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Abstract
The solution of the Boltzmann Transport Equation (BTE) under open voltage

conditions and in the presence of simultaneously applied magnetic field and tem-
perature gradient results in the so-called Nernst response of the electrons. The
calculation of the Nernst coefficient using first-principles calculations as an ex-
tension of the BoltzWann code and under Jones-Zener expansion valid for weak
magnetic fields has been the subject of our previous work which provided a general
framework for the calculation of the Nernst effect but was not able to capture the
experimental results due to the constant relaxation time approximation used. In
Contrast to the Seebeck coefficient which is not sensitive to the details of the relax-
ation times, the Nernst coefficient is proportional to the carrier mobility and hence
is greatly affected by the relaxation times. In this work, we focus on the inclusion of
the energy-dependent electron-phonon and the electron-impurity relaxation times
in our formalism. Using the developed formalism, we successfully reproduced the
experimental data of several samples. In this paper, we report our results on Ge,
Si, and InSb samples. However, the code is not limited to the reported samples and
supports a wide range of materials.
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1 Introduction
Energy harvesting plays a crucial role in the progress of the Internet of Things (IOT) to manage
energy conversion and storage [1]. Thermoelectric (TE) devices that convert the waste heat
into electrical energy perform on the principle of the Seebeck effect. A temperature gradient
in a material causes the migration of the charge carriers, as a result, a voltage develops along
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Figure 1: Schematic illustration of the Nernst effect. Electrons and holes move in opposite
directions in the presence of an external magnetic field (H).

the temperature gradient. The ratio of the developed voltage difference to the temperature
difference is the Seebeck coefficient which is a longitudinal signal. TE modules have been
vastly utilized in many areas ranging from wireless sensor networks [2] to space crafts [3]. The
Nernst effect is analogous to the Seebeck effect under an applied magnetic field. It is the basis
of the thermomagnetic phenomenon. The advances in superconducting magnets facilitated
the induction of strong magnetic fields. As a consequence, the Nernst effect was proposed
for extended applications such as cryogenic cooling [4], thermal radiator detection [5], and
thermopile systems [6].

Nernst and Ettingshausen [7] observed a cross-plane voltage in Bismuth under an exter-
nal magnetic field and a temperature difference perpendicular to each other. The generated
voltage is called the Nernst coefficient and was found to be particularly large for Bismuth at
low temperatures [8]. The force acting on a moving charge in the presence of a magnetic field
is expressed by the Lorentz force which causes their trajectory to curve: (F⃗ = qν⃗ × H⃗ where
H is the magnetic field, including the magnetic permittivity µ0, and is measured in Teslas.)
Because of their opposite charge electrons and holes are pushed in opposite directions under a
perpendicular magnetic field (see Fig. 1). The accumulation of electrons and holes on opposite
sides of the sample generates the so-called Nernst voltage.

Studies on the Nernst effect started from metals and semimetals and continued by examining
semiconductors, namely, Germanium [9, 10] and InSb [11]. Germanium was the first semicon-
ductor that showed a remarkable Nernst signal at room temperature. As of today, germanium
still holds the record for the largest Nernst coefficient at room temperature. Indium antimonide
also emerged as a potential candidate for the Nernst-based applications at room temperature
owing to its noticeable Nernst coefficient, nearly 100 µV/KT , where the Nernst coefficient is de-
fined as the ratio of transverse Nernst voltage gradient to the longitudinal temperature gradient
and is reported per unit magnetic field.

Along with the measurements, efforts were made to model the Nernst coefficient. The
earliest model was proposed by Moreau that describes the Nernst coefficient as a product of
the electrical conductivity (σ), Hall coefficient (RH), and Thompson coefficient τ = TdS/dT as
N = στRH . Moreau’s equation was derived by making multiple thermodynamics and physical
assumptions but was successful in explaining the Nernst coefficient measured in several metals.
For the first time, Delves [12] analytically solved the Boltzmann transport equation (BTE) in
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the presence of a magnetic field for spherical bands within relaxation time approximation. With
the help of the Onsager relations and heat/electric current coupled equations, he derived the
Nernst, Ettingshausen, and Hall coefficients and replicated the experimental results of HgSe.
Later, the Nernst coefficient was estimated using the Mott’s formula [13] for Ni80Fe20 and Ni
thin films and produced the trend of the experimental data [14]. Apart from the fact that
the Mott formula applies only to metals, it was found to fall far from the experimental Nernst
coefficient values of BaFe2As2 and CaFe2As2 [15]. More recently, Heremans et.al. [16] applied
a semi-empirical method to support their Nernst measurement. They performed a tight-binding
model of a Weyl semimetal by taking a trigonometric Hamiltonian and obtained results relatively
close to the experiments in the case of NbP.

The aforementioned models were empirical or semi-empirical, and although can explain the
trends, cannot accurately predict the experimental results without fitting parameters. Besides,
the effect of the electronic structure-dependent quantities such as group velocity and effective
mass are oversimplified in such approaches. In our previous study [17] we presented an ap-
proach to calculate the Nernst coefficient using first-principles density functional theory within
the constant relaxation time approximation. Unlike the Seebeck coefficient, the Nernst coef-
ficient is proportional to the carrier mobility and hence is extremely sensitive to the details
of the relaxation time. The constant relaxation time approximation is therefore insufficient to
accurately predict the Nernst coefficient. Herein, we demonstrate a new approach to computing
the Nernst coefficient including electron-phonon and ionized impurity scattering rates with the
basis set of maximally-localized Wannier functions. Our method combines the scattering rates
with the Boltzmann transport equation in the presence of a magnetic field and calculates the
Nernst coefficient. The Nernst coefficients of germanium, silicon, and InSb are attained at a
reasonable computational cost and our theoretical results are in fairly close agreement with the
experiments.

2 Theoretical formalism
In our previous work [18], similar to the original work of Delves[12], we showed that the isother-
mal Nernst coefficient (NT ) in the presence of a magnetic field along the z-axis is the ratio of
the developed voltage along the y-axis to the temperature difference along the x-axis and will
be identified as NT = αyx(H) where:[︂

α(H)
]︂

=
[︂
σ(H)

]︂−1[︂
B(H)

]︂
(1)

and the matrices σ and B are expressed in terms of the so-called transport distribution
function Ξ(ε) calculated from the solution of BTE:

σij(H) = q2
∫︂

ΞH
ij (ε)

(︃
−∂f(ε, µ, T )

∂ε

)︃
dε (2)

Bij(H) = q

T

∫︂
ΞH

ij (ε)
(︃

−∂f(ε, µ, T )
∂ε

)︃
(ε − µ) dε (3)

where the indices i, j represent Cartesian indices, q the particle charge, T the temperature,
µ the chemical potential, and finally f is the Fermi-Dirac distribution function. Within the
relaxation time approximation, and in the limit of small magnetic fields (τqH/m ≪ 1), the
transport distribution function is written, to linear order in H, as:

ΞH
ij (ε)= 1

V N

∑︂
n,k

νi,nkτnk[νj,nk − Ω τnk νj,nk] δ(ε − εk) (4)
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where the pair nk refers respectively to the electron band and wave vector in the Brillouin
zone, ν is the electron velocity vector, τ is the relaxation time, assumed to be only energy-
dependent, V and N are the unit cell volume and number of k-points, respectively, and the
"frequency operator" Ω is defined red in reciprocal space to be Ω = q

ℏν × H · ∇k. Its action on
the product τνj is:

Ω τνj=qτ(ε) ϵpqr νp Hq

(︃ 1
m

)︃
rj

(5)

where ϵpqr is the antisymmetric Levi-Civita symbol, 1
ℏ

(︂
∂νj

∂kr

)︂
=

(︂
1
m

)︂
jr

is the symmetric inverse
effective mass tensor, and an implicit summation is assumed over repeated indices. In this
equation, the electron energy, velocity, and effective mass are obtained from a band structure
calculation (output of the Boltzwann code[19]), and the total relaxation time τ resulting from
all scatterings is an output of the code AMSET. [20]

Figure 2: The workflow used in this work to calculate the Nernst coefficient. Wannier
functions, group velocity, and effective mass tensor (blue boxes) come from the Wannier90
package[21]. Scattering rates (P) and relaxation times are taken from AMSET or similar
codes (green boxes). We couple the output of the two codes to obtain the total transport
distribution function (Ξ).

Using the mentioned assumptions, the final expression for the transport distribution function
becomes:

ΞH
ij (ε)= 1

V N

∑︂
n,k

νi,nkτnk

[︄
νj,nk − qτ(ε) ϵulp νu Hl

(︃ 1
m

)︃
pj

]︄
δ(ε − εk) (6)

This distribution function is the sum of two terms: the first one is the standard one at zero
magnetic field, and the second, linear in the magnetic field, assumed to be smaller than the
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first, contains the magnetotransport response. Due to the parity symmetry of velocities, one
can see that the off-diagonal elements of the matrices σ and B are linear in H. In contrast, the
diagonal elements do not depend on H up to O(H).

Finally, the Seebeck and the isothermal Nernst coefficients up to terms linear in H can be
written as

S = αxx = σyyBxx − σxyByx

σxxσyy + σ2
xy

≃ Bxx

σxx
+ O(H2) (7)

NT (H) = αyx = σxxBxy − σyxBxx

σxxσyy + σ2
xy

≃ Bxy

σyy
− S

σxy

σyy
+ O(H2) (8)

The derivation of the above equations is explained in detail in our previous works [17] and
indices follow the directions of Fig. 1. Note that in the above only the first term of Ξ which does
not depend on H appears in σxx and Bxx and thus in S. On the other hand, due to the parity
of velocities, only the second term of Ξ, linear in H, appears in the formulas for σxy and Bxy.
Thus the Nernst coefficient is linear in the magnetic field (still in the small field limit where the
second term in Ξ is much smaller than the first term).

The workflow of our approach is displayed in Fig. 2. We start with the electronic struc-
ture obtained from density functional theory-based codes. The maximally localized Wannier
functions [21] (MLWF) are required to represent a fine interpolation of electron energy disper-
sion followed by the derivation of band velocity and effective mass tensors. Several programs
were developed to post-process the scattering rates data provided by various softwares, namely:
AMSET [20], ElecTra [22], EPW [23], Perturbo [24], and EPIC STAR [25]. Among those, the
interface with ElecTra, AMSET, and Perturbo has been implemented in our code. Specifically,
for the case of ElecTra a tutorial was made and added to the GitHub page. Additionally, the
user has the option of providing total scattering rates as a function of energy obtained by any
package and computing the Nernst coefficient by our code. Relaxation times were then coupled
with band-dependent quantities to compute the transport distribution function.

Now that the formalism has been clarified (for more details reference [18] can be consulted),
we will proceed to give the details of the first-principles calculations, display and discuss the
results in comparison with experimental results.

3 First-principles calculations
In order to calculate the ingredients necessary for the transport distribution function, we
have performed first-principles density functional theory (DFT) calculations of three materi-
als, namely Ge, Si, and InSb using the VASP code with PAW pseudopotentials[26, 27]. The
PBE [28] exchange-correlation functional yielded zero gaps and nearly linear dispersion around
the Gamma point in the conduction bands for Ge and InSb. We, therefore, used the mBJ
exchange-correlation functional [29] in order to reproduce the correct band curvature (effective
mass) by opening a gap. The mBJ gap is still smaller than that of the experiment and hence
the bands were shifted to reproduce the experimental band gaps as the Seebeck coefficient is
very sensitive to the latter (more details can be found in the supplementary materials).

Using the WANNIER90 package [21], DFT band structures were then wannierized via max-
imally localized Wannier functions (MLWF) in order to have a fast calculation of the band
energies and velocities on a very fine mesh of k-points in the first Brillouin zone. All the
integrals discussed in Section 2 were performed using this data on a fine mesh.

Next, charge carrier relaxation times were calculated by the AMSET code and transformed
into energy space. AMSET is an easy to use code that has been successful in reproducing the
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carrier mobility of many semiconductors and hence we chose to use this code [20]. We note that
AMSET does not use a first principles approach. Instead, it uses phenomenological models with
inputs either from experiments or first principles. For instance, deformation potential approxi-
mation is used for acoustic phonons. An alternative that is computationally more expensive is
to use first-principles-based codes such as EPW [23] or Perturbo[24] for electron-phonon scat-
tering rates. Here, we choose to use AMSET as it is enough to reproduce the experimental
data. We include acoustic phonon deformation potential, polar optical phonon, piezoelectric,
and ionized impurity scattering mechanisms in all three reported materials. A summary of the
physical properties used for each material is provided in supplementary materials. These pa-
rameters are taken from available experimental data. It is noteworthy to add that alternatively
the input parameters for the scattering rates, e.g. deformation potential, dielectric constant,
elastic constant, optical phonon frequency, and piezoelectric constant, may be obtained from
first-principles DFT methods. Figure 2 summarizes the calculation process of obtaining the
band-related parameters and scattering rates separately, and combining them for Nernst calcu-
lations.

Lastly, after convergence was reached, we used the output from wannierisation of the bands
and scattering rates of AMSET to calculate the transport distribution function Ξ displayed in
Eq. 6. Then Ξ was used in equations 2 and 3 to calculate the matrices σ and B. Finally, the
isothermal Nernst coefficient was computed from Eq. 1 and compared to available experimental
data.

4 Results and discussion
4.1 Germanium
Germanium in its single crystal form is one of the first semiconductors in which the Nernst
signal was reported and in fact, it holds the record for the largest Nernst coefficient around
room temperature. Therefore, we chose to test our method on Ge. Electrical properties in-
cluding mobility, electrical resistivity, Seebeck coefficient, and indeed Nernst coefficient largely
depend on the scattering rates, thus, the scattering rates and the mobility need to be validated.
Fig. 3.a depicts the hole mobility of single crystal Germanium versus doping concentration at
room temperature. Fig. 3.b shows the same quantity versus temperature for a hole concentra-
tion of 4.9 × 1018cm−3. As temperature increases, the population of phonons increases leading
to an increase in the electron-phonon scattering rates and a decrease in electron mobility. The
acoustic deformation potential scattering and the ionized impurity scatterings are the domi-
nant scattering mechanism in this material and the combination of the two can reproduce the
experimental data closely. This fact was also previously reported in the literature [30]. Our
theoretical results for Ge are found to be within less than 5% of the experiments. A wide range
of values has been reported for the deformation potential, whether in experiments or theory.
Therefore, we selected the deformation potentials that best fit the experimental mobility (the
value of parameters used are reported in the supplementary material).

The Nernst coefficient of single crystal Ge was measured to be as large as 350 µV/KT
around room temperature [9]. Yamaguchi [10] also observed extremely large values of the
Nernst coefficient for Ge, but they failed to replicate their measurements by a parabolic band
model. In this work, we calculate the Nernst coefficient of Ge in a wide range of temperatures
using density functional theory.

After the successful replication of Ge mobility (Fig 3), we proceeded with the calculation
of the full transport distribution function (Eq. 6) and, finally, evaluated the Nernst coefficient
by using Eq. 1. Figure 4 shows that our theory can accurately predict the experimental
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Figure 3: Hole mobility for Germanium at room temperate versus doping concentration
(a) and versus temperature (b) for a constant carrier concentration of 4.9×1018Cm−3. Red
circles and blue dashed lines indicate experimental [31] and theoretical data, respectively.
The mobilities of Si and InSb are reported in the supplementary material.

Nernst coefficient for Ge in a wide range of temperatures and for various doping concentrations.
For a slightly doped sample (ρ = 30Ω.cm) the Nernst coefficient continuously decreases versus
temperature, though, it decreases less rapidly at high temperatures. The corresponding chemical
potential of the electrical resistivity of ρ = 30Ω.Cm is 240 meV below the intrinsic Fermi level.
Since we do not know how resistance changes with temperature experimentally, we performed
our modeling under constant chemical potential conditions which means chemical potential
was kept the same for all temperatures. This assumption breaks at higher temperatures and
therefore, we are not able to reproduce the experimental data at temperatures beyond 500K.
. The dominant carriers are holes. However, the concentration of both electrons and holes
increases with the rise in temperature as shown in Fig. 5a. The carrier mobility as shown in
Fig. 5b drops as temperature increases. Various models (see Moreau’s equation for example)
have shown that the Nernst coefficient is proportional to the carrier mobility. In this case, we
also observe that the Nernst coefficient follows the carrier mobility trend and decreases with
temperature.

Comparing the two samples, the one with larger mobility also exhibits a larger Nernst
coefficient. The trend of the Nernst coefficient with respect to temperature is different in the
case of the low-resistance sample. Here, as shown in Fig. 4, the Nernst coefficient reaches a
maximum value at around 410 K both in theory and experiments. To explain this maximum
in the Nernst coefficient, we have plotted the Seebeck coefficient of the two samples in Fig.
5C. In the case of the low-resistance sample, there is a large drop in the Seebeck coefficient vs.
temperature at around 400 K which can be in turn attributed to the increase in the population
of minority carriers. According to Moreau’s relation, the Nernst coefficient is proportional to
the slope of the Seebeck coefficient with respect to temperature (represented by the Thomson
coefficient). In this case, the maximum of the Nernst coefficient happens when the Thomson
coefficient is maximal. We emphasize that Moreau’s relation can only qualitatively explain the
results and it is not in quantitative agreement with our first-principles model. An alternative
explanation is to correlate this maximum to the Seebeck coefficient of the minority carriers. It
has been shown that the Nernst coefficient within constant relaxation time approximation and
within parabolic bands, comes only from the cross-term between the valence and conduction
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Figure 4: Nernst coefficient of Germanium versus temperature. Solid circles are the
experimental data from literature [9] and our theoretical predictions are shown by dashed
lines. The two samples have different electrical resistivity (ρ) and are measured under
magnetic fields (H) of 0.21 T and 0.9 T.

bands and is proportional to the Seebeck coefficient of the minority carriers (see Eq. 45 of
Ref. [32]). At 400 K the minority carriers start to contribute and have a large Seebeck coefficient
but of the opposite sign, causing a faster reduction of Seebeck with temperature.

Our findings are normalized to the magnetic field in the units of ( µV
KT ) and the Nernst signals

appeared to be larger under the smaller magnetic field of 0.21 T compared to 0.9 T whether in
experiments or theory (Fig. 4). This is because the denominator is in 1 + aH2 causing a further
reduction of the Nernst coefficient (see ref [33] and Eq. 8).

4.2 Silicon
Inspired by large Nernst signals of germanium, silicon was thought to show large Nernst signals
due to similarities with germanium. Mette studied the Nernst effect in silicon and found that
the Nernst coefficient in single-crystal silicon is significantly smaller [34] than that of Ge. This
originates from a larger band gap of silicon (1.12 eV versus 0.66 eV in Ge) and smaller carrier
mobility (760 cm2/V S vs 85 cm2/V S). The band gap in silicon is so wide that the carrier
concentration would have a negligible effect far from the band edges. Hence, the Nernst signal
will vanish when the chemical potential is deep in the gap. Instead, peak values are expected
to appear at the band edges due to maximum relaxation time. It is worth mentioning that in
order to achieve the electrical resistivity of 0.22Ω.cm in p-type silicon, it needs to be doped by
as much as 8 × 1016cm−3, so that the chemical potential moves into the valence band.
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Figure 5: (a) Hole mobility of Germanium samples with the electrical resistivity of
4.5 and 30 Ω.cm (b) Hole and electron concentrations of Germanium with the electrical
resistivity of 4.5 Ω.cm (red) and 30 Ω.cm (green) versus temperature. Seebeck coefficient
(c) for the same samples versus temperature.

4.3 InSb
Indium antimonide is a narrow gap semiconductor widely used in semiconductor applications
e.g. transistors, magnetic field sensors, and infrared cameras [35, 36, 37] . InSb was among
the earliest semiconductors that showed relatively large Nernst signals at room temperature.
El-saden et.al. reported the Nernst effect in InSb for the first time in the temperature range
from 260 to 340 K and applying magnetic fields from 0.4 to 1.2 T. They used a measurement
method similar to what Lindberg [38] employed for Hall measurement. The sample length had
to be kept at least three times larger than its width to avoid the end electrodes’ shorting effect.
Decades later, Nakamura [39] carried out thorough measurements of thermoelectric as well as
thermomagnetic properties on bridged shape InSb samples and recorded Nernst coefficient values
as large as 340 µV/K. However, his phenomenological model deviates from the experimental
results. We performed DFT-based calculations of the Nernst coefficient and found fairly close
values to the experiments for a p-type single crystal InSb sample whose electrical conductivity
is 2.2×104S/m under a magnetic field of 4 T.

Although the hole mobility of InSb is larger than Ge, the chemical potential which yields
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Figure 6: Nernst coefficient of p-type Silicon with ρ = 0.22Ωcm at elevated temperatures
under a magnetic field of 0.9 Tesla. Our theory (blue dashed line) is in relatively good
agreement with the experimental data (red circles) [34].

the electrical conductivity of 2.2×104S/m is in the vicinity of the valence band edge. For a large
Nernst signal in semiconductors, minimum coexistence of electrons and holes is desired. The
chemical potential that bears the minimum coexistence of the opposite charges occurs at the
intrinsic Fermi level. Considering the fact that the product of electron concentration and hole
concentration is constant in equilibrium, as the chemical potential moves toward either band,
the total concentration of electrons and holes will grow, such that the Nernst signal shrinks due
to higher carrier concentration. Moreover, InSb is a narrow gap semiconductor (0.16 eV) so even
at room temperature, the intrinsic electron and hole concentrations are substantial, leading to
a lower Nernst coefficient in comparison with Ge.

Having the density of states from DFT and the Fermi-Dirac distribution function, we can
calculate the electron and hole carrier concentrations at any given temperature and chemical
potential. Table 1 summarizes the hole concentration for InSb, Ge, and Si samples studied in
this work.

5 Conclusion
In this article, we proposed an efficient approach to compute the Nernst coefficient based on the
first-principles density functional theory within the relaxation time approximation. This is a
follow-up to our previous work where we reported a first-principles approach based on constant
relaxation time approximation [17]. The effect of the band structure on the Nernst coefficient
can be obtained within constant relaxation time approximation. However, to enable comparison
with the experiment, it is crucial to include the electron’s energy-dependent relaxation times.
In this work, we account for the charge carrier relaxation time caused by various mechanisms
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Figure 7: Nernst coefficient of p-doped Indium antimonide as a function of temperature
at 4 Tesla. Red circles are the measurements from Ref [11] and values obtained by our
approach are shown by the blue dashed line.

including phonons and ionized impurity scatterings. In contrast to phenomenological models,
in our approach band structures are based on MLWFs coming from first-principles calculations,
while relaxation times can either be calculated from first principles, or obtained from simplified
models with one or two fitting parameters. In order to validate the method, our findings were
compared to experimental data on Ge, InSb, and Si. The effects of experimental conditions
such as temperature, doping concentration, and strength of the magnetic field were investigated
and a remarkable accuracy was observed with a moderate computational cost. This approach
is applicable within the validity of the inputs, that is within the validity of the DFT framework
and the validity of the codes or models used to compute relaxation rates. It paves the way for
the materials discovery and prediction of promising candidates for applications based on the
Nernst effect.
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Table 1: Hole concentration at 300 K for p-type InSb, Ge, and Si samples studied in
this work.

Material Hole concentration (cm−3) ρ(Ω.cm)

InSb 1.16×1017 4.5 × 10−5

Ge 1.2×1015 30.00
Ge 2.8×1015 4.5
Si 8×1016 0.22

that could affect this work.
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from S.E.R’s GitHub page.
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