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Non-linear probabilistic calibration of low-cost environmental

air pollution sensor networks for neighborhood level
spatiotemporal exposure assessment
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BACKGROUND: Low-cost sensor networks for monitoring air pollution are an effective tool for expanding spatial resolution beyond
the capabilities of existing state and federal reference monitoring stations. However, low-cost sensor data commonly exhibit non-
linear biases with respect to environmental conditions that cannot be captured by linear models, therefore requiring extensive lab
calibration. Further, these calibration models traditionally produce point estimates or uniform variance predictions which limits
their downstream in exposure assessment.

OBJECTIVE: Build direct field-calibration models using probabilistic gradient boosted decision trees (GBDT) that eliminate the need
for resource-intensive lab calibration and that can be used to conduct probabilistic exposure assessments on the

neighborhood level.

METHODS: Using data from Plantower A003 particulate matter (PM) sensors deployed in Baltimore, MD from November 2018
through November 2019, a fully probabilistic NGBoost GBDT was trained on raw data from sensors co-located with a federal
reference monitoring station and compared against linear regression trained on lab calibrated sensor data. The NGBoost
predictions were then used in a Monte Carlo interpolation process to generate high spatial resolution probabilistic exposure
gradients across Baltimore.

RESULTS: We demonstrate that direct field-calibration of the raw PM, 5 sensor data using a probabilistic GBDT has improved point
and distribution accuracies compared to the linear model, particularly at reference measurements exceeding 25 ug/m?, and also
on monitors not included in the training set.

SIGNIFICANCE: We provide a framework for utilizing the GBDT to conduct probabilistic spatial assessments of human exposure
with inverse distance weighting that predicts the probability of a given location exceeding an exposure threshold and provides
percentiles of exposure. These probabilistic spatial exposure assessments can be scaled by time and space with minimal
modifications. Here, we used the probabilistic exposure assessment methodology to create high quality spatial-temporal PM, 5
maps on the neighborhood-scale in Baltimore, MD.

IMPACT STATEMENT

® We demonstrate how the use of open-source probabilistic machine learning models for in-place sensor calibration
outperforms traditional linear models and does not require an initial laboratory calibration step. Further, these probabilistic
models can create uniquely probabilistic spatial exposure assessments following a Monte Carlo interpolation process.
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INTRODUCTION million premature mortalities per year [1]. Within the United
According to The World Health Organization (WHO), fine States, 88,000 annual deaths are attributed to PM, s exposure [2].
particulate matter (PM,s) is responsible for approximately 7 Further, PM, 5 is considered a Group 1 carcinogen according to the
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International Agency for Research on Cancer (IARC) [3]. Given that
PM, 5 is produced during combustion, concentrations are often
highest in densely-populated urban areas with higher levels of
vehicle traffic and fuel combustion at power plants or on more
localized scales leading to the potential for variability in PM, s
concentrations over small spatial scales [3].

Within the United States, PM, 5 concentrations are required to
meet the primary and secondary National Ambient Air Quality
Standards (NAAQS) established by the Environmental Protection
Agency (EPA) via the Clean Air Act [4]. To ensure that the air
quality meets the NAAQS standards, the EPA requires that states
operate monitoring sites with high quality sampling equipment
that meets a Federal Reference Method (FRM) or Federal
Equivalent Method (FEM) in major urban areas. However, there
are only 935 PM, s monitors to cover the entirety of the United
States, and of the 25 most populous urbanized areas with a total
population of 111 million people, there are only 282 PM,s
monitors [5]. Therefore, the spatial resolution of high quality PM, s
data can be severely lacking for major urban areas. For example,
within Baltimore City limits, there is only a single FEM monitor
administered by the Maryland Department of the Environment
located near the geographic center of Baltimore City during the
period of this study [6]. This is highly relevant as intra-city air
pollution exposure ranges have been proposed to be as large or
larger than exposure ranges between cities and it has been found
that there is substantial spatial variation in PM, s concentrations
within a city on a 1-4 km spatial scale [7, 8]. In addition to spatial
resolution concerns, gravimetric methods in use at certain FRM
stations require 24-hr sampling, sacrificing the ability to measure
PM, 5 on shorter timescales [6].

In order to fill the spatiotemporal data gaps in air pollution
monitoring, low-cost sensor networks have been developed and
deployed which consist of many types of sensors that, while less
accurate than reference monitors, provide the ability to provide high
resolution spatial and temporal measurements relevant at the urban
level (e.g. PM, 5 concentrations typically below 100 ug/m?* with errors
on the order of 5 ug/m> as 24-hour averages) [9-11]. One example of
a low-cost sensor network is the Solutions for Energy, Air, Climate, and
Health (SEARCH) Center's investigation into neighborhood-level
variations of air pollutant concentrations in Baltimore, MD [12, 13].
The SEARCH network encompasses low-cost monitors spread across
the city measuring PM (mass and number concentrations), ozone,
nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide,
methane, relative humidity, and temperature [12]. However, the
reduction in precision compared with an FEM measurement adds
complexity to the monitoring such that utilization of the raw sensor
data is discouraged without accounting for environmental biases
[12, 14]. Therefore, in order to gather sensor data that is both accurate
and precise enough for exposure assessment, a combination of field
and lab calibration is often recommended to ensure the sensor data is
reliable [15, 16]. Lab calibration is both labor intensive and requires
laboratory facilities, which is not an option for all low-cost sensor
network administrators. However, the presence of an FEM monitor
acts as a reference, and co-locating one or more network sensors with
the FEM monitor in the field allows for the creation of models that can
use raw sensor readings to accurately predict to the reference values.
Regardless of a strictly laboratory calibration approach or a combined
field and laboratory calibration approach, linear regression is
most commonly used to create the calibration model despite known
non-linear relationships between PM,5; and meteorological
variables [13, 15]. While non-linear models have been developed
for sensor calibration, these models still only produce point
predictions without estimates of variance [17-20]. However, given
that EPA and NIOSH both recommend probabilistic exposure and risk
assessments, more accurate assessments are possible if point and/or
uniform variance predictions are replaced with predictions from
models that also describe variance, particularly on a per-prediction
level [21-23].
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Therefore, to address the difficulties of laboratory calibration, the
lack of fully characterized uncertainty, and known non-linear
relationships of predictors, we propose using probabilistic machine
learning with gradient boosted decision trees (GBDT) in place of
traditional linear approaches for calibration of low-cost PM, s
sensors for sub-city level exposure assessment. While this approach
has been conducted prior on indoor occupational exposure based
low-cost sensor networks with known schedules and tasks [24], the
SEARCH network is outdoors and fully unconstrained by the
environmental conditions common in an indoor facility. The GBDT
will be trained using raw sensor data directly calibrated to the FEM
reference, totally bypassing laboratory calibration, but assuming
that the sensors are functional, a check that should be determined
prior to deployment. This model will have its accuracy compared to
existing linear models which requires laboratory calibrated data.
Following model development, we will use the GBDT predictions in
a Monte Carlo interpolation approach to create probabilistic PM; 5
spatial exposure assessments on the neighborhood scale that can
provide health relevant characterization of possible exposures as
opposed to a simple deterministic option.

METHODS

Reference data

There is one FEM monitoring site located in Oldtown in central Baltimore
and another in Essex on the eastern border of the city. Oldtown lies within
the city limits of Baltimore in an area with high traffic density, whereas
Essex is outside of the city limits (approximately 15 miles from Oldtown)
and is within Baltimore County, the county surrounding Baltimore city. The
Oldtown site measures PM, s on an hourly basis using a Beta Attenuation
Mass Monitor, and Essex measures daily average PM; 5 once every six days
using a gravimetric FRM monitor [6]. Both sites are operated by the
Maryland Department of the Environment (MDE) [6].

SEARCH data

The SEARCH data in this study consists of hourly PM, s measurements from
November 2018 through November 2019 taken by 34 separate monitors.
Each of the 34 monitors deployed in the network contains a Plantower
A003 optical PM, 5 sensor as well as a variety of other sensors for gaseous
pollutants [25]. Additionally, each monitor has a built-in temperature and
relative humidity sensor. Each monitor contains both internal memory
storage and a wireless cellular connection via a SIM card that uploads data
to a remote server every ten seconds. The locations of the deployed
monitors were chosen based on spatial and environmental factors as well
as willingness of a property owner to host the monitor. The network has
been online since October 2018. The locations of the SEARCH network
monitors, Oldtown FEM Monitor (centrally located), and Essex FRM Monitor
(eastern coast) are presented in Fig. 1.

There are two SEARCH monitors (B25 and B33) that were co-located with
the Oldtown monitor and three monitors (B62, B21, and B8) that were co-
located with the Essex monitor (monitor identification numbers are not
indicative of the total number of monitors). However, only two of the Essex
monitors were ever active at one time. B25 and B33 were deployed from
December 2018 through October 2019, and B61, B21, and B8 from
February 2019 to August 2019. These monitors will serve as basis for the
analysis for the remainder of the calibration analysis.

Modeling
Two separate models were used to model sensor data to reference data.
The first was the baseline linear calibration model developed by Datta et al.
[13]. This model requires the lab-corrected data to first adjust for non-linear
trends, and is shown in Eq. 1.

Equation 1: Linear Regression for PM,s Calibration to Reference
Monitors

PM, sReference =y + B, * RH + B, * T + B3 * daytime + B,  weekend
+ Bs * RH * PM 5Sensor + B¢ * T * PMa sSensor (1)
+ B, * daytime = PM, sSensor + g * weekend * PM, sSensor

The covariates of this model are the lab-corrected low-cost sensor
measurement (PM; sSensor), relative humidity (RH), temperature (7), a
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Fig. 1

binary flag for hours between 7 am and 5 pm (daytime), and a binary flag
for weekend (weekend). PM, sReference refers to the PM, s as measured
by a reference monitor. The model was trained on data where
PM, sReference was the measurements from the Oldtown MDE reference
monitor, and PM, sSensor was lab-corrected measurements from either
monitors B25 or B33. The standard homoscedastic linear regression
model is considered which produces constant prediction variances for all
predictions. The second model is a gradient boosted decision tree
(GBDT) specifically implemented with NGBoost, an open-source prob-
abilistic framework written in python developed by the Stanford
Machine Learning Group [26]. Unlike many machine learning methods
which are designed for point-prediction of the mean, NGBoost is
probabilistic, modeling a distribution for each prediction leading to
unique mean and variance. The distribution is specified in the shape of
N(x, 0). Further specifics on GBDT in general and NGBoost specifically are
provided in the Supplement.

Model features. In order to ensure a valid comparison between the two
models and demonstrate the efficacy of NGBoost with a small feature
space, only five baseline features will be used in each model, four of which
(RH, T, daytime, weekend) are identical to those from Eq. 1. The only
difference between the features of the models is that linear regression uses
the lab-corrected PM,sSensor and various interaction terms whereas
NGBoost uses the raw, uncorrected PM, sRaw sensor data as its fifth feature
and does not contain interaction terms. Interaction terms are not specified
in the NGBoost model because the structures of decision trees used
include them implicitly.

Training and testing datasets

In order to compare and contrast results from the linear models using lab
calibrated sensor data presented by Datta et al. [13] with NGBoost using
raw sensor data, the time intervals for training and testing from the study
will be duplicated with an additional ‘monthly’ interval added as well. The
seven defined training and testing sets are shown in Table 1. While the full,
prospective, and three seasonal splits are intended to compare directly to
Datta et al. [13] and cover accuracy by season, the Essex split is intended to
test the validity of the approach on fully out of sample data and monitors
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(i.e. not used in the training dataset). However, given that the Essex
monitor produces 24-hr average PM, s concentrations, hourly predictions
were made and then averaged up into a 24-hr prediction to allow for
comparison against the reference data. This averaging process will
compress the values and, as such, the model evaluation metrics for the
Essex split should not be directly compared to other train/test splits. The
Monthly split is intended to test the model performance on small training
set size as well as being to capture some component of sensor drift.
Additional specifics on the model training process are available in the
Supplement.

Model evaluation

The primary method of evaluation for point (i.e, mean) predictions from
the PM, s models is root mean squared error (RMSE) on the test set. Lower
values of RMSE indicate more accurate predictions, and the values have
the same units as the predictions and target. The second method of
evaluation is the continuous ranked probability score (CRPS) and evaluates
the probabilistic results of NGBoost and the confidence intervals of the
linear regression. Probabilistic predictions provide more than just a point
estimate, and therefore require evaluation of the spread around the point
prediction as well as the point prediction itself. For linear regression, each
prediction has an identical standard deviation around the mean, whereas
NGBoost produces a unique standard deviation for each prediction based
on the learned training data. Similar to RMSE, CRPS is in the same units as
the predicted variable, with smaller values indicating higher accuracy and
takes into account the spread and mean of each prediction distribution
[27]. In addition to general evaluation across all predictions, evaluation via
RMSE will be performed on bins of reference measurements of 15-20 pg/
m?, 20-25 pug/m®, 25-30 ug/m>, and greater than 30 ug/m> to evaluate
model performance at PM; 5 values that are of acute public health concern
and often underestimated with linear approaches [13, 28].

Spatial interpolation

In order to use the results of the model to conduct exposure assessments,
the calibrated data needs to be spatially interpolated across Baltimore.
However, NGBoost's predictions are not simply hourly point predictions at
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Testing Set

Table 1. Modeling splits for linear and NGBoost models on oldtown PM, 5 data.
Split Training Set
Full 80% from 12/2018-11/2019

Prospective all from 12/2018-7/2019

Spring 80% from 3/2019-5/2019

Summer 80% from 6/2019-7/2019

Winter 80% from 12/2018-2/2019

Essex 100% reference data and co-located sensor data from the
MDE site of Oldtown 12/2018-11/2019

Monthly each single month from 1/2019-10/2019

each SEARCH monitor, but a mean and standard deviation of a normal
distribution defined as Nyggoos: (X, 0). Therefore, a resampling process using
the distributions as part of the interpolation process was conducted using
inverse distance weighting (IDW). IDW operates under the assumption that
locations in close proximity are more likely to have similar measurements
than those further away, and that the weight of each known measurement
in predicting at a location is inversely related to how far away the two are.
The general formula for IDW is shown in Eq. 2 with d as distance between
the interpolation location and the measured value, i is an unsampled
location, z the value at the unsampled location j, and n is the total number
of points used in the averaging.
Equation 2: Inverse Distance Weighting (IDW)

n 1
>i #Zi )
Zestimated = ﬁ

=1

The power parameter, p, is used to control the strength of the inverse
distance relationship. For larger values of p, more distant measurements
are devalued, whereas p =0 corresponds to a straight average across all
monitors. While the default selection for p is often 2.0, leave one out cross
validation (LOOCV) on the SEARCH monitor mean predictions was
conducted to ensure that the power parameter was selected properly
and to ensure that interpolation error is propagated through the exposure
assessment; additional details are available in the Supplement.

IDW Monte Carlo. Following identification of the optimal power
parameter, the next step was to conduct a Monte Carlo simulation using
the IDW with the predicted distribution values from the NGBoost model.
The Monte Carlo was chosen to run 250 simulations for each hour to
balance runtime with accuracy. The steps were as follows:

Step 1: Select a single one-hour portion of the data

Step 2: Select a single draw (i.e, a single value is taken from a
distribution) among the 250 draws from each SEARCH monitor’s Nyggoost (X,
0) prediction from the hour selected

Step 3: Using those single draws, conduct an IDW on a square 256 x 256
grid (selected for optimal balance of computational speed and resolution)
encapsulating Baltimore city limits

Step 4: Following the Monte Carlo, combine all 250 predictions per grid
point to obtain the estimated concentration distributions

Following the Monte Carlo simulation, each grid cell’s 250 interpolated
values were parameterized to a normal distribution following confirmation
of normality via a Shapiro-Wilk normality test. Therefore, for each grid
location, results were recorded as N(x, 0)py based on the mean and
standard deviation of the interpolated PM, 5 values.

Exposure assessment

In order to aggregate an exposure assessment to administrative
boundaries, the average of each N(x, o)y within the borders of the
administrative geometry was defined as the exposure for that zip code,
Census Tract, neighborhood, etc. This exposure assessment can also be
aggregated temporally, going from single hour bins to days, weeks, or
months by averaging the N(x, 0);py for each hour bin up into the time units
desired prior to spatial aggregation.

In order to demonstrate the probabilistic framework, three exposure
metrics will be used in an example exposure assessment. The mean and
95th percentile prediction will be provided as more conventional metrics.
The third is a threshold-based metric, which represents the probability of
exceeding a threshold for a given administrative region and time window.
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20% from 12/2018-11/2019
all from 8/2019-11/2019
20% from 3/2019-5/2019
20% from 6/2019-7/2019
20% from 12/2018-2/2019

100% reference data and co-located sensor data from the MDE site
of Essex (24 h averages) from 12/2018-11/2019

each subsequent month from 2/2019-11/2019

While there are monitors in many of the administrative regions that could
theoretically provide single exposure values, the combination of multiple
monitors will allow for a complete gradient across the area of interest that
can be fit to any scale exposure assessment. Additionally, using multiple
monitors in an estimation increases the robustness of the estimate and
includes information that takes into account bordering regions. For PM, s,
the example threshold was the primary EPA annual standard of 12 pg/m*
[4]. It is important to note that all three values are produced directly from
the probabilistic IDW results of one model. The exposure assessments were
conducted on the Community Statistical Area (CSA) level, clusters of similar
and known neighborhoods determined by the Baltimore City Planning
Department [29].

Software

All modeling was conducted in Python 3.7.7 with spatial analysis and data
visualization conducted in R 4.0.2 Taking Off Again’ [30]. The full list of
modeling packages, libraries, and their version numbers is provided in
Appendix A.

RESULTS

Sensor modeling evaluation

NGBoost outperformed linear regression across all evaluations
(Table 2) with an average RMSE of 2.7 ug/m* and 3.1 ug/m? for
NGBoost and linear regression, respectively. NGBoost dramati-
cally outperformed the linear regression in the winter split, with
an RMSE of 2.9 ug/m?® compared to 3.8 ug/m>, a 30% increase in
accuracy in that season. In terms of the probabilistic predictions,
NGBoost also had at least a 30% decrease in average CRPS
compared to the linear regressions (1.5 ug/m> vs. 2.2 ug/m3),
which takes into account both the spread and the mean of the
prediction distribution. Therefore, the distribution spread for
NGBoost was approximately one third more accurate than the
spread for the linear regression model on a per-prediction basis.
Crucially, these accuracy improvements were observed even
with the fact that the NGBoost was using raw, uncalibrated
sensor data as opposed to the lab-corrected data used by the
linear regression. Additionally, due to the 24-hr averaging
period, the Essex evaluation results had RMSEs that are lower
than those of the other evaluation splits. However, the 10%
improvement in accuracy of NGBoost compared with linear
regression on the fully cross-site out of sample Essex data,
demonstrates the transportability of the calibration approach to
other monitors.

The predictions from the NGBoost model and linear regression
model for the week of February 1, 2019 through February 7,
2019 were compared to the linear regression results and the
corresponding MDE reference data in Fig. 2 to provide a visual
representation of the efficacy of the non-linear modeling
approach. This week in February 2019 was an abnormally poor
period for air quality and contained the highest reference
measurements in the entire dataset. For comparison, the
mean MDE PM,s during February 2019 was 8.6 ug/m?3, while
the daily averages of the first five days of February exceeded
20 ug/m* NGBoost generally was able to pick up on the
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Table 2. Model evaluation results comparing linear regression with NGBoost across identical training and test splits - RMSE & CRPS.
Split RMSE (pg/m?) CRPS (ug/m3)
Linear Regression NGBoost Linear Regression NGBoost
Full 3.2 2.8 23 1.5
Prospective 29 29 2.2 1.7
Spring 26 24 1.9 1.4
Summer 238 26 2.1 1.4
Winter 3.8 29 2.6 1.7
Essex (24 h) 2.2 2 - -
PM, 5 Prediction and Actual Time Series (2/1/19-2/7/19)
M Linear Regression m NGBoost Reference (MDE)
40
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Fig.2 Time Series for the first week of February, 2019 (highest reference concentration week on record) comparing linear regression (red) and
NGBoost (blue) predictions to the MDE reference measurements (gray) where the NGBoost tracks peaks and valleys more effectively than the

linear model.

Table 3.
Reference PM, s Range (pg/m®) RMSE (pg/m?3)

Linear Regression

15-20 4
20-25 5.9
25-30 74
30+ 13.6

peaks and valleys more accurately than linear regression, which
is crucially important for health relevant peak exposure events,
though the approach still unable to accurately represent all
peaks.

Accuracy of peak concentrations. One of the primary positives of
the non-linear models is the ability to more accurately represent
peak concentrations. In particular with PM, 5, hours or days with
high measurements are likely to be associated with significant
negative public health impacts. NGBoost demonstrated significantly
reduced error during high exposure hours compared to linear
regression (based on full model training/test split). The RMSE for
four categories of reference exposure are shown in Table 3 along
with the corresponding improvement of NGBoost compared to the
traditional linear approach based on the predictions of the fitted
model across the entire dataset. Furthermore, the average
residual for linear regression at reference concentrations greater
than 15ug/m® was —4.33ug/m> whereas for NGBoost it was
—2.12 ug/m3, demonstrating an approximately 50% reduction in
the negative bias at high reference concentrations.

SPRINGER NATURE

Model evaluation results comparing linear regression with NGBoost based on reference measurement range - RMSE.

NGBoost NGBoost Improvement Count of Hours
3.1 22% 1076

4.6 21% 292

4.8 35% 114

9.5 30% 116

Exposure assessment

IDW predictions were created for every hour from February 2019
through November 2019 using the identified optimal power
parameter of p=2.0. An example of a single day exposure
assessment on the CSA level within Baltimore city limits was
conducted on June 5, 2019 to highlight the spatial variability
observed using the network. June 5, 2019 was selected as it had
the largest difference in single-day mean CSA predictions
(approximately 10.3 ug/m3® between any two monitors, con-
sidering days with more than 20 monitors in operation. This
gradient between monitors is not captured with a single
reference instrument like the Oldtown FEM monitor. Mean and
95th percentile PM,s values are shown for June 5, 2019 in
Fig. 3a. For comparison, August 1, 2019 (Fig. 3b) had a maximum
CSA predicted difference of 3.5 ug/m>. In both cases, although
more pronounced in on June 5, there is a region of high
concentrations in the center of the city, with additional high
concentration areas in the northeast and northwest areas, likely
corresponding to commuting traffic on major interstates I-83,
which runs north-south through the center of the city and 1-695
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Fig. 3 Mean (left) and 95th Percentile (right) PM, s exposures by Community Statistical Association (CSA) for June 5, 2019 (a) and August 1,

2019 (b) with major roads and highways denoted.

beltway that surrounds the city slightly outside the city limits
(not shown).

Therefore, the probabilistic nature of the NGBoost outputs,
predicting the mean and standard deviation for each prediction
enables a mapped representation of the probability of any
location exceeding a specified threshold (e.g. 12 pg/m3). An
example of such a map for the probability that any location
exceeds 12 ug/m? for the 24-hr period on June 5, 2019 as shown
in Fig. 4. This is a powerful approach to assess spatially-resolved
risk for exceeding threshold values in a complex urban landscape
using low-cost distributed measurement networks. Of the 278
CSAs in Baltimore on June 5, 2019, 158 had a greater than 50%
chance of exceeding 12 ug/m>® and 28 had a greater than 90%
chance of exceeding 12pg/m>® The CSAs with the highest
exceedance probabilities are the center city areas near major
commuting intersections (76.6 °W, 39.3 °N), and the northern areas
that are adjacent to major interstate traffic (north and northwest
borders), however this is only one possible explanation for June
5th exposures, as traffic is not the only source or causative factor
for PM, 5 exceedances. Additionally, the flexibility of the approach
can be seen in Fig. 5 which has been aggregated over 316 days,
uses Census Tracts as the geographic aggregation unit, and a
concentration of interest of 10 ug/m°.

In comparison to Fig. 4, there are differing patters on spatial
variability in exposure in Fig. 5, highlighting the point that the
small-scale variation in the daily or sub-daily scale maps are not
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simply just duplicates of the annual or long-term exposure
pattern. Of note, in both Fig. 4 and Fig. 5, large city parks in the
northwest (76.7 W, 39.3 N) and center east (76.6 W, 39.3 N) of the
city show up as low exposure zones compared to their
surrounding developed areas.

DISCUSSION

The use of machine learning for predictive purposes in air
pollution sensor data has seen substantial growth in the last
several years. Large-scale approaches often utilize satellite data,
country scale sensor networks, land use data, topography, etc. and
have been built using random forests, GBDTs, and neural nets
[31-34]. On a smaller scale more analogous to SEARCH, personal
monitoring device networks, mobile sampling networks, and city-
scale sensor networks have also demonstrated the utility of
machine learning regression techniques to optimize predictions
and take into account environmental factors [17-20]. However,
while prediction of PM,s using sensor measurements and
additional data has been conducted by numerous studies, this
study fills a unique position by providing a methodology for both
increasing the utility of low-cost sensor networks by creating a
probabilistic output useful for exposure assessments, a state-of-
the-art model that improves on existing approaches, and also
removes the need for lab-calibrated data, a time intensive process
for mitigating environmental biases for PM, 5 data.
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Probability of PM, 5 Daily Mean > 12 pg/m® (6/5/2019)
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Fig. 4 Probability of daily mean PM, 5 exceeding 12 mg/m? by CSA
on June 5, 2019 with major highways and roads.

Proportion of Days With Pred. Daily Mean PM, 5> 10 ug/m3
Jan. 2019 - Nov. 2019 (n = 316)

Proportion of Days
20.0% 22.0% 24.0% 26.0% 28.0%

39.35°N 4

39.3°N 1

39.25°N 1

39.2°N 1

767°W  7665°W 766°W  76.55°W
Fig. 5 Proportion of days with a predicted daily mean PM,s
exceeding 10mg/m® by Census Tract from January 2019 -

November 2019 with major highways and roads.

The Plantower PMS A003 sensors used in this work produce
PM, s readings by scattering laser light on drawn in air which is
used to count particle sizes which are then converted into
concentrations. This raw sensor can be lab-calibrated (account-
ing for known environmental biases), a time and resource
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intensive process, in order to ensure accuracy and precision
[15, 16]. The SEARCH network is also deployed in the region of a
Maryland Department of the Environment PM,s monitoring
station which measures PM,s using a reference Federally
Equivalent Method (FEM) PM, s measurement [5, 6]. In previous
studies, co-located SEARCH sensor monitors with the FEM
monitor were used to develop a linear regression model that
used lab-calibrated sensor data, temperature, relative humidity,
weekend (binary), and daytime (binary) to model gold standard
PM,s [13]. Although temperature and relative humidity are
known parameters of concern when measuring PM; s, they have
established non-linear relationships with the ultimate PM, s
measurement as well as each other, and these non-linear
relationships and large sensor to sensor variability are the
reasons why lab calibration is often necessary [13, 15]. Alter-
nately, in order to capture the non-linear relationships without
lab calibration, gradient boosted decision trees (GBDT), a
popular tool for non-linear regression were used and showed
that they were more accurate than linear regression without the
calibration step. In addition, the NGBoost specific GBDT utilized
in this study was probabilistic, producing unique means and
standard deviations for each prediction output, in contrast to
the linear regression which provided uniform standard devia-
tions for calibration uncertainties across all predictions. The
unique means and standard deviations from NGBoost resulted in
a nearly 30% decrease in CRPS compared to a uniform variance
uncertainty from linear regression.

While creating models that produce accurate probabilistic
predictions is interesting from an academic perspective, it is the
application of the models that can result in actionable data
products, as seen in Fig. 4, that presents exceedance probabilities
for relevant regulatory/health protective standards and facilitates
comparisons between neighborhoods for environmental justice
applications. The flexibility of the approach is also crucially
important for exposure assessments, as the data can be
aggregated to whichever administrative boundary the researcher
prefers for their problem, as well as whatever timescale is
required. Exposures can also be left as a continuous gradient
and used for nearest point analysis for studies requiring fine scale
exposures linked to residences, places of work, etc. Leveraging the
probabilistic prediction optimized NGBoost allows for the use of
the distribution for further analysis such as probabilistic risk
assessments, more accurate best and worst case scenarios, and
any other situation where a parameterized distribution would be
more useful than a point prediction, particularly since Patton et al.
[24] showed that the use of probabilistic exposure estimates more
accurately estimate upper bound exposures from low-cost sensor
networks than the use of a point estimate. Approximations such as
using the 95th percentile prediction from NGBoost would
approach a worst-case scenario, but one that is modeled with a
unigue mean and standard deviation based on the input data.
This is in contrast to a linear regression where a 95th percentile is
based on a uniform standard deviation across all data points.
Therefore, our approach allows for low probability occurrences
such as the 95th percentile outcome to be modeled with
precision.

In terms of limitations, the specific tuned and fitted models
covered in this paper are not universally applicable. The intent was
to provide a framework for other investigators to use this
approach on their own sensor networks and pollutants. Unique
models should be tuned and fitted for every application, which is
both a potential limitation but also lends itself to highly
customizable solutions. Furthermore, the features for NGBoost in
this setting were not engineering or optimized but were simply
the same as what was identified to be optimal for the linear
regression by Datta et al. [13] to facilitate comparability. Therefore,
it is likely that specific feature engineering would yield increased
model accuracy. Finally, we have a small validation set comprised
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only of the state’s compliance monitoring to evaluate our results,
with no validation at other locations.

Further research into these methods should consider the
addition of more reference-sensor pairs that would allow for
features that more completely characterize the local environment
of each pair. For example, adding land use, topographic, or traffic
features would easily be possible with our approach. While adding
regulatory monitoring sites is not feasible, a short-term high cost/
accuracy instrument could be co-located with several monitors to
provide reference data across the entire network. In addition to
the potential for an expanded feature space, one of the primary
adjustments to make is to determine the amount of training data
needed. While this will vary by pollutant, features, model choice,
and prediction quality desired, capturing climate variation across
several months would be recommended. Further, it is possible
that an ensemble of high bias low variance linear models (not
likely to overfit, but likely overly generalized) and low bias high
variance GBDT (possibility of overfit, but not overly generalized)
would be useful in a setting where a limited amount of training
data was available with no option to acquire more. Lastly, it is
possible that a temporal weighting feature that weights newer
data more heavily would additionally yield increased accuracy as a
means to combat sensor drift—methods such as error optimized
exponential weighting would be an option [15].

The framework for converting uncalibrated PM, s sensor data
into a probabilistic exposure assessment using probabilistic
gradient boosted decision trees captures the non-linearity of the
relationship between PM,;, relative humidity, and temperature,
while providing more accurate and more useful probabilistic and
deterministic output. The exposure assessments derived from the
probabilistic modeling allows for small scale understanding of
PM, s exposure and variability that can be of use in acute and sub-
chronic epidemiological studies.
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