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Abstract

Though natural systems harbor genetic and phenotypic variation, research in model organisms
is often restricted to a reference strain. Focus on a reference strain yields great depth of
knowledge, but potentially at the cost of breadth of understanding. Furthermore, tools developed
in the reference context may introduce bias when applied to other strains, posing challenges to
defining the scope of variation within model systems. Here, we evaluate how genetic differences
among five wild C. elegans strains affect gene expression and its quantification, in general and
after induction of the RNA interference (RNAI) response. Across strains, 34% of genes were
differentially expressed in the control condition, including 411 genes that were not expressed at
all in at least one strain; 49 of these were unexpressed in reference strain N2. Reference
genome mapping bias caused limited concern: despite hyper-diverse hotspots throughout the
genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional
response to RNAi was highly strain- and target gene-specific and did not correlate with RNAI
efficiency, as the two RNAI insensitive strains showed more differentially expressed genes
following RNAI treatment than the RNAi-sensitive reference strain. We conclude that gene
expression, generally and in response to RNAI, differs across C. elegans strains such that
choice of strain may meaningfully influence scientific inferences. Finally, we introduce a
resource for querying gene expression variation in this dataset at

https://wildworm.biosci.gatech.edu/rnai/.

Introduction

Research in the model organism C. elegans has yielded insight into myriad aspects of biology,
particularly development, genetics, and molecular biology (Corsi et al. 2015). Historically, much
of this work has been conducted in a single isogenic strain, the laboratory strain N2 (Andersen
et al. 2012; Barriere and Felix 2005b). However, C. elegans harbors significant intraspecific
genetic diversity (Andersen et al. 2012; Barriere and Felix 2005a; Barriere and Felix 2005b;
Crombie et al. 2019; Lee et al. 2021), and in the last decade C. elegans has also been
established as a powerful system for elucidating connections between genotype and phenotype
(Andersen et al. 2012; Andersen and Rockman 2022; Barriere and Felix 2005a; Barriere and
Felix 2005b; Cook et al. 2017; Crombie et al. 2019; Evans et al. 2021a; Gaertner and Phillips
2010; Lee et al. 2021). Natural genetic variation exists for practically any organismal trait
measurable in C. elegans (Andersen and Rockman 2022), for example: responsiveness to

toxins, metals, drugs, and other stressors (Dilks et al. 2021; Evans and Andersen 2020; Evans
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et al. 2021b; Hahnel et al. 2018; Na et al. 2020; Webster et al. 2019; Zdraljevic et al. 2019;
Zdraljevic et al. 2017); behavior (Bendesky et al. 2012; Ghosh et al. 2015; McGrath et al. 2009);
transgenerational mortality traits (Frezal et al. 2018; Saber et al. 2022); and efficiency in RNA
interference (RNAI) (Elvin et al. 2011; Felix 2008; Felix et al. 2011; Paaby et al. 2015;
Tijsterman et al. 2002).

Naturally, molecular phenotypes that act as intermediaries between genotype and organismal
traits, such as gene expression, also vary across strains. Studies from recombinant inbred lines
(Evans and Andersen 2020; Rockman et al. 2010; Vinuela et al. 2010) and, more recently, RNA
sequencing of 207 wild strains (Zhang et al. 2022), have identified numerous expression
quantitative trait loci (eQTL) that encode differences in gene expression. How such expression
differences manifest across different strains, whether they offer clues into functional
differentiation, and how genetic differences compare to environmentally induced differences in
gene expression or mediate gene expression responses to environmental stimuli remain
interesting questions. These questions require genome-wide characterization of gene

expression in multiple strains under multiple conditions.

One phenomenon of particular interest is RNA interference, a mechanism of gene expression
regulation triggered by environmental or endogenous sources of double stranded RNA with
broad-reaching influence over diverse aspects of organismal biology (Billi et al. 2014; Wilson
and Doudna 2013). RNAIi was discovered in C. elegans (Fire et al. 1998), but competency in
response to environmental triggers is highly variable across wild C. elegans strains (Elvin et al.
2011; Felix 2008; Felix et al. 2011; Paaby et al. 2015; Tijsterman et al. 2002). Previous work
showed that a loss-of-function mutation in Argonaute RNAI effector gene ppw-1 is largely
responsible for the near-complete failure of Hawaiian strain CB4856 to mount an RNAI
response against germline targets (Tijsterman et al. 2002), and later work characterized the
failure in CB4856 as a much delayed, rather than absent, response (Chou et al. 2022). Other
strains incompetent for germline RNAI exhibit distinct modes of RNAI failure with distinct genetic
bases (Chou et al. 2022; Elvin et al. 2011; Pollard and Rockman 2013). Even as wild strains
vary in overall competency for germline RNAI, strain-to-strain differences in RNAi phenotypic
penetrance are also highly dependent on the target gene; whether these differences arise from
strain-specific developmental consequences of gene knock-down or strain-specific differences

in target-dependent RNAI efficacy is unclear (Paaby et al. 2015). How this phenotypic variation
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in RNAI response is reflected in genome-wide transcriptional changes upon RNAI induction

remains a largely open question.

Here, we evaluate how genotype (strain) and induction of the RNAI response affect the C.
elegans transcriptome. We also consider how reliance on the reference genome, derived from
the laboratory strain N2, might constrain estimates of gene expression in wild strains, and how a
focus on N2 in studies of RNAi might limit inferences about RNAI biology within C. elegans
generally. To investigate these questions, and to provide a public resource for interrogating
transcriptional variation in this system, we performed RNA sequencing on five C. elegans
strains with varying competency in germline RNAI, both in the control condition and under RNAI

treatment targeting two germline-expressed genes.

Materials and methods

Sample preparation and sequencing

Worm strains and husbandry

Strains used in this study include wild strains CB4856, EG4348, JU1088, and QX1211 (gifts
from Matthew Rockman) and wild-type laboratory strain N2 (gift from Patrick McGrath). Prior to
beginning the RNA-seq relevant experiments, worms were cultured under standard conditions
(Stiernagle 2006) except that plates used for non-N2 wild strains were made with 1.25%
agarose to prevent burrowing. All strains except for QX1211 were maintained at 20°C; QX1211
was maintained at 18°C to prevent induction of its mortal germline phenotype (Frezal et al.
2018). Worms were cultured for at least three generations without starvation before RNAI
induction and RNA sequencing. Following culture expansion, all strains were handled under

identical conditions for RNAi induction and sample collection (see below).

RNA interference

RNAIi was induced via feeding and was carried out on plates at 20°C following established
methods (Ahringer 2006; Kamath et al. 2001). Worms were fed HT115 E. coli bacteria that had
been transformed with the empty pL4440 vector or the pL4440-derived vectors par-1
(H39E23.1) and pos-1 (F52E1.1) from the Ahringer feeding library (Kamath and Ahringer 2003).
Bacteria cultures were prepared by streaking from frozen stocks onto LB agar with carbenicillin
(25 ug/mL) and tetracycline (12.5 mg/mL); next 5-10 colonies from < 1 week old plates were
used to inoculate liquid cultures of LB broth with carbenicillin (50 ug/mL) and tetracycline (12.5

mg/mL), which were then incubated with shaking at 37°C for 16-18 hours and finally amplified
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with carbenicillin (50 ug/mL) for 6hrs at a 1:200 dilution. 10cm agar feeding plates with 1mM
IPTG (Ahringer 2006) were seeded with the RNAI bacteria cultures, then used within 44-78
hours after incubation in the dark. Worm strains reared under standard conditions were
bleached on day 1 to synchronize, then bleached again on day 4 (Stiernagle 2006). On day 5,
L1s were transferred to the RNAI plates. All strains were exposed to RNAI in this way at the
same time. For library preparation, six plates per strain and treatment combination were divided

into three biological replicates, two plates per replicate.

RNA library preparation and sequencing

As previously described (Chou et al. 2022), synchronized hermaphrodites reared on RNAI
feeding plates were washed off at the first sign of egg laying, washed twice with M9 buffer, and
stored in TRIzol (Invitrogen #15596026) at -80°C until RNA extraction. The age synchronization
was conducted similarly to other studies of transcription across C. elegans strains (Zhang et al.
2022), via close monitoring of culture plates to identify the point at which most animals were
gravid and the earliest embryos were laid. RNA was extracted from all samples at the same
time using TRIzol (Invitrogen #15596026) and RNeasy columns (Qiagen #74104) following (He
2011). cDNA and sequencing libraries were generated from 500 ng of fresh RNA samples with
10 cycles of PCR with the NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina (NEB
#7760). After quality checking using an Agilent 2100 Bioanalyzer, library fragments were size-
selected via BluePippin (Sage Science). Single end 75bp reads were sequenced on an lllumina

NextSeq at the Molecular Evolution Core facility at the Georgia Institute of Technology.

Analysis

Analytical approach

We considered multiple state-of-the-art pipelines to align RNA-seq data and quantify
expression. Because the four wild strains in our study are diverged from the N2 reference
genome by differing degrees (Cook et al. 2017), we required a method that could evaluate N2
data and non-N2 data over a range of variation without bias. One variant-aware option for
quantifying RNA expression is to consider only RNA-seq reads that align to exactly one position
on the reference genome (unique mappers) using STAR (Dobin et al. 2012), and to discard
reads not uniquely aligning to the same position after non-reference variants are swapped into
the read using WASP (van de Geijn et al. 2015). We explored this approach with our data.
Specifically, we used STAR v2.7.5a with non-default parameters --outFilterMismatchNmax 33 —

seedSearchStartLmax 33 --alignSJoverhangMin 8 --outFilterScoreMinOverLread 0.3 --



155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

alignintronMin 40 --alignintronMax 2200 --waspOutputMode SAMtag --varVCFfile <VCF
containing SNPs from all 4 non-reference strains>; these latter parameters implemented WASP
from within STAR.

A second option is to generate strain-specific transcriptomes that incorporate known variants
from each strain into the reference genome and use those to quantify transcript expression via
pseudo-alignment; this approach permits reads to map to multiple locations (Bray et al. 2016;
Patro et al. 2017). We do not compare the STAR-WASP approach to this pseudo-alignment
approach here; high-level results were similar between the approaches. For our final analysis
we chose the second option, for multiple reasons: 1) pseudo-alignment approaches are at least
as accurate at estimating expression while being computationally more efficient (Bray et al.
2016; Patro et al. 2017); 2) pseudo-alignment approaches take into account the large fraction of
reads that align to multiple loci in the genome (Bray et al. 2016; Patro et al. 2017); and 3) our
specific generation of strain-specific transcriptomes enabled us to include insertion-deletion
polymorphisms (INDELs), whereas WASP ignores INDELs (van de Geijn et al. 2015). Including
INDELSs was particularly relevant in this study, as 8,195-67,267 INDELs differentiate the four
non-reference strains from the reference genome (CeNDR 20210121 release) (Cook et al.
2017).

The following methods detail generation of strain-specific transcriptomes and pseudo-alignment
to quantify expression at individual genes. A subset of these methods and data overlap with our
recent RNAi-focused study, which examined expression variation at specific RNAi genes (Chou
et al. 2022).

Strain-specific transcriptomes

As previously described (Chou et al. 2022), we used SNPs and INDELs from CeNDR (release
20210121) (Cook et al. 2017) to update the N2 reference genome (release ws276) (Harris et al.
2020) to generate strain-specific transcriptomes using the software g2gtools (v0.1.31 via conda
v4.7.12, Python v2.7.16) (https://github.com/churchill-lab/g2gtools). Specifically, INDELS were
added to the reference genome with g2gtools vcf2chain and SNPs with g2gtools patch. INDELs
were added to the SNP-updated genome with g2gtools transform. We generated strain-specific
GTFs from the strain-specific FASTAs with g2gtools convert and generated strain-specific
transcriptomes from these GTFs with gffread (v0.12.7) (Pertea and Pertea 2020).
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The nextflow workflow performing this process is available in this project’s code repository

(https://github.com/averydavisbell/wormstrainrnaiexpr) in workflows/strainspectranscriptome.

Gene expression quantification

Transcript-level quantification, used downstream for gene-level estimates, was performed using
Salmon (v1.4.0) (Patro et al. 2017), as we previously detailed (Chou et al. 2022). First, we
trimmed lllumina TruSeq adapters from RNA-seq reads with Trimmomatic (v0.3.9) (Bolger et al.
2014), parameters ILLUMINACLIP:TruSeq3- SE.fa:1:30:1. Strain-specific transcriptomes were
used to generate Salmon index files with command salmon index with options -k 31 --
keepDuplicates (all others default; no decoy was used). Salmon transcript quantification salmon
quant was performed with options -/ SR --dumpEq, --rangeFactorizationBins 4, --seqBias, and --

gcBias, and library-specific fragment length arguments --fldMean and --fldSD.

The nextflow workflow generating strain-specific transcriptomes also generates strain-specific
salmon indexes; the nextflow workflow performing transcript quantification is available in this

project’s code repository in workflows/strainspecsalmon.

Differential expression analysis

Differential expression analyses were performed in R (v4.1.0) (R Core Team 2021) using the
DESeq2 package (v1.32.0) (Love et al. 2014). We imported transcript quantification data into
DESeq2 using the tximport package (v1.20.0) (Soneson et al. 2015), which adds Salmon-
specific transcript length normalizations to DESeq2’s sample-wise RNA quantification
normalization and converts Salmon’s transcriptome quantification estimates to gene-level
quantification estimates. Genes with fewer than 10 estimated reads across all samples
(summed) were excluded from downstream analyses, retaining 18,589 genes. Principal
components analysis was performed using the top 500 most variably expressed genes across
all samples after DESeq2’s variance-stabilizing transformation (vst function), which was

performed blind to experimental design.

We used DESeq2’s likelihood-ratio tests to determine whether genes were differentially
expressed based on strain in the control condition and whether the interaction of strain and
treatment was significant. For strain-wise significance, control sample counts were modeled with

the negative binomial model

loga(gip) = i xi + 1



223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Which was compared to the reduced (null) model

loga(gy) = 1
Here, for gene i, sample j, q is proportional to the actual concentration of RNA fragments for a
gene (derived by DESeqg2 from input counts and error modeling. (Love et al. 2014). f: gives the
log2 fold changes for gene i corresponding to strain x. A total of 15,654 genes were sufficiently
detected in the control samples to be included in this analysis (the remainder were excluded by

DESeq2’s p-value correcting methods).

To evaluate strain:treatment interactions, all sample counts were modeled with the negative
binomial model

loga(gij) = Bri xj + Baiyj + Bsi xj yj
Which was compared to the reduced model

loga(qip) = B1i xj + B2y
Here, the symbols are as in the first set of equations, with the additions that y corresponds to
RNAI treatment; xy to the strain-treatment interaction; and £ to the strain effect, 2 to the

treatment effect, and f; to the interaction effect.

In both likelihood-ratio tests, genome-wide adjusted p-values were determined by DESeq2'’s
multiple testing correction. Genes were considered differentially expressed if this p-value was

less than 0.1.

On the same datasets, we assessed differential expression within strains using DESeqg2’s
Wald’s tests of contrasts between treated (par-7 or pos-1 RNAI) and control (empty vector)
samples. Genes were considered significantly differentially expressed if, after log2 fold change
shrinkage using the ‘ashr’ method from the package ashr (v2.2-47) (Stephens 2017), their
absolute value fold change was greater than 1.5 and genome-wide adjusted p-value (FDR) was

less than 0.1.

The script performing these analyses is available in this project’'s code repository at

diffexp_Irt_straintreat_salmon_deseq2.R.

Transcriptional age estimates
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We used R package RAPToR (v1.2.0) (Bulteau and Francesconi 2022) to estimate the age of
each sample based on its gene expression profile by comparing DESeq2 variance stabilizing
transformation (vst)-normalized total counts data to the C. elegans young adult age benchmarks
provided with the package; age estimates were robust to several transformations of the count
data. Specifically, we used function ae with age ruler Cel_YA 2 from RAPToR companion

package wormRef (v0.5.0).

DNA sequence coverage estimation and identification of low-coverage and missing genes

We examined DNA sequence coverage within genes in CeNDR (Cook et al. 2017) BAM files
(20210121 release); these files correspond to the same strains as in our study except in the
case of EG4348, where CeNDR sequenced genetically identical strain EG4349. We note, of
course, that the CeNDR DNA alignments were made directly to the N2 genome; we used the
variants discovered therein to build our genotype-specific pseudo-transcriptomes. To get per-
gene DNA sequence coverage, we first generated a file containing the non-overlapping, non-
duplicated locations of all genes’ RNA generating sequences by determining the locations of all
merged exons genome-wide using GTFTools (v0.8.5) (Li 2018)
(http://www.genemine.org/gtftools.php). Then, we determined the mean per-base coverage of
each of these regions using mosdepth v0.3.2 (Pedersen and Quinlan 2018) with default options
with the exception of setting --flag 1540, which excludes unmapped reads, PCR duplicates, and
QC failures. Finally, we computed the per-gene coverage as

Y(coverage per merged exon * length of merged exon)

Y length merged exons in gene
To delineate a set of low DNA coverage genes, we median-normalized the coverages within
strain and flagged any with < 25% of the median coverage (i.e., median-normalized coverage <
0.25) as low coverage. Genes were classified as putatively missing from non-reference strain

genomes if they had raw coverage estimates of exactly zero.

The workflow running this analysis is available in this project’s code repository in
workflows/mosdepthmergedexons; this workflow performs custom gene-level analysis steps by
calling an R script available in this project’s code repository at

exploregenecoverage fromexons.R. The scripts determining overlap with differentially
expressed genes and zero-coverage genes are available in this project’s code repository at

de_dnacov_overlap.R and exploregencoverage _fromexons_lowend.R.
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‘Off gene analysis

To identify genes putatively unexpressed in one or more strains despite being expressed in
others (‘off genes), we first identified all genes differentially expressed between any two strains
in the control condition (Wald’s test comparing each strain pair, genome-wide adjusted p < 0.1).
The rationale was that genes significant for differential expression between strain pairs must
have meaningful expression in at least one strain; we employed this standard to avoid inclusion
of genes that are simply not expressed or expressed at a very low level regardless of strain. We
then determined the average variance-stabilizing transformed (DESeq2 function vst) expression
across all samples from all three treatments within each strain for these genes and identified
those with zero mean expression. (These genes, of course, also have zero estimated
expression prior to vst normalization.) Genes with strain-wise differential expression and zero
expression within a strain comprise the ‘off gene set. (This process identified an additional six
genes that fell just short of significance in the global analysis for differential expression in the
likelihood-ratio test described above.) We then interrogated these genes for overlap with low

DNA coverage and differential expression under RNAi treatment.

The script performing these analyses is available in this project’s code repository at

offgenes_straintreatDE_deseq2_dnacov.R.

Gene set enrichment analysis

We performed gene set enrichment analysis of genes differentially expressed upon RNAI
treatment using WormBase’s enrichment analysis tool (Angeles-Albores et al. 2016; Harris et al.
2020) (https://lwormbase.org/tools/enrichment/tea/tea.cgi). We analyzed genes upregulated and
downregulated on each RNAI treatment in all five strains (20 analyses total; 5 strains x 2
treatments x 2 directions of differential expression). Upregulated genes were those with higher
expression on a treatment, with fold change > 1.5 vs control and adjusted p-value < 0.1;
downregulated genes were those with lower expression on a treatment, with fold change < -1.5
vs control and adjusted p-value < 0.1 (see ‘Differential expression analysis’). The background
gene set for all analyses was the 18,529 genes included in overall differential expression
analyses. All gene-set enrichment related outputs were saved and the enrichment results tables

(‘Download results table here’) output were combined across strains for visualization.

The script performing this limited downstream processing is available in this project’s code

repository at explore GeneSetEnrichmentResults.R.

10
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High-performance computation

Computationally intensive analyses were performed on the infrastructure of PACE (Partnership
for an Advanced Computing Environment), the high-performance computing platform at the
Georgia Institute of Technology. These analyses comprised pseudo-transcriptome generation,
expression quantification, DNA sequence coverage estimation, and their related computational

tasks.

Figures and website

Figures were made in R (v4.1.0) (R Core Team 2021) using packages ggplot2 (v3.3.6)
(Wickham 2016), data.table (v1.14.3) (Dowle and Srinivasan 2022) (https://r-datatable.com),
DESeq2 (v1.32.0) (Love et al. 2014), cowplot (v1.1.1) (Wilke 2020), ggVennDiagram (v1.2.0)
(Gao 2021), eulerr (v6.1.1) (Larsson 2021), and ggpattern (v1.0.1) (FC et al. 2022), with color
schemes developed using RColorBrewer (v1.1-3) (Neuwirth 2022) and Paul Tol’s color palettes
(https://personal.sron.nl/~pault/). The interactive website that enables exploration of the data

from this study was developed using Shiny (Chang et al. 2022).

Results and discussion

To investigate natural variation in both gene expression and response to exogenous RNAI, we
performed RNA sequencing on five isogenic C. elegans strains in three conditions: RNAI
targeting the germline genes par-1 and pos-1 and the untreated condition. We included the
RNAi-competent reference strain N2 and four wild strains with varying competency to germline
RNAI (Paaby et al 2015, Chou et al 2022): JU1088 (highly competent), EG4348 (moderately
competent), and CB4856 and QX1211 (largely incompetent). These wild strains also vary in
divergence from N2, representing some of the least (JU1088) and most (QX1211) divergent
strains (variants per kilobase vs. N2 genome: 0.82, 1.40, 1.99, and 4.20, respectively, from
Caenorhabditis elegans Natural Diversity Resource [CeNDR] data (Cook et al. 2017)). To
minimize potentially confounding effects of different developmental timing among strains, we
stage-matched all samples to the first sign of egg laying, then verified developmental
consistency by estimating sample age from the gene expression profiles (Bulteau and
Francesconi 2022) (Figure S1). To limit bias arising from differences between non-N2
sequencing reads and the N2 reference genome in our analysis, we first created strain-specific
transcriptomes by inserting known single nucleotide and insertion/deletion variants from CeNDR

(Cook et al. 2017) into the reference genome. Then, we pseudo-aligned the RNA reads to these

11
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strain-specific transcriptomes to quantify per-gene RNA expression in each strain on each
condition, and estimated differential expression based on strain, RNAi treatment, and their

interaction.

Genotype (strain)-wise expression variation predominates, identifies potentially
functionally diverged genes

Overall, genotypic differences between strains explained more gene expression variation than
RNAI treatment. We detected nominal expression at 18,589 genes across the full dataset; a
principal components analysis of the 500 most variable genes shows distinct strain-wise
partitioning of the variation (Figure 1A). To identify genes with significant expression differences
between strains in just the control condition, we compared a model with a term for strain to one
without (via a likelihood-ratio test) for each gene. Of the 15,654 genes included in this control-
specific analysis, 5355, or approximately 34%, were differentially expressed across the five
strains (likelihood-ratio test, genome-wide adjusted p < 0.1) (File S$1). This fraction of genes
with expression differences between strains is consistent with recent findings that 28% of
assayed genes were associated with mappable genetic differences (eQTLs) across 207 wild
strains (Zhang et al. 2022). Other systems, such as flies, also harbor extensive variation in gene
expression: a recent study of 200 inbred Drosophila melanogaster strains detected strain-wise
expression variation at the majority of genes (Everett et al. 2020). The experimental and
analytical approach matters a great deal; in the Drosophila study, many more variable genes
were identified using RNA-seq data than microarray data, and only 30-40% of differentially

expressed genes were associated with mappable eQTLs (Everett et al. 2020).

In some cases, presence versus absence of expression may underpin differential expression
across strains; this pattern could indicate strain-wise differences in functional requirements or in
developmental timing of expression. We identified such ‘off genes as those with zero mean
expression in at least one strain (across all conditions) as well as significant strain-wise
differential expression between a pair of strains in the control condition (genome-wide adjusted
p < 0.1). This conservative zero-read threshold reduces the frequency of misclassifying low
expression genes as off; the requirement for differential expression ensures true expression in
at least one strain. This stringent selection yielded 411 putative ‘off genes (Figure 1B, File $2).
Most of these genes lacked expression in a single strain: 249 were off in one strain, 105 were
off in two strains, 51 were off in three strains, and only 6 genes were expressed in a single

strain and off in the others (Figure S2A). We detected 49 genes that were off in N2 but

12
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expressed in at least one other C. elegans strain. The complete functional repertoire of these

genes would therefore be invisible in a study using only the N2 strain. Such on/off patterns of

gene expression occur in other systems as well; for example, across 144 Arabidopsis thaliana
strains, thousands of genes showed strong expression in some strains but zero expression in
others (Zan et al. 2016).

To assess the potential significance of ‘off’ genes in the context of RNAIi response, we
investigated whether any genes unexpressed in one strain exhibited differential expression
within another strain following par-1 or pos-1 RNAi treatment. Of the 411 ‘off’ genes, 47 were
differentially expressed on an RNAI treatment in at least one other strain (RNAI differential
expression threshold: genome-wide adjusted p < 0.1 and fold change > 1.5 for within-strain
RNAI treatment vs. control comparisons) (Figure S2B). The majority (n = 33) of these genes
were differentially expressed in only one RNAI treatment in one strain. However, one gene
identified by this analysis is W06G6.11 (WBGene00012313), which was ‘off’ in N2 but
expressed in the other strains, and was significantly upregulated on RNAi against both par-1
and pos-1 in RNAi-sensitive strain JU1088 (fold change = 1.9 and genome-wide adjusted p =
0.03 for par-1; fold change = 3.4 and genome-wide adjusted p = 0.003 for pos-1). Prior RNA-
seq and microarray studies have indicated that W06G6.11 expression may be affected by the
activity of Argonaute alg-1 (Aalto et al. 2018), a member of the RNA-induced silencing complex
involved in endogenous and exogenous short RNA processing (Grishok et al. 2001), and also
by exposure to pathogens (Engelmann et al. 2011; Lee et al. 2013). These studies detect
W06G6.11 expression in N2, but in samples derived from older adult hermaphrodites relative
the young adults we sampled; a study that included CB4856 also confirmed significantly higher
WO06G6.11 expression in that strain relative to N2 (Zamanian et al. 2018).

This process of identifying genes that are unexpressed in some strains, but differentially
expressed based on a treatment or phenotype of interest in others, might be used to identify
candidate genes for other naturally variable phenotypes, perhaps as a complement to genotype-
to-phenotype mapping by genome-wide association studies with expression mediation analyses
(Evans and Andersen 2020; Zhang et al. 2022).

Reference bias screening increases confidence in differential expression calls

For RNA-seq studies that evaluate wild strains, reliance on a reference strain poses a concern.

The main issue is whether the mapping of fewer non-reference strain RNA reads than
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reference-strain reads to a gene arise from true differences in gene expression, or from failure
of non-reference reads to correctly map to the reference genome due to sequence divergence
(reference bias) (Degner et al. 2009). Such discrepancies might remain even after the use of
genotype-specific transcriptomes. In the case of C. elegans, wild strains exhibit a wide range in
levels of divergence from the reference strain N2 in the species generally and the strains
studied here specifically (Andersen et al. 2012; Cook et al. 2017; Crombie et al. 2019); much of
this diversity is located in hyper-divergent haplotypes encompassing 20% of the genome (Lee et
al. 2021).

To refine our level of confidence in the genes we identified as differentially expressed, we
examined our results in the context of alignment quality in the original CeNDR genome
sequencing data (Cook et al. 2017) (Figure S3, Files S3, S4). For each strain in our study, we
curated a list of genes with missing or poor DNA sequence alignment in CeNDR (Cook et al.
2017) (File S5). Specifically, we classified genes with exactly zero coverage as missing in that
strain’s genome; this is a conservative assignment, as even one well-aligned DNA sequence
read precluded a gene from being classified as missing. We classified genes with more than
zero coverage but less than 25% of the gene-wise median DNA coverage in each strain as low
coverage. This process identified a similar set of genes across strains despite the contribution of
some strain-to-strain coverage variation (Figure S3, File S5). In total, we identified 799 genes

as missing or low DNA coverage in one or more strains (Figure 2A).

Were differentially expressed genes associated with poor DNA coverage? Overall, yes: overlap
of the missing-or-low coverage and strain-wise differentially expressed gene sets revealed
significant enrichment (hypergeometric test of enrichment p = 9.8 x 10¢). However, the
absolute number of differential expression genes with poor DNA coverage was modest: only 4%
of all genes analyzed and 8% of genes with differential expression across strains had missing or
low DNA coverage (Figure 2B). Put another way, 52% of missing or low DNA coverage genes
were called as differentially expressed, while 29% of all analyzed genes were called as
differentially expressed. Further, we note that poor DNA coverage arises from several sources.
First, by chance, some genes will be low coverage simply due to stochastic variation in short-
read sequencing depth, as reflected in the 62 genes binned as low coverage in N2 mapped to
itself (Figure 2A). Second, sequence divergence between the mapped strain and the reference
genome could inhibit alignment (reference bias); this possibility motivates this analysis. Third,

the gene could be missing from the strain’s genome while present in the N2 reference genome.
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Not surprisingly, QX1211, the strain most diverged from the N2 reference genome, exhibits the

most missing and the most low coverage genes (Figure 2A, File S6).

The set of ‘off’ genes that show zero expression in some strains may be particularly vulnerable
to reference bias, for example if they were more likely to be pseudogenes in at least one strain.
In this scenario, poor DNA coverage may be conflated with true expression loss, as
accumulated mutations may lead both to poor DNA coverage and consequently poor RNA
alignment and to reduced expression through mutation-mediated de-functionalization. Here,
when genes are detected as unexpressed, we can make distinctions between 1) missing genes,
which we are reasonably confident do not exist in the strain genome; 2) genes for which we may
not trust the conclusion of zero expression because of low DNA coverage and potential bias in
RNA read mapping; and 3) true ‘off genes, which do not fall into either category and likely
represent unbiased expression differences at the RNA level. In this scheme, among the four
non-reference strains, 17-49 (12-35%) of the originally detected ‘off genes are likely truly turned
off, 28-66 (22-34%) appear missing from the strain genome, and 36-89 (36-66%) are
undetected for an unknown reason but have low DNA coverage and may be influenced by

reference bias (Figure 2C, File S7).

As we would expect, all 49 ‘off genes in the reference strain N2 were classified as truly
unexpressed; none were missing or low coverage (Figure 2C). Of these, 22 are listed as
pseudogenes on WormBase (Harris et al. 2020), and may represent alleles that have been
pseudogenized in the N2 lineage but remain functional in other strains. One such candidate is
the Argonaute ZK218.8 (WBGene00013942), which is expressed in strains CB4856 and
QX1211 and may reflect functional diversification in RNAIi processes across the population
(Chou et al. 2022). Of the 47 ‘off genes with par-1 or pos-1 RNAI effects in another strain, a
large majority (n = 39, 83%) were missing in the genome or were associated with low DNA
coverage (Figure S4). This majority represents a slight enrichment relative to the proportion of
missing or low coverage genes within the complete set of ‘off genes (286/411 or 70%) (one-
sided proportion test with continuity correction: ¥2 = 3.05, df = 1, p = 0.04). Enrichment of
genome divergence among RNAi-responsive ‘off genes supports the hypothesis that genes
associated with RNAi are evolving rapidly in C. elegans (Chou et al. 2022). By adding the
missing and low DNA coverage filters, we infer that, of genes with an RNA.i effect in another
strain, zero (in N2) to 12 (in QX1211) were missing from the strain’s genome and 1-6 genes per

strain were present but truly unexpressed at the RNA level. These genes might be the most
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interesting candidates for downstream expression-based study. This set includes the putative
RISC-associated gene W06G6.11 (WBGene00012313) discussed above.

An alternative approach to handling reference bias is to side-step it by excluding transcripts
associated with known hyper-divergent haplotypes (Lee et al. 2021; Zhang et al. 2022).
However, because 1) some genes in hyper-divergent regions had good DNA alignment with low
SNP density and others outside the regions had no DNA coverage, and 2) our study focuses
exclusively on genic regions, we chose a gene-level, strictly coverage-based approach for bias
screening. Still, a limitation of our approach (and most others) is that it cannot identify bias
associated with elevated RNA levels in diverged or duplicated haplotypes relative to the N2
haplotype. Such bias could occur if reads in non-reference strains come from a gene poorly
represented or missing in the reference, which are then spuriously assigned to an incorrect
gene with a better match. This type of bias is difficult to define, quantify, and exclude. A
powerful alternative approach to making strain-specific pseudo-transcriptomes would be to use
de novo genome assemblies from the other strains; this approach would permit investigation
into genes that are missing from the N2 reference genome, which are necessarily missed by the
current approach. Such an assembly is available for CB4856 (Kim et al. 2019; Thompson et al.
2015), but not yet for all strains. Additionally, as for any arbitrary threshold, our cutoff of < 25%
median coverage likely produces a mix of false positives and negatives, i.e., genes with low
DNA coverage but accurate RNA alignments and genes above the coverage cutoff that are
nevertheless skewed by reference bias. While those interested in specific genes would
therefore do well to interrogate them further, the DNA coverage approach provides a useful

quality control filter for initial analyses of differential expression.

Complex genotype and target specificity in transcriptional response to RNAIi

Wild C. elegans strains vary in response to exogenous RNA interference. In particular, strains
differ widely in competence for RNAi against germline targets delivered by feeding, as
measured by phenotypic consequences following putative target knockdown (Elvin et al. 2011;
Felix 2008; Felix et al. 2011; Paaby et al. 2015; Tijsterman et al. 2002). To assess the
transcriptional response to RNAI in worms with variable germline RNAi competencies, we fed
worms dsRNA targeting the maternal-effect embryonic genes par-1 and pos-1 as well as the
empty vector control. Both genes are expressed in the mature hermaphrodite germline and are
essential for embryonic viability; in competent animals, RNAI by feeding results in dead embryos

(Paaby et al. 2015; Sijen et al. 2001). Gene expression knockdown of the targets themselves
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confirmed the previously observed differences in RNAi competency (Chou et al. 2022; Paaby et
al. 2015): under pos-1 RNAI, pos-1 expression levels dropped the most in JU1088, followed by
N2 and then EG4348; strains CB4856 and QX1211 showed no drop in expression (Figure S5A,
C). RNAiI against par-1, which induces a less lethal response (Chou et al. 2022; Paaby et al.
2015), resulted in a similar though less strong pattern of par-1 knockdown (Figure S5B,D).
These results confirm that strains differ in RNAi response and that the response was target-

gene-specific; this target specificity was also evident transcriptome-wide.

To assess how strains vary in overall transcriptional response to RNAI, we identified changes in
gene expression across treatments (par-1 RNAI, pos-7 RNAI, and the negative control) that
differed across the five strains. Specifically, for each gene in the dataset, we asked whether a
model with or without a strain x treatment interaction term better explained the pattern of
expression (see Methods). Genome-wide, 842 genes (5% of those assayed) varied in RNAI
response across strains (i.e., had significant strain:treatment interaction via likelihood-ratio test,
genome-wide adjusted p < 0.1) (File $8). We also identified, within each strain, differences in
expression following par-1 and pos-1 RNA. relative to the control. The number of genes
differentially expressed under RNAi treatment (genome-wide adjusted p < 0.1, fold change >
1.5) varied substantially across strains and as well as between the two treatments (Figure 3A,
Figure S6, Files S9a-j).

On both par-1 and pos-1 RNAI, the highly germline-RNAi competent strain JU1088 exhibited the
most differentially expressed genes relative to the control, suggesting that this strain is the most
transcriptionally responsive to RNAi (Figure 3A, Figure S6). However, on par-1 RNAi, the
moderately competent strain EG4348 and the largely incompetent strains CB4856 and QX1211
showed substantially more differentially expressed genes than the competent laboratory strain
N2. These results indicate that the number of genes transcriptionally responsive to exogenous
RNA. is not predictive of RNAi phenotypic penetrance, and that ‘competence’ defined by end-
point phenotypes and/or artificial triggers may obscure intermediary RNAi activity, or activity in
alternative RNAI pathways (Chou et al. 2022).

Relative to par-1, pos-1 RNAI induced substantially fewer differentially expressed genes in all
strains but JU1088, indicating that RNAI transcriptional response is highly target-specific.
Furthermore, differential expression following par-1 RNAi was strongly skewed towards an

overabundance of upregulated genes compared to downregulated genes (Figure 3A, Figure
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$6). Of course, a transcriptional response may reflect developmental consequences of losing
par-1 or pos-1 gene expression, at least in competent strains (Chou et al. 2022; Paaby et al.
2015); here, we cannot easily distinguish these effects from those arising from induction of the
RNAI process itself. However, several lines of evidence suggest that RNAI process effects
dominate. First, RNAiI is a systemic phenomenon with a repertoire of many genes (Billi et al.
2014) while par-1 and pos-1 expression is largely restricted to the germline with consequential
effects predominantly in the early embryo (Harris et al. 2020); our samples were prepared from
whole worms. Second, the incompetent strains exhibited transcriptional responses genome-
wide, but not at the targeted genes. Finally, as described below, the transcriptional response at
a gene-by-gene level was strain-specific, consistent with our growing understanding of natural

variation in RNA..

To identify transcriptional responses to RNAi that may be universal within C. elegans, we first
checked for differentially expressed genes that were shared across strains. However, overlap
among strains was sparse (Figure S7): no genes with differential expression to both par-7 and
pos-1 RNAI were shared across all five strains, and the only gene responsive to both treatments
in the competent strains (JU1088, N2, and EG4348) was asp-14, a predicted aspartyl protease
involved in innate immunity (Harris et al. 2020). Such strain-specific patterns fit with our
observations of RNAI variability: not only does C. elegans exhibit substantial natural variation in
germline RNAi competence (Elvin et al. 2011; Felix 2008; Felix et al. 2011; Paaby et al. 2015;
Tijsterman et al. 2002), but the genetic basis for RNAI failure appears strain-specific as well
(Chou et al. 2022). We posit that even among competent strains, C. elegans varies in details of
the RNAI biological response mechanism, including which genes are affected, the magnitude or
functionality of their activity, and their timing. These differences are apparent in the
transcriptional responses of N2 and JU1088 (Figure 3, Figure S7), including the activity of
W06G6.11 described above. As the RNAI response is also highly target-specific, these results

portray RNAIi as a phenomenon of exquisite specificity and context dependence.

However, statistical flux around significance cutoffs within strains may limit detection of gene-
specific responses, and we also wished to examine the biological significance of the
transcriptional responses. Therefore, we investigated whether the same general classes of
genes responded to RNAI across strains by applying WormBase gene set enrichment analyses
(Angeles-Albores et al. 2016; Harris et al. 2020) to the sets of genes up- and down-regulated on

the RNAI treatments (Files $9). Strains showed a clear pattern of enriched gene ontology (GO)

18



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

categories, particularly in the largest gene set, those upregulated under par-1 RNAi (Figure 3B,
File $S10). Specifically, GO terms associated with canonical RNAi functions such as immune
defense were well represented in all strains except in the germline incompetent strain QX1211,
and genes in other categories were enriched in all strains except in N2. This pattern explains
the paucity of differentially expressed genes in N2 relative to other strains following par-7 RNAI
(Figure 3A), as those in N2 are restricted to immunity associated ontology. These results
demonstrate that reference strain N2 may not be a good representative for RNAI transcriptional
response in C. elegans generally. Some of these patterns were also evident at genes
downregulated under par-1 RNAI, and up- and down-regulated under pos-7 RNAI, though these
results were less clear (Figure S8); this difference from par-1 upregulated genes might reflect

the more limited pool of differentially expressed genes in those categories.

In sum, transcriptional responses to RNAI differed across strains, but these responses did not
clearly discriminate between RNAi competent and incompetent strains in the context of N2-
derived GO categories: some competent strains upregulated non-defense categories while N2
did not, and incompetent strain CB4856 upregulated defense categories while incompetent
strain QX1211 did not. That said, some strain-specific aspects of RNAi responses at the
phenotype level may shed light on the transcriptional response enrichments. EG4348 is partially
sensitive to RNAIi (Chou et al. 2022; Felix et al. 2011; Paaby et al. 2015), and its GO term profile
is similar to highly sensitive strain JU1088. While largely incompetent for germline RNAI,
CB4856 does eventually exhibit strong RNAi phenotypes at late ages (Chou et al. 2022; Felix et
al. 2011; Paaby et al. 2015; Tijsterman et al. 2002); its GO term profile similarity to JU1088
could be explained by the fact that this delay arises from the perturbation of a single gene, ppw-
1 (Tijsterman et al. 2002). Alternatively, QX1211 exhibits an apparent on/off response pattern
among individual animals (Chou et al. 2022), and this binary penetrance of RNAi response may

be insufficient to detect defense/immune gene upregulation in a bulk analysis.

A public web resource for data exploration

We have built a user-friendly, interactive website (https://wildworm.biosci.gatech.edu/rnai/) to

enable straightforward public exploration of our gene expression data across the five wild C.
elegans strains and three RNAIi conditions. For any gene in our analysis, this website 1)
visualizes the RNA quantification per sample split by treatment or strain, 2) allows the user to
look up differential expression results between any two strain-treatment groups, 3) reports if

expression differs by strain in the control condition and by RNAI treatment across strains, and 4)
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enables initial reference bias screening by displaying DNA sequencing coverage and whether
the gene overlaps a hyperdivergent haplotype. This website may be useful for exploratory

analyses of genes of interest for many types of studies in the C. elegans community.

Conclusion

The results of the investigations described here further expand our understanding of C. elegans
processes beyond the reference strain N2. Our quantification of gene expression variation
among wild strains demonstrates that mapping bias arising from the use of a reference genome,
while a greater liability for inferences about individual genes, can be restricted to a relatively
minor concern for genome-wide studies in this system. However, the strain-specific variation in
RNAI transcriptomic response suggests that our understanding of RNAi processes, derived
predominantly from studies in N2, incompletely represents RNAi biology in C. elegans as a
whole. The type of dataset presented here, genome-wide expression in multiple natural genetic
backgrounds over multiple conditions of interest, enables researchers to characterize how much
variation exists in the experimental systems we study. Understanding the scope of natural
variation informs evolutionary hypotheses about traits of interest and offers insight into

otherwise inaccessible relationships among genes, their functions, and phenotypes.
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Data availability

Strains and feeding vectors are available from CeNDR or the CGC, and upon request. All

supplementary data files are available via Zenodo at https://doi.org/10.5281/zenodo.7406794:

File S1 contains the genes differentially expressed based on strain; File S2 contains the ‘off’
genes identified as potentially unexpressed in one strain but expressed in others; File S3
contains raw per-gene DNA sequence coverage estimates; File S4 contains median-normalized
per-gene DNA sequence coverage estimates; File S5 contains the list of genes flagged as low
DNA coverage; Files S6-7 contain summaries of missing/zero coverage genes; File S8 contains
the genes differentially expressed based on strain-treatment interaction; Files S9a-j contain the
genes differentially expressed in each strain in each RNAi treatment vs. control; File S10
contains the results of the gene set enrichment analyses. Per-gene differential testing results
and related information are available via an interactive web app at

https://wildworm.biosci.gatech.edu/rnai/. Gene expression data (raw and processed) are

available at GEO with the accession number GSE19083. Code used for all analyses can be

found at https://github.com/averydavisbell/wormstrainrnaiexpr.
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Figure legends - main

Figure 1. Genotype (strain) dominates expression variation across five C. elegans strains
treated with RNAI targeting the genes par-1 and pos-1 or an empty vector control (n =3
biological replicates in each condition in each strain). A) Principal components analysis (PCA) of
gene expression. PCs 1 vs. 2 (left) and 2 vs. 3 (right) of PCA of the 500 most variably
expressed genes are plotted; the proportion of variance explained is noted on the axes. B) In
the control condition, 34.2% of 15,654 nominally expressed genes are differentially expressed
across strains (genome-wide adjusted p < 0.1 in a likelihood-ratio test between models including
and excluding the strain term); a subset of these (approximately 2.6% overall) are not
expressed at all in at least one strain (in any condition, see text for details).

Related Supplementary Material:

File S1 contains the genes differentially expressed based on strain

File S2 contains the ‘off’ genes identified as potentially unexpressed in one strain but expressed

in others

Figure 2. Improving confidence in differential expression calls by integrating DNA alignment
data. A) The number of genes with low (<25% of the median) and missing (zero raw coverage)
DNA alignment coverage (from CeNDR sequencing (Cook et al. 2017)) in each strain, of the
18,589 genes included in the expression analysis. Strain note: CeNDR assessed DNA coverage
in EG4349, the genetically identical isotype to EG4348. B) The total number of genes
differentially expressed based on strain (likelihood-ratio test of models including and excluding
strain term, genome-wide adjusted p < 0.1) and their overlap with genes classified as missing or
low DNA coverage in any strain (417 are both differentially expressed across strains and low
DNA coverage, hypergeometric enrichment test p = 9.8 x 10°). Areas are proportional to
number of observations. C) The number of unexpressed ‘off genes per strain, subset into three
categories: called as turned off at the RNA level with high confidence; missing in the strain
genome (zero raw coverage); called with uncertainty, given low DNA sequence coverage (<25%

but >0 median DNA coverage).
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Related Supplementary Material:

Figure S2 shows DNA coverage distributions and cutoffs

File S2 contains details on each ‘off’ gene

File S3 contains raw per-gene DNA sequence coverage estimates

File S4 contains median-normalized per-gene DNA sequence coverage estimates
Files S5 contains the list of genes flagged as low DNA coverage

Files S6-7 provide numerical summaries of ‘off’ genes

Figure 3. The transcriptional response to dsRNA is highly strain- and target-specific. A) The
number of genes up- and down-regulated in each strain upon par-1 and pos-17 dsRNA
ingestion/RNAI induction. Genes were called differentially expressed if their shrunken absolute
fold change was > 1.5 and genome-wide adjusted p-value/FDR < 0.1. B) Gene set enrichment
analysis results for genes upregulated on par-1 dsRNA in each strain. Gene ontology (GO)
categories that were significantly enriched (false discovery rate Q < 0.1) in any strain are
included. GO terms are ranked and colored by median significance across strains.

Related Supplementary Material:

Figure S6 shows volcano plots for RNAi treatments for each strain

Figure S7 contains Venn diagrams of overlap among strains in specific DE genes

Figure S8 shows results from the same gene set enrichment analysis of genes downregulated
under par-1 RNAi and up- and down-regulated under pos-1 RNAi

Table S1 gives number of up and downregulated genes in each strain and included in each
analysis

File S8 contains the genes differentially expressed based on strain-treatment interaction

Files S9a-j contain the genes differentially expressed in each strain in each RNAI treatment vs.
control

File S10 gives all enriched GO categories.

Figure legends - supplementary

Figure S1. Estimates of sample ages from their gene expression profiles. Each expression
profile was compared to time course gene expression from N2 worms using RAPToR (Bulteau
and Francesconi 2022). Each point represents a biological replicate; error bars are 95%

confidence intervals generated by RAPTOR’s bootstrapping.
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Figure S2. ‘Off’ genes, which are expressed in at least one strain but show no expression in
one or more others. A) All ‘off genes per strain, either unique or shared across strains (n = 411
total; genes may be present for multiple strains). B) The subset of ‘off’ genes that exhibit
differential expression on RNAI to par-1 or pos-1 in other strains, which are potential candidates
for RNAI functional divergence (n = 47 total; genes may be present for multiple strains).

File S2 contains identity and details for each of these ‘off’ genes.

Figure S3. DNA sequence coverage across 18,589 genes included in expression analyses.
Aligned DNA sequence data was obtained from CeNDR (release 20210121) (Cook et al. 2017).
A) Mean coverage (mean number of reads covering each base) over merged non-overlapping
exonic regions of genes in the five strains in this study. CeNDR assessed DNA coverage in
EG4349, the genetically identical isotype to EG4348. The x-axis is truncated at 150x coverage
for visual clarity, excluding 179 genes across all strains combined. B) Median-normalized
coverage for the same genes as in (A). Genes with less than 25% median coverage are
considered low DNA coverage in this study; this boundary is demarcated with the blue dashed
line and the number and proportion of genes this set comprises is noted on the plots. The x-axis
is truncated at 3x median coverage for visual clarity, excluding 227 genes across all strains
combined.

Files S3 and S4 contain the source data. File S5 provides the list of genes identified as low

coverage.

Figure S4. ‘Off genes that were unexpressed in one or more strains but differentially expressed
with respect to par-1 or pos-1 RNAI in another strain, potential candidates for RNAI functional
divergence. DNA sequence coverage information is denoted with color and shading. Missing
genes were those with zero DNA sequence coverage; low DNA sequence coverage genes had
greater than zero but less than 25% median gene’s coverage; genes classified as truly turned
off had greater than 25% median gene’s DNA sequence coverage. (DNA coverage was
assessed in strain EG4349, isotype to EG4348).
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956  Figure S5. RNA-seq estimates suggest RNAI targets are knocked down commensurate with
957  each strain’s RNAI capacity. (A and B) Quantification estimates from pseudoalignment to strain-
958  specific transcriptomes, normalized to library size and gene length, as used for all analyses in
959  this study. A) Quantification estimates for pos-1 in control and exposure to pos-1 dsRNA;

960  response is significantly different across strains (the strain:treatment interaction is significant,
961  genome-wide adjusted p = 4 x 102%4). B) Quantification estimates for par-1 in control and

962  exposure to par-1 dsRNA (the strain:treatment interaction is not significant, genome-wide

963  adjusted p = 0.92). (C and D) Detection of target knockdown is not dependent on RNAI

964  strategy: panels show pos-1 and par-1 quantification estimates as in (A and B), respectively,
965  but with alternative expression estimates derived from RNA sequence data uniquely mapping to
966  one genomic location when containing the reference or non-reference allele (see methods).
967

968  Figure S6. Volcano plots show genome-wide effects of RNAI treatments (against par-1, top,
969  and pos-1, bottom) in each of the five strains. All genes with differential expression estimates
970  are plotted; blue points denote genes with significant differential expression (genome-wide
971  adjusted p < 0.1 and corrected [see methods] absolute value (fold change) > 1.5; these

972  thresholds are annotated on the plot with gray dashed lines). For visual clarity, the y-axis is
973  truncated at p = 102° and the x-axis is truncated at absolute log, fold change = 3.5; genes with
974 values exceeding these thresholds are included on the plots and are represented by unique
975  point shapes as noted in the plot legend.

976

977  Figure S7. Limited overlap of genes called as differentially expressed in RNAI conditions vs.
978  control across strains; shading scales with number of genes separately within each panel (see
979  color bar legends). (A-C) Under par-1 RNAI, genes differentially expressed in either direction
980  (A), upregulated (B), or downregulated (C). (D-F) Under pos-1 RNAI, genes differentially

981  expressed in either direction (D), upregulated (E), or downregulated (F). Genes were called
982  differentially expressed and included if their shrunken absolute fold change was > 1.5 and

983  genome-wide adjusted p-value/FDR < 0.1 between RNAi and control within-strain.

984  Files S9a-j contain gene IDs and details. Figure 3A and Table S1 show the overall number of
985  up- and down-regulated genes in each strain.

986

987  Figure S8. Gene set enrichment analysis results for genes (A) downregulated on par-1 dsRNA

988  in each strain, (B) upregulated on pos-1 dsRNA, and (C) downregulated on par-7 dsRNA. Only
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gene ontology (GO) categories significantly enriched (FDR Q < 0.1) in upregulated genes in any
strain are included. GO terms are ranked and colored by median significance across strains.
Table S1 provides the number of genes included for each analysis. File S10 gives all enriched

GO categories. Main Fig 3B displays the same analysis of genes upregulated under par-1 RNAI.

Supplementary Tables
Table S1. The number of genes differentially expressed in each RNAI treatment in each strain,

relative to the control condition, as well as the number included in the gene set enrichment
analysis (GSEA).

Up- or
down- N genes N genes N genes
RNAI Strain regulated significantly up- | included in | excluded
Treatment vs. control- | or GSEA from GSEA
treated downregulated* | testing testing™*
samples
Down 55 35 20
CB4856
Up 400 282 118
Down 22 12
EG4348 34
Up 351 222 129
Down 49 29 20
par-1 Ju1088
Up 909 569 340
Down 31 13
N2 44
Up 104 62 42
Down 46 14
Qx1211 60
Up 517 380 137
Down 17 3
CB4856 20
Up 11 5 6
Down 8 7 1
EG4348
Up 8 6 2
Down 315 100
pos-1 JU1088 415
Up 665 394 271
Down 16 4
N2 20
Up 18 7 11
Down 17 15 2
QX1211
Up 3 2 1

*, up or downregulation means shrunken fold change > 1.5 or < 1.5, respectively, and genome-
wide adjusted p-value < 0.1

** genes excluded by WormBase due to lack of association with any WormBase gene ontology
category
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