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Abstract: The development of more sustainable urban transportation is prompting the need for better
energy management techniques. Connected electric vehicles can take advantage of environmental
information regarding the status of traffc lights. In this context, eco-approach and departure methods
have been proposed in the literature. Integrating these methods with regenerative braking allows for
safe, power-effcient navigation through intersections and crossroad layouts. This paper proposes rule-
and fuzzy inference system-based strategies for a coupled eco-approach and departure regenerative
braking system. This analysis is carried out through a numerical simulator based on a three-degree-
of-freedom connected electric vehicle model. The powertrain is represented by a realistic power loss
map in motoring and regenerative quadrants. The simulations aim to compare both longitudinal
navigation strategies by means of relevant metrics: power, effciency, comfort, and usage duty cycle in
motor and generator modes. Numerical results show that the vehicle is able to yield safe navigation
while focusing on energy regeneration through different navigation conditions.

Keywords: connected electric vehicle; regenerative braking; eco-approach and departure

1. Introduction

Currently, climate change and pollution are problems that are being addressed by
the United Nations Sustainable Development Goals. These global issues directly affect
transportation systems [1]. The goal of achieving net-zero emissions has led to the im-
plementation of stricter government policies for vehicle manufacturers and has paved
the way for vehicles powered through alternative energy sources. The automotive sector
has invested more money than any other sector in research and development (R&D) in
the clean energy innovation sector [2]. Longitudinal control has seen the development of
various state-of-the-art algorithms, such as physics-informed deep learning [3] and causal
discovery [4,5], with a greater focus on energy effciency in light of the growing use of
EVs. Electric vehicles (EVs) are currently the subject of new designs, battery research,
and energy-effcient automated navigation strategies [6]. Longitudinal energy-effcient
navigation strategies that extend the driving range for EVs with partial or incomplete
information from its environment are currently open research opportunities.

Automated vehicles (AVs) have been introduced to the navigation environment during
the past two decades [7]. Sensors provide internal data of the vehicle and the environment.
They can be classifed into internal (proprioceptive) and external (exteroceptive) state
sensors [8]. Internal sensors measure values of the dynamic system such as linear and
angular speeds and accelerations, forces, and wheel loads. Inertial measurement units
(IMU), encoders, and global navigation satellite system (GNSS) are the most common
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proprioceptive devices. External sensors retrieve data from the environment, such as
distance to the surrounding elements, or light intensity, e.g., cameras, radars, LiDARs,
and ultrasonic sensors [9]. Sensor data are then processed to compute the internal states
of the vehicle and to perceive its surroundings. Such perception data require fltration
to ensure a reliable performance for low- and high-level systems [10]. Kalman fltering
and its variations are the most common techniques used for data fusion to estimate ego
states and the behavior of external elements [11]. The motion of AVs is controlled by
a navigation system that should select suitable lateral and longitudinal actions. High
dynamic environments represent a challenge for this technology [12].

Connected vehicles (CVs) are considered as a key element for the constantly evolving
autonomous driving and cooperative driving automation felds [13]. They can potentially
increase safety and traffc effciency by sharing information with surrounding vehicles and
infrastructure [14] with the goal of implementing a collaborative strategy to optimize traffc.
Centralized and decentralized architectures have been proposed to test their performance
in terms of communication, intersection control, and vehicle speed management [15].
An enhanced traffc strategy would limit the use of throttle and braking. Consequently, fuel
usage, reduced emissions, and energy regeneration can be exploited during navigation [16].
However, state estimation and macroscopic vehicle control is an open research area to
ensure safe ego navigation that does not completely rely on communication data.

Eco-approach and departure (EAD) is a longitudinal guidance strategy for CVs navi-
gating an urban signalized or unsignalized [17] intersection environment [18]. The main
goal of EAD is to optimize energy, travel time, and comfort by controlling the speed profle
of AVs. EAD strategies can face four scenarios in signalized intersections. The cruise
control (CC) scenario traverses the intersection at a constant speed. Speed-up denotes
when the vehicle increases its speed to cross the road junction. Coast-down with a full
stop decreases the AV speed until it halts at the intersection during a red light. Then, it
continues moving. Lastly, glide gradually slows down and crosses the intersection without
completely stopping [19]. EAD has been tested on internal combustion engine vehicles
(ICEV), leading to savings that can range from 5% to 10% for high entry speed and 7%
to 26% for low entry speed [20]. EAD on CVs relies on signal phase and timing (SPaT)
information. SPaT is a series of messages based on vehicle-to-everything (V2X) commu-
nication systems as established by SAE International J2735 standard [21]. It is intended
to be a guideline for transportation authorities and the automotive industry to control
and communicate within traffc systems [22]. SPaT provides details on the states of the
traffc lights, timing data, intersection location, and road layout. Data are transmitted
at a 10 Hz rate. SPaT can provide information to driver assistance systems to prevent
accidents and to avoid nonessential throttle or braking [23]. Most EAD approaches rely
on communications between vehicles and their surrounding environment: pedestrians,
vehicles, infrastructure, network, and devices [24]. However, in realistic urban scenarios,
not all the information may be available during navigation [25]. Developments of EAD for
EVs assume full connectivity and access to SPaT information and consider vehicle queues
and battery discharge prediction.

The vehicle models used to validate EAD strategies are typically kinematic or sim-
plifed longitudinal dynamic models of ICEVs [26]. However, a powertrain model of the
vehicle provides deeper insight on how power consumption and regeneration relate to
vehicle dynamics, road characteristics [27], battery charging, discharging, and aging [28],
and vehicle motion [29]. Power-effcient longitudinal control for AVs in urban traffc can
be achieved when an EAD system merges SPaT data with a valid model of the vehicle,
facilitating its migration into a physical platform [30]. Through electric drives, EVs are
capable of restoring electrical power to their battery by means of regenerative braking
systems (RBS) [31]. These systems retrieve mechanical power from the vehicle and convert
it into electricity while reducing the speed of the vehicle during navigation [32]. Power
savings and regeneration depend on speed, traveled distance, vehicle [33], and motor
features [34].
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Algorithms developed to generate target velocity profles for EAD are known as green
light optimal speed advisory (GLOSA) systems [35]. They determine ideal longitudinal
speed setpoints to optimize power, travel time, and comfort [36]. Implementations of
these systems are based on several approaches. For instance, discontinuous functions are
employed to follow recommended speed profles that would reduce fuel consumption and
travel time [19]. Other approaches use rule-based systems. They have been deployed on
physical platforms using separate strategies for green, yellow, and red lights [20]. This
approach has also been extended to other scenarios where a vehicle can have access to
V2X, and whether it fnds other vehicles in the environment [24]. On the other hand, fuzzy
control systems have been coupled with sliding control to manage energy in EVs and use
an RBS [31]. Correspondingly, a dynamic programming approach considers passenger
preferences regarding time effciency, comfort, and fuel usage based on a dataset. It is then
deployed in a simulator to validate its performance [37]. Another example is the use of
evolutionary methods, where a genetic algorithm is employed to optimize the braking
energy recovery effciency. The study demonstrates its better performance compared with
inexperienced and expert drivers [34]. The use of human-like reasoning has led into the
use of neural networks. Fuel economy and reduced emissions were achieved by a neural
network that uses SPaT data, inter-vehicle communications, and onboard sensing [25]. In
hybrid approaches, dynamic programming is used to optimize the longitudinal speed of
the vehicle considering energy effciency. Model predictive control is used to compute
the short horizon reactive behavior [26]. Finally, reinforcement learning has also been
employed to reduce energy consumption while having a explainable decision process.
This approach was validated using microscopic simulators [38]. Table 1 presents a summary
of related works.

Artifcial intelligence (AI) has been widely used for AVs, where the main goal is to
recreate human behavior and reasoning for decision-making by being able to handle large
amounts of incomplete or inaccurate data [39]. AI approaches can be classifed into logic,
heuristic, approximate reasoning, and human-like methods. We will focus on logic-based
and approximate reasoning approaches. Logic-based approaches are expert systems that
solve specifc tasks based on a knowledge base. Their low-computational-cost architecture
makes them attractive for predictive and reactive planning. Rule-based systems relate
observations with actions. Specifc rules aim to capture all the potential states in which the
vehicle can be found. Rule explosion is a potential drawback. Therefore, the cause–effect
relationships should be carefully considered. They can be considered as one of the most
simple forms of AI [40]. Their usage has spread for critical safety applications [41]. Ap-
proximate reasoning AI techniques aim to mimic human reasoning. This approach differs
from the logic-based ones in their non-Boolean knowledge base representation. Fuzzy
logic can express knowledge as a set of Boolean rules that linguistically model a system
with vagueness. These types of systems are robust in the case of nonlinear, imprecise, and
uncertain data. One of their advantages is that they can be verifed by human experts due
to their design nature [42]. However, their design methodology is still an area in need
of improvement. Fuzzy control systems have been actively used as regenerative braking
systems (RBS) in EAD scenarios due to their performance in power recovery and safety [43].
Both approaches use low computational resources, which makes them suitable candidates
to implement in physical platforms due to real-time limitations.



Appl. Sci. 2023, 13, 5089 4 of 23

Table 1. Longitudinal navigation performance comparison.

Navigation Algorithm Vehicle Type Metric

Consensus motion control algorithm [17] ICEV MOVES [44] 20% time reduction, 23.7% fuel
consumption reduction

Longitudinal speed guidance [18] ICEV MOVES 3–5% energy reduction

GlidePath [19] ICEV CMEM [45] 17% fuel consumption reduction, up to 64%
time reduction

Rule-based [20] ICEV Physical platform 6% energy savings
GLOSA [22] ICEV 21% emission reduction, 121% time increment

Mixed-integer linear programming [23] Electric bus Up to 40% energy reduction
Cooperative eco-driving system [24] ICEV MOVES 7% energy reduction, 59% emissions reduction

Prediction-Based EAD [25] ICEV 4.0% energy savings, 4.0–41.7% emissions reduction
Dynamic programming with MPC [26] Four-wheel-drive EV 15–20% energy reduction

EAD along signalized corridors [27] ICEV 12–28% fuel savings
Sequential quadratic programming

with MPC [28] EV 10.33% extended battery life

FIS-based EAD/RBS (this work) EV 101.96% power regenerated than rule-based approach

EAD systems have been used as part of low- and high-level navigation strategies
for fuel consumption and optimal trajectory planning [46]. Their impact extends to traf-
fc and surrounding elements (passenger vehicles, trucks, and micromobility actors) to
reduce emissions [47]. Typical test scenarios are signalized intersections with one cross-
road. The vehicles used to test the developed systems are ICEV and, recently, hybrid
architectures [48].

1.1. Modeling Framework

The approach presented in this work is illustrated in the block diagram of Figure 1.
It depicts a connected EV (CEV) that acquires information s from the environment and
performs longitudinal and lateral actions. The parallel closed-loop scheme implements a
lateral pure pursuit controller [49] and one of two longitudinal control options: rule-based
or fuzzy inference system (FIS) control systems. The presented approach aims to solve
the EAD problem by implementing a coupled GLOSA–RBS system. The simulations and
numerical analysis of this work demonstrate that power consumption during navigation is
reduced. It also seeks to show that both longitudinal approaches have high motoring and
regenerative effciency during navigation.

Figure 1. AV navigation block diagram. Sensor and SPaT data is represented by a green arrow, pro-
cessed perception information in pink, longitudinal control in red, lateral control in blue, navigation
inputs in orange and actions in black.
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The proposed model uses a hierarchical approach (Figure 1). First, odometry data
are retrieved by the internal sensors of the vehicle. It is assumed that the internal states
of the vehicles are calculated through sensor fusion techniques and that proprioceptive
data are always available and noise-free. Simultaneously, surrounding infrastructure
provides SPaT data, which are assumed to be noise-free. Noisy measurements, data loss,
and partial observations will be covered in future research. Then, perception module fuses
the data to obtain pose information of the vehicle. Next, the pose is fed to the control
module, which contains a rule-based or a FIS control systems for longitudinal actions and
a pure pursuit controller for lateral actions. Finally, the control signals are sent to the
three-degree-of-freedom (3-DOF) dynamics module of the CEV.

1.2. Contributions of This Paper

The major contributions of this paper are listed as follows:

1. We demonstrate the feasibility of implementing rule- and a fuzzy inference system-
based longitudinal navigation control systems on a pure electric platform. In both
cases, power can be regenerated in the battery with appropriate design considerations.
Previous efforts are mostly based on an internal combustion engine and hybrid vehi-
cles, with little or no focus on electric power consumption and regeneration. These
techniques are implemented for a B-class electric vehicle. The fuzzy inference system
outperforms the rule-based strategy by a magnitude of two in terms of power regener-
ation. A benchmark experiment is performed in a crossroad intersection environment
with a traffc light. Both strategies implement an eco-approach and departure strategy
based on a coupled green light optimal speed advisory/regenerative braking system.

2. Lateral, longitudinal, and rolling resistance forces are considered in the dynamic
model. They directly impact on the navigation performance and power consumption
and regeneration. Works on vehicle navigation usually rely on simplifed kinematic
models where no forces are considered. Longitudinal and lateral vehicle dynamics
provide realistic behavior in terms of powertrain effort and vehicle motion. This differs
from most state-of-the-art efforts, where dynamics are partially or totally neglected.

3. A fully characterized electric machine that matches the vehicle powertrain is often
neglected in the literature. Ideal actuators are a common choice. Effciencies are
assumed to be ideal or constant. From an energy standpoint, the vehicle propulsion
electric motor is represented by its loss map. This allows computing a realistic
bidirectional power demand and conversion effciency.

In summary, the SPaT data usage, sensor fusion, longitudinal and lateral controllers, elec-
tric motor, and dynamic vehicle models add realism to the connected automated vehicle
control system.

The paper is organized as follows: Section 2 presents the theoretical framework.
The rule set and fuzzy inference system used for longitudinal control can be found in
Section 3. Section 4 explains the rationale for the experiment design. It also contains
the results of the experiment. Finally, Section 5 concludes this work and proposes future
research directions. For notation clarity, a nomenclature list is provided at the end of
this paper.

2. Powertrain Modeling
2.1. Vehicle Dynamic Model

The CEV is modeled as a 3-DOF bicycle model, as illustrated in Figure 2. Right and
left wheels on the same axle are lumped into one element, both for the front and rear.
The resulting rear wheel is fxed, whereas the front one can steer at an angle δ. This angle is
input for the vehicle dynamic model. The center of gravity C, mass m, polar moment of
inertia Izz with respect to the z axis, and wheelbase L of the vehicle are constant parameters.
The wheelbase is the distance between axles, thus L = l f + lr.

The dynamic model of the vehicle is governed by the following equations:
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mÿ = −mẋψ̇ + Fy f + Fyr (1)

Izzψ̈ = l f Fy f − lrFyr (2)

mẍ = mẏψ̇ + Fx f + Fxr (3)

Figure 2. The 3-DOF bicycle CEV model.

These expressions show the coupled dynamic behavior between the longitudinal
(x), lateral (y), and yaw (ψ) DOFs. The motion of the vehicle is mainly affected by the
longitudinal force on the front (motoring) axle (Fx f ). Moreover, external lateral forces on
the front (Fy f ) and rear (Fyr) axles are further contributions to vehicle dynamics. Roll, pitch,
and vertical dynamics are assumed to be uncoupled from this representation. Aerodynamic
contributions can be neglected even at the maximum speed of the class-B-sized vehicle
(14 m/s). cby the powertrain propulsion minus the rolling resistance. On the rear axle,
the longitudinal force is only given by the rolling resistance term:

Fx f =
Tmτgb

rt
− Fc

2
sign (ẋ) (4)

Fxr = −
Fc

2
sign (ẋ) (5)

where Tm is the electric motor torque, τgb the gear box gain, rt the tire radius, ẋ the
longitudinal speed of the vehicle, and Fc the Coulomb friction. Aerodynamic effects are
neglected in the longitudinal model due to the low velocity values expected in urban
environments (ẋ < 60 km/h) [50]. The propulsion force is another input of the vehicle
model. The cornering stiffness of the front and rear tires (Cα f and Cαr) contribute to the
lateral forces:

Fy f = 2Cα f

�
δ− θv f

�
(6)

Fyr = 2Cαr(−θvr) (7)

In addition, tire velocity angles are given by

θv f = arctan

 
ẏ + l f ψ̇

ẋ

!
(8)

θvr = arctan
�

ẏ− lrψ̇

ẋ

�
(9)

To favor faster computation, tire velocity angles were linearized assuming small
angle deviations:

θv f ≈
ẏ + l f ψ̇

ẋ
(10)

θvr ≈
ẏ− lrψ̇

ẋ
(11)
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The nonlinear model in Equations (1)–(3) describe the lateral dynamics [51]. The global
expressions are obtained by substituting Equations (10) into (6), and (11) into (7). Finally, re-
sulting Equations (6) and (7) are substituted into (1) and (2) to yield the following expressions:

mÿ = −mẋψ̇ + 2

"
Cα f

 
δ−

ẏ + l f ψ̇

ẋ

!
+ Cαr

lrψ̇− ẏ
ẋ

#
(12)

Izzψ̈ = 2

"
l f Cα f

 
δ−

ẏ + l f ψ̇

ẋ

!
− lrCαr

lrψ̇− ẏ
ẋ

#
(13)

The parameters for the vehicle model used in this study were extracted from the
vehicle templates in CarSIM™ of a B-class hatchback vehicle in electric powertrain confgu-
ration, front-wheel drive. The values are listed in Table 2. The presented model is used
to reproduce the dynamic behavior of the CEV in the rule-based and FIS GLOSA/RBS
framework. This representation has been extensively used due its accurate vehicle dynamic
behavior [52].

Table 2. B-class hatchback electric vehicle model parameters.

Parameter Symbol Value Unit

Distance from COG to front axle l f 1.04 m
Distance from COG to rear axle lr 1.56 m
Mass m 1377 kg
Yaw polar moment of inertia Izz 1343.1 kgm2

Front tire cornering stiffness Cα f 12 kN/rad
Rear tire cornering stiffness Cαr 11 kN/rad
Total rolling resistance force Fc 5 N

2.2. Motor Model

We use a look-up table containing the power losses of the machine for different torque
and shaft speed combinations to describe the electric machine behavior. This approach is
advantageous for the following reasons:

1. The loss map gives means for a generic representation of the machine, which is able
to ft any motor used in powertrain systems.

2. Focus is given to conversion effciency through motoring and regenerative quadrants.
3. Power losses can be accurately characterized through electromagnetic fnite-element

models without the need to represent the machine through a lumped-parameter model.
4. Electromagnetic dynamics are represented through a frst-order low-pass flter with a

time constant of 50 ms.

The electric machine loss map used in this case is illustrated in Figure 3.
Assuming perfect wheel rolling (no slip) and an ideally effcient gearbox, the power-

train mechanical power can be defned either through vehicle variables or through motor
variables, i.e.,

Pm = Fx f ẋ− Prr = Tmωm − Prr (14)

where Tm is the motor torque, ωm is its angular speed, and Prr is the vehicle dissipated
power due to rolling resistance.

During operation, the motor will attempt to impose a torque—positive or negative—on
the vehicle based on the longitudinal control’s request. On the other hand, the vehicle will
impose angular velocity on the motor shaft. Part of the mechanical power in Equation (14)
will have an impact on the electrical domain of the motor, as it will drive the absorption or
regeneration of electrical power, defned as:

Pe = Vdcidc (15)
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with Vdc, idc being the voltage and current of the battery.
In motoring mode, the effciency of the powertrain is defned as

ηmot =
Pm

Pe
=

Pm

Pm + Ploss(ωm, Tm)
(16)

where Ploss(·) represents the loss map function of the machine evaluated at a specifc
operating point.

Conversely, the powertrain has a regenerative effciency given by

ηreg =
Pe

Pm
= 1− Ploss(ωm, Tm)

Pm
(17)

Note that in any instance, a generic effciency term must guarantee η < 1.

Figure 3. Electric machine loss map. Dashed lines represent the torque–speed characteristic limit.
The solid line separates the motoring quadrant (positive torque) from the regenerative quadrant
(negative torque).

3. Control Methods

This work proposes a hierarchical control system to optimize a CEV power consump-
tion during EAD using GLOSA/RBS. Two strategies are presented to solve the longitudinal
navigation problem: a rule-based and a FIS strategy. Both control methods retrieve in-
formation from the SPaT data and the vehicle location and current longitudinal speed.
Then, a scenario is identifed with the current status of the traffc light. The distance to the
intersection and current longitudinal speed are used to determine a motor torque setpoint.

3.1. Rule-Based Controller

The rule-based motor torque setpoint generator is an empiric solution to the GLOSA/
RBS problem. Initially, the SPaT data providing the traffc light status are retrieved from the
surrounding infrastructure in the intersection. Then, the rule set is divided into three sce-
narios that depend on the status of the traffc light (Ls): green, yellow, and red. Intersection-
crossing or free-driving are the states that the CEV can be in. The selected motor torque
(τ) ensures that the vehicle navigates in the environment without crossing the intersection
during the red light. The navigation strategy can achieve power restoration by switching
between motoring (τ > 0), regenerative (τ < 0), or neutral (τ = 0) behavior of the
motor while keeping the longitudinal speed (ẋ) under the road’s speed limit (ẋlim) and
maintaining comfort. In summary, the driving scenario that the CEV faces depends on Ls,
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ẋ and the pose (X) to produce a desired τ. The algorithm for the rule-based controller is
Algorithm 1.

Algorithm 1 Rule-based controller
Input: X, ẋ, Ls
Output: τ

if Ls is green then
if X ≥ da then

if ẋ ≥ ẋlim then τ ← −τmin
else if ẋ < 0 then τ ← τmin
elseτ ← 2

3 τmax
end if

else if da < X < dd then
if ẋ ≥ ẋlim then τ ← 0
else if 0 < ẋ < ẋlim then τ ← τmax
elseτ ← 1

2 τmax
end if

elseτ ← 2
3 τmax

end if
else if Ls is yellow then

if X ≥ da then
if ẋ ≥ ẋslow then τ ← − 2

3 τmax
else if 0 < ẋ < ẋslow then τ ← −τmin
elseτ ← τmin
end if

else if da < X < dd then
if ẋ ≥ ẋslow then τ ← − 5

6 τmax
else if 0 < ẋ < ẋslow then τ ← −τmin
elseτ ← 1

6 τmax
end if

elseτ ← 2
3 τmax

end if
else if Ls is red then

if X ≥ da then
if ẋ ≥ ẋslow then τ ← − 1

4 τmax
else if ẋ ≤ 0 then τ ← τmin
elseτ ← 1

10 τmax
end if

else if da < X < dd then
if ẋ ≥ ẋslow then τ ← −τmax
else if 0 < ẋ < ẋslow then τ ← −τmin
elseτ ← 1

6 τmax
end if

elseτ ← 2
3 τmax

end if
end if

3.1.1. Green Light

The road is divided into three segments: enter, approach, and departure zones.
The frst segment, enter, extends from the beginning of the road up to an approaching
distance (da). When the CEV is located in this area, it can have three behaviors. In the frst
case, the vehicle slowly increases its speed by applying a small torque τmin if the speed is in
the 0 < ẋ < ẋlim interval, where ẋlim is the speed limit of the road. In the second case, if the
speed limit is surpassed, a small negative torque −τmin is used to decrease the velocity.
This event encourages power regeneration. Negative speeds are avoided by applying a
2
3 τmax torque. The third case avoids using negative values for ẋ. The second road segment,
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approach, is defned in the da < d < dd interval, where dd is the beginning of the departing
zone or the point after the traffc light in the intersection. As this segment is very close to
the crossroad, the CEV will focus on crossing the intersection and reaching the departing
zone by applying a τmax torque. Navigating to a higher speed than the limit is avoided by
applying a null torque. Negative speeds are avoided by applying a 1

2 τmax torque. In the
fnal road segment, departure, the vehicle is allowed to increase its throttle by 2

3 τmax to cross
the intersection and continue navigating.

3.1.2. Yellow Light

The general goal of the navigation strategy during a yellow light is to reduce speed
to avoid crossing the intersection during the red light and applying aggressive braking
maneuvers. There are three different behaviors in the enter interval. The frst is to slowly
reduce the longitudinal speed of the CEV by applying a −τmin torque if the current velocity
is in the 0 < ẋ < ẋslow range, where ẋslow is the minimum speed in which the CEV
can navigate on the road. If the vehicle is navigating faster than ẋslow, a − 2

3 τmax torque is
applied. Negative speeds are avoided by applying a τmin. The approach segment implements
similar behaviors to those in the enter segment. The main difference are that a − 5

6 τmax

braking torque that is applied for speeds greater than ẋslow, and a 1
6 τmax is applied to avoid

negative speeds. The vehicle is allowed to increase its throttle by 2
3 τmax after crossing the

intersection in the departure zone. The staged braking strategy during this traffc light status
induces a regenerative state for CEV navigation.

3.1.3. Red Light

The strategy of the rule-based control system is to avoid braking to a full stop during
red lights at road intersections. The CEV faces a scenario of maximum power regeneration
after the speed has been reduced during the yellow light strategy. If the CEV is in the
frst navigational stage, any longitudinal speed greater than ẋslow causes a − 1

4 τmax throttle.
A 1

10 τmax throttle is applied to keep the vehicle moving in the 0 < ẋ < ẋslow interval. A full
stop and negative velocities are avoided by applying a τmin torque. The approach road
interval strategy applies a τmax maneuver for speeds greater than ẋslow. A −τmin torque
is used to reduce speeds in the range 0 < ẋ < ẋslow. Full stop and negative speeds are
avoided with a 1

6 τmax. The vehicle increases its throttle torque to 2
3 τmax once it is in the

departure zone.

3.2. Fuzzy Inference System

Fuzzy set theory is used to specify how a crisp measurement fts into a linguistic
description. It is considered a generalization of classic set theory, as it represents uncertainty
and memberships. Fuzzy logic maps a degree of membership of a system to a fuzzy set
using classic Boolean logic. However, it resembles human-like reasoning with the usage
of linguistic variables and decision-making processes with uncertainty [53]. FISs rely on
a previously defned knowledge base coming from an expert. They evaluate a statement
that relates an antecedent with an implication. These types of systems can represent
mathematical complex systems with a simple set of rules model with fuzzy sets [54].

Longitudinal control with FIS require the previous design and validation of appropri-
ate membership functions (MFs). Related research has proposed the usage of uniformly
distributed triangular MFs to model the normalized error as input and identical triangular
functions with shoulder functions for the brake/throttle as output [55]. However, an un-
even distribution and form of MF is proposed to model inter-vehicle distance and the
speed error [56]. Similarly, a set with a high number of unevenly distributed MFs was used
to capture the behavior of the longitudinal model of a vehicle in [57]. Those guidelines
provided insight on how to design the longitudinal FIS-based controller. Three FIS were
deigned, one for each state of the traffc light. The green light FIS uses the simplest set of
MFs and rules. The yellow FIS and red FIS have a greater number of linguistic variables for
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the inputs. Even and uneven distributions for the MFs were used to better represent the
behavior of every physical variable.

The following MFs are used to represent the physical variables involved in the longi-
tudinal navigation control system: ẋ, (X), and τ. Ls is not fuzzifed, as the light status is a
Boolean value. Inputs ẋ and X are modeled with Gaussian, Gaussian combination, S, and Z
MFs. The longitudinal speed of the CEV is normalized to a [−1, 1] interval. Long-term
motor braking can cause reverse motion in the vehicle. Hence, positive and negative values
are considered. The maximum speed ẋmax of the 3-DOF model is not reachable in urban
environments. Thus, the speed limit of the road is used as higher and lower boundaries
with an ε tolerance such that

ẋnorm =
ẋ

(1 + ε)ẋlim
(18)

The relative location (Xr) of the CEV respect the intersection (XI) is also normalized
in a [−1, 1] range. The normalization distance of the location is either the SPaT converage
(dSPaT) range or the maximum distance in which a visual sensor can detect the traffc light
status (dsensor).

Xr =
XI − X

max(dSPaT , dsensor)
(19)

The output τ uses triangular, linear S, and Z MFs. The maximum motor torque
τmax is used to normalize τ in a [−1, 1] interval. Defuzzifcation is performed using the
Mamdani method.

τnorm =
τ

τmax
(20)

Three different FISs are used to generate the desired longitudinal behavior of the CEV,
one for each of the traffc Ls: green, yellow, and red. A multiplexer selects the appropriate
system according to the data provided by SPaT.

3.2.1. Green Light

The location Xr of the CEV is represented as three linguistic variables: entering, ap-
proaching, and departing (Figure 4a). Entering is a Z-shaped MF that covers from the
beginning of the road up to a ffth of the road before the intersection. Approaching is repre-
sented as a two-sided Gaussian MF that runs from 0.4 to a value slightly greater than zero.
Finally, Departing uses a S-shaped MF that starts a road length before the intersection and
ends with the road. Four variables model the velocity ẋnorm of the CEV: reverse, slow, normal,
and fast (Figure 4b). Reverse is a Z-shaped MF that goes from the negative speed limit up
to zero in an open interval. Slow uses a Gaussian MF representation centered at a tenth
of ẋnorm. A normal generalized bell-shaped MF describes speeds that are greater than slow
and less than the speed limit. Any velocity that is near or greater than the speed limit is
part of the S-shaped MF fast. The motor torque τnorm is described as three variables: reverse,
neutral, and forward (Figure 4c). Reverse covers all negative torques up to zero. A steep
linear Z-shaped MF is employed to express this variable. An unbalanced triangular MF
centered on zero depicts the neutral torque. The negative part of the MF has a pronounced
slope, while the positive ends in a ffth. This behavior was chosen to promote null or slow
positive torque. The forward variable is a S-shaped MF with slow growth starting from zero.

A set of fve rules models the desired behavior during the navigation with Ls = green
(Algorithm 2). The main goal is to take advantage of the current status of the light and
navigate toward the intersection in the smallest amount of time. Special conditions are
considered to avoid navigating backwards or surpassing the speed limit of the road.
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Figure 4. Green light fuzzy sets.

Algorithm 2 Green light FIS knowledge base
Input: Xr, ẋnorm
Output: _norm

if Xr → entering & ẋnorm → fast then
τnorm ← reverse

else if Xr → entering & ẋnorm → ¬ fast then
τnorm ← forward

else if Xr → approaching & ẋnorm → fast then
τnorm ← reverse

else if Xr → approaching & ẋnorm → ¬ fast then
τnorm ← forward

else if Xr → departing then
τnorm ← forward

end if

3.2.2. Yellow Light

The same three linguistic variables employed for the Xr set in the green light are used
for the yellow light: entering, approaching, and departing (Figure 5a). No changes are made
on the type of MF for each variable. However, their limits are changed. The entering zone is
reduced to a half of its original size. On the other hand, the approaching zone is extended
three times. Similarly, all the variables of ẋnorm in the green light set are reused (Figure 5b).
The limits and properties of the slow, normal, and fast MF are updated. Slow and normal MFs
are narrowed and displaced to the left without touching a zero value. Fast is just shifted to
the left. Reverse remains unchanged. The three original MFs of τnorm are preserved. Neutral
and forward continue as they were originally defned. Reverse is shifted to the left. A new
triangular MF with symmetric boundaries is introduced to add a soft reverse variable. This
new MF is designed to perform braking and regenerative actions for the CEV.

Nine rules describe the designed navigation navigation behavior for Ls = yellow
(Algorithm 3). The main goal is to greatly reduce the speed of the CEV according to
its pose and velocity without reaching a full stop, as a part of the RB/EAD strategy.
During this maneuver, power can be regenerated because of the performance the electric
motor. Crossing the intersection during the yellow light should be avoided. However,
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traversing the crossroad is encouraged if the speed is high and safety constraints are
compromised. Reverse and over the speed limit navigation situations are avoided through
specifc rules.
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Figure 5. Yellow fuzzy sets.

Algorithm 3 Yellow light FIS knowledge base
Input: Xr, ẋnorm
Output: τnorm

if Xr → entering &ẋnorm → reverse then
τnorm ← forward

else if Xr → entering &ẋnorm → slow then
τnorm ← neutral

else if Xr → entering &ẋnorm → normal then
τnorm ← soft reverse

else if Xr → entering &ẋnorm → fast then
τnorm ← reverse

else if Xr → approaching &ẋnorm → reverse then
τnorm ← forward

else if Xr → approaching &ẋnorm → slow then
τnorm ← neutral

else if Xr → approaching &ẋnorm → normal then
τnorm ← soft reverse

else if Xr → approaching &ẋnorm → fast then
τnorm ← reverse

else if Xr → departing then
τnorm ← forward

end if

3.2.3. Red Light

The Xr and ẋnorm fuzzy sets for the Ls = red are identical to the ones presented in
Ls = yellow (Figure 5a,b). The same criteria are considered to fuzzify both crisp values and
require no additional modifcation. Nonetheless, an extra linguistic variable so f t f orward
is added to τnorm (Figure 6). The full throttle is not needed during Ls = red in entering
or approaching zones. Therefore, this rule is needed for smoothly navigating toward the
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intersection. Additionally, it is easier for the motor to switch to neutral or soft reverse.
The forward rule is shifted to the right without further modifcation.
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Figure 6. Red light fuzzy sets.

A nine-rule knowledge base is used for Ls = red (Algorithm 4). The goal of this
system it to navigating toward the intersection while regenerating the most amount of
power. Constantly reducing the speed to a minimum without reaching full stop guarantees
the complement of RB/EAD. This strategy is valid for the entering and approaching zones.
During the entering stage, the speed is slowly reduced. In contrast, the braking rate is
increased in the approaching zone to avoid crossing the intersection. Specifc rules are
designed to evade reverse navigation because of the motor regenerative behavior.

Algorithm 4 Red light FIS knowledge base
Input: Xr, ẋnorm
Output: τnorm

if Xr → entering &ẋnorm → reverse then
τnorm ← forward

else if Xr → entering &ẋnorm → slow then
τnorm ← soft forward

else if Xr → entering &ẋnorm → normal then
τnorm ← neutral

else if Xr → entering &ẋnorm → fast then
τnorm ← soft reverse

else if Xr → approaching &ẋnorm → reverse then
τnorm ← forward

else if Xr → approaching &ẋnorm → slow then
τnorm ← neutral

else if Xr → approaching &ẋnorm → normal then
τnorm ← soft reverse

else if Xr → approaching &ẋnorm → fast then
τnorm ← reverse

else if Xr → departing then
τnorm ← forward

end if

4. Experiments
4.1. Experiment Design

It is assumed that the CEV can retrieve information from the environment with SPaT
data or can obtain the status of the traffc light of the intersection with a visual sensor.
The internal states are obtained through an odometer. The vehicle uses said data to compute
a motor torque setpoint for a longitudinal navigation strategy to achieve RB/EAD. Two
strategies were developed: a rule- and a FIS-based strategy. The torque goes into an electric
motor, the powertrain, and fnally into the 3-DOF vehicle.
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4.2. Environment

The street layout is a right-hand, three-lane, one-direction, and no-slope crossroad
with a main and secondary roads (Figure 7). Both roads are 300 m long and intersect at the
middle. The lanes are 4 m wide. The boundaries of the roads are delimited by solid white
lines. A traffc light is located at the middle of the crossroad. Crosswalks are available at the
road intersection. It is assumed that the whole environment has SPaT data access without
communication interruptions or data integrity threats. The CEV is meant to navigate in
a straight path from its initial pose Xi to the goal pose X f . The initial conditions of the
CEV, traffc light, and simulation parameters are shown in Table 3.
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Figure 7. Road layout.

Table 3. Environment parameters.

Parameter Notation Default Setting

Initial pose [m] Xi = [xi, yi] [0, 0]
Initial steering angle [rad] δ 0

Initial velocity [m/s] Ẋi = [ẋi, ẏi]
min: [0, 0]

max: [13, 0]
Goal pose [m] X f = [x f , y f ] [300, 0]

Green light duration [s] tLg 16
Yellow light duration [s] tLy 4

Red light duration [s] tLr 20
Initial light Ls Ls ∈ [tLg, tLy, tLr]

Vehicle sample time [s] ts 0.001
Rules and FIS sample time [s] tDs 0.1

4.3. Integrated Longitudinal Navigation

Algorithm 5 depicts the integrated longitudinal control system for the implementation
of GLOSA/RBS/EAD. The results of said algorithm are presented in terms of navigation
success rate and power regeneration. Both generated control methods are based on empiric
and expert knowledge. A fxed-step solver was selected with different sampling times for
the physical elements (ts) and the control methods (tDs) (Table 3). The rule- and FIS-based
controllers were tested and validated in a variety of initial speeds and initial light status
time. The complete performance data of the rule- and FIS-based longitudinal navigation
systems can be found in Table 4.
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The rule-based system successfully completed 96.43% of the tests. The cases in which
the intersection was not successfully crossed were due to extreme situation such as the
following: The vehicle was traveling at very high speeds at the approaching zone of the
intersection and the status of traffc light was green. Then, there was not enough road to
decrease the longitudinal speed and make a stop during the sequence change to yellow and
red. The fuzzy system had a similar success rate to the rule-based, 95.9%. The performance
in terms of speed and acceleration of both control systems is comparable. Likewise, nav-
igation complies with comfort as the acceleration never surpasses the [−9.6, 4.905]m/s2

interval. Completion time is consistent with the the longitudinal velocity and throttle.

Algorithm 5 Integrated data acquisition and control algorithm for the connected electric vehicle

1: Initialize the control methods mentioned in Section 3
2: Defne ego vehicle and environment
3: Start V2X communication
4: for t = 0, 1, 2, . . . , T do
5: Retrieve SPaT data
6: Retrieve pose data
7: if navigation = rules then
8: Compute selected τnorm
9: else if navigation = FIS then

10: Compute Xr and ẋnorm
11: Fuzzify crisp values
12: Use knowledge base according to Ls
13: Defuzzify linguistic value
14: Compute selected τnorm
15: end if
16: Apply a τmax gain
17: Input the τ setpoint to the electric motor
18: Apply the motor torque to the vehicle powertrain
19: end for

Table 4. Navigation system performance.

Method Velocity Acceleration Completion Time Success Rate
[m/s] [m/s2] [s] [%]

Rule-based
min: 0.025 min: −3.02

33.32 96.43max: 22.46 max: 3.01
avg: 12.22 avg: 0.28

FIS-based
min: 0.092 min: −4.51

27.76 95.9max: 23.83 max: 3.74
avg: 13.08 avg: 0.39

Three samples of the performed tests on rule- and FIS-based controllers are presented:
one for Ls = green with starting time t = 0 s and initial speed ẋi = 0 m/s (Figure 8), another
one for Ls = yellow with starting time t = 0 s and initial speed ẋi = 5 m/s (Figure 9),
and, fnally, for Ls = red with starting time t = 15 s and initial speed ẋi = 11 m/s
(Figure 10). The samples are evaluated with the pose X and velocity ẋ metrics. The pose
plot depicts the world-based road in meters for x against time. It also shows the position of
the intersection and the current status Ls of the traffc light. The velocity plot illustrates the
velocity behavior of the CEV through time. Each test is described in the next paragraphs.

4.3.1. Test 1: Green Light Starting From Rest

It can be noted from Figure 8a how the rule- and FIS-based systems approach the
intersection and successfully cross during Ls = green before its change to its next state.
From Figure 8b, it can be seen how the vehicle starts with an initial velocity of ẋi = 0 m/s.
The rule-based system increases its speed until t ≈ 7 s. Then, it adopts a CC strategy with
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small increments of speed to navigate the approach zone. Speed is kept constant for an
interval of ∼10 s. After the junction is passed, the vehicle increments its speed. The FIS-
based controller adopts a more aggressive strategy as it constantly increments its speed
until t ≈10 s. Finally, it navigates at a constant speed for∼3 s until overtaking the crossroad
and increments its speed.
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Figure 8. Performance metrics for test 1.

4.3.2. Test 2: Yellow Light Starting from a Slow Speed

Figure 9a shows how both longitudinal control systems approach the intersection and
successfully cross during Ls = green. In both cases, the CEV adopts an RBS/EAD strategy
to avoid crossing during the Ls = yellow or Ls = red status. The vehicle starts with an
initial velocity of ẋi = 5 m/s (Figure 9b). The rule-based system initially decreases its speed.
Then, a CC behavior is used for t ≈ 22 s. This approach is maintained until the CEV detects
a change of Ls to green. Then, after the junction is passed, the vehicle increments its speed.
The FIS-based controller adopts a different strategy. Initially, it increments its speed. Then,
when the approach zone is reached it decreases its speed until it is close do zero. When
Ls = green, it constantly increments its speed, crosses the intersection, and continues on
its path.
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Figure 9. Performance metrics for test 2.

4.3.3. Test 3: Red Light Starting from a High Speed

Both longitudinal control systems approach the intersection and successfully cross
during Ls = green (Figure 10a). The CEV adotps an RBS/EAD strategy to avoid crossing
during the Ls = red status. The vehicle starts with an initial velocity of ẋi = 11 m/s
(Figure 10b). The rule-based system initially decreases its speed to v ≈ 7 m/s. Then,
the CEV detects a change of Ls to green. The vehicle gradually increments its speed during
the approach phase. Small CC behaviors are adopted during this stage. When it crosses the
intersection, it increases its speed to continue navigating. The FIS-based controller adopts a
less conservative strategy. First, it applies CC until the light change. Next, it increments its
speed, goes across the intersection, and continues on its path.
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Figure 10. Performance metrics for test 3.

4.4. Power Consumption and Regeneration

Related work has focused on pure ICEV or hybrid vehicles. They measure the per-
formance of their EAD systems based on fuel savings and time to completion. We are
proposing techniques for CEV. Thus, the power effciency of the rule- and FIS-based
systems is an additional metric used to evaluate the performance of the proposed EAD
controllers. The following parameters have been chosen to provide better insight: average
power (P), braking/motoring power ratio (Pr), and the motoring (ηmot) and regenerative
(ηreg) effciencies.

The average power is an algebraic mean of the instantaneous power P in a time t.
The constant sampling time ts (Table 3) allows this computation to be valid.

P =
1
T

T

∑
t=0

Pt (21)

The regeneration/motoring power ratio provides information on how many instants
of the drive cycle were destined to reduce or increment the speed of the CEV and how
much power could be restored.

Pr =
Pbrake

Pmot
(22)

Power consumption and restoration depend on the initial conditions of the tests and
the rationale used to design the longitudinal control system. The performance of the rule-
and FIS-based systems can be found in Tables 5 and 6, respectively. They relate the initial
conditions of Ls, ti, and ẋi with the mechanical and electrical average motoring (Pmot) and
regeneration (Preg) power with their corresponding Pr and their effciencies ηreg and ηmot.

The rule-based longitudinal system has consistent performance when it enters the
intersection at the beginning of the green light t = (0, 10], Ls ∈ green. Regardless of
the initial speed, the Pmot of the system is consistent in both mechanical and electrical
systems. On the other hand, Preg decreases uniformly as the speed increases because of
the adopted strategy of crossing the junction as soon as possible. It can be noted that
ηmot increases linearly with ẋi, whereas ηreg remains constant. A similar behavior can be
found in the FIS-based system. However, Pr is almost doubled at low speeds, increased
by a half on medium speeds and greater than 15% at high speeds when compared with
the rule-based performance. The motoring and regeneration effciencies show an almost
identical operation to the ones in the other system but with higher values.

For t = [10, 16], Ls ∈ green segment or late green at the traffc light, there is constant
power consumption at medium and high initial speeds and lower power consumption
for slow speed in the rule-based system. That behavior is found to be inverse for the FIS.
Slow and medium speeds show the constant and higher use of power for high velocity.
Regeneration of power proportional to ẋi can be spotted in both controllers. The FIS
regenerates from two to three times the power of the rule-based system. Up to 60% of the
consumed electrical power can be restored by the CEV. The ηmot value is almost constant
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in both systems, with higher effciency in the FIS, while ηreg increases in both cases, with
better power usage for the FIS.

Table 5. Rule-based controller power performance.

Ls Time
Interval

[s]

ẋi
Interval
[m/s]

Mechanical Electrical
ηmot
[%] ηreg [%]Pmot

[kW]
Preg [kW] Pr [%] Pmot

[kW]
Preg [kW] Pr [%]

[0, 5) 21.66 6.38 29.36 26.92 4.91 18.12 80.44 77.05
(0, 10) [5, 10) 22.54 5.46 24.25 27.32 4.21 15.24 82.50 77.03

[10, 13] 21.57 4.68 21.68 25.58 3.62 13.95 84.31 77.44
[0, 5) 15.79 3.00 18.99 19.76 2.23 11.28 79.90 74.60

[10, 16] [5, 10) 19.35 4.60 24.16 24.22 3.48 14.55 79.89 75.55
[10, 13] 19.92 5.36 27.87 24.90 4.11 17.14 80.01 76.65
[0, 5) 10.62 0.33 3.19 12.86 0.25 1.99 82.57 75.99

(16, 20] [5, 10) 15.32 2.69 17.50 18.57 2.03 10.86 82.51 75.55
[10, 13] 19.21 5.79 30.95 23.69 4.68 20.24 81.08 80.80
[0, 5) 11.99 0.53 4.44 14.51 0.42 2.89 82.58 78.80

(20, 30] [5, 10) 18.88 3.03 15.76 22.87 2.48 10.65 82.57 81.90
[10, 13] 24.46 6.50 26.54 30.01 5.49 18.28 81.50 84.45
(0, 5) 15.11 0.82 5.44 18.31 0.64 3.49 82.51 77.76

(30, 40] [5, 10) 23.32 3.82 16.17 28.11 3.14 11.02 82.98 82.18
[10, 13] 26.12 7.39 27.96 31.04 6.35 20.22 84.14 85.94

Average 19.06 4.02 19.61 23.24 3.20 12.66 81.96 78.78

Table 6. Fuzzy logic-based controller power performance.

Ls Time
Interval

[s]

ẋi
Interval
[m/s]

Mechanical Electrical
ηmot
[%] ηreg [%]Pmot

[kW]
Preg [kW] Pr [%] Pmot

[kW]
Preg [kW] Pr [%]

[0, 5) 21.48 12.78 59.13 25.76 10.61 40.35 83.38 83.04
(0, 10) [5, 10) 23.96 9.78 37.77 28.15 8.23 26.90 85.10 84.15

[10, 13] 21.69 6.26 26.58 25.10 5.29 19.32 86.43 84.54
[0, 5) 16.10 5.19 34.47 19.51 3.97 21.68 82.53 76.55

[10, 16] [5, 10) 16.74 10.35 61.85 20.22 8.14 40.03 82.79 78.72
[10, 13] 18.27 17.21 90.77 21.88 13.86 60.57 83.48 80.55
[0, 5) 15.04 5.02 33.39 18.03 3.65 20.25 83.43 72.71

(16, 20] [5, 10) 15.02 6.66 44.29 17.97 4.97 27.65 83.60 74.65
[10, 13] 14.94 8.68 58.38 17.90 6.65 37.35 83.45 76.65
[0, 5) 17.20 8.20 47.36 20.52 6.07 29.36 83.80 74.01

(20, 30] [5, 10) 18.38 8.91 48.36 21.98 6.59 29.89 83.61 73.91
[10, 13] 19.82 8.08 41.23 23.77 6.13 26.08 83.35 75.97
[0, 5) 19.38 2.03 10.34 22.28 1.59 6.89 84.85 78.16

(30, 40] [5, 10) 21.42 6.96 32.29 25.04 5.42 21.39 85.56 77.91
[10, 13] 23.79 7.27 30.20 27.82 5.85 20.65 85.52 80.52

Average 18.88 8.22 43.76 22.39 6.46 28.55 84.05 78.13

A new behavior is found during the yellow light or t = (16, 20], Ls ∈ yellow for
the rule-based system. Power consumption and regeneration increase linearly with ẋi.
Immediate CC navigation causes a very small Pr for low speeds. On the other hand,
medium and high speeds require an initial brake to avoid crossing the intersection during
Ls = red and encourage CC. This implies an increasing Pr. The FIS controller has a constant
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power consumption, but a growing regeneration rate as in the rule-based system. Pr is ten
times greater during slow, more than double for medium, and almost double for high ẋi.
The motoring effciency is kept constant for each system with a higher value for the FIS.
The effciency for regeneration power is consistent for low and medium speeds and greater
for high speeds for the rule-based system, whereas the FIS continuously increases.

The rule-based system has a continuously increasing power consumption and regen-
eration during the initial red light phase or t = (20, 30], Ls ∈ red. Slow initial speeds cause
little regeneration due to CC as in Ls ∈ yellow. Similarly, the faster the vehicle starts navi-
gating, the greater a negative throttle should be applied to start CC, causing the increment
of Pr from below 5% to above one-ffth of the electric motoring power. The FIS power con-
sumption increments slowly, but the regeneration is almost constant. This implies a Pr of
almost one-third of the consumed electric power. The value of ηmot is very near in the rule-
and FIS controllers, whereas there is a higher effciency in ηreg of the rule-based system.

Finally, the rule-based controller exhibits a similar behavior to the previous stage for
the late red light or t = (30, 40], Ls ∈ red. This applies to Pr, ηmot and ηreg. The FIS has
a different performance. This time, its power consumption as well as the regeneration
increment slowly. However, a small reduction in the restored power can be noted at
high speeds. Motoring and regeneration effciencies are higher when compared with the
previous stage but smaller than for the rule-based ones.

The difference in the success rate of both navigation systems is not signifcant. Both
are close to 96%. The average mechanical motoring power of the rule-based controller
and the FIS is almost identical. The rule-based employs slightly more power. Nonetheless,
the power regeneration and ratio performance of both systems exhibit different behaviors.
The FIS regenerated electrical power outperforms the one of the rule-based by 101.96%.
Consequently, the regeneration/motoring power ratio is 125.55% higher.

5. Conclusions and Future Research

In this work, two longitudinal navigational strategies were developed for implement-
ing RBS on EAD while navigating signalized intersections with a traffc light. In the virtual
environment, internal data are acquired through odometry and external data through
SPaT coming from V2X communications. The data are fed into a perception module that
provides location information to a CEV controller. The controller implements a lateral pure
pursuit algorithm. A rule- or FIS-based longitudinal controller determines the setpoint
for an electric motor that outputs a torque that is implemented by the powertrain. Said
torque is then transformed into positive or negative throttle. Finally, it is applied into a
dynamic model of an ego vehicle. This model provides a realistic representation of the
plant. The proposed algorithms implement a longitudinal navigation strategy that account
for speed limit compliance, comfort, and power effciency and regeneration. The numerical
results enable the possibility of implementation of both systems into a physical system for
controlled tests.

Navigation of CEV at urban intersections with power management and restoration is
a feld with open research opportunities. After simulation, the numerical results show that
the proposed systems can be employed as a benchmark for future researchers to validate
new systems in terms of SPaT data, longitudinal velocity and acceleration, comfort, time to
completion, success rate, consumed and regenerated power, and motoring and regeneration
effciency. Therefore, the open research questions along these lines are:

1. Multiple intersection environments to alter the state of charge of a battery during
sustained navigation.

2. Background vehicles to increase the complexity of the problem and help better under-
stand the safety, comfort, and power management challenges.

3. The use of machine learning, artificial intelligence, or predictive control techniques that
use the proposed longitudinal navigation systems as a benchmark and design rationale.
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4. Enhancing vehicles with visual and inertial sensors to cover non-SPaT areas. Sensor
fusion techniques are required to tackle data availability, thereby expanding the
problem into a partially observable Markov decision process.

5. The integration of the proposed approach within more complex energy management
and control strategies, where multiple vehicle functionalities and behaviors coexist.

6. Safe and eco-approach and departure navigation in highly dynamic situations, such
as lane changing, merging, overtaking, or obstacle avoidance maneuvers.
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