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Abstract. In piecewise-deterministic Markov processes (PDMPs) the state of a finite-dimensional system evolves
continuously, but the evolutive equation may change randomly as a result of discrete switches.
A running cost is integrated along the corresponding piecewise-deterministic trajectory up to the
termination to produce the cumulative cost of the process. We address three natural questions
related to uncertainty in cumulative cost of PDMP models: (1) how to compute the cumulative
distribution function (CDF) of the cumulative cost when the switching rates are fully known; (2)
how to accurately bound the CDF when the switching rates are uncertain; and (3) assuming the
PDMP is controlled, how to select a control to optimize that CDF'. In all three cases, our approach
requires posing a system of suitable hyperbolic partial differential equations, which are then solved
numerically on an augmented state space. We illustrate our method using simple examples of
trajectory planning under uncertainty for several one-dimensional and two-dimensional first-exit
time problems. In the appendix, we also apply this method to a model of fish harvesting in an
environment with random switches in carrying capacity.
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1. Introduction. Piecewise-deterministic Markov processes (PDMPs) provide a powerful
formalism for modeling discrete random changes in a global environment. That formalism
is particularly useful when the number of deterministic modes of the global environment is
relatively small and there is a high fidelity statistical characterization of mode-to-mode switch-
ing rates. Such processes arise in a broad range of applications, especially in the biological
sciences [39]. For example, they can be used to model keratin network formation [9], SIRS
epidemic spread [35], genetic networks [40], and predator-prey systems [10, 17, 32]. In other
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disciplines, applications of PDMPs include models of fatigue crack growth [15], financial con-
tagion [19], manufacturing processes [1, 11, 37, 42], sustainable development, economic growth
and climate change [30, 31], and path-planning under uncertainty [4, 13, 27, 45].

In this paper we focus on a computational framework for quantifying uncertainty in out-
comes of PDMPs due to random switching times and possible uncertainty in switching rates.
If a PDMP system is controlled in real time, we also show that this uncertainty of outcomes
can be actively managed.

In our PDMP models, the full state of the system is described by a continuous component
xz € Q C R? and a discrete component i € M = {1,..., M} that represents the current
deterministic “mode.” Starting from the initial configuration (x, ), the evolution of continuous
component y(t) is defined by a (mode-dependent) ODE

(1.1) Y'(t)=Fyt),mt) = Frnm (),
y(0)=x €,
m(0) =i e M,

while the switches in mode m(t) are based on a continuous-time Markov process on M. Using
Aij to denote the rate of (i — j) switching, we can write

(1.2) iy POt +7) = |m(t) =1)
70 T

:)\ij VtEO,ZGM,]GM\{Z}

Here, we focus on ezit time problems, in which the process stops as soon as the system reaches
a compact exit set @ C Q. Due to the random mode switches, the exit time T ; = min{t >
0|y(t) € Q} is also random, which makes it somewhat harder to approximate the distribution
for our main object of study—the cumulative cost of the PDMP J(x,1).

In addition to mode-dependent dynamics f : Q@ x M — R% we also include a mode-
dependent running cost C': Q x M — (0,4+00) and exit cost q: Q x M — [0,+00). To simplify
the notation, we will also sometimes use the mode as a subscript:

Cz(m) = C(wvi)a fz(m) = f(iL‘,’i), Q’L(m) = Q(azai)7 etc.

We will assume that ¢;’s are continuous in @, while Cj’s and f,’s are bounded and piecewise
Lipschitz continuous. The cumulative cost is then formally defined as

(1.3) Ti(®) = T (2,i) = /OT C’(y(t),m(t)) dt + q(y (Tm,i),m(Tm,i)).

We will generally assume that 2 is a closed set and the process can continue on 9Q\@Q, but if
the dynamics forces us to leave () before reaching @, this will result in J = +o00. We note that
the notion of cumulative cost is much more common in controlled PDMPs, where it is used
to select criteria for control optimization. But we also consider J in this simpler uncontrolled
case to focus on a single measurable outcome of the process.

We develop our approach in this general setting, but our numerical experiments highlight
that studying J is far from trivial even if C =1, ¢ =0, and Q = 012, yielding J (x,i) = Ty ;, the
time until we reach the boundary. For a motivating example, consider a “sailboat” traveling
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with unit speed on an interval 2 = [0, 1] and subject to random mode (wind direction) switches.
We will assume that it is moving rightward in mode 1 and leftward in mode 2, the time intervals
between mode switches are independent exponentially distributed random variables with rate
A, and the process terminates as soon as the boat reaches @ = {0,1}. While we describe this
example in terms of sailboat navigation, similar “velocity jump processes” are also often used
to model dispersal in biological systems [33, 38]. But in contrast to our approach, the main
focus there is on equations describing the evolving density of dispersing cells or organisms
rather than on the distribution of some performance measure J for individual organisms.
Another distinction is our assumption that each individual path terminates on reaching some
exit set ()—this introduces additional structure, which we later leverage to obtain efficient
numerical methods.

Throughout the paper, we take an exploratory approach, focusing on derivation of equa-
tions and numerical methods as well as instructive test problems rather than proofs of con-
vergence or realistic applications. To streamline the presentation, we illustrate our methods
on simple “first-exit time” problems' in one dimension (1D) and 2D similar to the sailboat
example described above. But in the appendix we show how the same approach is useful more
broadly (with general C;’s and f,’s) by considering fish harvesting in an environment with
random switches in carrying capacity.

In section 2, we explain how the CDF for J can be computed by solving a system of
coupled linear PDEs. Our equations can be interpreted as a PDMP-adapted version of the
Kolmogorov backward equation generalized to handle arbitrary running costs rather than
just time. Another related approach is the previous development of numerical methods for
the Liouville-master equation in [5]. We also derive simpler recursive difference equations to
compute the CDF for a discrete analogue of our setting—a random route-switching process
on a graph.

In most real world applications, all switching rates (\;j) will be known only approximately
and it is necessary to bound the results of this modeling uncertainty. In section 3, we show
how bounds on these switching rates can be used to bound the CDF of J. Interestingly, it
turns out that it is easier to compute tight bounds if the switching rates are not assumed to
be constant in time.

In many applications, the focus is on optimally controlling PDMPs (affecting the dynamics
in each deterministic mode), with the notion of optimality typically based on the average-
case outcomes (e.g., minimizing the expected total cost). Once a control is fixed, the same
uncertainty quantification tools covered in sections 2 and 3 become relevant. Moreover, the
control can also be selected to manage the uncertainty, providing some robustness guarantees
or minimizing the probability of undesirable outcomes. Following the latter idea, we introduce
a method for optimizing the CDF of controlled PDMP models in section 4. We conclude by
discussing further extensions and limitations of our approach in section 5.

2. Computing the CDF. Before discussing the methods for approximating the CDF for
the randomly switching process described in section 1, we first consider the same challenge
for Markov-style switching on a graph in subsection 2.1, turning to a continuous version in

'To ensure computational reproducibility, our full code for all examples is available at https://github.com/
eikonal-equation/UQ_-PDMP

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.


https://github.com/eikonal-equation/UQ_PDMP
https://github.com/eikonal-equation/UQ_PDMP

Downloaded 08/28/23 to 68.175.156.83 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

QUANTIFYING AND MANAGING UNCERTAINTY IN PDMPs 817

subsection 2.2. Numerical methods for the latter are then described in subsection 2.3 and
illustrated by computational experiments in subsection 2.4.

2.1. Discrete PDMPs. We start by reviewing a simple model of deterministic routing on
a directed graph with a finite node set X = {x1,...,x N}, a set of directed edges F C X x X,
and a target set Q C X. We will assume that K : X x X — (0, +o00] specifies the known cost
of possible “steps” (i.e., node-to-node transitions) with K(x,2') = 400 iff (z,2') ¢ E. A
route on this graph can be specified in feedback form by a mapping F': X — X such that
(x,F(x)) € E for all x € X. Given a starting position y, = x € X, a path can be defined by
a sequence Y, ; = F'(y,,), terminating as soon as y,, € Q. We will further assume that the
terminal cost charged at that point is specified by ¢: Q@ — [0,+00). If the path enters @ after
n(x) steps, its cumulative cost can be expressed as

n(x)—1

Jx)= Y K (yn’ynﬂ) + q(yn(m>)

with J(x) = +oo if the path remains forever in X \ @, which can happen if a route specified
by F' contains loops. The recursive relationship among 7 values makes it easy to recover all
of them by solving a linear system

J(x) =K (z,F(z)) + J (F(x)) Vo e X\ Q;
(2.1) J(x) =q(x) Vo e Q.
We will now consider a version of the problem with a total of M different routes F1, ..., F,

each of them with its own pair of running and terminal costs (Kj,¢;) defined on the same
graph. These routes are equivalent to the modes in a PDMP. To simplify the notation, we
will use K;(x) as a shorthand for K;(x, F;(x)). We define a random route-switching process
by assuming that there is a chance of switching to another route after each step. That is, if
the current route is Fj, the probability p;; of switching to F}; after the next step is known a
priori for all 4,7 € M ={1,..., M }. The number of steps is now a random variable, along with
the cost paid for all future steps. In defining the new random cumulative cost J;(x), we note
that the subscript only encodes the initial route used in the first step as we depart from x. It
is easy to see that u;(x) =E[J;(x)] should satisfy a recursive relation

M
ui(x) = Ki(x) + Zpijuj (Fi(x)) Vee X \Q,ieM,
j=1

(2.2) ui(x) = qi(x) Vee@,ic M.

It is worth noting that this system of M N linear equations lacks the nice causal property that
we enjoyed in the deterministic (single route) case. There we knew that a finite J(x) implied
that the path from @ prescribed by F' included no loops and reached @ in a finite number
of steps. As a result, the part of system (2.1) corresponding to such finite J’s was always
triangular up to a permutation. The same is clearly not true for the multiroute case of (2.2),
where loops can easily arise as a result of random route-switching.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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Figure 1. Fully discrete PDMP with M = 2 modes and N = 6 nodes. In mode 1 the motion is always to
the right; in mode 2 the motion is always to the left. The exit set is Q = {a:l,a:G}.

We note that this process can be also interpreted as a Markov chain on an extended graph.
One would create M copies of the original graph (on the nodes x¢) with each route (or mode)
F; represented as a separate “layer” and interlayer transitions governed by p;;’s. Figure 1
illustrates one such example with two modes and associated probabilities p11,p12,p21, and
pog. In the special case of K; =1 and ¢; =0 for all i € M, the above equations for u;’s are
simply describing the mean hitting time for the set () x M. However, we are interested in
more general costs and would also like to compute the full CDFs w;(x,s) = P(Ji(x) < s) for
each J;. It is easy to show that these functions must satisfy a recursive relationship

M

(2.3) wi(x,s) = Zpijwj<Fi(:1:),s—K,;(cc)) VedQ,ie M,s>0
j=1

with the initial and boundary conditions

(2.4) )
1 ifxeq, s>q(x).

i, 5) = {0 if (x¢@,s<0) or (€@, s<q¢(x));
We will assume that the range of s values of interest is S = [0, S], where S is some constant
specified in advance.

Based on the general properties of CDFs, all w;’s are monotone nondecreasing and upper-
semicontinuous” in s. Moreover, the positivity of K;’s ensures the explicit causality of this
system: in (2.3) each w;(x, s) can only depend on w;(«’,s) if s’ < s. Thus, the system can be
solved in a single sweep (from the initial conditions at s =0, “upward” in s).

Still, it can be useful to precompute s¥(x) =inf{s | w;(zx,s) > 0} and w?(z) = w;(z, s (x))
by computations on X alone. Intuitively, s”(x) can be thought of as the minimum attainable

2In addition, the finite size of X guarantees that all w;’s are piecewise-constant in s. This can be used
to construct a finite time algorithm for solving (2.3) exactly despite the fact that s is a continuous variable.
We do not include this algorithm here due to space constraints and to keep the focus on the continuous-time
setting, where discretizing s and approximating w;’s is generally unavoidable.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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cost starting in mode 7 at position x, and w () is the probability of attaining said cost. It is
easy to see that s? satisfies the recursive system,

D) =Ki(e) + min () (Fi(e) Vo e X\ QieM;
s.t. pi; >0
(2.5) sg(w) =q;(x) Ve eQ,ie M,

solvable by the standard Dijkstra’s method in O(M N log(M N)) operations.
The values of w?(z) can also be found in the process of computing s?(z). If Z(x) C M is
the arg min set in (2.5), then

wi(x) = > pyw) (Fi(z)) Ve e X\ Q,ieM;
JE€L(x)
(2.6) w(xz) =1 VrecQ,ic M.

)

Numerically solving (2.5) and (2.6) can be advantageous because they are computed on the
lower-dimensional domain X x M instead of X x M x §. This information can then be used
as initial/boundary conditions to solve (2.3) on a smaller subset of X x M x S.

2.2. Continuous PDMPs. We are now interested in extending our results from the dis-
crete case to continuous settings. The PDMP model described in section 1 is based on the
continuous in time and space evolution of the state y(¢) and continuous in time Markov chain
governing the changes in mode m(t). Here, we start with a somewhat simpler version, in which
this Markov chain is discretized in time, while the state evolution is continuous. Choosing
some small fixed time interval 7 > 0, we assume that the system starting in mode m(0) =i € M
and state y(0) = x € Q\ Q evolves according to an ODE v/(t) = f,(y(¢)) with no random
switches until the time

Tp,; = min (7, min {t|y(t) € Q}),

at which point a switch to another mode may occur. The process is repeated (starting from
& =1y(7y,;) and a possibly new mode j, integrating the ODE over the time interval of length
T3,j, etc.) and the running cost is accumulated until y(¢) enters a compact exit set Q.

We define natural analogues for operators used to pose the graph routing problem in the
previous subsection:

(2.7) Fi(z) = o+ /0 " p ) dt = y (1),
(2.8) Ki(x) = /0 " Gyt dt,

where C; : © — (0,+00) is the running cost for that mode. We define the probability of
switching to each mode j at the end of time interval of length 7, ; by requiring consistency
with the continuous in time Markov process described in (1.2). In the latter, there could
be multiple mode transitions over the time 7, ;, and here we simply use the probability of
finishing this time interval in mode j:

Pij(Tei) = P(m(72,:) = 7| m(0) =1).

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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We compute these probabilities using a transition rate matrix A = (\;;), where \;;’s encode the
rate of (¢ — j) switching for ¢ # j, while the diagonal elements are defined by A\;; = —>_ ki i
The evolution of the probability matrix P(t) = (p;;(t)) is then given by an ODE

d
—P(t)=P(t)A, P0)=1,
dt
and it follows that P(7z;) = exp(A7y ;). Finally, if y(74:) € Q, we assume that the PDMP
will immediately terminate with an exit cost of ¢;(y(7s,)), where j is the final mode after a
possible last transition.

With this notation in hand, we can define the same functions characterizing the random
cumulative cost: u;, w;, s?, and w? will all satisfy the same recursive formulas already defined
on a graph in the previous subsection. The only caveat is that p;;’s will need to be replaced by
Pij(Tw,i). Since T and 7 ; are equivalent except on a small neighborhood of @, in the following
sections we will slightly abuse the notation by referring to 7 to simplify the formulas.

The original setting of section 1 (with continuous in time Markov chain for mode switching)
can be obtained from the above in the limit by letting 7 — 0. A standard argument based on
a Taylor series expansion shows that the expected costs u;(x) = E[J;(x)] formally satisfy a
system of linear PDEs:

(2.9) Vui(z) - f;(x) + Ci(z) + Z[Aij(ug'(w) —ui(x))| =0

J#i
with boundary conditions u;(x) = ¢(x,7) on @ x M. We omit the derivation of (2.9) for the
sake of brevity but use a similar approach below to derive a system of PDEs satisfied by the

cumulative distribution functions w;(x,s). The first-order approximations of the transition
probabilities are

pi(T) =17 +o(r) = Ag7 +o(7), j#1i,
(2'10) pu’(T) =1- Z)\iﬂ' + O(T).
J#
The first-order approximation of the dynamics in (2.7) is

(2.11) Fy(z) =z +7f;(x) +o(7),

and the first-order approximation of the running cost in (2.8) is

(2.12) Ki(x)= /OT Ci(y(t))dt =7Ci(x) + o(T).

Plugging in our approximations (2.10), (2.11), and (2.12) into the recursive relationship
in (2.3) and then Taylor-expanding w; gives

(2.13)

wi(x,s)=|1-— Z i T | wi(Fi(x),s — 7Ci(x)) + Z NijTw; (Fi(x),s — 7Ci(x)) + o(T),
J#i J#i

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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wi(x, s) = w; <Fl(sc), s— TC’A:L')) + TZ Aij [wj(z, s) —w;(zx, s)] + o(T),
JF

0=71Vwi(x,s) - f;(x) — TC’Z-(a:)(Z—Z(m, s) + TZ)\Z']' [wj(x,s) —w;(x,s)] + o),

J#
where V = (6%1, 8%2, e 62‘12 denotes the gradient in the spatial coordinates. Dividing both
sides by 7 and then taking the limit as 7 — 0, we obtain a linear PDE for each mode :

Ow;

(2.14) Vw;(x,s) - f;(x) — Ci(x) s

(z,s)+ Z)‘U wj(x,s) —w;(x,s)] = 0.

J#
The above derivation is only formal since it assumes that w;’s are sufficiently smooth. In
reality, they will be often nondifferentiable and even discontinuous at isolated points; never-
theless, these value functions can be still interpreted as weak (viscosity) solutions [21], which
can be approximated numerically by discretizing (2.13). This system of PDEs satisfies the
initial /boundary conditions:

1 t. ) =
(2.15) wi(x,0) = { Va € Q.s q(z,i) =0,

0 otherwise,

1 1. 1) <
(2.16) wi(x,s) = VB EQ st ql@,i) <5,

0 Vxeq s.t. qg(x,i)>s.

The above conditions are sufficient when @@ = 9Q2 or if 2 is invariant under all vector fields
fi- All of our examples considered in the next sections fall into this category. But more
generally, if vector fields are such that a trajectory might leave €2 prior to reaching (2, one could
treat this event as an immediate failure, essentially imposing w;(x,s) = 0 for all ¢ Q and
all seR.

As in the discrete case of subsection 2.1, it can be useful to precompute the minimum
attainable cost to use as initial/boundary conditions when solving (2.14). From the discrete
case we recall that s9(z) = inf{s | w;(z, s) > 0} denotes the minimal cost possible when starting
from position & in mode i assuming that transitions between modes can occur whenever
desired. In the continuous case these transitions can occur without delay, and therefore
sV(x) = sg(x) for all i and j in M, so we will replace all of these with s"(). (Also, unlike in
the discrete case, it is entirely possible that w;(z, s%(x)) =0 for all i. The cost of s°(z) might
be attainable only through perfectly timed transitions, which in the continuous case would
happen with probability zero.) A formal Taylor series expansion of (2.5) yields the following

differential equation and boundary conditions for s°(x):
min {C;(x) + Vs'(z) - f;(z)} =0, TeQ\Q;
(2.17) s9(x) = min {¢;(x)}, xeqQ.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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We are also interested in the probability w? (x) of attaining that minimal cost so(a) when
starting from mode ¢ and position x. If we denote the argmin set of (2.17) as Z(x), then

w?(x) formally satisfies the following system:
0=Vul(@)- fi(@)+ 3 Ay [wl@) —ul(@)],  weQ\QieT(w)
J#i
w)(x) =1, xeQ,icl(x);
(2.18) w; () =0, weQidI(x).

Once s%(z) and w?(x)’s are known, the computation of w;’s can be restricted to {(z,s) | s €
(so(z), S}, solving PDEs (2.14) with “initial” conditions w;(z,s"(x)) = wd(z).

7

Remark 2.1 (related work on Liouville-master equation). An approach similar to the one
presented in this section can be used to derive PDEs for the time-dependent joint PDMP-state
CDF on © x M. The initial conditions to those PDEs would be based on a specific initial
configuration (xg,ig) or, more generally, on a specific initial joint CDF on £ x M. This is
precisely the setting in [5], where a finite difference numerical method for the “Liouville-master
equation” was developed and tested for the special case of d = 1. If one is willing to increase
the dimension of the problem, this can be viewed as a more general approach than ours (since
J can be viewed as just another component of the continuous state variable). But the need
to solve PDEs separately for different (x, io)-specific initial conditions is a serious drawback.
Moreover, computing the time-dependent joint CDF seems more suitable for finite horizon
PDMPs (where the process terminates after a prespecified time T') rather than in our setting
(where the process terminates as soon as it reaches @ C Q).

2.3. Numerics for CDF computation. We will approximate the domain 2 with a rec-
tangular grid of points {xg} with grid spacing Az, where k = (ki1,...,kq) is a multi-index
and xg = (k1Az, ..., kgAz). We will also approximate the second argument of the CDF with
regularly spaced points s, = nAs.

We will derive equations for a grid-function W, ~ w;(xk, s,), with Wiok values determined
by the initial conditions (2.15). To simplify the aiscussion, we assume that both 99 and Q
are grid-aligned, with boundary values prescribed by (2.16).

Equation (2.3) is then naturally interpreted as a recipe for a semi-Lagrangian discretiza-
tion using a pseudotimestep of length 7. To obtain the first-order scheme, we can use the
linear approximations (2.11)—(2.12) in formula (2.13), yielding the following equation at each
gridpoint @y € 2, mode i € M, and cost threshold s,:

M

(2.19) Wi =Y pi(1)Wi(@e + 7 f(k), 50 — 7Ci(wr)),
j=1

where W, : 2 x R — R is the result of interpolating the grid-function Wi in both  and s
variables, and the p;;’s are defined as in (2.10). In our implementation, all W;’s are defined
by multilinear interpolation, but more sophisticated interpolation techniques (e.g., based on
ENO/WENO [46]) may be used instead to decrease the numerical viscosity. More accurate
approximations of F; and K; could be also employed to increase the formal order of accuracy
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of the discretization. For fully deterministic processes, similar semi-Lagrangian schemes have
been proven to converge under the grid refinement to a discontinuous viscosity solution on
all compact sets not containing the discontinuity [7]. While we do not attempt to prove this
here, our numerical experiments indicate that the same holds true in piecewise-deterministic
problems.

Our update formula (2.19) is only valid when @ +7 f;(xx) remains in 2. With grid-aligned
01}, a rather conservative sufficient condition for this is

(2.20) T-mzax{mgx{|f(:c,i)|}} < Azx.

Furthermore, we would like to ensure that our updates are causal, that is, the right hand
side of (2.19) depends only upon the W™ values with n’ < n. While not strictly necessary,
this ensures that the updates for each mode are uncoupled, speeding up the computation. A
sufficient condition for this is

(2.21) T- miin{ngn{C(m, i)}} > As.

The inequality (2.20) is only needed if we want to use the same 7 at all grid points instead
of selecting a smaller near 92 only. But if this 7-uniformity is desired, satisfying both (2.20)
and (2.21) requires

As < Az
min{C} ~ max{|f|}

(2.22)

We note that even though the above restriction looks similar to a Courant—Friedrichs-Lewy
(CFL) condition, it is not needed to guarantee the stability (semi-Lagrangian discretizations
are unconditionally stable) but simply to ensure the causality (and hence the efficiency) of
our discretization.

Under certain conditions, (2.19) may be also reinterpreted as a finite differences discretiza-
tion of the PDE (2.14). To give a concrete example, suppose that d = 1, and the domain
Q =1[0,1] is approximated by a grid of regularly spaced points denoted xj = kAxz. Further-
more, suppose that there is a mode ¢ where C; =1 and f;(x) = fir > 0. If we choose 7= As,
then (2.19) for n+ 1 becomes

M
Wi’?;l = ZPij(AS)Wj(xk + fikAs, sp)

j=1
= WZ(CI,‘]@ + firAs, Sn) + Z /\ijAS [Wj (mk + firAs, Sn) — Wz(xk + firAs, Sn)]
J#i
n kaAS n n
= Wi,k + Tx (Wi,k+1 — Wi,k) + Z )\ijAS (Wj — Wl) (.Z‘k + firAs, Sn);

J#i

+ Ny (W = W) (i + firAs, 5n) =0,

Wi } [Wznlj - Wik
JFi

W1 = Wi
(2.23)  fu [ A s
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which is a consistent first-order finite differences discretization of (2.14). Furthermore, in this
one-dimensional example, the CFL condition for this discretization is exactly (2.22). The
scheme (2.23) is monotone (and thus stable [18]) whenever this CFL condition is satisfied. It
is important to note that the summands in (2.23) are evaluated at zy + fixrAs (and therefore
are convex combinations of W™ values at zj and xp41). Evaluating those terms at the naive
choice of x; would result in a nonmonotone discretization, which is in fact unstable.

To compute the minimum attainable cost s°(x) and the probability w®(x) of attaining
it, we use first-order semi-Lagrangian discretizations of (2.17) and (2.18). For d = 1, the
discretized equations for s(x) are

s%(z) = min xi sox/} T ;
(o) =min { Ci(au) 2 4 ) . RO

(2.24) so(xk) = miin {gi(zx)}, T €Q,
where

W — k+1, fi(xk)>0;
k=1, fi(z)<0.

In 1D, this system of equations can be solved efficiently with two iterative “sweeps”—first in-
creasing and then decreasing in k. In higher space dimensions, it can be solved in O(M N log(NV))
time using a Dijkstra-like method.

In the process of solving for s°(x), we also solve (2.18) using a first-order semi-Lagrangian
scheme. Using Z(z) to denote the argmin set of (2.24), the values of w? are initialized
according to

wo(l’k) _ 1, XL € Q,i GI(.rk);
! 0 otherwise.

Whenever the value of s%(zy) is updated, we simultaneously update w? according to

0 Az . 0 .0 , ; .

o, i & I(wy).

These values of s°(z) and w?(x) are then used as initial/boundary conditions® for computing
w;(x). This provides a speed improvement and also reduces the smearing of w;’s discontinuities
due to numerical viscosity.

2.4. Experimental results. We illustrate our approach with three examples of uncon-
trolled PDMPs on R and R?. In all of these, we assume Q = 99, C =1, and ¢ = 0, ensuring
that the cumulative cost J corresponds to the time to 0€2. For simplicity, we will also assume
uniform transition rates, i.e., A\jj = A >0 for all 7 # j.

3Since the graph of s°(x) is generally not grid aligned in Q x S, such a domain restriction requires either a
use of “cut cells” just above s = s°(x) or a conservative “rounding up” of s° values. Our implementation relies
on the latter, which introduces additional O(As) errors.
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Example 1. We start by considering a “sailboat” test problem described in the intro-
duction with Q = [0,1], Q = {0,1}, M = 2, f;(z) = (=1)*", and symmetric transition rates
A12 = o1 = 2. For a fixed number N of gridpoints, we set As= Az = ﬁ, as this is the largest
value of As that satisfies (2.22). Moreover, this guarantees that no actual interpolation is nec-
essary in (2.19), as W is only evaluated at gridpoints. We note that solving these discretized
equations is equivalent to finding the CDF of a discrete PDMP such as the one pictured in
Figure 1, except with a larger number N of nodes. We solve this problem for s € [0, 1], but
also precompute s%(z) and w(z) (see Figure 2(A)—(B)) to reduce the computational domain
for w;’s.

The key advantage of our approach is that it approximates the distribution J for all
starting configurations simultaneously. Once w;’s are computed, we can freeze (z,7) and vary
s to study the CDF. In Figure 3(A)—(B) this is illustrated for two starting locations = = 0.3
and x = 0.7. But it might be even more revealing to fix a particular deadline s and consider
the probability of meeting it from all possible initial configurations. In Figure 4 we show such
graphs of w;(x,s) for four different s values. Geometric properties of these functions have a
natural interpretation, which we highlight focusing on mode 1 and s =0.25 (the blue plot in
the first subfigure). First, regardless of mode switches, s = 0.25 is not enough time to exit

0(, 0 0, 0

1.0 s°(z) 1.0 w; () 1.0 s°(z) 1.0 w; ()

0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2

0.0 - - — 0.0 - - - 0.0 - - o 0.0 - - -

0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00

Figure 2. Minimum cost s°(z) and probability w?(x) of attaining that minimum cost. Subfigures (A) and
(B) are for Example 1 and (C) and (D) are for Example 2. Graphs of w? are shown in blue for i =1 and in
red for i =2.

wi(z, s) for x = 0.30 wi(z,s) for z = 0.70 wi(z, s) for z = 0.30 wi(z, s) for x = 0.70
/ / 0.75
0.5 0.5 0.50

0.0

\

0.0 0.00 0.00 {_smmmm——

0 1 2 0 1 2 0 1

(A) (B) (©) (D)

Figure 3. CDF for a particle starting at initial position x, in mode 1 (blue) and mode 2 (red). In subfigures
(A) and (C), the initial condition is x = 0.30, while in subfigures (B) and (D) the initial condition is z =0.70.
Subfigures (A) and (B) are for Ezample 1, and (C) and (D) are for Example 2.

[
[
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w;(x, §) for s = 0.25 w;(x, §) for 5 = 0.50 w;(x, §) for s = 0.75 w;(x, §) for 5 = 1.00

0.50 0.50 0.50 0.50

0.25 \ / 0.25 \/ 0.25 \ / 0.25

U'()?L[) 0.5 1.0 U'()?L[) 0.5 1.0 []'()?)4() 0.5 1.0 [)'0?).[) 0.5 1.0
x T xr T

Figure 4. Example 1: Equal speeds, with a symmetric transition rate A = 2. Fach subplot is a snapshot of
wi(z,s) =P(Ji(x) < s) for a specific value of s. In mode 1 (blue), the particle moves to the right with speed 1.
In mode 2 (red), the particle moves to the left with speed 1. Computed on Q x S =[0,1]? with Az = As = 0.001.
w;(z, 5) for § = 0.25 wj(x, 5) for 5 =1.00

wj(x, 5) for 5 = 0.50 w;(z, 5) for § =0.75

1.00 1.00 1.00 1.00

0.75 0.75 0.75 0.75

0.50 0.50 0.50 0.50

025 \ 025 \ 025 / 025

0-08% 05 /1.0 008 05 o %5 05 ro "% 05 )
X T X X

Figure 5. Ezample 2: Unequal speeds, with a transition rate A= 2. Fach subplot is a snapshot of w;(x,s) =
P(Ji(x) < s) for a specifc value of s. In mode 1 (blue), the particle moves to the right with speed 1/2. In mode
2 (red), the particle moves to the left with speed 1. Computed on Q x S = [0,1]* with Az = As=0.001.

if we start too far from @Q, so, w1 = wy = 0 for all x € (0.25,0.75). Second, starting from
2 =0.75 and moving right with speed one, we will have just enough time to reach ) provided
we experience no mode switches, and if any switches occur the resulting time to target will
be higher. So, the jump discontinuity at x = 0.75 is precisely the probability of zero mode
switches occurring in s = 0.25 time units. (We note that this discontinuity disappears in the
last subfigure since s = 1.00 is enough time to reach () with no mode switches starting from
any (x,7) € Q x M.) Finally, a similar argument explains the behavior for starting positions
on x € (0,0.25). Since we start in mode 1, the only hope of meeting the s =0.25 deadline is a
quick switch to mode 2. Starting from x = 0.25, a timely arrival would require an immediate
mode switch, and since this happens with probability zero, wi is continuous at this point.

Of course, the probability of meeting a deadline is also significantly influenced by the
switching rates. While we do not illustrate this here, the same example is repeated with a
range of symmetric and asymmetric rates in Figure 7 of section 3.

Example 2. We modify the previous example by considering unequal speeds of motion in
different modes: f; =0.5 and fo = —1. The CDFs for two starting locations x = 0.3 and x = 0.7
are shown in Figure 3(C)—(D), while the plots of w;(z,s) for four different values of s can be
found in Figure 5. We note that in mode 1, interpolation is now necessary in (2.19), which
results in numerical diffusion smoothing out discontinuities, as can be seen in the right two
subfigures. The absence of such artifacts in the first two subfigures is an additional benefit
of precomputing s%(x) and w(z), shown in Figure 2(C)—(D), to reduce the computational

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/28/23 to 68.175.156.83 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

QUANTIFYING AND MANAGING UNCERTAINTY IN PDMPs 827

domain for w;’s, e.g., for the first subfigure, all = € [0.25,0.875) have s°(z) > s = 0.25 and so
are assigned an exit probability of 0, removing the need of interpolating across discontinuities.
In contrast, at s =0.75 all x have a nonzero probability of exiting, so interpolation across the
discontinuity at z = 0.625 is unavoidable.

Example 3. We now consider a two-dimensional version of Example 1, with Q = [0,1] x
[0,1], @ = 09, M = 4, and A = 1. In all modes, the motion is with speed |f| = 1, but
the directions of motion differ: «+,1,—, and | in modes 1,...,4, respectively. Numerical
approximations of w;’s for different values of s are shown in Figure 6. The distinct delineations
between darker and lighter regions are analogous to the discontinuities in the earlier one-
dimensional cases. For example, given s < 0.5 and starting positions along the line y =0.5, a
timely exit is only possible to the left (via mode 1) or to the right (via mode 3). Therefore,
cross sections of w; and ws along y = 0.5 at s = 0.25 in Figure 6 coincide with the one-
dimensional graphs for s = 0.25 in Figure 4. However, as we move closer to the corners of
the domain, all four modes have an effect on the probability of exit. For example, the region

wy wy wy |
s =0.25
s = 0.50
s =0.75
s = 1.00

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Ezample 3: Mode switching in 2D with transition rates A=1. The particle moves < in mode 1,
1 in mode 2, — in mode 3, and | in mode 4. Computed on Q x S =[0,1]* with Az = Ay = As=0.01.
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along the diagonal near the top right corner of the w; graph has higher exit probabilities
than surrounding regions because there are multiple possible timely exit strategies. These
two-dimensional phenomena become prevalent for higher s values.

Remark 2.2 (related models in biology). As noted in the introduction, similar “velocity
jump processes” are also used to model dispersal in biological systems [38, 33]. In that
context, all dispersing agents perform long runs with constant velocity but occasionally switch
modes/directions. The usual approach is to derive a system of PDEs governing the evolution
of agent densities p;(x,t) in corresponding modes i € M. The symmetric unbounded case in
1D (i.e,, Q =R, M =2, and A3 = A9;) is particularly well-studied, with the overall density
p = p1 + p2 evolving according to the “telegraph equation” [28]. Taking A2 # A21, one
can similarly model chemotaxis. If 2 = R? or R?, one could use a larger number of modes
to describe many possible directions of motion, with A;; chosen to reflect a possible bias in
switching (e.g., giving preference to new directions more closely aligned with the preceding
run—as is the case for E. coli bacteria). Letting M — oo, one can also directly model all
possible directions of motion by switching to integro-differential equations [38].

While our focus on a single performance measure J might be restrictive for many of these
applications, there are also some settings where it can be advantageous. For example, if one
assumes that agents are removed upon reaching @, the number of them still remaining by the
time ¢ could be in principle computed as

(2.26) R(t) =Y / pi(x,t) de.

iem’NQ
But any change in p;(x,0) would make it necessary to resolve a system of PDEs for p;(x,t)’s
before reusing (2.26). Here we can offer a much more efficient method by setting C' =1 and
q =0, computing w;’s from (2.14) only once, and then using an alternative formula that works
for all initial densities

(2.27) R(t) =) / pi(x,0) (1 — w;(x, 1)) de.
iem’NQ

3. Bounds on CDF. We now turn to PDMPs with parameter uncertainty—in addition
to the inherent aleatoric uncertainty due to mode switches. In section 2, the uncertainty of
the outcome could be fully characterized by its CDF computed based on the known transition
rates between modes, \;;’s. Here, however, we consider the case where we only know a range
of potential \;; values. There are two natural models of epistemic uncertainty in this situation,
and it is meaningful to consider the upper and lower bounds on the CDF with each of them.
We focus on a case where the true transition rates are free to fluctuate within the given range
and may take on different values at different times. The upper and lower bounds on the CDF
can be then found by considering a nonlinear version of the coupled PDEs seen in section 2.
This can also be viewed as an optimal control problem, where the controller is either helping
or hindering the particle’s exit by choosing the transition rates adaptively.

The alternative model of epistemic uncertainty is to assume that all transition rates remain
fixed (though unknown) throughout the process. We provide some experimental results for
this case as well, though do not propose any computationally efficient methods for finding
sharp CDF bounds.
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3.1. Deriving PDEs. We now extend the results of section 2.2 by considering the case
in which the transition rate matrix A = ();;) is not necessarily constant. Suppose there are
known a;j,b;; for each pair i # j, such that each \;; may vary in the interval 0 < a;; <
Aij < bi; throughout the process. If L is the set of possible transition matrices satisfying
these constraints, we will assume that A might be changing but remains in L throughout the
process. In this section, we will use A; to denote the ith row of A, specifying all transition
rates from mode 7. We will also use L; to denote the set of all allowable ith rows satisfying
the above constraints.

We compute an upper bound for w;, denoted w;r , by taking its initial and boundary
conditions to be the same as w;, and adaptively selecting the A; € L; which maximizes

w; (x,s). Similarly, for the lower bound w; we take the A; € L; which minimizes w; (x, s).
Hence, for each mode i, the bounds w;L and w; satisfy the PDEs:
(3.1)  Vuw(x,s)- f;(x) — C-(w)awj( ) + max Z)\ [ —w (x s)} =0;
v ! ‘ 0s A€L; g v ’
3.2 Vw; (z,s) - fi(x —C’Z-:naw—; +m1% )\” w; (x,s) —w; (s =0
ds WS

with initial and boundary conditions (2.15) and (2.16). We note that if a;; = b;; for all i # j,
there is no parametric uncertainty, each L; is a singleton, and the above equations reduce to
(2.14).

As with the computation of w;’s through (2.14), it can be helpful to precompute the
minimal attainable cost s(z) and the probability w)(x) of achieving such a cost. Since A
is not constant, instead of having a probability of attaining the cost s°(x) we have a lower
bound w? ""(x) and an upper bound w?’+(w) for that probability. We may compute s°(z)
in precisely the same way as in (2.17) since that formula does not depend on A at all. On

the other hand, to compute w?’+(a:) we must modify (2.18) to account for the unknown (and

possibly changing) A:
— vl () f. % () — Ot ~ :
0=Vuw) " (x) fz(m)+ggl>i{§)\w [w] () — w; (m)}}, zeQ\Q,icl(x);
Ve

wd () =1, z€Q,i€l(x);
(33) wy"(x)=0, xeQidI(x).

Similarly, to compute w?’f(a:) we have

():Vw?’*(a:)-fZ )+ mln {Z)‘U [ ?’ —w?’f(ac)} }, zeQ\Q,iel(x),
JF#i
w) () =1, z€Q,icI(x);
(34)  w) (@) =0, zE€Q,i¢I(x).
In both cases, Z(x) is the argmin set of (2.17) as in (2.18).

3.2. Calculating bounds. For numerical computations of the bounds described in sub-
section 3.1, we rely on a discretization similar to that presented in subsection 2.3. When 7 is
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small enough that the approximations in (2.10) can be made, this optimization can be written
recursively. For the CDF lower bound w; («,s), the semi-Lagrangian scheme is

(3.5) w; (z,s) =w; (,5)+ min {TZ)\Z‘]‘ [w;(ﬁ:,g) —wi_(fc,§)] },

ANieL; .
J#i

where & = Fj(x) and § = s — 7C;(x). Recall from (2.21) that C;(x) > 0 so it is always the
case that § < s. Therefore, w; (&, 5) has already been calculated and so can be used in the
computation of w; (x,s).

For an efficient implementation of (3.5), the optimal A* € L can be found explicitly. When
minimizing w; (x, s), we would naturally like to subtract as much as possible and add as little
as possible to w; (Fj(x), s — 7Cj(x)) = w; (&,5). Therefore,

[w.—(@,g) - w;(ﬁ;,g)} <0 = A =by;

(3.6) [w.—(:;;,g) —wi_(:?:,é)} >0 = A = ay.

For the the CDF upper bound w;r , the scheme is similar modulo replacing min with max
in (3.5) and flipping the signs of inequalities in (3.6).

3.3. Experimental results.

Example 4: CDF bounds and comparison to fixed-A CDFs. We now generalize Example
1 from subsection 2.4 to consider epistemic uncertainty. Recall that @ =1[0,1], Q =09Q, C =1,
and ¢ = 0 so that the cumulative cost J corresponds to the exit time, with M = 2 and
fi = (=1)"1. We will also assume that \;; € [1,4] for all i # j. In Figure 7 we display our
results for a particle that starts moving rightward (in mode 1). The graphs shown in blue are
the upper and lower bounds on the probability of a timely exit (i.e., before a specific deadline
5) for all initial positions . The bounds on CDF for two starting positions & are shown in
Figure 8. All of these bounds are computed from (3.1) and (3.2) for the model of epistemic
uncertainty where A = (\;;) is allowed to fluctuate within L. Under this model, these bounds
are sharp since they are computed by finding CDF-maximizing (and minimizing) sequences
of A’s.

We can also compare the blue bounds to the corresponding timely exit probabilities for a
process containing epistemic uncertainty via fixed and unknown (possibly asymmetric) transi-
tion matrix A. The green curves shown in Figures 7 and 8 are computed by repeatedly solving
(2.14) for a coarse grid of specific A’s in L. It should be noted that processes with this type
of epistemic uncertainty are a subset of those previously discussed, and so the blue bounds
will definitely hold but will no longer be sharp. This lack of sharpness is not surprising since
changing the transition rate can often result in a “better” (higher or lower—depending on the
bound) probability of timely exit. However, calculating tighter bounds for a “fixed-unknown-
A7 case is computationally expensive. By inspection of the experimental data, it is clear that
such sharp bounds would have to be composed of many individual fixed-A CDFs.
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wi(x, §) bounds for 5 = 0.25 . wi(x, §) bounds for 5 = 0.50

0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.8 1.0

T T

Figure 7. Ezample 4: bounds on the probability of timely exit (starting in mode 1) for four different deadline
values 3. (Probabilities and bounds for starting in mode 2 can be obtained by a mirror symmetry relative to
the line © = 0.5.) Blue bounds are produced under the varying rates assumption by solving (3.1)—(3.2) for
A12,A21 € [1,4]. Green curves are produced under the fized rates assumption by solving (2.14), each corresponding
to a specific (M2, 1) €4{1,2,3,4} x {1,2,3,4}. The darkest four curves are those associated with A2 =1, the
next four are those associated with 12 =2, and so on. Computed on Q x S =[0,1]* with Az = As = 0.001.

4. Optimizing the CDF. The PDMPs considered in previous sections were not control-
lable in any way. Since the dynamics are deterministic in every mode, each random trajectory
was fully described by the initial (state, mode) pair and the discrete time sequence of mode
switches. The goal was to develop efficient methods for approximating the CDF of the cost
accumulated up till termination. We now turn to controlled PDMPs [20]—a modeling frame-
work useful in a wide range of applications, including production/maintenance planning [12],
control of manufacturing processes [1, 11, 37, 42], multigenerational games [30], economic
growth and climate change modeling [31], trajectory optimization for emergency vehicles [4],
preventing the extraction of protected natural resources [13], and robotic navigation [27, 45].

We start with expectation-optimal controls considered in the above references, but then
switch to selecting controls to manage the uncertainty in J and provide some notion of
robustness. Robust controls help practitioners to guard against both modeling errors and
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wi(Z, s) bounds for = 0.30 wy(Z, s) bounds for = 0.70

Figure 8. Ezample 4: bounds on CDF (starting in mode 1) for two different initial positions T = 0.3 and
T =0.7. See a detailed legend in the caption of Figure 7.

prohibitively bad rare outcomes, which may result from random switches. It might seem
natural to mirror the robust approaches popular in traditional stochastic control, but we find
them lacking in the PDMP context. H., controls are the mainstay of robustness for many
processes with continuous perturbations [8], but they are not easily adaptable for discrete mode
switches. Another popular idea is to minimize E[exp(87)], with the risk-sensitivity coefficient
B > 0 reflecting our desire to avoid bad outcomes [26]. For small 5 values, this is roughly
equivalent to minimizing a convex combination of E[J] and Var[J]. While implementable
with PDMPs, this method does not provide any guarantees on the likelihood of bad scenarios.
We thus develop a different approach to maximize the probability of not exceeding a specific
cumulative cost threshold s. In subsection 4.2 we develop PDEs to find such optimal policies
for all initial configurations and all threshold values 5 simultaneously. The numerical methods
and computational examples (for d = 1 and d = 2) are covered in subsections 4.3 and 4.4,
respectively.

4.1. Controlled PDMPs and expectation-optimal policies. To obtain a controlled PDMP,
we will assume that both the running cost C' and velocity f also depend on additional control
parameters, which can be changed dynamically while the system travels through 2 x M. We
will assume that the set of available control values A is a compact subset of R™. Throughout
this section, we will slightly overload the notation by using a to refer to a generic element of A
and a(-) to refer to a generic feedback control policy a: (2 x M) — A, which selects a control
value based on the current system state. Once we select any specific a(-), we can define

(4.1) f(x,i)=f (x,i,a(x,i)) and C(x,i)=C(x,i,a(x,i)),

with (1.1)—(1.3) describing the resulting trajectory and cumulative cost. The latter will be
denoted 70 (x,i) = .7;1(') () to highlight the dependence on the chosen control policy. The
corresponding expected cost u?(') = IE[jia(')(:c)] and the CDF w?(')(m, s)= P[%a(')(m) < s] can
then be found from (2.9) and (2.14), respectively. However, in controlled PDMPs literature the
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problem is usually first formulated as an optimization over a broader class of piecewise open-
loop policies, and the dynamic programming argument is then used to show that an optimal
policy can be actually found in feedback form. We provide an overview of this construction
below, but refer to [20, 47, 21] and related literature for technical details.

In a deterministic setting, one considers the set of measurable open-loop control functions
A° ={a’:R — A}, with a®(t) specifying the control value that will be used at the time ¢. For
PDMPs, a piecewise open-loop policy specifies a new open-loop control function to be used
after each mode switch. Adapting to our setting, we can define a set of piecewise open-loop
policies as A={a: (R x 2 x M) — A°}. The three inputs to a encode all information about
the last mode switch encountered before the current time ¢: the time and position (t4x > 0
and xx € Q) where that switch has happened and the resulting mode i4. If no switch has
occurred since we started, we will take ¢4 = 0 and (x4,ix) equal to the original (position,
mode) pair. Assuming o(ty,Ty,iyx) = a(-) € A°, the control value to be used at the time
t >ty will be specified by a®(t —tx) until we switch from the mode ix. Slightly abusing the
notation, we can now replace (1.1) and (1.3) by

(4.2) Y' (1) = Finw (W), ot —ty)),
Ta,i
(4.3) T@) = [ Coy (w0t~ 1)) dt + a(y (To)m (T, )
0

where a® € A° is the open-loop control function currently in effect at the time ¢ based on
the policy a € A and a sequence of mode switches that have occurred so far. Recall from
section 1 that y(0) =, m(0) =4, and the changes in mode m(t) are governed by the matrix
of switching rates A. In this section, we will further assume that all f,’s and C;’s are Lipschitz
continuous in both arguments.

The usual goal in controlled PDMPs literature is to minimize the expected total cost up
to the termination time. The value function is thus defined as
(4.4) i(x,i) =t;(z) = inf E[7*) ().

a()eA

The existence of an expectation-optimal policy au(-) € A such that 4;(x) = w0

K3
guaranteed under additional assumptions, e.g., if the set

v(z,i) = {(r, f;(x,a)) | r>Ci(xz,a),a c A}

(x) is only

is convex for every x and i. (Alternatively, the existence of optimal policy is also assured if
one allows relazed control functions, with a® taking values in the set of probability measures
on A; see [6, 47].) If such an optimal o (-) € A exists, it is easy to see that a “tail” of a must
be also optimal for every (y(t),m(t)) as long as the process continues. Otherwise, we could
obtain an improvement for the starting configuration (y(0),m(0)) = (x,7) by concatenating
o, up to the time ¢ with whatever policy is optimal starting from (y(t),m(¢)). A version of
this tail-optimality property holds more generally, even when no expectation-optimal policy
exists:

(4.5) i(x,i) = inf E [ /0 Tcm(t) (y(t),ao(t—t#)) dt + ﬂ(y(T),m(T))}

a()eA
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for all 7 > 0 sufficiently small to guarantee that y(t) € Q\Q for all t € [0,7], a(-) € A, i.e.,
we assume that 7 is small enough so that the system cannot reach @ by t = 7 regardless of
the sequence of mode switches. A standard argument based on Taylor-expanding (4.5) in 7
(e.g., see [45, section 2]) shows that if @;’s are sufficiently smooth, they must satisfy a system
of Hamilton—Jacobi—Bellman PDEs:

(4.6) znelg{Vﬁz(w) -fi(x,a)+ Ci(xz,a)} + Z Xij(w(x) — () =0, xeQ\Q,ieM,
i

with boundary conditions 4;(x) = ¢;(x) for all x € Q. In a nonsmooth case, these value
functions can be still interpreted as the unique viscosity solution [21]. The system (4.6) is a
natural nonlinear generalization of (2.9) and can be similarly discretized by semi-Lagrangian
techniques. However, the coupling between different modes makes it difficult to solve the
discretized system efficiently even in the case of simple/isotropic cost and dynamics. A variety
of Dijkstra-like noniterative methods developed for deterministic problems (e.g., [3, 14, 36, 43,
44]) will not be applicable for A # 0 and one has to resort to slower iterative algorithms instead
[27, 45].

Once ;’s are computed, an optimal feedback policy a.(x,i) can be defined pointwise (for
all  and i simultaneously) by utilizing arg min values® from (4.6). The a.(-)-determined
running cost and dynamics defined by (4.1) will be only piecewise Lipschitz in @, which is
precisely the setting considered in section 2. Finally, we note that the above can be also
viewed as an implicit definition for a piecewise open-loop optimal policy a, € A:

a*(t#a m#7i#; t) = a4 € argelilin {Vﬂz# (y(t)) : f’L# (y(t)v a) + C’L# (y(t)’ a)} .
a

4.2. PDEs for threshold-specific optimization. In contrast to the above expectation-
centric approach, our goal is to generalize the CDF-computation methods of section 2 by
choosing control policies that maximize the probability of desirable outcomes. Two subtleties
associated with this approach are worth pointing out before we start deriving the optimality
equations. First, the idea of “generating the optimal CDF” is misleading unless we state
the goal more carefully. Given any fixed initial configuration (z,7) and two feedback control
policies a;(-) and as(-), it is entirely possible (and actually quite common!) that w?l(') (z,s1) >
wfz(')(cc,sl) while wfl(')(:p,SQ) < wfz(')(w,SQ). So, which of the resulting CDF's is preferable
depends on which threshold is more important: is our priority to minimize the chances of the
cumulative cost exceeding s1 or sa? In this threshold-specific optimization setting, we will say
that a policy a(-) is s-optimal if w?(’)(a:, s) > w?(')(m, s) for all allowable control policies b(-).

The second subtlety is in choosing the set of inputs used to define feedback control policies.
In threshold-specific optimization, the optimal actions are no longer fully defined by the
current state («,). In addition, they also depend on the cost incurred so far and the desired
threshold for the cumulative cost up to the termination. To handle this complication, we add

4Additional assumptions on f;’s and C;’s can be imposed to ensure that this arg min is a singleton as
long as 4, is differentiable [6]. But even with these assumptions, the expectation-optimal policy will still be
nonunique at the points where Vi, does not exist, and a tie-breaking procedure (e.g., based on a lexicographic
ordering) can be employed to avoid the ambiguity.
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an extra dimension to our state space, defining a new expanded set of piecewise open-loop
control policies A, = {a: (R x Q@ x M x R) — A°}, and the expanded PDMP dynamics:

(4.7) y(t) = fm@( (1), ot = t4))
y(0)=z¢
¢ () = Cong ((t) (t—t4))
©=0
m(0)=ie

Here c(t) represents the total cost incurred so far and m(t) is the current mode, evolving
through a continuous-time Markov process on M. Similarly, the last argument in a € A,
is cy, the total cost accumulated by the time of the last mode switch encountered so far.
Assuming ou(ty, Ty, iy, cy) = a’(-) € A, the control value to be used at the time ¢t > t4
will be specified by a®(t —t4) as long as we remain in mode ix. We can now define our new
threshold-aware value function:

wi(x,s) = sup P [Jia(')(m) <sl|.
o )eA,

We note that a similar expansion of state space and policy class could also be used when
defining 4, but it would not make any difference due to the linear properties of expectations. In
contrast, the c-dependence of policies is essential for writing down the tail-optimality property
of w;’s

(4.8) i(,i,s) = sw E[o(y(r), m(r), s —e(r))]

a()eA.
for all 7 > 0 sufficiently small to guarantee that y(t) € Q\@Q for all ¢t € [0,7], a(-) € A..

Similarly to the derivation of (2.14), a Taylor expansion of (4.8) yields a system of nonlinear
PDEs satisfied by w;’s

ow; N .
max {Vwi(:n,s) - fi(x,a) — C’i(az,a)ai(w,s)} + ;)\Zj (wj(x,s) —wi(x,s)) =0
(4.9) VYee\Q,ie M, s>0,

with the same initial and boundary conditions previously specified for w;’s in (2.15) and (2.16).
We can also restrict the computational domain for w;’s (and decrease the numerical diffusion
in the discretization) by generalizing equations (2.17)—(2.18) and defining §° and @{’s

4.3. Discretization of PDEs and control synthesis. A semi-Lagrangian discretization of
(4.9) can be obtained on a grid similarly to the treatment of an uncontrolled case in section 2.3:

acA

M
(4.10) W}, = max { > pii(r) W (:ck +7f (xR, a), sp — 7Cy(wp, a)) }

Here W %~ Wi (X, sn) is a grid-function and W is its interpolated version defined on 2 x R.
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Once all /V[Z;’s are computed, they can be used to approximate the optimal control not just
on the grid but for all (x,,s) by choosing control values from the set

(4.11) A(x,i,s) = argniax{ZpU Wj (:Iz—l—Tfi(ac,a), s—TCi(ac,a))}.
ac j=1

Wherever Vw; is well-defined, we can also use A(x,i,s) to denote the argmax set in (4.9),

with A(x,i,s) interpreted as its grid approximation.

We note that this procedure allows synthesizing a policy (approximately) optimal with
respect to any desired threshold value. To obtain an s-optimal feedback policy a(-), we
would simply need to select a(x,i,c) € A(a:, i,5—c). However, such policies will be generically
nonunique since V; (&, s) =0 might hold on a large part of Q x (0,+00). For example, there
is always a “hopeless region” H = {(x,s) | w;(x,s) =0 for all i € M} since this equality holds
by definition whenever s < 8%(z). If C;’s do not depend on a, then Va;(z,s) = 0 implies
A(z,i,s) = A. If we start from (x,%p) such that w;,(xo,5) < 1, then every policy will have
a nonzero probability of exceeding the threshold s. Which control values are used on H does
not change the probability of “success” (%?(')(wo) < §), but it can significantly impact the
overall CDF of that policy. In many problems there is also an “unconditionally successful”
region U = {(x,s) | wi(x,s) = 1 for all i € M}. If w;, (xo,5) = 1, then an optimal policy
will never exceed the threshold § regardless of the timing of mode switches. If (xg,$) is in
the interior of U, then the success is guaranteed regardless of control values chosen until we
reached OU, but these choices will generally affect the CDF. To resolve these ambiguities,
we use a tie-breaking procedure in defining optimal policies: whenever /Al(:r:,i,s) is not a
singleton, we select its element that minimizes the expectation. (On H this will coincide with
an expectation-optimal policy a.(:). But on U this need not be the case since our optimal
policy is c-dependent and we need to account for expected values on 0U.)

Assuming that 171”,6 is a grid-function approximating the expected outcome and V; is its
interpolated version, we can summarize the computational process as follows:

(4.12) sz] (xk +7fi(xK, @ k)a sn — 7Ci(xk, d?,k))a
(4.13) = 70i(xk, a7,) + me (wk +7f (%K, G7'x)s S0 — TCi(ka,lek));

(4.14) ajp € argmin { i(Tk,a —I—szj (a:k—i—Tf (rk,a), n—TCi(a:k,a)>}.

aEA(mk,i,sn)

The above description removes almost all ambiguity from the synthesis of threshold-optimal
policies, but the arg min in (4.14) might still have multiple elements on a set of measure zero
in  x &. In such rare cases, additional tie-breaking can be used based on another criterion
(e.g., a lexicographic ordering).

4.4. Numerical experiments. We first illustrate these subtleties of policy synthesis with
a simple example on a one-dimensional state space 2 = [0,1] and two modes, each with its
own preferred (faster) direction of motion.
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Controls for mode 1 Lo Controls for mode 2

i T

Figure 9. Example 5: a map of threshold-optimal control values with position on the horizontal azxis and
time remaining until the deadline on the vertical axis. The purple color represents the optimal choice of
moving to the left, and the yellow color represents the optimal choice of moving to the right. The shaded
area with the cyan border represents the “hopeless region” H, where w;’s are uniformly zero and the threshold-
specific optimal policies coincide with the expectation-optimal policy. The “unconditionally successful” region
U is shown above the black dashed line. Under grid refinement, everything in the left part of U becomes
purple and everything in the right part of U becomes yellow in both modes. The red dashed vertical lines
show the point of direction-switching for the expectation-optimal policy. Computed with Az = 1.25 - 1074,
As=0.625-10""

Example 5. More precisely, the control value a € A = {—1,1} specifies the chosen direction
of motion, and the dynamics are f;(z,a) = a + (—1)""'1 with i = 1,2. In other words, in
mode 1 we can move right with speed 3/2 and left with speed 1/2, while in mode 2 it is
the opposite. We use ¢ = 0 on @ = 92 and C7; = Cy = 1, ensuring that the cumulative
cost J is just the time to target. For simplicity, we also use symmetric switching rates
A12 = A91 = 2. The resulting optimal policies and the contour plots of w;(x,s) are shown in
Figures 9 and 10, respectively. In Figure 11 we fix a starting configuration and compare the
CDFs of two different policies. The expectation-optimal feedback policy a.(-) is obtained by
solving (4.6) and its CDF is then found by solving (2.14). Unfortunately, the same approach
is not available for threshold-specific optimal policies: for an s-optimal feedback policy a(-),
there is no reason to expect w;(x,s) = P[jl-a(')(a:) < s] unless s = 5. Instead, we approximate
their CDF using 100,000 Monte Carlo simulations.” Not surprisingly, the threshold-specific
policy reduces the probability of missing the deadline § but at the expense of increasing the
expected time to target.

Moreover, threshold-specific optimal policies (and their respective CDFs) may also vary
significantly depending on the chosen threshold §. To illustrate this, we now consider an

SWhile we do not pursue this alternative here, one could also approximate this CDF by solving the Kol-
mogorov forward equation with initial conditions chosen based on this specific starting configuration (x,1).
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0.8

0.6

0.4

0.2

0.00 025 050 075  1.00 0.00 025 050 075 1.00 00
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Figure 10. Contour plot of W;(x,s) for Example 5. Computed with Az =1.25-10"*, As=0.625-10"*.

1.04

—
@ (0.8

argmax P (j1“<"(0.4) < 0.38)
a(-) e A,

argmin E (jla(')(O.él))
- a()edA

0.0 0.2 0.4 0.6 0.8 1.0
s
Figure 11. Ezample 5: CDF of an expectation-optimal policy (in red) and CDF of a threshold-specific
optimal policy computed for 5= 0.38 (in blue). In both cases, the starting configuration is (xo,io) = (0.4,1).

The value of the CDF at the threshold 5= 0.38 is marked by a blue dot. The vertical dashed lines indicate the
expected value of each policy.

example on a two-dimensional state space 2 = [0, 1] x [0, 1] with four modes, each with its own
faster direction of motion.

Example 6. The control values @ now reside in A= {a € R? | |a| =1}, and the dynamics
are given by

(4.15) fi(@a)=a+ [_8'5], folw,a)=a-+ [095],

fi(x,a)=a+ R‘ﬂ : falz,a)=a+ [_8_5] :
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1.0 1
/N
Va)
/\ﬁ 0-81 argmax P (jla(')(OA, 0.3) < 0.28)
™ a(-) e A,
< 0.6 a(-)
< argmax PP («71 (0.4,0.3) < 0.33>
= 041 a(-) e Ae
% . argmax PP (‘71’1(')(0.4, 0.3) < 0.4)
Y 0.2 abje
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Figure 12. Example 6: CDFs of threshold-specific optimal policies computed for 3= 0.28 (in blue), §=0.33
(in green), and § = 0.40 (in red). The values of the CDFs at each threshold are denoted by dots of the
corresponding color. In all cases, the starting configuration is (xo,yo,%0) = (0.4,0.3,1).

Again, we use ¢ = 0 on @ = 9 and C; = 1 for all i, ensuring that the cumulative cost
J is just the time to 0f2. The switching rates are \;; = 1 for all 4 # j. In Figure 12, we
show the CDFs (each approximated using 10,000 Monte Carlo simulations) for three different
threshold-specific optimal policies with the same starting location. Not surprisingly, each of
these policies is strictly better than others with respect to its particular threshold value. The
contour plots of w;(x,s) at various s-slices are also shown in Figure 13.

5. Conclusion. The versatility of piecewise-deterministic Markov processes (PDMPs)
makes them a useful modeling framework for applications with nondiffusive random pertur-
bations. In prior literature on PDMPs, the focus has been mostly on the average/expected
performance. Unfortunately, this ignores the practical importance of relatively rare yet truly
bad outcomes. The primary goal of our paper is to address this shortcoming and fully charac-
terize the aleatoric uncertainty in a broad class of discrete and continuous PDMPs. We have
accomplished this in section 2, approximating the cumulative distribution function (CDF) for
their outcomes by solving a system of linear hyperbolic PDEs. Although we did not pursue
this here, it would be easy to adapt our approach to compute the CDF of hitting times in
discrete time Markov chains. In a continuous setting, similar ideas could be also extended
to stochastic switching in diffusive systems. Despite our focus on time-till-exit examples, the
presented approach is suitable for a broader class of running costs and PDMP performance
measures. We illustrate this with a bioeconomic sample problem described in the appendix.

For simplicity of exposition, we have assumed the mode switching rates \;; to be constant,
but it should be easy to extend our framework to state-dependent switching rates \;;(x). The
case of \;;’s deterministically evolving in time can be treated similarly by increasing the
dimension of our state space. But random changes in rates present a more serious challenge,
which is also related to handling model uncertainties. The latter is particularly important
in PDMPs since in many practical applications these rates are not known precisely and are
instead estimated based on historical data. It is thus useful to characterize the range of
possible CDFs—a task accomplished in section 3, where tight CDF bounds are developed
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s = 0.125
s = 0.250
s = 0.375

s = 0.500

0.0 0.2 0.4 0.6 0.8 1.0

Figure 13. Contour plots of w;(x,s) for Ezample 6. The transition rate between all modes is A\=1. Fach
subplot contains a snapshot of w;(x,s). Each row has a fized s value, and each column has a fized mode i.
Dynamics are given by (4.15). Computed on Q x S =[0,1]*> with Az = Ay = As = 0.0025.

under the assumption that each (state-independent) transition rate \;; has known bounds
but does not necessarily remain constant throughout the process.

Finally, in section 4 we have extended our methods to control the PDMP dynamics, show-
ing how to maximize the probability of not exceeding a specific cumulative cost threshold s.
Our approach is also related to the stochastic on-time arrival (SOTA) formulation, developed
in a discrete setting by transportation engineers to optimize the routing on stochastic net-
works [23, 25, 41]. In the context of SOTA, there is only one “mode,” but the running cost is
random. While we do not pursue it here, our method can be similarly adapted to optimize the
CDF for a subclass of Markov decision processes with deterministic running cost and random
successor nodes.

Several generalizations of the described methods will broaden their appeal to practitioners.
First, all PDMPs considered here were exit time problems, with the process terminating as
soon as the system enters a specific subset ) of the state space 2. It will be easy to extend
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our approach to finite horizon problems, but the extensions to infinite horizon (with time
discounting of running cost) or ergodic (time-averaged cumulative cost) problems will be
more challenging.

Second, the classical controlled PDMP models in [20, 47] were more general than the
setting presented here: instead of our “mode switching” they considered ODE trajectories
punctuated by random jumps in state space, with both the rate of jumping and the distribution
over the set of postjump positions generally dependent on the prejump state and the chosen
control value. It would be clearly useful to extend our methods to this broader setting. Our
section 3 can be viewed as a small step in this direction, since we are essentially controlling
mode-transition rates to either maximize or minimize the CDF.

Third, there are many potential ways to improve the accuracy and computational ef-
ficiency. Our approach relies on solving systems of hyperbolic PDEs, whose solutions are
typically piecewise continuous. While the described implementation is based on a first-order
accurate semi-Lagrangian discretization, it would be useful to replace these with higher-order
accurate schemes [24]. Our preliminary experimental results based on ENO/WENO [46] spa-
tial discretization in one dimension seem promising, but we have decided to omit them here
due to length constraints. We have also developed a technique restricting the computational
domain by precomputing the minimal attainable cumulative cost. In controlled PDMPs with
an “unconditionally successful” region, further domain restriction techniques might be used
to maximize the probability of desirable outcomes while also imposing a hard constraint on
the worst-case performance. This would mirror the approach previously developed for routing
on stochastic networks [23].

For controlled processes, another interesting challenge is to carefully evaluate all trade-offs
between conflicting objectives. This is usually done by computing nondominated (or Pareto-
optimal) controls, for which any improvement in one of the objectives must come at the cost of
decreased performance based on some other objective(s). With PDMPs, the natural objectives
would include traditional minimization of the expected cumulative cost and maximizing the
probability of not exceeding a threshold (possibly for several different threshold values). In
the fully deterministic case, several methods for multiobjective optimal control have been
developed in the last ten years [22, 29, 34]. It will be useful but more challenging to extend
these to the piecewise-deterministic setting.

It would also be very interesting to explore additional notions of robustness for PDMPs.
Our approach can be viewed as a dual of optimizing the value-at-risk (VaR), in which the goal
is to minimize a specific percentile of the random outcome. We minimize the probability of
exceeding a specific threshold, but similarly to VaR, we provide no guarantees on how bad the
outcomes can be once that threshold is exceeded. The conditional value-at-risk (CVaR) is an
extended risk measure that addresses this limitation. A method based on CVaR optimization
has been developed for Markov decision processes in [16]. It would be useful to extend it to
PDMPs and compare with the threshold-optimal policies described here.

6. Appendix: A fish harvesting example. To show that our general methods are broadly
useful beyond the set of illustrative first-exit time problems considered above, we include an
example based on a PDMP with nonconstant dynamics and a nonconstant running cost in
each mode. We quantify the uncertainty in harvesting fish population (whose changing level
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is encoded by y(t)) in the environment with randomly switching carrying capacity K. As a
motivation for such switching, we note that the fish population in the tropical Pacific depends
on an upwelling of nutrients due to the common easterly winds. In El Nino years, these winds
weaken, temporarily reducing both the upwelling and the carrying capacity.

The usual logistic population growth model ¢’ = r(1 — #)y assumes that the per capita
growth rate decreases linearly with the current population size, starting from the rate r when
y = 0 and decreasing to zero if y reaches the carrying capacity K. This logic reflects the ideas of
increasing competition for limited resources when the population grows. But at low population
sizes, other considerations might be more important—having more individuals might make
it easier to find partners for mating, cooperate in finding food, or fend off predators. This
“Allee effect” [2] is reflected by having a per capita growth rate that first increases (until some
threshold value y = A < K) and only then decreases (until it reaches 0 at y = K). Perhaps
the simplest model that captures this and includes harvesting is

o Yo (50) (- )

Here, h > 0 is the effective fishing efforts coefficient, which we will assume to be constant.
Note that y = 0 is a stable equilibrium for all A > 0, including the no-fishing case h = 0.
(This is because we are modeling a strong Allee effect and 3’ < 0 for all y € (0, A).) But for
sufficiently small h, the system has two more equilibria: an unstable one at y_(h) and a stable
one at a higher y4 (h):

(K — A — ik oy
_Kk+a o e TE =AY

2 2 4K

(6.2)  yx(h)

In this regime, the asymptotic behavior depends on the initial conditions: limy_, o y(t) =
y+(h) if y(0) > y_(h) and limy, oo y(t) = 0 if y(0) < y_(h). As shown in Figure 14, this
bistability disappears in a saddle-node bifurcation at h = h#, marking the onset of population
collapse. However, we make a distinction between two stages of collapse: for all h > h# the
collapse of fish population is imminent since t_li+mooy(t) = 0 regardless of y(0). It can still be
reversed by reducing h sufficiently quickly, but becomes irreversible as soon as y(t) < A. We
will view this irreversible collapse as a terminal event, motivating our choice of the exit set
Q={A}.

Another value of obvious relevance is the optimal level of fishing efforts A* that maximizes
the sustainable yield hy, (h) over all h € [0, h#]. A straightforward calculation shows that

(6.3) bt = QLK K2+A2—4KA+(K+A)\/(K—A)2+KA].

Until now, we have treated all other parameters as fixed and considered the changes to
asymptotic behavior as a function of the chosen h. We now turn to a PDMP model with three
modes, each with its own carrying capacity (K1 = 3.8, Ky = 4, and K3 = 4.2) and with the
other two parameters held constant (r =2 and A =1). For notational convenience, we will
use h;# and h} to refer to the corresponding maximal sustainable and the yield-optimal fishing
rates for each value K; in the deterministic setting (i.e., if you start in mode i and there are
no mode switches). But in our computational experiments, we will assume the switching rates
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4_.\

3 — ]{1 =38
\ — Ky =40

=

/’/ —_— K3 =4.2

—— hj=1.057

Figure 14. Bifurcation diagrams corresponding to the dynamics in each mode. The orange y =0 line is a
stable equilibrium for each value of K. The other two equilibria exist for a range of h values and are shown
in red, green, and blue for K1, Ko, and Ks, respectively. The stable y4(h) is shown by solid lines, while the
unstable y—(h) is shown by dashed lines. The saddle-node bifurcations for each K; are indicated by black dots,
while the Ks-deterministically optimal rate h3 is shown by the gray line.

Harvesting with K = 3.8, h = 1.057, yo = 4 Harvesting with Ky = 4.0, h = 1.057, yp = 4 Harvesting with K3 = 4.2, h = 1.057, yo = 4
4 4 4

Population (y)
Population (y)
o
Population (y)
o

( (
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (t) Time (t) Time (t)

(a) Mode 1 (K = 3.8) (b) Mode 2 (K = 4.0) (c) Mode 3 (K = 4.2)

Figure 15. Deterministic dynamics for modes 1, 2, and 3 with harvesting rate h5 =~ 1.057.

A2 = A32 =0.1, Ao; = Aoz =0.05, and A3 = A31 =0. As a result, the system spends on average
50% of time in mode 2 and 25% of time in each of the modes 1 and 3. So, it is natural to
view K5 as “usual” (or at least as “average”) and it might be tempting to select its optimal
fishing rate h3 ~ 1.057. But if we stay in mode 1 for a sufficiently long time, this rate will lead
to a population collapse since h3 > hf ~ 1.032; see Figures 14 and 15(a). In fact, if we stick
to the same harvesting rate h3 in all modes, this collapse eventually happens with probability
one as long as sy, Az > 0.

One natural question is to quantify the uncertainty in the time until this collapse becomes
irreversible, i.e., a random time T, until y(t) = A =1 for a trajectory starting from y(0) = x
in mode ¢. This could be interpreted as another “first-exit-time problem,” similar to those
considered in subsection 2.4, but with z-dependent dynamics in each mode. Instead, we
have chosen to focus on the CDF for the total amount harvested before the collapse becomes
irreversible,
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T:
(6.4) Ji(x) = /0 hsy(t)dt, wi(z,s) = P(Ji(x) < s),

which requires using a nonconstant running “profit.” To map this back to the notation of
section 2.2, we will take

(6.5) filz)=rz (% — 1) (1 — Ii) — hix and Ci(z) = hx.
Our exit set is Q = {1}; so, we set all ¢;(1) =0 and note that no boundary condition is needed
at the other endpoint since f;(4) <0 for all i.

We solve the three coupled PDEs (2.14) for « € Q = [A, K3] = [1,4] and s € [0,200].
The approximate solution is computed through a semi-Lagrangian scheme (2.19) on a 101 by
120,001 grid, corresponding to Az =0.03 and As =1/600. In this example, max, ; | fi(7)| ~
5.4912 and min, ;) Ci(z) ~ 1.057. So, we use a pseudotimestep 7 = 1/600 to satisfy the
inequalities (2.20) and (2.21).

An obvious lower bound for J;(z) is (z — A), but this does not include all the fish born
and harvested before T,. The sharp lower bound s°(x) can be computed by noting that the
fastest collapse happens if we stay in mode 1 throughout. For the initial condition x = 4
depicted in Figure 15(a), this quantity is approximately s°(4) =~ 14.87. If starting in mode 1,
the probability of such an outcome is w{(x) = exp (—A127 ), where T is the time taken by this
“deterministically fastest” collapse. If starting in any other mode, this outcome would require
an instantaneous transition to mode 1, so, w3 (x) = w§(z) = 0.

Figure 16 presents the corresponding CDFs w;(Z,s) for the initial populations z = 2.2
and & =4, while the graphs of w;(z,3) for three different values of s are shown in Figure 17.
We note that in a deterministic scenario of K = Ky, the sustainable equilibrium would be
y+(h%) ~ 2.8685 and the sustained optimal yield (i.e., the amount perpetually harvested per

wj(x, s) for x = 2.13

=

wj(x, s) for z = 4.00

1.0

0.0 i .
0 100 200 0 100 200

S S

Figure 16. CDF's computed up to s = 200 for two starting population levels: © = 2.13 (left) and x = 4
(right). Red, blue, and green are starting in modes 1, 2, and 3, respectively. Plots represent probability of
trreversible population collapse at or before a harvest of size s. Note that y—(h3) ~ 2.1312; so, with xt =2.13 a
quick collapse can only be prevented by an early switch to mode 3. If starting at x =4 in mode 2 (blue curve in
the right subfigure) the 25th, 50th, and T5th percentiles are s~ 39.09, s~ 66.10, and s~ 112.95, respectively.
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wj(z, §) for § = 20.00 w;(z, §) for § = 40.00 w;(z, §) for § = 60.00

1.0 . 1.0 i 1.0
. o N .
—
0.0 [ — 0.0
3 i 3 i 5 i
i 9 X

Figure 17. Probability of irreversible population collapse before a harvest of size § computed for all start-
ing populations x and three specific 3 values. Red, blue, and green represent starting in modes 1, 2, and 3,
respectively.

unit time) would be R = h} y4(h%) ~ 3.0323. This provides a natural yardstick for thinking
about the argument s used in our CDFs, e.g., based on Figure 16, if we start with y = K» in
mode 2 under the random switches defined by \;;’s, there is an approximately 50% chance of
harvesting at least 21.8 x R = 66.1 before the collapse becomes irreversible.

The above story is based on the assumptions that mode transitions are not observed and
h is chosen once and for all. In reality, declining catch would provide an advance warning
that the population starts to collapse and one could reduce h adaptively. Selecting h < hfﬁ
(or h < min; hfb, if mode switches are not directly observable) would make harvesting indefi-
nitely sustainable. One could also use the methods of section 4 to find the CDF-optimizing
harvesting rates in feedback form. So, our model described above is a vast simplification,
but it already illustrates the promise of presented techniques for quantifying uncertainty in
bioeconomic applications.
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