
project conclusion (2025), allowing other researchers to use this data for their own research. 

Figure 2. Detection pipeline for this project, consisting of GOES GLM data, GLD360 data, and ELF 
data. 

Figure 3. Detection system field-of-view, with regions for initial training and the GLM stereo 
region. 

• GJs have hot leader that pokes 
above the cloud top  GLM 
stereo measurements

• Stereo sources map to vertical 
channel segment 

• GLM sources are localized in lat, 
lon space

• GLM optical energy typically bright 
– no scattering/absportion from 
cloud 

Figure 4. VHF LMA sources (colored dots) and GLM 
stereo sources (diamonds) for a GJ. The panel inset 
shows the VHF LMA data alone. Adapted from Boggs et 
al. 2022. 

Figure 5. a) lightcurve (GLM energy vs. time) for a non-GJ flash. b) spatial (lat,lon) distribution for the sources in 
a). Panels c) and d) show similar plots for a confirmed GJ.  The sources in b) and d) are sized according to energy. 

Results
b) • Initial work has started to build an 

automated pipeline to detect GJs

• The pipeline uses GLM data primarily, with 
GLM stereo data and ELF data for vetting

• Features to discriminate GJs from non-GJs 
use different GLM data characteristics such 
as group propagation, group energy 
distribution, and group time evolution 

• Initial testing/training of a machine learning 
model shows high performance on limited 
test datasets

• Large-scale deployment shows similar false 
positive rates, but diminished precision as 
expected from first model iteration

• Vetting will produce more truth GJ events 
and improved model performance

• Once model is mature (2024), GJ detection 
list will be hosted by NASA's Global 
Hydrometeorology Resource Center 
Distributed Active Archive Center (GHRC 
DAAC) and freely available in an easy-to-
read format

Features Category
Max Distance Propagation 

Cumulative propagation Propagation
Area Propagation

Max Count Pixel Gridding
Gradient N-S Gridding
Gradient E-W Gridding

Summed Energy Pixel Gridding
Max Continuous Duration Temporal

Integrated Energy Temporal
Lightcurve Smoothness Temporal

Current Moment

Charge Moment
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Figure 7. ELF data for the gigantic jet in Figure 5c captured by Duke University. 

Machine Learning Feature Creation
• Use group-level GLM data, parsed from each GLM flash
• Feature categories: 

1. propagation: summarizes lateral extent / lateral 
coverage of GLM groups 

2. gridding: re-grid group centroid data to 4 km grid, 
summarizes energy distribution over the grid 

3. temporal: summarizes time evolution and 
associated temporal waveform properties 

Table 1. Feature list for the machine learning model.  

Figure 8.  Distributions for the feature (left) Max Count Pixel and (right) Max 
Continuous Duration. Note: the GJ feature data includes synthetic SMOTE data.

Machine Learning Initial Testing
• 21 confirmed GJs from ground-based video
• Randomly sampled several hundred flashes as non-GJ
• Used Synthetic Minority Oversampling Technique 

(SMOTE, Fernandez et al. 2018) to boost the features of 
minority (GJ) class to several hundred

• Built random forest model, with 150 maximum splits (i.e. 
branches), and 50 learners (i.e. trees)

• Testing:
• Reserved 30% of initial data (confirmed GJs and non-

GJs) for testing
• With other 70%, boosted GJ class with SMOTE
• Trained random forest with SMOTE data
• Tested with the original 30% (confirmed GJs and non-

GJs)
• Performed 5 iterations of this
• Precision: 83% (5/6)  limited truth GJ events
• Recall: 83% (5/6)  limited truth GJ events
• False positive rate: 0.435% (1/229)
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Figure 9. t-distributed stochastic neighbor embedding (t-SNE) plot showing the 
GJs (red) and non-GJs (blue). t-SNE plots distill a complex feature space into a 
3D representation. 

a)

c) d)

a) b)

c) d)

Machine Learning Deployment

Conclusions

Figure 6. a) Stereo altitude vs. time for a confirmed GJ. Sized according to optical energy. b) spatial distribution (lat, 
lon, alt) of the sources in a).  Colored according to time. The grey plane represents the cloud top. Panels c) and d) 
show similar plots for a non-GJ flash. 

• Duke ELF data: current moment and charge moment 
change (CMC). 

• GJs: average CMC of 5,800 C km for truth events
• Large positive CG events: average of 794 C km (Lyons et 

al. 2003)

1: GTRI, Smryna, GA USA; 
2: SETI, Mountain View, CA USA; 

3: USRA, Huntsville, AL USA; 
4: Duke, Durham, NC USA

• We have deployed to 1 month of data (10-12 million 
flashes)

• Model predicted ~13,000 possible GJs 
• false positive rate: 0.1%

• Currently working on vetting the events
• Preliminary precision: ~1%  low as expected 

from first deployment. Similar results as GLM 
bolide detection (Smith et al. 2021). 

• Stereo altitude vetting
• Duke ELF vetting
• Slowly building larger truth database to re-train 

ML algorithm 

Test confusion matrix 

b)
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