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We present exact solutions for the quantum time evolution of two spatially separated, local inductor-
capacitor (LC) oscillators that are coupled optomechanically to a long elastic strip that functions as a
quantum thermal acoustic field environment. We show that the optomechanical coupling to the acoustic
environment gives rise to causal entanglement dynamics between the two LC oscillators in the absence of
resonant photon exchange between them, and that significant entanglement develops regardless of the
environment temperature. Such a process establishes that distributed entanglement may be generated
between superconducting qubits via a connected phonon bus bar, without the need for resonant phonon
release and capture.
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Introduction.—Thermal environments have often been
invoked to explain the decoherence of a quantum system,
thus, resulting in the observed classical, macroscopic world
[1–3]. However, it is also well known that thermal
environments can generate quantum entanglement when
coupled to otherwise independent quantum subsystems
under suitable conditions [4–15]; several experimental
realizations have been proposed [4,16–19], with further
examples considered in the Ref. [20] review (and references
therein).
In this Letter, we investigate the entanglement dynamics

of an experimentally feasible model comprising two
spatially separated local inductor-capacitor (LC) oscillators
that are capacitively coupled to a long, partially metallized
elastic strip via the optomechanical interaction [21]; here,
the elastic strip functions as a thermal acoustic phonon
environment. Hybrid quantum information platforms with
acoustic phonons serving as the mediators have received
increasing attention in recent years [22–25], in part, due
to their long coherence times [26] and much lower
propagation speeds compared with photons [27]. While
most studies have focused on single mode resonant phonon
dynamics models, instead, we adopt a field theoretic
description of the elastic strip in our model, which naturally
leads to local, spatially dependent nonresonant couplings
between the oscillators and the phonon field. This then
allows for an explicit analysis of the causal nature of the
entanglement dynamics between the two oscillators arising
from the finite acoustic wave propagation speed in the
elastic strip. Tracing out the elastic strip (phonon) degrees
of freedom, we solve exactly for the quantum time
evolution of the LC oscillators, with particular attention
paid to the competing entanglement and dephasing or
rephasing dynamics of the LC oscillators. In particular,
we find that the two LC oscillators can become substan-
tially entangled due to their couplings to the much

lower frequency acoustic phonon modes, which can be
engineered to have significantly low transmission loss
rates [28].
With the capacitor sizes much smaller than the elastic

strip length, the two LC oscillators can also be thought of as
variants of the so-called Unruh-DeWitt (UDW) photon
detector model [29–31]; we find that the entanglement
only forms between the two LC oscillators when they are
“timelike” separated (i.e., causally connected), as opposed
to “spacelike” separated, with respect to the acoustic wave
propagation (i.e., phonon) speed. This is to be contrasted
with the results obtained for the usually considered bilinear
type interaction between the UDW detectors and the field,
where entanglement can be “harvested” from the field
vacuum state even for spacelike separated detectors
[32–36]. Such a difference lies in the fact that the
optomechanical interaction commutes with the free
Hamiltonian of the LC oscillators and, therefore, obeys
the general no-go theorem of Ref. [37] for entanglement
generation when the two detectors are spacelike separated.
The optomechanical interaction bears some similarities

with the weak field, scalar matter-graviton interaction
action [38,39]. In particular, our model Hamiltonian [see
Eq. (3)] takes on the same form as considered in recent
proposals [40,41] to observe quantum gravity induced
entanglement at low energies [42]. Therefore, the model
can serve as a gravitational entanglement generation analog
to explicitly inform how the mediating field is responsible
for the entanglement generation, in contrast to these
proposals where only the effective Newtonian potential
was considered.
The model.—Our model scheme (Fig. 1) builds on the

one considered in Ref. [43], which investigated dephasing
only of a single LC oscillator coupled capacitively to a
long elastic strip. In particular, we consider two identical
LC circuits separated by a distance D, each coupled
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capacitively via metallized segments (with lengthsΔL) of a
long, elastic mechanical strip with overall length L > D ≫
ΔL that is clamped at both ends. The LC circuits are sited
such that the center point between the two capacitors
coincides with the strip center. The transverse width (W)
and thickness (T) of the strip satisfy T ≪ W ⋘ L. The
indicated lower capacitor plates are assumed fixed, also
with length ΔL, the same width W as the strip, and
separated from the upper flexing, metallized ΔL strip
segments of the strip by a small equilibrium vacuum gap
d ≪ W. The bare, zero flexing capacitance of each LC
circuit is then given by the standard parallel plate expres-
sion Cb ¼ ϵ0WΔL=d with ϵ0 the vacuum permittivity. In
the following, we shall denote the left circuit capacitance
by Cl and right circuit capacitance by Cr, and we denote
both circuit inductances by L.

Neglecting displacements in the transverse y and longi-
tudinal x directions, the flexing mechanical displacement of
the strip along the transverse z direction can be described
by the Hamiltonian

Hbath ¼
ρmWT
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where uzðt; xÞ is the displacement field, ρm is the mass
density of the strip, and we assume a sufficiently large
tensile force F is applied at both ends of the strip so that it
behaves effectively as a string with end boundary con-
ditions uzðt; x ¼ 0Þ ¼ uzðt; x ¼ LÞ ¼ 0.
The Hamiltonian for the two LC circuit system is

Hsys ¼
Q2

l
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where Q is the capacitor charge coordinate and Φ is the
inductor flux coordinate with subscript l and r denoting left
and right circuit, respectively. We note that Cl and Cr are
implicit functions of the displacement field uzðt; xÞ,
with Clðuz ¼ 0Þ ¼ Crðuz ¼ 0Þ≡ Cb.
Introducing creation or annihilation operators for both

the LC circuits and the elastic strip modes, and expanding
the LC circuit resonant frequencies and creation or anni-
hilation operators to first order in the strip transverse
displacement field with the usual rotating wave approx-
imations, the total Hamiltonian reduces to the standard
optomechanical Hamiltonian [43]
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where ak (a†k) are the annihilation (creation) operators for
the LC oscillators with bare frequency Ωb ¼ 1=

ffiffiffiffiffiffiffiffiffi
CbL

p
,

with the subscript k ¼ 1ð2Þ denoting, respectively, the left
(right) LC oscillator, and bj (b†j ) are the annihilation
(creation) operators for the elastic strip modes of frequency
ωj ¼ πj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF=2mLÞp
, with m ¼ ρmWTL=2 the effective

mass of the modes. The coupling strength between each
LC oscillator and the elastic strip modes is approximately
given by [43]

g1ð2Þ;j ¼ −
Ωb

2d
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2mωj
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L

×
L ∓ D

2
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where we have taken the pointlike limit for the capacitors
(ΔL → 0Þ utilizing the fact that ΔL is assumed to be much
smaller than the length L of the strip; there is no ultraviolet
(UV) divergence in such a limit in the determination of the
quantum dynamics of the LC oscillator systems given below,
which is a consequenceof the effective onedimensional nature
of the elastic strip [43].The coupling strength (4) allows closed
form analytical solutions for the quantum dynamics.
Supposing that the LC oscillators and the elastic strip are

prepared initially at t ¼ 0 in a product state with the latter in
a thermal state, the time evolution of the reduced oscillator
system density matrix expanded in the Fock state basis
can be expressed as follows (for derivation details, see
Supplemental Material [44]):

FIG. 1. Scheme of the model system. Two spatially separated
LC circuit oscillators (system) are capacitively coupled to a long
oscillating, elastic strip (environment) via two metallized seg-
ments.
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where the respective time-dependent terms are given by
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with β−1 ¼ kBT, where kB is Boltzmann’s constant and T is
the elastic strip (environment) temperature. The dimension-
less numerical constant λ ¼ Ω2

bℏ=ð16d2mω3
1Þ, and Lisð·Þ is

the polylogarithm function of order s. Note that, in the
above expressions, we have also introduced the following
notations for the dimensionless time: τ ¼ ω1t, and for the
scaled distance ratio: σ ¼ πD=L.

Now, we make several observations based on the form of
Eq. (5) about the reduced system dynamics of the LC
oscillators. Apart from the free evolution term, the p1ðtÞ
and d1ðtÞ terms correspond to environment induced
renormalization and dephasing, respectively, of the indi-
vidual LC oscillators, while the p2ðtÞ and d2ðtÞ terms
encode the effective environment induced mutual dynamics
between the two LC oscillators. In particular, we have
competing processes, here, where a nonzero mutual phase
term p2ðtÞ can render the reduced density matrix of the LC
oscillators to be entangled, while the real dephasing terms
d1ðtÞ and d2ðtÞ serve to counteract the entanglement
generation. However, since both the d1ðtÞ and d2ðtÞ terms
contain the oscillating factor 1 − cosðωjtÞ, in which the
harmonic mechanical mode frequencies are equally spaced,
these two terms completely vanish at times t ¼ 2πj=ω1,
j ¼ 0; 1; 2;…. This periodic, full rephasing phenomenon is
crucial for the formation of entanglement as we will see
below; in particular, it allows for periodic time windows in
which to probe the generated entanglement. We note that
this full rephasing phenomenon is a consequence of the one

dimensional nature of the long elastic strip with uniformly
spaced vibrational modes; only partial rephasing will occur
for two dimensional, elastic membranes that have nonun-
iformly spaced vibrational modes [43].
A closer look at the p2ðtÞ term also reveals that it

enforces causality for the model; this can be seen by
performing a partial trace over one of the LC oscillator
subsystems and noticing that its influence on the other
oscillator is only through the p2ðtÞ term. Causality requires
that the physical state of one LC circuit will not be changed
by the presence of the other within the time that it takes
for phonons to travel the separation distance between
the two capacitors: Δt ¼ ðD=vphÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m=FLÞp
D,

where vph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðFL=2mÞp

is the phonon speed.
Considering the following inequalities for τ and σ: τ < σ
(corresponding to t < Δt) and σ < π (corresponding to
D < L), p2ðtÞ, in Eq. (6b), can be rewritten as a combi-
nation of Bernoulli polynomials that are verified to vanish
exactly and become nonzero only when t > Δt. We
stress that such a causally consistent result can only be
obtained by an exact, field theoretic treatment of the
environment [47,48] (see Supplemental Material for further
details [44]).
Zero temperature entanglement dynamics.—Now, we

discuss the entanglement dynamics of the model. Since the
interaction Hamiltonian commutes with the system
Hamiltonian, entanglement can be realized only if both
LC circuits are initially in a Fock state superposition. For
simplicity, we shall consider an initial (t ¼ 0) superposition
of zero and single photon states for each LC circuit:
jψð0Þi ¼ 1

2
ðj0il þ j1ilÞ ⊗ ðj0ir þ j1irÞ. Furthermore, we

assume, as before, for calculational convenience, that the
LC oscillators and strip are initially in a product state. The
latter is equivalent to suddenly switching on the optome-
chanical interaction at t ¼ 0. While unphysical (the capaci-
tive couplings are always “on”), such an assumption may
be justified by supposing that the LC oscillator super-
position states are prepared on a timescale that is much
shorter than the phonon travel time between the two
oscillators.
First, we shall focus on the zero temperature limit for the

phonon field (corresponding to the vacuum field state of the
elastic strip). Despite the zero temperature limit being a
challenge to realize given the presence of low frequency
modes of the long strip, it allows analytical expressions
for the dephasing terms (see Supplemental Material [44]),
and yields important information about the competition
between dephasing and entanglement generation.
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To determine whether the system is entangled, we utilize
the logarithmic negativity ENðρÞ [49] as our entanglement
measure.
With the full time evolution of the system density matrix

given by Eq. (5) and the calculated time dependent terms,
we obtain the logarithmic negativity EN as a function of the
dimensionless time τ ¼ ω1t shown in Fig. 2; it can be seen
that the entanglement dynamics is sensitive to the value of
the numerical constant λ, with several features in the time
dependence noted as follows: (1) For the parameters
considered here, the entanglement can only build up some
time later than t ¼ Δt (corresponding to τ ¼ σ) in the
timelike regime with respect to the phonon speed vph; this
is a combined consequence of causality and the effect of
zero temperature dephasing; although the environment
induced phase term p2ðtÞ starts to build up immediately
after t ¼ Δt, some additional time may be required in order
to overcome the dephasing for entanglement to develop
between the two subsystems. (2) EN is a local maximum at
τ ¼ 2jπ, j ¼ 1; 2; 3;…, corresponding to when both d1ðtÞ
and d2ðtÞ vanish exactly, as noted previously. Furthermore,
depending on the value of the numerical constant λ, EN can
get close to its upper bound value ¼ 1 for the two-level
bipartite system, signaling a maximally entangled system
state. (3) With the periodic vanishing of the dephasing
terms, the maximally entangled state can always be
generated regardless of the separation distance between
the LC circuits; a larger separation distance only results in a
longer time for the entanglement to build up.
Entanglement dynamics with realistic conditions.—Now,

we turn our attention to more realistic scenarios where the
strip has a finite temperature and both LC oscillators are
subject to external dissipation, characterized by an assumed
common decay rate κ. Considering the frequency of the LC
oscillators to be in the ∼10 GHz regime with Ωb ≫ κ, and

the device temperature to be in the ∼10 mK regime, the
dissipative quantum dynamics can be approximately
described by the following zero temperature quantum
master equation [50]:

_ρT ¼ −i½H; ρT � þ
X2
k¼1

κD½ak�ρT; ð7Þ

where H is given by Eq. (3), ρT is the total density
operator of the LC oscillators and the phonon field, and
the superoperator is given by D½O�ρT ¼ OρTO†−
fO†O; ρTg=2. Assuming the same initial superposition
state as previously for the LC oscillators and in the short
time limit κt ≪ 1, the reduced density matrix of the two LC
oscillators can be approximately obtained as the undamped
solution of Eq. (5) plus an external environment induced
perturbation term ρκ, which is given by (for derivation
details, see Supplemental Material [44])

ρκn1n2;n01n02 ¼ κhðtÞ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 þ 1Þðn01 þ 1Þ
q

ρðtÞn1þ1n2;n01þ1n0
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ 1Þðn02 þ 1Þ

q
ρðtÞn1n2þ1;n0

1
n0
2
þ1

i

−
κt
2
ðn1 þ n01 þ n2 þ n02ÞρðtÞn1n2;n01n02 ; ð8Þ

where hðtÞ ¼ R
t
0 dt

0e−2iðn1−n01Þp1ðt0Þ−2iðn2−n02Þp2ðt0Þ, with p1ðtÞ
and p2ðtÞ given by Eq. (6a) and Eq. (6b).
In the case of a finite temperature strip, the entanglement

can be strongly suppressed due to the much more rapid
thermal dephasing as compared with the zero temperature
limit. However, the entanglement can, nonetheless, be
present in the system around the times τ ¼ 2jπ, j ¼
1; 2; 3…: when there is full rephasing. On the other hand,
the dissipation of the LC oscillators due to their external
environments will eventually destroy any possible entan-
glement in the system; therefore, we shall only focus on the
first peak of the entanglement when τ ¼ 2π. In order to
quantitatively investigate the entanglement dynamics, we
assume some example parameters for the model that are
related to actual experimental devices. In particular, for the
elastic strip we adopt the silicon nitride vibrating string
parameters from Ref. [51]: ρm ¼ 103 kg=m3, F ¼ 10−5 N,
W ¼ 1 μm, T ¼ 0.1 μm; however, we assume a much
longer length L ¼ 2 cm than that considered in
Ref. [51] (≈60 μm) corresponding to the lowest mechani-
cal mode frequency ω1 ≈ 50 kHz. For the LC oscillators,
we adopt typical superconducting microwave LC circuit
parameters with ΔL ¼ 1 μm, d ¼ 0.1 μm, and the circuit
mode frequency of Ω=ð2πÞ ¼ 15 GHz. The separation
distance between the capacitors is taken to be
D ¼ 1 cm. We shall consider a decay rate constant
κ ≈ 1 kHz; relaxation and dephasing times ranging from
a few hundred microseconds to over a millisecond have
been reported for superconducting circuits [52–56].

FIG. 2. Logarithmic negativity plotted as a function of dimen-
sionless time τ ¼ ω1t with different values of the numerical
constant λ. The parameter σ ¼ π=2 (corresponding to the sep-
aration D ¼ L=2) of the LC circuits.
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Using the above given parameters, we obtain the
numerical results shown in Fig. 3 for the logarithmic
negativity plotted around τ ¼ 2π, with a range of decay
rates and temperatures achievable in a dilution refrigerator.
Note that the amount of entanglement at τ ¼ 2π, when
there is full rephasing [corresponding to t ∼ 126 μs, which
is within the short time range for obtaining the approximate
solution of Eq. (8)], is not changed by the strip temperature
(with the same decay constant). Instead, increasing the
temperature narrows the time window (corresponding to a
width around 250 ns for T ¼ 20 mK in Fig. 3) during
which the LC circuit system is entangled. On the other
hand, increasing the decay rate causes both the entangle-
ment maximum and time window width to decrease.
In order to experimentally probe the entanglement within

the system, the state of the initial and final LC systems may,
for example, be prepared and measured by coupling the LC
circuits to driven nonlinear Josephson phase qubits [57,58].
We also note that, in the above analysis, we have ignored
the loss channel due to the coupling of the acoustic strip
modes to their external environments. This can be justified
by noting that the quality (Q) factors of the low frequency
mechanical modes may be engineered to have values as
high as Q ¼ 8 × 108 [28], while the zero and single photon
states of the LC oscillators induce strongly overlapping
coherent states of the strip mechanical modes; such a
decoherence channel can be safely ignored on the relevant
timescales for entanglement formation (< 1 ms).

Conclusion.—We have investigated the entanglement
dynamics of two LC oscillators coupled to a long elastic
strip—a model system realization for two separated,
localized UDW detectors interacting with a 1þ 1 dimen-
sional, massless scalar field. Exact solutions for the
quantum time evolution of the oscillators were obtained,
and the causality of the quantum dynamics analyzed.

With potential applications to quantum information
processing in mind, it would be interesting to extend our
model to multiple LC circuits and investigate possible
multipartite entanglement generation via the optomechan-
ical interaction [59] with a common, thermal acoustic
environment, such as a long elastic strip or large surface
area elastic membrane [43]. It would also be interesting
to come up with ways to increase the coupling between the
strip and the capacitors, thereby leading to stronger
signatures of entanglement; larger effective optomechanical
couplings can be achieved, for example, through
the placement of a Cooper-pair transistor between the
LC oscillator and gated mechanical strip [60], or by
engineering a strong LC oscillator-transmission line photon
“pressure” coupling for an all-microwave circuit realiza-
tion [61,62].
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