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ABSTRACT

This paper presents a tool for creating student models in logistic
regression. Creating student models has typically been done by ex-
pert selection of the appropriate terms, beginning with models as
simple as IRT or AFM but more recently with highly complex mod-
els like BestLR. While alternative methods exist to select the
appropriate predictors for the regression-based models (e.g., step-
wise selection or LASSO), we are unaware of their application to
student modeling. Such automatic methods of model creation offer
the possibility of better student models with either reduced com-
plexity or better fit, in addition to relieving experts from the burden
of searching for better models by hand with possible human error.
Our new functions are now part of the preexisting R package LKT.
We explain our search methods with two datasets demonstrating
the advantages of using the tool with stepwise regression and regu-
larization (LASSO) methods to aid in feature selection. For the
stepwise method using BIC, the models are simpler (due to the BIC
penalty for parameters) than alternatives like BestLR with little
lack of fit. For the LASSO method, the models can be made simpler
due to the fitting procedure involving a regularization parameter
that penalizes large absolute coefficient values. However, LASSO
also offers the possibility of highly complex models with excep-
tional fit.
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1. INTRODUCTION

Adaptive learning technology requires some way to track a stu-
dent’s learning in order to make decisions about how to interact
with the student. The general assumption is that a model of students
provides values (e.g., probability estimates typically) that are used
to make decisions on pedagogy, the most common decisions being
about when or whether to give practice and also how much practice
to give (e.g., has the student mastered the proficiency) [13].

This paper describes a tool to build logistic regression models au-
tomatically from student data. We focus on finding models that are
explainable and parsimonious for a variety of reasons. One reason
is because of the needs of open learner models to provide interpre-
tation of the student data, e.g. in a student dashboard, means that
there are benefits if it is scrutable, can be made cooperative, and is
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editable [4]. Complex models make these things more difficult to
achieve. Trust is another advantage of explainable systems [10],
which can approve adoption by stakeholders.

A common practice in research into student modeling is concerned
with choosing models based on fit statistics such as AUC and
RMSE. However, the practical benefits of going from an AUC of
.85 to .88 (for instance) may be close to zero depending on how the
model is being used. If it is being used for reporting proficiency to
a dashboard (e.g., in binary terms such as mastered or not), both
models may come to the same conclusions. In adaptive instruc-
tional systems, whether the better fitting model changes practice
sequences depends on the decision rules utilizing the model predic-
tions. Frequently, the same recommended practice sequences will
be recommended from both models. In short, there are dramatically
diminishing returns from improving model fit, and if the improve-
ment reduces of interpretability and costs 100x more features it
likely unjustified. In the present work, we sought to address this
tension between optimal model fits and practical considerations.

Unfortunately, because student models differ by content area and
the type of learning technology, it often seems necessary to hand-
craft new models to maximize model accuracy [1, 3, 7, 8, 9, 14,
18, 22]. This has created a parade of alternatives such that a huge
amount of researcher knowledge is necessary before a practitioner
can easily transfer these methods to new systems. The researcher
must be an expert in quantitative methods of knowledge tracing,
have a deep understanding of the domain, and understand which
learning science principles are important in that domain (repetition,
spacing, forgetting, etc.). In addition to these base technical skills
there are all the complexities of model building itself such as over-
fitting and the need for generalization. This base knowledge
necessary for model creation creates a long learning curve.

We suppose that the long learning curve in our area can be solved
by building better tools to build models. We have been using LKT,
which subsumes a large number of prior logistic models by provid-
ing a flexible model-building framework in R [15]. However,
although LKT enables the use of many predictive features, it
doesn’t select features for the user. The present work is a demon-
stration of ongoing work to automatically select a subset of features
for the user.

With the excellent model fits of recent deep learning models, some
readers will see this prior research as a dead end that people need
to move away from, but from these authors’ perspective, that is un-
likely to be the case. Deep learning student modeling e.g., [17], has
been around for several years but can be more complicated to im-
plement within adaptive practice systems than regression and
harder to interpret model parameters and interpret errors. New deep
learning models can fit well, but do not seem to fit reliably better
than simpler alternatives [8]. In many cases, the complexity may be
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unwarranted for applications unless there is some demonstration
that these models can predict student knowledge better than simpler
methods like logistic regression.

On the other hand, the simplicity of regression means that software
developers and educational content developers can incorporate stu-
dent models of astounding complexity using basic algebra. Such
capability means that incorporating such models as pedagogical de-
cision-makers in educational software is relatively straightforward
and has been well described. So, in this paper, we look more deeply
at one of the remaining stumbling blocks in the more widespread
use of logistic regression to trace student learning.

While the LKT R package allows the application of more than 30
features, it did not previously provide any direction of how to
choose these features for a the components (e.g. KCs, students,
items) of the data. Choosing such components is also difficult for
an expert, since despite an expert perhaps understanding the palette
of possible features, given 3 levels of components (as in BestLR)
there can be more than 90 possible choices to add to a model (as-
suming we search across all 30 for each component). Best LR is
formulated with the following equation. Where alpha is the student
ability, delta is item difficulty, theta is the function log(x+1), beta
is the KC difficulty, and gamma and rho capture the effect of prior
success and failures for the KC. Sigma transforms the linear meas-
ure to the logistic prediction probability.

BeStLR(as,t+1 = 1|qs,t+1rxs,1:t)
= o(as = 8q,,,, +¢(cs) + ()
+ Z Bre + vied(csi) + ped(fs))

keKC(qs,t+1)

Table 1. Start and end stats for each approach with each da-
taset (BIC and AUC, and par count)

Start Start End Start End AUC Pa- "
Model | BIC BIC | AUC | AUC | A t‘r's“Z
AFM 61563.15 52312.33 0.842 0.858 0.016 -607

cloze
BestLR 61001.05 52227.29 0.856 0.862 0.006 =715
cloze
Empty 75977.87 52544.5 0.5 0.861 0.361 139
cloze
AFM 51480.63 45602.94 0.811 0.816 0.005 -502
MATHia
BestLR 50728 45209.36 0.831 0.822 -0.009 -610
MATHia
Empty 59296.01 45611.19 0.5 0.816 0.316 14
MATHia

To address this problem in the inefficiency of logistic regression
modeling, we here describe and test our tool for stepwise student
model search in LKT. For the expert, this will save either the need
to use cookie cutter models that they know, but that may not be
appropriate or the countless hours of manual search that is often
necessary when trying to understand modeling in a new domain.
For the practitioner the this LKT package update will allow fast
creation of models tailored to multiple purposes and domains, sav-
ing time and likely opening the possible options. For the student
student modeler, the updated package provides a way to begin
building models quickly and with sufficient feedback so as to think
deeply about the functioning of those models. The example vignette
in the LKT package shows many examples from this paper.

2. METHODS

2.1 Stepwise

In the function, the user may set the objective function (BIC, AIC,
AUC, R2, or RMSE), but these behave quite similarly in our testing
except for BIC, which corrects heavily for the potential of overfit-
ting due to high parameter counts. The user may specify forward or
backward search or alternate between forward and backward (bidi-
rectional search). The user also has control over the initial features
and components in the model, allowing the exploration of theoreti-
cal hypotheses for completed models and the optimization of those
models. For example, in our tests, we illustrate starting with the
BestLR model and then allowing the algorithm to simplify the
model while simultaneously add a key new predictor. The user can
also specify the forward and backward step size needed in terms of
the objective function (fit statistic) which is also chosen.

2.2 LASSO

An alternative approach to stepwise regression is LASSO regres-
sion, a form of regularization. In this method, a penalty term is
added to the loss function equal to the sum of the absolute values
of the coefficients times a scalar lambda. This penalty term may
result in the best fitting model having fewer features if they are cor-
related. Larger lambda values will result in fewer features. A
common method to use this approach is to attempt a large number
of potential lambda values, and choose the value with the best
cross-validated performance. In the present case, we are particu-
larly concerned with finding interpretable models that are easier to
implement, and so larger values that may have slightly worse per-
formance may be preferred. To evaluate the resultant models from
LASSO we began by using the glmnet R package to fit both da-
tasets with 100 values starting at the lowest value that would reduce
all coefficients to zero (the maximum lambda) decreasing in incre-
ments of .001 (the default strategy with glmnet, [6]. At each step,
25-fold cross-validation was performed. This allowed us to evalu-
ate the stability of the candidate lambda values. Subsequent model
fitting and analyses used specific lambdas intended to evaluate the
fit and interpretability of LASSO models with varying levels of
complexity to determine the usefulness of LASSO in comparison
to stepwise regression. An important distinction between LASSO
and the stepwise approach employed in this work is that for lasso
the coefficients for individual KCs may be dropped. For instance,
if two different KCs are essentially redundant a LASSO model may
reduce a coefficient for one of them to zero if the lambda value is
large enough. In contrast, the stepwise regression approach we em-
ployed treats the KC model as a single feature, it is either included
or it is not.

For nonlinear features logitdec, propdec, and recency, features
were generated with parameters from .1 to 1 in .1 increments (e.g.,
propdec with decay parameters .1, .2, up to 1). All the resultant fea-
tures were included in the LASSO models to allow us to evaluate
which parameter values remained and whether more than one was
beneficial.

3. RESULTS
3.1 Bidirectional Stepwise Method

For the stepwise method, it is possible to use any collection of fea-
tures as a “start” model that is subsequently added to and subtracted
from. Using different starts helps us understand how the method
can have problems with local minima but also helps us see that
these problems are rather minimal as the different starts converge
on similar results. At the same time, showing how the method im-
proves upon ‘“stock” models is an important part of the



demonstration, showing that these “stock” models are not found to
be particularly precise, and we might question whether better local
minima are actually an improvement.

Table 2. AFM start results, cloze data.

R? par BIC AUC | RMS action
ams E
0287 | 676 | 61563.15 | 0.842 | 0.401 starting model
0.354 678 56461.99 0.872 | 0.380 add: recency-KC..Default.
0.352 643 56251.40 0.871 | 0.381 drop: intercept-KC..Cluster.
0362 | 644 | 5553205 | 0876 | 0377 | 24¢ logsuc'sfvi‘r'c"“eC"An'
0356 | 580 | 5527579 | 0.873 | 0379 |  drop: lineafm$-CF. Cor-
rect. Answer.
0351 | 544 | 5524792 | 0.871 | 0.381 | drop: lineafm$-KC..Cluster.
0.358 546 54698.11 0.874 | 0.379 add: recency-KC..Cluster.
0284 | 69 | 5513090 | 0.840 | 0.403 | drop:intercept-Anon.Stu-
dent.Id
0326 | 71 | 5196535 | 0.860 | 0.389 add: propdec-Anon. Stu-
dent.Id
0.321 69 52312.33 0.858 | 0.391 drop: recency-KC..Cluster.

Table 3. BestLR start results, cloze data.

include some of the simplest and most predictive non-linear fea-
tures we have developed in other work [15].

We used several features, which we crossed with all the possible
components (listed below) for each dataset. A § indicates that the
feature is fit with 1 coefficient per level of the component (e.g., one
coefficient for each KC, student, or item). Intercept (a fixed coeffi-
cient for each level of the feature) does not require the $ notation
since it is always fit this way. In contrast, without a § indicates that
all levels of the KC behave the same, so for example lineafm$ for
the student means that there would be a continuous linear increase
in performance for each trial for each student, with a different rate
for each student.

We choose a limited set of likely features from the LKT software
to search across. These included

e Intercept—one coefficient for each level of the component
factor

e Lineafm—one coefficient to characterize the linear change
with each repletion of the component

e  Logafm— one coefficient to characterize the logarithmic
change with each repetition for each level of the compo-
nent. 1 is added to prior repetitions.

R? par BIC AUC | RMS action e  Logsuc— one coefficient to characterize the logarithmic
ams E change with each successful repetition for each level of
0319 | 849 | 61001.05 | 0.856 | 0.392 starting model the component. 1 is added to prior repetitions.
0.371 851 57098.22 0.879 0.374 add: recency-KC..Default. ° Logfai17 one coefficient to characterize the logarithmic
0337 | 374 | 5442255 | 0865 | 0386 | droP intecr‘ziftfé\nonsm- change with egch failed repetition f.o.r each level of the
- - component. 1 is added to prior repetitions.
0.337 303 53650.51 0.865 | 0.386 | drop: intercept-KC..Default. . . . .
- e  Linesuc—one coefficient to characterize the linear change
0336 | 267 | 53327.24 | 0.865 | 0.386 | drop: logfaﬂsi'KC"Clusm' with each successful repetition for each level of the com-
0331 | 203 | 5306381 | 0.862 | 0.383 | drop: logfailS-CF.Cor- ponent
rect. Answer.
0.328 168 52849.33 0.861 | 0.389 | drop: intercept-KC..Cluster. Table 5. AFM start results, MATHia data.
0.325 132 52731.07 | 0.859 | 0.390 drop: logsuc$-KC..Cluster.
R? para BIC AUC | RMS action
0.332 134 5222729 | 0.862 | 0.388 add: recency-KC..Cluster. ms E
0.226 | 517 | 51480.64 | 0.811 | 0.390 starting model
0.247 519 50275.13 | 0.823 | 0.384 | add: recency-KC..MATHia.
Table 4. Empty start results, cloze data. Ry —— —
0.163 | 20 | 49815.16 | 0.771 | 0.408 D
R par BIC AUC | RMS action W ,;“ e
ams E 0227 | 22 | 4609429 | 0812 | 0300 | 4 logiEecAmon St
0.000 1 75977.87 | 0.500 | 0.498 null model o Tineatm$-KC_MA-
: N . 0.224 13 | 46120.77 | 0.810 | 0.391 : A
0.174 | 65 | 63428.69 | 0.746 | 0.440 add: i‘e’cgf‘:i\gfr“cm THia.
: - 0.234 15 | 45602.94 | 0.816 | 0.388 | add: logitdec-KC..MATHia.
0.219 67 60095.24 | 0.788 | 0.425 add: recency-KC..Default.
0.282 | 138 | 56024.84 | 0.839 | 0.404 | add: intercept-KC..Default.
0328 | 140 | 5254450 | 0861 | 0389 | @dd: propdec-Anon.Stu- Table 6. BestLR start results, MATHia data.

dent.Id

We choose to use AFM [1] and BestLR [8] models as starting
points, in addition to using an empty start (which included a global
intercept to account for the grand mean of performance, as did all
our models without explicit intercepts). AFM and BestLR starts are
interesting since they illustrate the advantages of using the search
method by arriving at models that fit better or equivalently with
fewer parameters. Furthermore, using these start points allows us
to show that these canonical models are not even local minima,
which highlights how our methods are useful. If these models are
particularly strong, it should not be possible to add terms to them,
and the current terms should not be dropped. See Table 1 for sum-
mary.

Using these starts we search over a preset group of features that is
meant to be “complete enough” to produce interesting relevant re-
sults and goes beyond BestLR features (which it includes), to also

R? para BIC AUC | RMS action
ms E

0258 | 626 | 50728.00 | 0.831 | 0.381 starting model

0.275 627 49762.34 0.840 0.375 add: linesuc-Problem.Name

0241 | 128 | 4636218 | 0.822 | 0385 | drop: intercept-Anon.Stu-
dent.Id

0252 | 130 | 45749.90 | 0.828 | 0.382 | add: recency-KC.MATHia.

0240 | 32 | 45377.63 | 0.821 | 0385 drop: intercept-Prob-

lem.Name

0.250 34 44841.98 | 0.827 | 0.383 | add: recency-Problem.Name

0246 | 25 | 4495937 | 0.825 | 0384 | drop:logfail$-KC.MA-
THia.

0240 | 16 | 4520936 | 0.822 | 0386 | 9rOP: "’gST“;?;KC“MA'

Table 7. Empty start results, MATHia data.



R? para BIC AUC | RMS action
ms E

0.000 1 59296.01 | 0.500 | 0.452 null model

0.161 3 4977324 | 0768 | 0409 | 2dd:logitdec-KC.MA-
THia.

0189 | 11 | 4820727 | 0787 | 0402 | 2dd:interoept-KC.MA-
THia.

0.218 13 4650696 | 0.806 | 0393 | 2dd:propdec-Anon.Stu-
dent.Id

0233 | 15 | 4s611.19 | 0816 | 038y | 2dd:recency-KC.MA-
THia.

e  Linefail- one coefficient to characterize the linear change
with each failed repetition for each level of the compo-
nent

e Logitdec—one coefficient to characterize the logit of prior
success and failures for the component (seeded with 1
success and 2 failures resulting in a start value of 0, e.g.
log(.5/.5)=0). Uses a nonlinear exponential decay to
weight priors according to how far they are back in the
sequence for the component traced.

e Propdec—one coefficient to characterize the probability of
prior success and failures for the component (seeded with
1 success and 2 failures resulting in a start value of 0, e.g.
.5/1)=.5). Uses a nonlinear exponential decay to weight
priors success and failures according to how far they are
back in the sequence for the component traced.

e Recency— one coefficient to characterize the influence of
the recency of the previous repetition only, where t is the
time since the prior repetition at the time of the new pre-
diction and d characterize non-linear decay. The value is
computed as t9.

o  Logsuc$-like logsuc above, except one coefficient is
added per level of the component (e.g., different effects
for each KC or item)

e  Logfail$— like logfail above, except one coefficient is
added per level of the component (e.g., different effects
for each KC or item)

3.1.1 Cloze practice

The statistics cloze dataset included 58,316 observations from 478
participants who learned statistical concepts by reading sentences
and filling in missing words. Participants were adults recruited
from Amazon Mechanical Turk. There were 144 KCs in the dataset,
derived from 36 sentences, each with 1 of 4 different possible
words missing (cloze items). The number of times specific cloze
items were presented was manipulated, as well as the temporal
spacing between presentations (narrow, medium, or wide). The
post-practice test (filling in missing words) could be after 2
minutes, 1 day, or 3 days (manipulated between students).

The stimuli type, manipulation of spacing, repetition of KCs and
items, and multiple-day delays made this dataset appropriate for
evaluating model fit to well-known patterns in human learning data
(e.g., substantial forgetting across delays, benefits of spacing). The
dataset was downloaded from the Memphis Datashop repository.

As components we choose to use the ids for the student (Anon.Stu-
dent.Id), sentence itself (KC..Cluster, 32 levels due to each
sentence having 2 feedback conditions which we do not investigate
here), specific items (KC.Default.) and the response word
(CF..Correct.Answer.). KC..Default. and CF..Correct. Answer. had
a good deal of overlap with KC..Default. since there were 72 items
with 64 different responses. Here are two examples of these items,

"The standard deviation is a that describes typical var-
iability for a set of observations.", and "Standard deviation is the

of the variance, also known as root mean squared er-
ror."

Tables 2, 3 and 4 show the results for the different start models.

For the AFM start the final model is specified in feature(compo-
nent) notation, see equation below. See Table 2 and Figure 1 for the
step actions that led to this final model.

intercept(CF..Correct. Answer.) + recency(KC..Default.)
+ logsuc(CF..Correct. Answer.)
+ propdec(Anon. Student. Id)
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Figure 1. Scaled fit statistic (Z-score) changes during BIC bidi-
rectional stepwise search for AFM model start with Cloze data.

For the BestLR start the final model is specified in feature(compo-
nent) notation, see equation below. See Table 3 and Figure 2 for the
step actions that led to this final model.

logsuc(Anon. Student.Id.) + logfail(Anon. Student.Id.)
+ intercept (CF..Correct. Answer.)
+ logsuc$(CF..Correct. Answer.)
+ recency(KC.Default)
+ recency(CF..Correct. Answer.)
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Figure 2. Scaled fit statistic (Z-score) changes during BIC bidi-
rectional stepwise search for BestLR model start with Cloze
data.

For the empty start the final model is specified in feature(compo-
nent) notation, see equation below. See Table 4 and Figure 3 for the
step actions that led to this final model.

logsuc$(CF..Correct. Answer.) + recency(KC..Default.)
+ intercept(KC..Default.)
+ propdec(Anon. Student. Id)
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Figure 3. Scaled fit statistic (Z-score) changes during BIC bidi-
rectional stepwise search for empty model start with Cloze
data.

3.1.2 MATHia Cognitive Tutor equation solving

The MATHia dataset included 119,379 transactions from 500 stu-
dents from the unit Modeling Two-Step Expressions for the 2019-
2020 school year. We used the student (Anon.Student.Id), MATHia
assigned skills (KC..MATHia.), and Problem.Name as the item.
This meant that our item parameter was distributed across the steps

in the problems. There were 9 KCs and 99 problems. We chose not
to use the unique steps as an item in our models for simplicity. This
dataset included skills such as such as “write expression negative
slope” and “enter given, reading numerals”.

Tables 5, 6 and 7 show the results for the different start models.

For the AFM start the final model is specified in feature(compo-
nent) notation, see equation below. See Table 5 and Figure 4 for the
step actions that led to this final model.

logitdec(Anon.Student.Id) + logitdec(KC.. MATHia.)
+ recency(KC.. MATHia.)
+ intercept(KC.. MATHia.)
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Figure 4. Scaled fit statistic (Z-score) changes during BIC bidi-
rectional stepwise search for AFM model start with MATHia
data.

For the BestLR start the final model is specified in feature(compo-
nent) notation, see equation below. See Table 6 and Figure 5 for the
step actions that led to this final model.

logfail(Anon.Student.Id) + logsuc(Anon. Student.Id)
+ intercept(KC.. MATHia.)
+ recency(KC.. MATHia.)
+ recency(Problem. Name)
+ linesuc(Problem. Name)



T~ —— R squared
o - - BIC
| ‘ W% AUC
\ Yo ik -—- AlC
3 A \ ,'\ /\ RMSE
= \ . N S -
» © b J'I\H‘ W \ "
o y / R P N il
% \ «‘lj e LT o
i D
BT L/ )
V\ ltfl’
\ _‘/4
o | AV
T T T T T T T T
® TQ® OT TG Q0 BT O Qg g
o TEg o7 ©8& o wE o8 of
<] s s ©® 58 g v ok
B =z § & =2 = 2 2
= £ 2 = E B = =
£ e} s g =} = ¢ ]
= =] S X =] =] X b7
w 1 1 0
o = > o a & &
! < %) 0 : = o
[+ D c a P @ =1
= = 4 £
= a 7] @ 2 5 7]
o 8 ] o @ 3 2
£ e 2 8 9 = 2
= & c =
€ £
Step Actions

Figure 5. Scaled fit statistic (Z-score) changes during BIC bidi-
rectional stepwise search for BestLR model start with MATHia
data.

For the empty start the final model is specified in feature(compo-
nent) notation, see equation below. See Table 7 and Figure 6 for the
step actions that led to this final model.

propdec(Anon. Student.ld) + intercept(KC.. MATHia.)
+ recency(KC.. MATHia.)
+ logitdec(KC.. MATHia.)
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Figure 6. Scaled fit statistic (Z-score) changes during BIC bidi-
rectional stepwise search for empty model start with MATHia
data.

3.2 Cloze with stepwise

For the cloze dataset, the models from the 3 starting points produce
somewhat different results, illustrating the problem with any step-
wise method due to it not being a global optimization. However,
considering the fact that our goal is to practically implement these

models, the result also suggests a solution to this local minima
problem. By using more than one starting point we can identify the
essential feature that explain the data.

For example, in these cloze results note that the recency feature
used for the KC-Default is particularly predictive. In this dataset
simply means that the time since the last verbatim repetition (KC
Default) was a strong predictor with more recent time since last
repetition leading to higher performance.

Successes were also important, but curiously they matter most for
the KC-Correct-Answer. In all case the log of the success is the
function best describing the effect of the correct responses. In this
dataset, this mens that each time they responded with a fill-in word
and it was correct, they would be predicted to do better the next
time that word was the response. The log function is just a way to
bias the effect of successes to be stronger for early succeses.

While the recency being assigned to the exact repetitions (KC-De-
fault) indicates the importance of memory to performance, the
tracking of success (as permanent effects) across like responses
suggests that people are actually learning the vocabulary despite
showing forgetting.

Consistent across all three final models is also the attention to stu-
dent variability modeling. In BestLR, the log success and failure
predictors for the student in the model mean that the student inter-
cept is removed in an elimination step as redundant (this is also due
to the BIC method, which penalizes the student intercept as unjus-
tifiably complex). Interestingly, in the AFM and empty start
models, we find that the propdec feature is added to capture the
student variability after the intercept is removed, since there starts
did not trace student performance with their start log success and
failure feature as did BestLR from the start. The MATHia data has
the same “problem” with BestLR start due to BestLR serving as
enough of a local minima to block the addition of terms. More on
this in the limitations section. Practically these features are im-
portant, since they allow the model to get an overall estimate for
the student that greatly improves prediction of individual trials.

In summary, there appears to be no great advantage to starting with
a complex starting model. Indeed, in all cases the stepwise proce-
dure using BIC greatly simplifies the models by reducing the
number of coefficients. It appears that prior models produced by
humans (in this case, AFM and BestLR) do not produce better re-
sults in the model space than simply starting with an empty null
hypothesis for the model. Furthermore, all three start models result
in final models have no fixed student parameters, so should work
for new similar populations without modifications, unlike AFM
and BestLR which relied on fixed student intercepts

3.3 MATHia with stepwise

Practically speaking for the MATHia case we also see the im-
portance of student variability, recency, and the correctness at fine
grain by KC and item for all the models. Digging into the detail,
ewe can see the BestLR start has some effect on the quantitative fit
and chosen model. Most notably, while AFM and empty starts re-
sult in the student intercept being dropped in favor of logitdec and
propdec respectively, the BestLR start retains the log success and
failures predictors for the student. At the same time, Best LR, per-
haps because it begins with the Problem.Name intercept as a
covariate, adds features more features for Problem.Name, such as
linesuc and recency. It seems clear that BestLR causes a different
result. At this time, we might favor the simpler results of AFM or
empty starts, but consider that the BestLR start fits the data by AUC
slightly better than the BestLR result. This implies that AFM and



empty starts are simply producing overly simplistic results. Con-
sider we only dropped and removed terms when BIC gain was at
least 500. We expect that running from an empty start to a lower
BIC threshold would result in more commonality with BestLR
start. To test this, we ran the empty start and indeed we found that
the result became more similar to the BestLR result with the addi-
tion of linesuc and recency for the problems. Since this model
(shown below) is still slightly worse than the BestLR start it implies
that the algorithm favors composite features despite better fit from
individual features (logsuc and logfail). We discuss this in the lim-
itations and future work sections.

propdec(Anon.Student. Id) + intercept(KC.. MATHia.)
+ recency(KC..MATHia.)
+ logitdec(KC.. MATHia.)
+ linesuc (Problem. Name)
+ receny(Problem. Name)

Finally, all the models retained an intercept for the KCs, and all of
the models capture MATHia KC performance change with the
logitdec feature.

3.4 LASSO Method

A primary goal of the LASSO analyses is to determine how well
the approach can inform a researcher about which features are most
important, and guide the researcher toward a fairly interpretable,
less complex, but reasonably accurate model. See Figures 7 and 8
plotting the relationship between the number of features and AUC
across 50 values of lambda ranging from .192 (a large penalty) to
.0001 (very small penalty). For both datasets, there is clearly dimin-
ishing fit benefits as the number of features is increased (from a
smaller lambda). Both curves have clear inflection points. At the
inflection point, the coefficients for most features have been
dropped to zero (see Table 8). Note in Table 8 that the MATHia
dataset in particular fits quite well without many parameters for in-
dividual KCs. What remains appear to be the more robust and
important features.
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Figure 7. AUC for cloze dataset as a function of the number of
retained features. There is a clear elbow at AUC = ~.86 with
123 features (including KC intercepts) beyond which there are

diminishing returns. For comparison, BestLR was .856 with
849 coefficients.
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Figure 8. AUC for MATHia dataset as a function of the number
of retained features. There is a clear elbow at AUC = ~.82 with
29 features (including KC intercepts) beyond which there are
diminishing returns. For comparison, BestLR was .831 with
626 coefficients.

Table 8. Proportion of features with nonzero coefficients in
Lasso model at AUC inflection points in Figures 7 and 8.

Feature Cloze MATHia
KC intercepts 4069 A111
KC logsuc 0116 .027
KC logfail .1104 0
Student Intercept .0083 .002
Student logsuc 0 0
Student logfail .002 0

The final features that remained for LASSO models near the inflec-
tion points partially overlapped with those found with our stepwise
regression approach as expected. Below the top 10 features for each
dataset are listed in order of relative importance (see Tables 9, 10,
and 11 below). When the results didn’t agree with the stepwise re-
sults, it appears that it may be because a stricter LASSO should be
employed. For instance, a recency feature for the Problem.Name
KC with decay parameter .1 remained in the MATHia dataset.
However, it has a negative coefficient, which is challenging to in-
terpret given that the negative sign implies correctness probability
increases as time elapses. A larger lambda value may be justified.

For the Cloze dataset, a large number of features remained even at
the inflection point (123) and they were missing many features we
stepwise added. Inspecting the 123 features we saw that the vari-
ance stepwise captured in single terms was distributed across many
terms in LASSO. Given that one goal of this work is to make sim-
pler and more easily interpretable models for humans, we tried a
larger penalty to reduce the number of features to 24. The resulting



top 10 are in Table 10. This model is more interpretable to a human,
with mostly recency features, recency-weighted proportion fea-
tures, and counts of success for KC. While the match to stepwise is
not exact we can now see it attending to student and KC successes
and failures with features like logitdec in the top 10. It appears that
lambda values are a sort a human interpretability index. Larger val-
ues make the resultant models more human interpretable, and in
this case still create well-fitting models. Overall, the agreement be-
tween the approaches is encouraging evidence that these methods
may be useful for researchers.

Table 9. Top 10 features in Cloze model at inflection point near
AUC = .86. Bolded features were also in the final empty start
stepwise regression model.

Feature Standardized Feature Type
coefficient

RecencyKC..De- 4.4072 Knowledge
fault 0.4 Tracing
KC..Default. 1 1.4984 Intercept
KC..Default. 2 -1.4870 Intercept
KC..Default. 3 -1.3911 Intercect
KC..Default. 4 -1.3922 Intercept
KC..Default. 5 -1.2857 Intercept

recencyKC..Cluster.0.2 0.9533 Knowledge
Tracing
KC..Default. 6 0.9834 Intercept
CF..Correct. Answer. 1 -0.9438 Intercept
KC..Default. 7 0.8427 Intercept

Table 10. Top 10 features in Cloze model when a larger lambda
is imposed to reduce the total number of features to 24. Result-
ing AUC = .818. Bolded features were also in the final empty
start stepwise regression model.

Feature Standardized Feature Type
coefficient

recencyKC..De- 1.8569 Knowledge
fault. 0.3 Tracing

recencyCF..Correct. An- 1.4381 Knowledge
swer. 0.2 Tracing

recencyKC..Clus- 0.7548 Knowledge
ter. 0.3 Tracing

recencyAnon.Stu- -0.6053 Knowledge
dent.Id 0.1 Tracing

logsucKC..Default. 0.4211 Knowledge
Tracing

logitdecCF..Correct.An- 0.3766 Knowledge
swer._0.9 Tracing

logitdecAnon.Stu- 0.2204 Knowledge
dent.Id 1 Tracing

recencyKC..De- 0.3870 Knowledge
fault. 0.2 Tracing
KC..Default._2 -0.1350 Intercept

logitdecAnon.Stu- 0.1343 Knowledge
dent.Id 0.9 Tracing

Table 11 Top 10 features in MATHia model at inflection point
near AUC = .82. Bolded features were also in the final empty
start stepwise regression model.

Feature Standardized Feature Type
coefficient
recencyKC..MA- 1.1103 Knowledge
THia. 0.2 Tracing
KC..MATHia._1 1.1777 Intercept
KC..MATHia._2 1.0789 Intercept
KC..MATHia._3 0.9621 Intercept
recencyKC..MA- 0.9831 Intercept
THia. 0.3
recencyProb- -0.4848 Knowledge
lem.Name 0.1 Tracing
KC..MATHia._4 -0.4080 Intercept
logitdecKC..MA- 0.3138 Knowledge
THia. 0.9 Tracing
Problem.Name 2 -0.2098 Intercept
logitdecAnon.Stu- 0.1682 Knowledge
dent.Id 0.9 Tracing

If minimum BIC is used instead of the AUC inflection point, the
“optimal” models have slightly more features (e.g., 154 for cloze
instead of 123, and 96 instead of 29 for MATHia), but still far fewer
than the full model. The BIC minimum as a function of features is
displayed in Figures 9 and 10.
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Figure 10. BIC as a function of number of features in Lasso
model with cloze dataset. Minimum BIC has 154 features in-
cluding intercepts, with AUC =.8655 and RMSE = .3868.
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Figure 11. BIC as a function of number of features in Lasso
model with MATHia dataset. Minimum BIC has 96 features in-
cluding intercepts, with AUC =.8301 and RMSE = .3816.

Below in Table 12 we provide a final contrast of three example
models with small, medium, and large lambda penalty terms. Inter-
estingly, both datasets can achieve approximately AUC = .80 with
~10 features! Intercepts are considered features in this case, which
means that a majority of the KC and student intercepts were
dropped. This highlights a potential benefit of the LASSO approach
for evaluating the fit of the KC model. It also suggested that student
intercepts may not always be necessary in the presence of features
like logitdec and propdec, which can stand in for intercepts to adjust
for student differences.

Table 12. Lasso model fits with three levels of regularization.
The strictest (fewest parameters) demonstrates how well a
much smaller model can perform if needed. The medium-level
model is the model at the AUC inflection points in Figures 10
and 11. The least strict model demonstrates the diminishing re-
turns of increased parameters.

Dataset R? N BIC AUC
params
MATHia | .2955 10

MATHia | .3396 28

RMSE

48459.54 | .7951 | 0.4011
45617.33 | .8208 | 0.3871

MATHia | .3805 555 47884.99 | .8450 | 0.3730
Cloze 2024 11 61065.81 8115 | 0.4310
Cloze 3328 123 52419.37 | .8638 | 0.3882
Cloze 3587 508 54157.31 .8743 | 0.3795

4. DISCUSSION

The results suggest both stepwise and LASSO methods work ex-
cellently to create, improve, and simplify student models using
logistic regression. Both approaches generally agreed that recency
features, logsuc, and recency-weighted proportion measures like
propdec and logitdec were important. They also agreed that the
number of necessary features was substantially less than the full
models. While some have argued against stepwise methods [19],

we think that stepwise methods worked relatively well here because
the feature choices were not arbitrary. We did not simply feed in all
the features we could find. Instead, we choose a set of features that
can be theoretically justified.

Interpreting the results from these models needs to begin from con-
sideration of the individual features. Each individual feature being
found for a model means that the data is fit better if we assume the
feature is part of the story for learning in the domain the data comes
from. Clearly, we might expect different features for different do-
mains of learning, and practically, knowing the features predicting
learning means that we can better understand the learning better.
For example, knowing that recency is a factor, or knowing that
overall student variability is a big effect. The models this system
builds might simply be used to understand online learning in some
domain, but the expert building instruction technology might also
use them in an adaptive learning environment to make decisions
about student pedagogy or instruction.

4.1 Limitations and Future Work

A primary limitation of the present work is that we only included a
subset of the features that are already known and established theo-
retically. There were also known features we did not include (e.g.,
specific time window features and interactions among features). An
extension of this work will be to include more features as well as a
step to generate and test novel features that may be counterintuitive.
For instance, KC model improvement algorithms could be incorpo-
rated into the process [12]. However, how much variance is left to
explain that is not covered by the set of features we used? With both
datasets, models with AUC > .8 were found using only a relatively
small subset of the potential features. Some fraction of unexplained
variance is always to be expected due to inherent noise, KC model
errors, and measurement error. A significant amount of remaining
variance may be individual student differences that justify different
types of models that update automatically to attempt to estimate in-
dividual learning rates, for example. These approaches are beyond
the scope of this paper but an important topic for future work.

An opportunity for future work may also be to use these features as
components in other model architectures, such as Elo or deep learn-
ing approaches. There are ongoing efforts to make deep learning
models more interpretable, but for the present work we focused on
a model architecture that is relatively interpretable to non-experts,
logistic regression. Elo modeling is also particularly promising due
to its simplicity and self-updating function [16]. Elo can be adjusted
to include KT features like counts of successes and failures [11],
but standard Elo without KT features also serves as a strong null
model since it does reasonably well without KT features.

A key limitation of the stepwise method is the individuality of fea-
tures. This is illustrated by the way that logsuc and logfail are
retained in the BestLR MATHia model, but they are not added in
any of the other models. Their retention in BestLR, may be best,
but it may also reflect the standard tendency of stepwise methods
to block the addition of new terms (possibly better) that are collin-
ear with prior terms. This may be unavoidable, but also an
uncommon problem we think. In contrast the fact that logsuc and
logfail are not added for the student when nothing is already present
might be because this requires 2 steps of the algorithm, while add-
ing composite features like propdec or logitdec requires 1 step.
Since stepwise selection is based on a greedy step optimization it
ignores better gains that might occur in 2 steps.



A solution to this problem of feature grainsize, in which complex
features are favored because they contain multiple sources of vari-
ability, might be to create synthetic linear feature groupings that
can be chosen as an ensemble for addition to the model with each
step. This was suggested by our results which showed logsuc and
logfail being retained for the student for the BestLR start as dis-
cussed above. Future work will allow some “features” to actually
test a combination of features for a component. Such a fix will al-
low us to add the combination feature logsuc and logfail (e.g., for
the students) using 2 coefficients as usual, but in one stepwise step.
This will allow it to compete with other terms such as logitdec or
propdec, which incorporate success and failure already in the re-
ported version here. More advanced methods can use factor
selection which might be applied in both stepwise and LASSO
within LKT, such as grouping specific features together such as KC
models [21].

While the work here used BIC to reduce model complexity, and
BIC works similarly to cross-validation in constraining unjustifia-
ble complexity. We plan to confirm our results with out of sample
validation methods in future work, also allowing us to further con-
firm that BIC is adequate. However, BIC likely underfits our final
models relative to cross-validation [20]. So, it seems rather implau-
sible that our models are invalid due to overfitting. Rather we may
be running the risk of too little complexity, leaving explainable var-
iability out of our model. Certainly, this highlights that out BIC
stepwise threshold for addition and subtraction of terms was chosen
arbitrarily to allow for interpretable models. We were pleased to
see they also fit well.

4.1.1 Presets

To make the process of logistic regression modeling efficient, yet
still retain some flexibility and user control, our tool includes a
number of preset feature palettes that users will have available in-
stead of specifying their own list. These presets are essentially a
collection of theoretical hypotheses about the nature of the student
model, given some goal of the modeler. The presets include the fol-
lowing four presets.

e  Static - This present will contains only the intercept fea-
ture. It allows for neither dynamic nor adaptive solutions,
essentially finding the best IRT type model, unless the
item or KC component is not used, in which case it could
simply find a single intercept for each student. Essen-
tially it fits the LLTM model [5].

e  AFM variants (i.e. dynamic but not adaptive) — This pre-
set fits linear and log versions of the additive factors
model[2], including LLTM terms that represent different
learning rates or difficulties based on KC groupings (us-
ing the $ operator in LKT syntax).

e  PFA and BestLR variants (dynamic and adaptive but re-
cency insensitive) — This preset contains all of the above
mechanisms, and also included the success and failure
linear and log growth terms used in PFA [14] and
BestLR[8].

e Simple adaptive — This catchall preset will include
rPFA[7] inspired terms such as logitdec and propdec, de-
scribed in the is paper and elsewhere [15]. In addition it
will include temporal recency functions using only a sin-
gle non-linear parameter, the best example of which,
recency, was described in this paper and has been previ-
ously described [15].

Finally, future work might explore how Lasso also offers a conven-
ient opportunity to evaluate the learner and KC model

simultaneously. Within the Lasso approach, the coefficient of each
KC can be pushed to zero and this could be used to allow refine-
ment of the KC model. A limitation of our work here is that we did
not explore this further, merely observing that in the models only
some KCs were being assigned intercepts.

5. CONCLUSION

We find that the first few selected features in most models produced
by the stepwise procedure are both effective AND interpretable.
Articulating a theory to describe the simple models is relatively
easy, since each feature can be justified by some research-based
argument. For example, we see the importance of tracing student
level individual differences in all the models, and we see the re-
cency feature as indicating forgetting occurs. The LASSO
procedure largely confirms the stepwise models are not far from a
more globally optimal solution for our test cases and may reveal the
future of the endeavor because of higher likelihood of a more global
solution with LASSO despite the somewhat less interpretable mod-
els.

The present work sought to simplify the learner model building pro-
cess by creating a model building tool, released as part of the LKT
R package. Our promising interim results demonstrate too modes
our tool has available to build models automatically. With stepwise,
they can start with an empty model, provide sample data, and the
fitting process will provide a reasonable model with a reduced set
of features according to a preset criterion for fit statistic change.
Alternatively, with the LASSO approach, the user provides data,
and the resulting output will be a set of possible models of varying
complexity based on a range of lambda penalties. The tool high-
lights models from lambda values based on minimum BIC and
inflection points like those depicted in Figures 1 and 2.
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