
Multi-Robot Motion Planning for Unit Discs with
Revolving Areas

Pankaj K. Agarwal �↸

Duke University

Tzvika Geft �↸

Tel Aviv University

Dan Halperin �↸

Tel Aviv University

Erin Taylor �↸

Duke University

Abstract

We study the problem of motion planning for a collection of n labeled unit disc robots in a polygonal
environment. We assume that the robots have revolving areas around their start and final positions: that
each start and each final is contained in a radius 2 disc lying in the free space, not necessarily concentric
with the start or final position, which is free from other start or final positions. This assumption allows a
weakly-monotone motion plan, in which robots move according to an ordering as follows: during the turn
of a robot R in the ordering, it moves fully from its start to final position, while other robots do not leave
their revolving areas. As R passes through a revolving area, a robot R

0 that is inside this area may move
within the revolving area to avoid a collision. Notwithstanding the existence of a motion plan, we show that
minimizing the total traveled distance in this setting, specifically even when the motion plan is restricted to
be weakly-monotone, is APX-hard, ruling out any polynomial-time (1+ ")-approximation algorithm.

On the positive side, we present the first constant-factor approximation algorithm for computing a
feasible weakly-monotone motion plan. The total distance traveled by the robots is within an O(1) factor
of that of the optimal motion plan, which need not be weakly monotone. Our algorithm extends to an
online setting in which the polygonal environment is fixed but the initial and final positions of robots
are specified in an online manner. Finally, we observe that the overhead in the overall cost that we add
while editing the paths to avoid robot-robot collision can vary significantly depending on the ordering we
chose. Finding the best ordering in this respect is known to be NP-hard, and we provide a polynomial time
O(log n log log n)-approximation algorithm for this problem.

2012 ACM Subject Classification Theory of computation! Computational geometry; Theory of com-
putation! Design and analysis of algorithms

Keywords and phrases motion planning, optimal motion planning, approximation, complexity, NP-
hardness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.52

Related Version Full version: https://arxiv.org/abs/2210.00123

Funding Work by Pankaj K. Agarwal and Erin Taylor is supported by IIS-1814493, CCF-2007556, and
CCF-2223870. Work by Dan Halperin and Tzvika Geft has been supported in part by the Israel Science
Foundation (grant no. 1736/19), by NSF/US-Israel-BSF (grant no. 2019754), by the Israel Ministry of
Science and Technology (grant no. 103129), by the Blavatnik Computer Science Research Fund, and by the
Yandex Machine Learning Initiative for Machine Learning at Tel Aviv University.

1 Introduction

Multi-robot systems are already in use in logistics, in a variety of civil engineering and nature
preserving tasks, and in agriculture, to name a few areas. They are anticipated to proliferate in

© Pankaj K. Agarwal, Tzvika Geft, Dan Halperin, and Erin Taylor;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 52; pp. 52:1–52:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
https://users.cs.duke.edu/~pankaj/%20
mailto:zvigreg@mail.tau.ac.il
http://acg.cs.tau.ac.il/people/tzvika-geft/tzvika-geft%20
mailto:danha@post.tau.ac.il
http://acg.cs.tau.ac.il/danhalperin%20
mailto:ect15@cs.duke.edu
https://users.cs.duke.edu/~ect15/%20
https://doi.org/10.4230/LIPIcs.ISAAC.2022.52
https://arxiv.org/abs/2210.00123
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

the coming years, and accordingly they attract intensive research efforts in diverse communities.
A basic motion-planning problem for a team of robots is to plan such collision-free paths for

the robots between given start and final positions. Among the many dimensions along which
the multi-robot motion planning (MRMP) problem has been studied, we focus on three: (1) we
distinguish between distributed and centralized control. In the former each robot has limited
knowledge of the entire environment where the robots move, and each robot may communicate
with few neighboring robots. In the latter, which is typical in factory automation and other well-
structured environments, a central authority has control over all the robots and the planning for
each robot takes into consideration knowledge about the state of all the other robots in the system.
(2) In the labeled version the robots are distinguishable from one another and each robot has its
own assigned target, whereas in the unlabeled version the robots are indistinguishable, i.e., each
target can be occupied by any robot in the team and the motion-planning problem is considered
solved if at the end of the motion all the target positions are occupied. (3) We further distinguish
between continuous or discrete domains. Much of the study of motion planning in computational
geometry and robotics assumes that the workspace is continuous. In AI research, where the
problem is typically called multi-agent path finding (MAPF) [21], the domain is modeled as a
graph. Nowadays the MAPF problem is studied in diverse research communities, often as an
approximation of the continuous domain.

In our study here we consider a centralized, labeled, and continuous version of MRMP. Further-
more, we are not only interested in finding a solution to the given motion-planning problem, but
rather in finding a high-quality solution. Specifically, we aim to find a solution that minimizes
the total path length traveled by the robots.

Related Work. Computing a feasible motion plan (not necessarily a good one) itself is in
general computationally hard for MRMP (see, e.g., [4, 9, 11, 18]). In the results that we cite
next, some additional mitigating conditions are assumed on the system to obtain efficient motion-
planning algorithms.

There are few results that guarantee bounds on the quality of the motion plans for multi-robot
systems. For complete algorithms1 in the unlabeled case, there are bounds on the length of the
longest path taken by a robot in the system [22], or on the sum of distance traveled by all the
robots [20]. For the labeled case, Demaine et al. [7] provide constant-factor approximation
algorithms for minimizing the execution time of a coordinated parallel motion if there are no
obstacles. Still for the labeled case, Solomon and Halperin obtained a very crude bound on the
sum of distances [17] (the approximation factor can be linear in the complexity of the environment
in the worst case) in a setting identical to the setting of the current paper, namely assuming
the existence of revolving areas—see below for a formal definition. No sublinear approximation
algorithm is known for MRMP even if we assume the existence of revolving areas and the cost of
a motion plan is the sum of the lengths of individual paths. In the current paper we significantly
improve over and expand the results in [17] in several ways, as we discuss below.

An alternative approach to cope with the hardness of motion planning is to use sampling-based

methods [14]. In their seminal paper, Karaman and Frazzoli [12] (see also [19]) introduced
an algorithm, called RRT*, which guarantees near optimality if the number of samples tends
to infinity. A related algorithm dRRT* handles the multi-robot case with the same type of
guarantee [16]. Recently Dayan et al [6] have obtained near-optimality with finite sample size
for the multi-robot case.

1 A motion planning algorithm is called complete if, in finite time, it is guaranteed to find a solution or determine
that no solution exists.

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:3

Problem Statement. Let W be a polygonal environment, that is, a polygon with holes in R2

and a total of m vertices. Let R1, . . . , Rn be n robots, each modeled as a unit disc, that move
around in W. Let O = R2\W be the obstacle space. For a point p 2 R2, let Dp denote the unit disc
centered at point p. Let F = {x 2W : Dx \O = ;} represent the free space of W (with respect to
one Ri). A path is a continuous function ⇡ : I ! R2 from an interval I to R2, and is collision-free if
it is contained in F . Let `(⇡) denote the arc length of ⇡, i.e., `(⇡) =

R
I
|⇡0(t)|d t. The position of

each Ri is specified by the x- and y-coordinates of its center ci and we use Ri(c) to denote Ri being
at c (note that Ri(c) is the same as Dc), and a motion of Ri is specified by the path followed by its
center. Let int D denote the interior of disc D. A path ensemble ⇧ = {⇡1, . . . ,⇡n} is a set of n paths
defined over a common interval I , i.e. ⇡i : I ! R2, for 1∂ i ∂ n; ⇧ is called feasible if (i) ⇡i ⇢ F

for every i ∂ n, and (ii) for any t 2 I and for any pair i 6= j, int Ri(⇡i(t))\ int Rj(⇡ j(t)) = ;, i.e.,
the Ri ’s remain in W and they do not collide with each other (but may touch each other) during
the entire motion. We also refer to ⇧ as a motion plan of R1, . . . , Rn. The cost of ⇧, denoted by
¢(⇧), is defined as ¢(⇧) =

P
n

i=1 `(⇡i).
We are given a set of start positions s = {s1, . . . , sn} where the n robots initially lie and a

set of final (also called target) positions f = { f1, . . . , fn}. Our goal is to find a path ensemble
⇧⇤ = {⇡⇤1, . . . ,⇡⇤

n
} over an interval [0, T] where T denotes the ending time of the last robot

movement,
(i) ⇡⇤

i
(0) = si and ⇡⇤

i
(T) = fi for all i, and

(ii) ¢(⇧⇤) =min⇧ ¢(⇧) where the minimum is taken over all feasible path ensembles.

We refer to the problem as optimal multi-robot motion planning (MRMP). In this paper, we
investigate optimal MRMP under the assumption that there is some free space around the starting
and final positions of R1, . . . , R1, a formulation introduced in [17]. A revolving area of a start or
final position z 2 s[f, is a disc Az of radius 2 such that: (i) Dz ✓ Az , (ii) Az \ int(O) = ;, and (iii)
for any other start or final position y 2 (s[f) \ {z}, Az \ int(Dy) = ;. That is, each Ri lies in a
revolving area at its start and final position (note that z need not be the center of the revolving
area Az) and does not intersect any other revolving areas, and the revolving areas do not intersect
any obstacles. We remark that the revolving areas may intersect one another; this makes the
separation assumptions in the current paper lighter than in related results (e.g., [1]), which in
turn makes the analysis more involved. See Figure 1 for an example. Set A = {Az : z 2 s[f}. We
refer to this problem as optimal multi-robot motion planning with Revolving Areas (MRMP-RA).

We define the active interval ⌧i ✓ [0,1] as the open interval from the first time Ri leaves
the revolving area Asi

of si to the last time Ri is not in the revolving area Afi
of fi . If the active

intervals {⌧1, . . . ,⌧n} are pairwise disjoint then we call ⇧ a weakly-monotone motion plan (with
respect to revolving areas).2 Finally, an instance of optimal MRMP is specified as I = (W, n, s, f)
where n is the number of moving robots and W, s, f are as defined above. Let ⇧⇤(I) denote an
optimal solution of I and let ¢

⇤(I) = ¢(⇧⇤(I)).

Our Results. The paper contains the following three main results:
(A) Hardness results. In Section 2, we show that MRMP-RA is NP-hard under the weakly-

monotone assumption. The NP-hardness of optimizing sum of distances (i.e., optimal MRMP)
for the monotone and the general (non-monotone) case was shown in [10], but without
revolving areas. Our main result here is the extension of the NP-hardness construction to prove
that MRMP-RA, under the weakly-monotone assumption, is in fact APX-hard, which rules out

2 We use the term “weakly-monotone" because a plan is called monotone if the active interval of Ri is defined
from when Ri leaves si the first time and reaches fi the last time, (rather than the leaving/reaching the revolving
area Asi

/Afi
).

ISAAC 2022

52:4 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

Az

Cz

2
Bz

1

3

(a)

t1

t3

t2

t4

(b)

Figure 1 (a) On the left, revolving area Az for some z 2 s[f with Dz ✓ Az , core Cz , and buffer Bz . (b)
On the right, we show an instance of MRMP-RA. Each robot is shown as a filled disc in its starting revolving
area, and its target revolving area is shown in the same color. Obstacles are dark gray.

a polynomial-time (1+ ")-approximation algorithm for it. To the best of our knowledge, this
is the first APX-hardness result for any MRMP variant.

(B) Approximation algorithm. In Section 3, we present the first O(1)-approximation algorithm
that given an instance I = (W, s, f,A) of MRMP-RA computes a feasible path ensemble ⇧
from s to f such that ⇧ is weakly-monotone and ¢(⇧) = O(1) · ¢⇤(I); note that ⇧⇤(I) need
not be weakly-monotone, i.e., we approximate the general optimal path ensemble. In fact,
we show that the robots can be moved in any order, so our algorithm can be extended to an
online setting where the robots Ri , and their start/final positions, (si , fi) are given in an online
manner, or Ri ’s may have to execute multiple tasks which are given in an online manner– the
so-called life-long planning problem. Our algorithm ensures an O(1) competitive ratio, i.e.,
the cost is O(1) times the optimal cost of the offline problem.
The algorithm begins by computing a set of shortest paths � that avoid obstacles but ignore
robot-robot collisions. Then, � is edited to avoid robot-robot collisions by moving non-active
robots within their revolving areas. Our overall approach is the same as by Solomon and
Halperin [17], but the editing of � differs significantly from [17], so that the cost of the paths
does not increase by too much. We use a more conservative editing of � , which enables us
to prove that the cost of the edited path ensemble is O(1) · ¢(�) (see Section 4), while the
cost of the edited path in [17] is3

O(¢(�) +mn+m
2). Our main technical contributions are

defining a more conservative retraction, proving that the motion plan remains feasible even
under this conservative retraction, and bounding the total cost of the motion plan by using a
combination of local and global arguments. Analyzing both the feasibility and the cost of the
motion plan are nontrivial and require new ideas.

(C) Computing a good ordering. The result above shows that editing the paths increases the
total cost of the motion plan only by a constant factor irrespective of the order in which we
move the robots. However, the overhead in the overall cost due to editing (to avoid robot-robot
collisions) can vary significantly depending on the ordering we chose. This raises the question
whether we can find a “good" ordering that minimizes the overhead. The result in [17]
implies that the problem of finding a good ordering that minimizes the amount of overhead

3 Notice that the roles of m and n here are reversed with respect to [17].

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:5

is NP-hard.4 We present a polynomial time O(log n log log n)-approximation algorithm for
finding a good ordering. This is achieved by reducing the problem to an instance of weighted
feedback arc set in a directed graph, and applying an approximation algorithm for the latter
problem [8]. This result is described in Section 5.

We emphasize that without additional, mitigating, assumptions, MRMP is intractable. Sampling-
based planners assume that the full solution paths have some clearance around them—namely,
each robot has some distance from the obstacles along its entire path, as well as from the other
robots. Here, we assume certain clearance only at the start and goal positions; we do not make
any assumption about the clearance along the paths. Indeed, we assume non-negligible clearance,
as we require that each robot at a start or goal position is encapsulated inside a disc of radius 2,
which does not contain any other robot at its start or goal position. The choice of the number 2
here is not arbitrary. In a couple of related results for MRMP of unit discs [1,2] this is the critical
value of clearance below which there does not always exist a solution to the problem.
Due to length constraints of the paper, some proofs have been moved to the appendix.

2 Hardness of Distance Optimal MRMP-RA

In this section we present our hardness results. Throughout this section all path ensembles are
weakly-monotone, unless otherwise stated. With a slight abuse of notation we use ¢

⇤ to denote
the cost of the optimal weakly-monotone path ensemble. Finding monotone path ensembles has
been shown to be NP-hard in [9] using a similar grid-based construction without revolving areas.

NP-Hardness of weakly-monotone MRMP-RA Let Q(x1, . . . , xn) =
V

m

i=1 Ci be an instance
of 3SAT with n variables and m clauses. Each clause Ci is a disjunction of three literals, which
are variables or their negations. We construct a corresponding MRMP-RA instance I := I(Q) =
(W, s, f,A) with N = 3m+ 1 robots and choose a real value d � 0 such that ¢

⇤(I) d if and only
if Q is satisfiable. Let d(I) :=

P
N

i=1 di , where di is the length of the optimal path of Ri from si

to fi in W, ignoring other robots. In fact, our construction will choose d to be d(I), that is, d

is the lowest possible cost of a feasible path ensemble from s to f in W. Our construction will
ensure that the lowest cost is attained if and only if Q is satisfiable. I is constructed so that a
path ensemble with such a cost is possible if and only if (a feasible) monotone motion plan exists.
An example of the construction is shown in Figure 2.

Overall description. The workspace W consists of m + n rectangular gadgets, one for each
variable and each clause, referred to as variable and clause gadgets, respectively. All the gadgets
have unit-width passages that are wider around revolving areas. For simplicity, the widened areas
are shown as circular arcs, but they can easily be made polygonal. Each gadget has an entrance
on the left and an exit on the right. The vertical positions of entrances and exits alternate so that
a gadget’s entrance is connected to the exit of the gadget on its left.

There are N = 3m+ 1 robots, each being a unit disc: one robot for each appearance of a
literal in Q, which are collectively called literal robots, and one special pivot robot R0 (shown in
blue in Figure 2). The robot R0 has to pass through all the gadgets from left to right, by which it
is able to verify the satisfiability of Q, and the literal robots will constrain its motion in order to
ensure that ¢

⇤(I) d.

4 The model in [17] for defining the overhead is different from ours, their construction can nevertheless be
adapted to our setting.

ISAAC 2022

52:6 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

a1 b1 c1a2 c2 a1 a1 a2

a1 b1 b2 c1 c1 c2 c1

b1 b2 b1

| {z }
variable gadget

| {z }
clause gadget

R0 R0

Figure 2 The MRMP-RA instance I that corresponds to the formula Q = (a_ b_c)^(a_ b_c)^(a_ b_c).
The start and target positions are the filled and unfilled discs, respectively. Positive literal robots are green,
negative literal robots are red. Obstacles appear in black. Start and target positions of literal robots are
labeled with unique indices in order to distinguish between appearances of the same literal. The path ⇡0 is
shown in blue for the assignment a = T, b = F, c = T for which the corresponding path ensemble has robots
moving in the following order: c1, b1, a1, r0, a2, a1, b2, c2, b1, c1.

Each variable (resp.clause) gadget contains two (resp. three) horizontal passages, which offer
two (resp. three) shortest paths from its entrance to its exit. Each such path consists of vertical
and horizontal line segments. The horizontal passages of the gadgets contain all the start and
target positions of literal robots. All the revolving areas are centered at their respective start or
target positions, and they do not overlap.

Gadgets. Each variable gadget initially contains robots representing literals of a single variable
of Q. The top and bottom horizontal passages of the gadget contain robots representing only
positive and negative literals, respectively. Each clause gadget has three horizontal passages,
each containing a target position of one the literals in the corresponding clause. The gadgets are
placed within a horizontal strip from left to right such that variable gadgets are located to the left
of clause gadgets. The order of gadgets of the same type is arbitrary, however it determines the
order of the start positions, which is critical: the left to right order of start positions within each
variable gadget is set to match the left to right order of the corresponding target positions. We
refer to this order as the intra-literal order property. We say that a revolving area A is congested if
it contains two robots at the same time. Intuitively, both optimal path ensembles and monotone
path ensembles need to prevent revolving areas from becoming congested. The following lemma
is proved in Appendix A.2. We first establish that finding an optimal weakly-monotone path
ensemble is equivalent to finding a monotone one, then show the equivalence between a satisfying
assignment and a monotone path ensemble.

… Lemma 1. I has a weakly monotone path ensemble with a cost of d if and only if I has a

monotone path ensemble.

… Lemma 2. Q has a satisfying assignment if and only if I has a monotone path ensemble.

Proof. Assume that Q has a satisfying assignment ⇤. Let R+ (resp. R�) denote the set of robots
corresponding to literals that evaluate to true (resp. false) according to ⇤. That is, for each
variable gadget, R+ contains robots that are all initially either in the top or the bottom passage,
according to ⇤. We show that the robots can move along optimal paths in the order R�, R0, R+,
which is made precise below.

Let ⇡0 be a shortest collision-free path from s0 to f0 that passes only through the start positions
of R� and targets of R+; see Figure 2. The path ⇡0 exists because each clause gadget must
contain a target of some robot in R

+, or else ⇤ does not satisfy Q.
In the path ensemble, each Ri 2 R

� follows the subpath of ⇡0 from si (through which ⇡0

passes) up to the gadget containing fi , from which Ri can reach its final position fi using the

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:7

shortest path. The order in which the robots in R
� move is the right to left order of their start

positions, which guarantees no collision with another robot located at its start position. Since
the robots in R

� move before R
+, the targets through which ⇡0 passes are unoccupied when

the robots in R
� move, guaranteeing no collisions at clause gadgets. Next, R0 moves using ⇡0,

which passes through empty passages at this point. Finally, each Ri 2R+ joins ⇡0 at the vertical
passage to its right, from which point it continues similarly to R

�. The order of motion of the
robots in R

+ is the right to left order of their targets, which guarantees no collisions in the clause
gadgets. Note that due to the intra-literal order property we also have no interferences among
R
+ within variable gadgets.

For the other direction, let us assume that there is a monotone path ensemble for I. Let ⇡0

denote the path taken by R0. Without loss of generality, ⇡0 is weakly x-monotone. Specifically,
it passes through only one horizontal passage in each variable gadget. Therefore, we define
an assignment ⇤ as follows: x is assigned to be true if and only if ⇡0 goes through the bottom
passage of x ’s variable gadget, which corresponds to negative literals. Let C be a clause of Q

and let f j be a target in C ’s clause gadget that is unoccupied during R0’s motion, which must
exist. It is easy to verify that the literal corresponding to Rj is true according to ⇤. Therefore, C

is satisfied.

The construction can be carried out in polynomial time, therefore by combining Lemma 1
and 2, we obtain the following:

… Theorem 3. MRMP-RA for weakly-monotone path ensembles is NP-hard.

Hardness of Approximation We now show that MRMP-RA is APX-hard, ruling out any
polynomial time (1+ ")-approximation algorithm. We first go over some definitions. For an
MRMP-RA instance I, we use ¢

⇤(I) to denote the cost of the optimal weakly-monotone path
ensemble for I. For a 3SAT formula Q, let SAT(Q) denote the largest fraction of clauses in Q that
can be simultaneously satisfied. We say that a revolving area A is occupied if it contains the robot
whose start or target position lies in A.

To prove the hardness of approximation we present a gap-preserving reduction from MAX-
3SAT(5), which is APX-hard [23]. The input to MAX-3SAT(5) is a 3SAT formula with 5 appearances
for each variable and the goal is to find an assignment maximizing the number of satisfied clauses.
Let Q be a MAX-3SAT(5) instance with n variables and m clauses and let I := I(Q) be the
MRMP-RA instance resulting from the NP-Hardness reduction described above, which we slightly
modify as follows. Instead of the single pivot robot R0 in I, we now have m pivot robots. To
this end, we modify the construction so that there is a horizontal passage that extends to the
left of s0 in I . The passage is lengthened to accommodate m start positions that lie on the same
horizontal line, passing through s0 in I . Similarly, another such passage is created to the right of
f0 to accommodate m target positions. The left to right order of the start positions of the pivot
robots is set to match the left to right order of the corresponding target positions. Let I 0 denote
the resulting MRMP-RA instance.

… Lemma 4. Let Q be a 3SAT formula such that for any assignment to Q there are at least k

unsatisfied clauses in Q. Then ¢
⇤(I 0)> d(I 0) + km.

Proof. Let us examine ⇧⇤(I 0), an optimal path ensemble for I
0. We say that a robot Ri has a

bad event during the execution of ⇧⇤(I 0) when Ri traverses an occupied revolving area. Note that
each bad event results in Ri having a path longer than 1+di , di being the length of Ri ’s shortest
possible path. We claim that each of the m pivot robots has k bad events, which suffices for
proving the lemma.

ISAAC 2022

52:8 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

Suppose to the contrary that one of the pivot robots, say Ri , has q < k bad events. We will
show how to obtain an assignment for Q where there are at most q unsatisfied clauses. Since
⇧⇤(I 0) is optimal, ⇡i , the path taken by Ri , is weakly x-monotone. We define an assignment ⇤
as follows (the same way as in the second direction of the proof of Theorem 2): x is assigned
to be true if and only if ⇡i goes through the bottom passage of x ’s variable gadget. In other
words, ⇤ sets a literal to be true if and only if the corresponding literal-robot’s starting position
does not lie on ⇡i . Let us examine ⇡i right before it is Ri ’s turn to move. Let R denote the set of
robots that are intersected by ⇡i and are located at variable gadgets at this point in time. We can
assume without any loss of generality that R is empty. If it is not, then let us examine the path
ensemble ⇧ where the robots in R move to their targets before Ri ’s turn. The number of bad
events for Ri can only decrease in ⇧. This holds because by having some Rj 2R move before Ri

we eliminate a bad event (for Ri) in Rj ’s variable gadget and possibly introduce a bad event in
Rj ’s clause gadget.

Since there are q bad events for Ri , there are at most q clause gadgets where such an event
occurs. Therefore, to get a contradiction it suffices to show that all other clause gadgets correspond
to clauses that are satisfied by ⇤. Let C be such a clause, i.e., in the corresponding clause gadget
⇡i passes through some empty revolving area Afj

. Since ⇡i does not pass through any occupied
revolving areas in the variable gadgets, the corresponding start position s j must not lie on ⇡i .
Therefore, rj corresponds to a literal that is true by ⇤, and so C is satisfied.

We now make d(I 0) explicit using an upper bound for an arbitrary di . First, we bound the
length of each vertical segment in the corresponding path ⇡i by 10, which provides sufficient
distance for our gadgets. Since each variable appears in Q five times, we bound the horizontal
length of an variable gadget by 4 ·2+3 = 11 (i.e., there at most 4 revolving areas on a horizontal
passage and some additional length). Therefore, the path length through any gadget is O(1).
Hence, we have di = O(m) and the number of robots is also O(m) (we have m = 5n/3). Therefore,
we can set d(I 0) = cm

2 for some sufficiently large constant c (we can easily lengthen paths in I
0

if that is needed for the bound). We can now combine the latter equality with Lemma 4 and the
NP-Hardness reduction. Let us define f (Q) := d(I 0).

… Theorem 5. There is a polynomial time reduction that transforms an instance Q of MAX-

3SAT(5) with m clauses to an MRMP-RA instance I
0

such that SAT(Q) = 1) ¢
⇤(I 0) = f (Q) ∂

cm
2

for some constant c > 0 and otherwise SAT(Q) < ↵) ¢
⇤(I 0) > f (Q) + (1 � ↵)m · m =�

1+ 1�↵
c

�
f (Q), for all 0< ↵< 1.

3 Algorithm

Let I = (W, s, f,A) be an instance of MRMP-RA. Let n be the number of robots and m be the
complexity of the environment W . We describe an (n(n+m) log m) algorithm for computing
a weakly-monotone path ensemble ⇧̃ := ⇧̃(I) for R1, . . . , Rn such that ¢(⇧̃) = O(1) · ¢⇤(I). We
remark that ⇧̃ is weakly-monotone but ⇧⇤(I) need not be, i.e. ⇧̃ is an O(1)-approximation of
any feasible motion plan. We parameterize the paths in ⇧̃ over the common interval J = [0, n].
We need a few definitions and concepts related to revolving areas. For any z 2 s[f, let cz denote
the center of the revolving area Az , and let Cz (resp. Bz) be the disc of radius 1 (resp. 3) centered
at cz , i.e., Cz ⇢ Az ⇢ Bz . If x 62 Bz then Dx \ Az = ;. We refer to Cz and Bz as the core and buffer,
respectively, of revolving area Az . See Figure 1.

Overview of the Algorithm. The algorithm consists of three stages. We note that Stage (I)
and (II) are used in [17]. However, Stage (III) differs significantly from previous work in order

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:9

As2

Af2

As1

Af1

s1
f1

s2

f2

Figure 3 Path �1 is shown in blue from s1 to f1. Assume R1 is active before R2. In �̄1, the dotted portion
of the path is replaced with the green arc along @ Cs2

. Path ⇡2 is shown in red from s2 to f2. R1 must follow
the red retraction during the movement of R2 in Bf2

.

to ensure the total cost of paths is within an O(1) factor of that of the optimal motion plan. We
describe all stages for completeness.

I. We compute the free space F (with respect to one robot) using the algorithm of Ó’Dúnlaing
and Yap [13,24]. If si and fi , for some i 2 [n] := {1, 2, . . . , n}, do not lie in the same connected
component of F , then a feasible path does not exist for Ri from si to fi . Therefore, we stop
and return that no feasible motion plan exists from s to f. Next, for each i, we compute a
shortest path �i from si to fi , ignoring other robots using the algorithm of Chen and Wang [5].
Let � = {�1, . . . ,�n} be the path ensemble computed by the algorithm.
Although � does not intersect O, it may not be feasible since two robots may collide during
the motion. The next two steps deform � to convert it into a feasible motion plan. We take an
arbitrary permutation � of [n]. Without loss of generality assume � = h1,2, . . . , ni. We say
that Ri is active during the subinterval [i � 1, i] of J := [0, n], during which it moves from si

to fi . During [0, i � 1] (resp. [i, n]) Ri only moves within the revolving area Asi
(resp. Afi

).
II. For each i, we first modify �i , as described below in Section 3.1, so that it does not intersect

the interior of the core Cj of any revolving area Aj that is occupied by a robot Rj , for j 6= i;
see Figure 3. Let �

i
be the deformed path. Abusing the notation a little, let �

i
: [i � 1, i]! F

denote a uniform parameterization of the path �
i
, i.e. Ri moves with a fixed speed during

[i � 1, i] from si to fi along �
i
. We extend �̄i to the interval [0, n] by setting �̄i(t) = si for

t 2 [0, i � 1] and �̄i(t) = fi for t 2 [i, n]. Set �̄ = {�̄1, . . . , �̄n}.
III. Next, for each distinct pair i, j 2 [n], we construct a retraction map ⇢i j : F ! F that specifies

the position of Rj for a given position of Ri during the interval [i � 1, i] when Ri is active so
that Ri and Rj do not collide as Ri moves along �

i
. The retraction map ensures that Rj stays

within the revolving area Asj
(resp. Afj

) for j < i (resp. j > i), and it does not collide with
any Rk for k 6= i, j, as well. See Figure 3. Using this retraction map, we construct the path

⇡ j : J ! F as follows: ⇡ j(t) =

®
⇢i j(�i

(t)) for t 2 [i � 1, i] and j 6= i,

�
j
(t) for t 2 [j � 1, j].

We prove below that each⇡ j is a continuous path. In Section 4, we prove that⇧ = {⇡1, . . . ,⇡n}
is a feasible path ensemble with ¢(⇧) = O(1) · ¢⇤(I).

3.1 Modifying path �i

Fix an i 2 [n]. For j < i, let zj = f j and for j > i, let zj = s j . Set Z = {zj : 1 ∂ j 6= i ∂ n}. This
step modifies �i to ensure that the path of Ri does not enter the core Cz of any z 2 Z .

ISAAC 2022

52:10 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

xj1
(p)

x
j2 (p)

p

Cj

Aj

D+
p

ρ
j (p)

σ
j (p)

(a)

x
j2 (p)

p

Cj Aj

D+
p

σ
j (p)

ρj
(p
)

x j1
(p
) :

(b)

Figure 4 Retraction Map. (a) A sector type retraction (when zj lies in S(p)); (b) an intersection type
retraction, zj lies outside S(p), the retraction point is x j1(p).

Fix a z 2 Z . If �i \ Cz = ;, then Rj does not affect �i . If �i \ Cz 6= ;, then we modify �i

as follows: let pz , qz be the first and last intersection points of �i and Cz along �i , respectively.
Let Qz be the shorter arc of @ Cz , the boundary of the core Cz , between pz and qz . We replace
�i[pz , qz] with Qz . We repeat this step for all z 2 Z . Let �

i
be the resulting path from si to fi;

�
i

does not intersect int(Cz) for any z 2 Z . Note that Czj
’s are pairwise disjoint, and that �i is

a shortest path from si to fi in F , therefore �[pz , qz] and �[pz0 , qz0], for any pair z, z
0 2 Z , are

disjoint. We can thus process Z in an arbitrary order and the resulting path does not depend on
the ordering. Furthermore Cz ✓ F (since Az ✓W), so �̄i ⇢ F for all i.

3.2 Retracting a robot Rj

We now describe the retraction motion of Rj when Ri is active, so that they do not collide. Note
that for all t 2 [i�1, i], �̄ j(t) = zj , i.e., before applying the retraction Rj is at zj when Ri is active.
We define the retraction function ⇢i j : R2! R2 that specifies the motion of Rj within Aj during
[i � 1, i]. Since i is fixed, for simplicity we use ⇢ j to denote ⇢i j , and we use Cj (resp. Aj , Bj)
for disc Czj

(resp. Azj
, Bzj

). If the center of Ri is at distance at least 2 from zj , then Ri does not
intersect Dj , so there is no need to move Rj from zj . Therefore we set ⇢ j(p) = zj for all p 2 ⇡i

such that kp � zjk æ 2. On the other hand, �
i

does not intersect the interior of Cj so ⇢ j(p) is
undefined for p 2 int(Cj). We thus focus on the case when kp� zjk∂ 2, in which case p lies in
the buffer disc Bj , and p 62 int(Cj), i.e., p 2 Bj \ int(Cj).

Let D
+(p) be the disc of radius 2 centered at p. Note that for a point q 2 R2, int(Dp) \

int(Dq) 6= ; if and only if q 2 D
+(p). Intuitively, we move the center of Rj from zj (within

Czj
) as little as possible so that Rj does not collide with Ri(p). Formally, we define ⇢ j as:

⇢ j(p) = argmin
q2Czj

\D+
p

kq� zjk if p 62 int(Czj
), and undefined otherwise.

In the remainder of the discussion, we assume kzj � pk ∂ 2 and p 62 Cj , so p 2 Bj \ Cj .
Therefore, ⇢ j(p) exists and additionally ⇢ j(p) is unique. We now discuss the two possible types
of retraction. Refer to Figure 4 throughout this paragraph. Note that @ Cj and @ D

+
p

intersect
at exactly two points since p 2 Bj \ Cj , say, x j1(p), x j2(p). Let � j(p) be the smaller of the two
arcs of @ D

+
p

induced by x j1(p) and x j2(p), and let S(p) = conv(� j(p)[{p}) ✓ D
+
p

be the sector

of D
+(p) induced by x j1(p), x j2(p). Observe that the retraction point ⇢ j(p) lies on � j(p). If

zj 2 S(p), then ⇢ j(p) is the intersection point of the ray �!pzj with @ D
+
p

, as this is the closest point
in Cj from zj , such that if we place Rj there it will not overlap with Ri at p. Since zj lies inside
S(p), ⇢ j(p) 2 @ S(p). If zj 62 S(p), the retraction point is argmin

q2{x j1(p),x j2(p)}kq � zjk, i.e., the
closest point to zj in Cj is an endpoint of � j(p). Note that our retraction ensures that Rj will be

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:11

centered back at zj after robot Ri moves away.
In the remainder of the paper, if ⇢ j(p) 2 {x j1(p), x j2(p)} we say the that the retraction is of

intersection type, otherwise we say that the retraction is of sector type. Since ⇢ j(p) 2 Cj for all
p 62 Cj and none of the �̄i ’s enter Cj , the retraction path ⇡ j of Rj lies in F . We conclude this
section with the following lemma, which follows from the fact that ⇢ j is a continuous function,
⇢ j(p) = zj for all p such that kp� zjkæ 2, and kzj � sik,kzj � fikæ 2.

… Lemma 6. For any 1∂ i ∂ n, ⇡ j is a continuous path from si to fi .

4 Correctness and Analysis of the Algorithm

We first prove that ⇧ is feasible (Section 4.1), then we bound ¢(⇧) (Section 4.2), and finally
analyze the running time in Section A.1. We begin by summarizing a few relevant properties of
revolving areas (see Figure 5), which are straightforward to prove.

… Lemma 7. Let x , y 2 s[f such that x 6= y: (i) x 2 Cx , that is, each start or final position lies

inside the core of Ax ; (ii) kcx � cykæ 2, i.e., int Cx \ int Cy = ;; (iii) for any p 2 Cx , kp� ykæ 2,

i.e., int Dp \ int Dy = ;; (iv) kx � cyk æ 3, i.e., each start/final position lies outside the buffer of

any other start/final position.

Bx

Ax

Cx

Ay

Cy

Figure 5 Illustration of Lemma 7. Dx and Dy are two robots, located in their respective revolving areas
Ax , Ay . The distance between cx and cy is at least 2; y lies outside the buffer of x , i.e., y 62 Bx .

4.1 Feasibility

In this section, we show that path ensemble ⇧ is feasible. Recall that stage I) of the algorithm
reports that there is no feasible solution if any si 2 s and fi 2 f do not lie in the same connected
component. So assume that Stage I computes a feasible path �i for each Ri . Stages II and III modify
these paths so that they remain in F . Hence, we only need to show that no two robots collide with
each other during the motion, i.e., for any 1∂ i 6= j ∂ n and for any t 2 J , int D⇡i(t)\int D⇡ j(t) = ;.
We fix some i 2 [n] and the corresponding active interval Ti

:= [i � 1, i] ✓ J and prove the
feasibility of ⇡ during this interval. Note that Ri is the only active robot in Ti and other robots
stay in their revolving areas. By the definition of retraction, for any t 2 Ti , and for any j 6= i,
k⇡i(t)�⇢i j(⇡i(t))kæ 2, so Ri does not collide with Rj during interval Ti . Thus, we only need
to show that for any pair j, k 6= i, Rj and Rk do not collide while they are moving along their
retraction path. The following lemmas are proved in Appendix A. Since Lemma 9 holds for any
interval Ti , we obtain the final statement of feasibility.

… Lemma 8. For any j 6= k and zj , zk 2 s[f, the minimum distance between the line segments

cjz j and ckzk is at least 2, i.e., minyj2c j z j ,
yk2ckzk

kyj � ykkæ 2.

ISAAC 2022

52:12 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

… Lemma 9. For any j 6= k, R j and Rk do not collide during the interval T .

… Corollary 10. The path ensemble ⇧ returned by the algorithm is feasible.

4.2 Cost of path ensemble

We now analyze the cost of the path ensemble ⇧ the algorithm returns. The algorithm starts by
computing � , the shortest paths of all robots in F while ignoring other robots. Clearly, we have
¢(�) ∂ ¢

⇤(I). We show that ¢(⇧) = O(¢(�)). In Appendix A.2, we prove ¢(�̄) ∂ 2¢(�), so we
focus on bounding the length of retraction paths of non-active robots, which is one of the main
technical contributions of the paper.

Let ⇡ ji = ⇡ j[i � 1, i], and let �i j = {t 2 [i � 1, i] : k⇡i(t)� zjk∂ 2}, i.e., ⇡ ji is the retraction
of Rj due to the motion of Ri and ⇡i[�i j] is the part of ⇡i that causes the retraction motion of
Rj . Refer to Figure 3. We show that `(⇡ ji) = O(`(⇡i[�i j])) (cf Corollary 15) and charge ⇡ ji

to ⇡i[�i j]. We bound `(⇡ ji) by splitting into two scenarios. Roughly speaking, if ⇡i does not
penetrate the buffer Bj too deeply, we use a Lipschitz condition on the retraction map to show
`(⇡ ji) = O(`(⇡i[�i j])). More concretely, for z 2 s[f, let Wz be the disk of radius 3/2 centered
at z. We prove a Lipschitz condition when the active robot lies outside Wj (cf Corollary 13). On
the other hand, if ⇡i travels into Wj then the Lipschitz condition may not hold, but we argue that
`(⇡i[�i j]) = ⌦(1) and that `(⇡ ji) = O(1) (cf Lemma 14). Finally, using a packing argument, we
show that each “point" of ⇡i is only charged O(1) times, and thus ¢(⇧) = O(¢(�̄)) = O(¢(�)).

Retraction of Rj outside Wj. As in Section 4.1, we fix an interval [i�1, i] for some i 2 [n]\{ j}.
Let �o

j
= {t 2 [i � 1, i] : k⇡i(t)� zjk∂ 2 and ⇡i(t) 62Wj}. That is, �o

j
is the interval(s) of time

in which the path of robot Ri forces the retraction of robot Rj while the center of Ri lies outside
Wi . Let �i j be the restriction of path ⇡i of robot Ri during the interval �o

j
, i.e. �i j(t) = ⇡i(t) for

t 2 �o

j
. Let ji : �o

j
⇢ �i j ! Cj be the retraction of Rj during �o

j
, i.e., ji(t) = ⇢i j(⇡i(t)) for

t 2�o

j
. We show that `(ji) = O(`(�i j)) by proving a Lipschitz condition on `(ji).

We will divide �i j into subpaths, referred to as pathlets, so that there is only one type of
retraction point associated with the subpath. We call a time instance t 2�o

j
an event if t is either

an endpoint of a connected component of �o

j
(i.e., k⇡i(t)� c jk = 3/2 or k⇡i(t)� zjk = 2) or zj 2

@ S j(⇡i(t)), (i.e., the type of retraction point ⇢ j(⇡i(t)) changes at time t). Let t0 < t1 < · · ·< tk

be the event points. We divide �i j and ji into pathlets at these events, i.e., �i j = '1 �'2 � · · ·�'g

and ji = 1 � 2 � · · · � g where 'k = ⇡i[tk�1, tk] and k = ⇢ j('k) = ⇡ j[tk�1, tk]. We prove
the Lipschitz condition for each pathlet. All points on ⇢ j('k) have the same type of of retraction
by construction of � ji . We call 'k a sector-type (intersection-type) pathlet if all points have sector
(resp. intersection) type retraction.

… Lemma 11. For a sector-type pathlet 'k of � ji , `(⇢ j('k)) = O(`('k)).

Proof. For each p 2 'k, ⇢ j(p) is type sector, i.e. ⇢ j(p) lies on the ray �!pzj at distance 2 from p.
In this case, the retraction map k = ⇢ j('k) traces a portion of a Conchoid [15].

We parameterize points on ' := 'k and := k using polar coordinates, with zj as the origin.
Let '(✓) = (r(✓),✓) be a point on ', where ✓ is the orientation of the point with respect to the
x-axis (with zj as the origin). Then, (✓) = ⇢ j('(✓)) = (2� r(✓)� ✓). See Figure 6. Note that
k'0(✓)k2 = r

2(✓) + (r 0(✓))2 and k 0(✓)k2 = (2� r(✓))2 + (r 0(✓))2. Since ' lies outside Wj and
zj 2 Cj , we have r(✓) 2 [1/2, 2]. Therefore, 2� r(✓)∂ 3r(✓) and k 0(✓)k∂ 3k'0(✓)k. Hence,

`() =
Z
k 0(✓)kd✓ ∂ 3

Z
k'0(✓)kd✓ = 3`(').

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:13

Cj

Wj

θ
θ

p(θ)

ρj(p(θ))

zj

cj

(a)

cj

ϕ(a)

ξ
ϕ(b)ϕ1

ψψ(
a)

ψ(b)

Cj

Wj

zj

ϕ2

D+
ϕ(b)

D+
ϕ(a)

(b)

Figure 6 Illustration of Lemma 11 and 12. (a) On the left, the figure shows a sector-type retraction.
p(✓) = (r(✓),�✓) and ⇢ j(p(✓)) = (2� r(✓),✓). (b) On the right, the figure shows an intersection-type
retraction. The arc on @ Cj is the retraction path.

… Lemma 12. For an intersection-type pathlet 'k of � ji , `(⇢ j('k)) = O(`('k)).

Proof. Again, we prove the lemma by showing that a Lipschitz condition holds. Let ' := 'k.
We parameterize both ' and ⇢ j(') in polar coordinates, but with c j as the origin. Let I = [a, b]
be the interval over which ' is defined. Let '(t) = (r(t),✓ (t)) for t 2 I . We assume that ' is
sufficiently small (otherwise we divide it into smaller pathlets and argue for each pathlet) so that
' both r- and ✓ -monotone.

Set �'r = |r(b)� r(a)| and �'✓ = |✓ (b)� ✓ (a)|. Since ' lies outside Wj , r(t)æ 3/2 for all
t 2 [a, b]. W.l.o.g., assume both r(t) and ✓ (t) are monotonically non-decreasing. We obtain:

`(') =
Z

I

∆
r 0(t)2 + r(t)✓ 0(t))2 æ 1p

2

Z

I

Å
r
0(t) +

3
2
✓ 0(t)
ã

d t æ 1p
2
(�'r +�'✓).

The retraction path (t) varies monotonically on the unit circle @ Cz . Thus, we parameterize
 by its direction on @ Cz , and `() = |

R
I
 0(t) d t| = | (b)� (a)|. To bound `(), consider

the following path from '(a) to '(b), see Figure 6. Let '1 be the arc from '(a) to point
⇠= (r(a),✓ (b)) along the circle of radius r(a) centered at cz . Let '2 be the segment ⇠ to '(b),
this is a radial segment on line ⇠cz . Then, `()∂ `(⇢ j('1)) + `(⇢ j('2)). Since the radius along
'1 does not change, `(⇢ j('2)) = |✓ (b)� ✓ (a)|=�'✓ .

For a point p = (r,✓), the orientation of ⇢ j(p) is ✓ + cos�1
Ä

3�r
2

2r

ä
(by the law of cosines,

considering triangle 4⇢ j(p)cz p). Since ✓ does not change along '2 and r(a), r(b) 2 [3/2,3],
we obtain `(⇢ j('2)) = O(�'r).

Putting everything together, `(⇢ j()) = `() = O(�'r +�'✓) = O(`(')).

Applying Lemmas 11 and 12 to all pathlets of �i j , we obtain the following:

… Corollary 13. Let 1 ∂ i 6= j ∂ n. Let �i j be the portion of ⇡i during the interval t 2 [i � 1, i]
such that k⇡i(t)� zjk∂ 2 and k⇡i(t)� c jkæ 3/2, and let ji be the retraction of R j corresponding

to �i j . Then `(ji) = O(`(�i j)).

Retraction path inside Wj. Recall that ⇡i does not intersect (int Cj), but possibly travels
along @ Cj . For a point p 2 ⇡i , if p 2 @ Cj , then ⇢ j(p) is the point on @ Cj diametrically opposite
p. Thus, `(⇡i \ Cj) = `(⇢ j(⇡i \ Cj)). In the following, we consider only ⇡i \ @ Cj .

ISAAC 2022

52:14 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

… Lemma 14. For a pathlet ' (i.e., a connected subpath) of path ⇡i such that ' ⇢ Wj \ Cj for

some j 6= i, `(⇢ j(')) = O(`(⇡i \ Aj)).

Proof. Since ' ⇢ Wj , `(⇡i \ Aj) = ⌦(1), therefore we only need to argue that `(⇢ j(')) is
constant. We will bound the length of both types of retraction maps (intersection and sector)
separately for ', and use the sum as an upper bound on the length of the actual retraction map.
Sector retraction. We consider the sector type retraction map. Let zj be the origin and consider
polar coordinates. Let ⇢s

j
(p) be the sector type retraction point with respect to p. Since ' is a

subpath of a shortest path in F , we can divide ⇡i \Wj into at most two pathlets such that each
piece is r,✓ -monotone. Abusing notation, let ' be one of these pieces with endpoints (r0,✓0)
and (r1,✓1).

We write the retraction point parameterized by ✓ as (⇢(✓),✓). Using the fact that ⇢(✓)∂ 2
for all ✓ , the arc length of the retraction map is

`(⇢s

j
(')) =
Z ✓1

✓0

vut
⇢(✓)2 +
Å

d⇢

d✓

ã2
d✓ ∂
Z ✓1

✓0

⇢(✓)d✓ +
Z ✓1

✓0

d⇢(✓)
d✓

d✓

∂ ⇢(✓1 � ✓0) + (⇢(✓1)�⇢(✓0))∂ 2(✓1 � ✓0) + 2.

Therefore, `(⇢s

j
(')) = O(1), for each '.

Intersection retraction. We consider the retraction map defined by an intersection point of
@ D

+
p

and @ Cj . We now let c j be the origin and consider polar coordinates. Let ⇢i

j
(p) be the

intersection type retraction point closest to zj with respect to p. Again, we divide ⇡i \Wj into
at most two pathlets such that each of them is r,✓ -monotone (one pathlet is the portion of ⇡i

coming closer to the core Cj , and the other moves away from Cj). Let ' be one of the pathlets
with endpoints (r0,✓0) and (r1,✓1). The retraction point lies on the unit circle @ Cj , and as ✓
changes monotonically from ✓0 to ✓1, the retraction point ⇢i

j
(✓) moves monotonically on @ Cj .

Therefore, `(⇢i

j
(')) = O(1).

Finally, `(⇢ j('))∂ `(⇢s

j
(')) + `(⇢i

j
(')) = O(1), as claimed.

Applying Lemma 14 to each of (at most two) connected components of (⇡i \Wj) \ Cj and
combining with Corollary 13, we obtain the following:

… Corollary 15. For 1∂ i 6= j ∂ n, let �i j be defined as �i j = {t 2 [i � 1, i] : k⇡i � zjk∂ 2} and

let ⇡ ji = ⇡ j[i � 1, i]. Then `(⇡ ji) = O(`(⇡i[�i j])).

Cost of Path Ensemble. We are now ready to bound the cost of the path ensemble ⇧ returned
by the algorithm.

… Lemma 16. For an instance I of optimal MRMP with revolving areas, let ⇧(I) be the path

ensemble returned by the algorithm. Then ¢(⇧(I)) = O(1) · ¢⇤(I).
We analyze the running time of the algorithm and show that the total running time is

O(n(m+ n) log m) in Appendix A.1.

… Theorem 17. Let I = (W, s, f,A) be an instance of optimal MRMP with revolving areas, and

let m be the complexity of W. If a feasible motion plan of I exists then a path ensemble ⇧ of cost

O(¢⇤(I)) can be computed in O(n(m+ n) log m) time.

We conclude this section by noting that since the ordering � (of active robots) is arbitrary,
the algorithm can be extended to an online setting where Ri and (si , fi) are given in an online
manner (as long as each si , fi given satisfies the revolving area property). Our algorithm is
O(1)-competitive for this setting, i.e., the cost is O(1) times the optimal cost of the offline
problem.

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:15

5 Computing a Good Ordering

In the previous section, we proved that the total cost of the path ensemble ⇧ is O(1) · ¢⇤(I)
irrespective of the order in which the robots moved. However, the order in which robots move
has a significant impact on how the paths are edited in Stages (II) and (III). The increase in cost
because of editing may vary between 0 and O(nm) depending on the ordering (see [17] for a
related argument). For a path ensemble ⇧ computed by our algorithm, let �¢(⇧) = ¢(⇧)� ¢(�),
which we refer to as the marginal cost of ⇧, where � is the path ensemble computed in Stage (I).
For a permutation � of [n], let ⇧� be the path ensemble computed by the algorithm if robots were
moved in the order determined by �. Set �¢(�) :=�¢(⇧�). Finally, set �¢

⇤(I) =min��¢(�),
where the minimum is taken over all permutations of [n].

Adapting the construction in [17], we can show that the problem of determining whether
�¢
⇤(I)∂ L, for some L æ 0, is NP-hard. We present an approximation algorithm for computing

a good ordering � such that �¢(�) = O(log n log log n)�¢
⇤(I).

Our main observation is that �¢(�), the marginal cost of an ordering �, is decomposable, in
the sense made precise below. For a pair i 6= j, we define wi j æ 0 to be the contribution of the pair
Ri , Rj to the marginal cost of an ordering �, assuming i �� j, i.e., how much the shortest path
�i has to be modified because of � j and vice-versa assuming Ri is active before Rj . Note that if
i �� j then Ri (resp. Rj) is at fi (resp s j) when Rj (resp Ri) is active. There are two components
of w

�
i j

: (i) Ri (resp. Rj) enters the core Csj
(resp. Cfi

) in �i (resp. � j), (ii) retraction motion of Rj

(resp. Ri) when Ri (resp. Rj) enters the buffer disc Bsj
(resp. Bfi

).
Let �i j (resp. � ji) be the arc of �Csj

(resp. �Cfi
) with which �i \ Csj

(resp. � j \ Cfi
) is

replaced with. Then ↵i j = `(�i j + `(� ji)� `(�i \ Csj
)� `(� j \ Cfi

) is the contribution of (i) to
wi j . For (ii), we define ⇢<

i j
(resp. ⇢>

i j
) be the retraction map of Rj because of Ri when Ri is

active before (resp. after) Rj . Then wi j = ↵i j + `(⇢<i j
(�̄i)) + `(⇢>i j

(�̄ j)). From the previous two
components, we have �¢(�) =

P
i, j:i�� j

wi j .
We now reduce the problem of computing an optimal ordering to instance of weighted feedback-

arc-set (FAS) problem. Given a directed graph with weights on the edges, G = (V, E), w : E! Ræ0,
a feedback arc set F is a subset of edges of G whose removal makes G a directed acyclic graph.
The weight of F, w(F), is

P
e2F

w(e). The FAS problem asks to compute an FAS of the smallest
weight. It is known to be NP-complete.

Given an MRMP-RA instance I = (W, s, f,A), we first compute � as in stage (I) of the
algorithm. Next, for each pair i, j 2 [n], we construct a directed graph as follows. G = (V, E) is a
complete directed graph with V = [n], one representing each robot, E = {i! j : 1∂ i 6= j ∂ n},
w(i! j) = wi j . It can be shown that each feedback arc set F of G induces an ordering �F on [n],
and vice versa. Furthermore, w(F) =�¢(�F). Even et al. [8] have described a polynomial-time
O(log n log log n)-approximation algorithm for the FAS problem. By applying their algorithm to
G, we obtain the following.

… Theorem 18. Let I = (W, s, f,A) be an instance of optimal MMP with revolving areas, and let

m be the complexity of W. Let the optimal order of execution of paths be �⇤. An ordering � with

�¢(�) = O(log n log log n)�¢(�⇤) can be computed in polynomial time in n and m.

References

1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion planning for
unlabeled discs in simple polygons. IEEE Trans Autom. Sci. Eng., 12(4):1309–1317, 2015.

2 Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin,
Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled Multi-Robot Motion Planning with Tighter
Separation Bounds. In 38th International Symposium on Computational Geometry (SoCG), 2022.

ISAAC 2022

52:16 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

3 Eric Berberich, Dan Halperin, Michael Kerber, and Roza Pogalnikova. Deconstructing approximate
offsets. Discret. Comput. Geom., 48(4):964–989, 2012.

4 Josh Brunner, Lily Chung, Erik D. Demaine, Dylan H. Hendrickson, Adam Hesterberg, Adam Suhl,
and Avi Zeff. 1 X 1 rush hour with fixed blocks is PSPACE-complete. In 10th International Conference

on Fun with Algorithms, volume 157, pages 7:1–7:14, 2021.
5 Danny Z Chen and Haitao Wang. Computing shortest paths among curved obstacles in the plane.

ACM Transactions on Algorithms, 11(4):1–46, 2015.
6 Dror Dayan, Kiril Solovey, Marco Pavone, and Dan Halperin. Near-optimal multi-robot motion

planning with finite sampling. In IEEE International Conference on Robotics and Automation, pages
9190–9196, 2021.

7 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer. Coordinated
motion planning: Reconfiguring a swarm of labeled robots with bounded stretch. SIAM Journal on

Computing, 48(6):1727–1762, 2019.
8 Guy Even, J Seffi Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum feedback sets

and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.
9 Tzvika Geft and Dan Halperin. On the complexity of a family of decoupled multi-robot motion

planning problems, 2021. arXiv:2104.07011.
10 Tzvika Geft and Dan Halperin. Refined hardness of distance-optimal multi-agent path finding. In

21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pages 481–488,
2022.

11 John E Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. On the complexity of motion plan-
ning for multiple independent objects; PSPACE-hardness of the "warehouseman’s problem". The

International Journal of Robotics Research, 3(4):76–88, 1984.
12 Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning.

International Journal of Robotics Research, 30(7):846–894, 2011.
13 C O’Ddnlaing and CK Yap. A retraction method for planning the motion of a disc. J. Algorithms,

6:104–111, 1985.
14 Oren Salzman. Sampling-based robot motion planning. Commun. ACM, 62(10):54–63, 2019.
15 Jacob T Schwartz and Micha Sharir. On the piano movers’ problem: III. coordinating the motion of

several independent bodies: The special case of circular bodies moving amidst polygonal barriers.
The International Journal of Robotics Research, 2(3):46–75, 1983.

16 Rahul Shome, Kiril Solovey, Andrew Dobson, Dan Halperin, and Kostas E. Bekris. dRRT*: Scalable
and informed asymptotically-optimal multi-robot motion planning. Auton. Robots, 44(3-4):443–467,
2020.

17 Israela Solomon and Dan Halperin. Motion planning for multiple unit-ball robots in Rd . In Workshop

on the Algorithmic Foundations of Robotics, WAFR, pages 799–816, 2018.
18 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning. Int. J.

Robotics Res., 35(14):1750–1759, 2016.
19 Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, and Marco Pavone. Revisiting the

asymptotic optimality of RRT. In 2020 IEEE International Conference on Robotics and Automation,
pages 2189–2195. IEEE, 2020.

20 Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin. Motion planning for unlabeled discs with
optimality guarantees. In Robotics: Science and Systems, 2015.

21 Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang Li,
Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Proc. 12th International Symposium on Combinatorial Search,
pages 151–159, 2019.

22 Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. Goal assignment and trajectory
planning for large teams of interchangeable robots. Auton. Robots, 37(4):401–415, 2014.

23 Vijay V Vazirani. Approximation Algorithms. Springer, 2001.
24 Chee-Keng Yap. An O(n log n) algorithm for the voronoi diagram of a set of simple curve segments.

Discret. Comput. Geom., 2:365–393, 1987.

http://arxiv.org/abs/2104.07011

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:17

A Appendix

A.1 Running-time Analysis

The algorithm has three stages. In the first stage, we compute the free space F with respect
to one robot, which takes O(m log m) time, by computing the Voronoi of W, see the algorithm
of [24], and see [3] for details. In the same stage, we compute a set of shortest paths � for n

discs, using the algorithm of [5], taking O(mn log m) time in total over all robots. Each path
�i 2 � has complexity O(m). In stage two of the algorithm, �i is modified to avoid the core of any
occupied revolving area, increasing the complexity of each curve to O(m+n). In stage three of the
algorithm, the deformed paths �̄i are again edited to include retraction maps in which non-active
robots may move within their revolving area. It suffices to bound the number of breakpoints in
the final path ⇡ j that correspond to retracted maps. Let ⇠ be such a breakpoint on ⇡ j , which is
⇢i j(�̄i(t)) for some t 2 [i � 1, i]. There are two cases: (i) the preimage of ⇠ on �̄i is a breakpoint
of �̄i , or (ii) k⇠� zjk= 2 (i.e., �̄i forces Rj to move within the revolving area). We charge both
of these breakpoints to �̄i . Since the preimage of ⇠ lies in the buffer disk of Rj , using a packing
argument similar to the proof of Lemma 16 below, we can show that O(m+ n) breakpoints are
charged to �̄i . Therefore, the total complexity of all paths in ⇧ is only O(n(m+ n)).

A.2 Missing Proofs

… Lemma 1. I has a weakly monotone path ensemble with a cost of d if and only if I has a

monotone path ensemble.

Proof. Let A be a revolving area in W. We first note that without any loss of generality, in any
path ensemble of I a robot may either be contained in A at some point or never intersect A at all.

Let ⇧ be a feasible path ensemble with ¢(⇧) = d. We fix a robot Ri and examine the motion
that occurs during its active interval ⌧i . We claim that any motion of a robot Rj , j 6= i during ⌧i

is redundant, i.e., if Rj does not move during ⌧i then Ri can still perform the same motion. This
suffices in order to conclude that ⇧ can be made monotone. Observe that during the execution of
⇧ no revolving area A can become congested, as otherwise the two robots that are simultaneously
in A will have to take a path that is longer than the shortest path that ignores other robots.
Therefore, whenever Ri is inside a revolving area A, it is the only robot in A, and any motion
by other robots is redundant. Whenever Ri is not contained in any revolving area, all other
robots must be contained in revolving areas, by definition. Hence, any motion by other robots
at such point in time is also redundant. So overall, Ri may travel along its whole path without
other robots moving. For the other direction, in a monotone path ensemble it also holds that no
revolving area may become congested (as otherwise robots move simultaneously). Therefore,
any revolving area that some robot Ri intersects during its motion must not contain other robots.
For any gadget g that Ri needs to traverse, this allows Ri to take some shortest path through g.
Therefore, Ri is able to take the shortest path that ignores other robots overall. Hence, a path
ensemble with a cost of d exists.

… Lemma 8. For any j 6= k and zj , zk 2 s[f, the minimum distance between the line segments

cjz j and ckzk is at least 2, i.e., minyj2c j z j ,
yk2ckzk

kyj � ykkæ 2.

Proof. Let yj , yk be the closest pair of points on the segments c jz j and ckzk. Note that zj c j and
zkck are disjoint since zj c j 2 Cj and zkck 2 Ck and these cores do not intersect (cf Lemma 7). This
implies that either yj or yk is an endpoint of the respective segment.

ISAAC 2022

52:18 Multi-Robot Motion Planning for Unit Discs with Revolving Areas

Aj

Cj
Ak

(a)

α

D+
p

zj

zk

ρj (p)

ρ k
(p
)

p Aj

Ak

cjck

(b)

Figure 7 (a) Illustration of Lemma 8. (b) Case 2 of Lemma 9, The angle ↵æ ⇡/3.

Assume without loss of generality that yj is an endpoint of zj c j . By Lemma 7, kc j � zkk,kck �
zjk æ 3. Let y

0
k

be the endpoint of czzk at distance 3 from yj (y
0
k
= zk if yj = c j and y

0
k
= ck

otherwise). Since zk 2 Ck, kyk� y
0
k
k∂ 1, Then kyj� ykkæ kyj� y

0
k
k�ky 0

k
� ykkæ 3�1 = 2.

… Lemma 9. For any j 6= k, R j and Rk do not collide during the interval T .

Proof. In view of the above discussion, we assume j, k 6= i. The claim is equivalent to showing
that k⇢ j(⇡i(t))�⇢k(⇡i(t))kæ 2 for every t 2 T . Let p = ⇡i(t). There are two cases:

Case 1: ⇢ j(p) = zj or ⇢k(p) = zk. Without loss of generality, assume that ⇢ j(p) = zj . By
construction, ⇢k(p) 2 Ck, therefore by Lemma 7(iii), k⇢ j(p)�⇢k(p)k= kzj �⇢k(p)kæ 2.

Case 2: ⇢ j(p) 6= zj and ⇢k(p) 6= zk. Recall D
+
p

is the disc of radius 2 centered at p, and x j,1, x j,2

are the intersection points of the core of j and �D
+
p

. In this case, zj , zk 2 D
+
p

.
We consider the triangle formed by the retraction points ⇢k(p), ⇢ j(p) and p. We show that

‹⇢k(p)p⇢ j(p)æ ⇡/3. We will first define a point f j(p) based on the current retraction type of j.
If the retraction of j is type sector, then zj lies within the sector S(p), let f j(p) = zj . Otherwise,

the retraction is of type intersection and without loss of generality we assume ⇢ j(p) is x j,1(p).
In this case, consider the segments px j,1(p) and zj c j . These two segments must intersect, as
c j 2 S(p) and zj 62 S(p). We let f j(p) be the intersection point of segments. Note that in either
case, f j(p) lies on segment p⇢ j(p). We analogously define fk(p). See Figure 7 for an example
where f j(p) = zj and f j(p) = zk.

By definition, f j(p) 2 zj c j and fk(p) 2 zkck and Lemma 8 implies that k f j(p)� fk(p)k æ 2.
Additionally, f j(p) 2 D

+
p

, so kp � f j(p)k ∂ 2 (similarly kp � fk(p)k ∂ 2). Let ↵ be the angle
‹ fk(p)p f j(p). Since kp� f j(p)k,kp� fk(p)k∂ 2, and k f j(p)� fk(p)kæ 2, ↵æ ⇡/3.

Now consider the triangle formed by the retraction points and p. By construction,‹ fk(p)p f j(p) =
‹⇢k(p)p⇢ j(p). The distance between p and each retraction point is 2: |p⇢ j(p)|= |p⇢k(p)|= 2.
This implies the other two angles in the triangle are equal (‹p⇢k(p)⇢ j(p) = ‹p⇢ j(p)⇢k(p)).
Since ‹⇢k(p)p⇢ j(p) = ↵ æ ⇡/3, ⇢ j(p)⇢k(p) is the longest edge of the triangle 4p⇢ j(p)⇢k(p).
The other two sides have length 2, so k⇢ j(p)�⇢k(p)kæ 2, as desired.

Cost of � . Stage (II) of the algorithm deforms � to � . Path �i 6= �i
only if �i \ int Cj 6= ; for

some j 6= i, otherwise `(�i) = `(�i
). Suppose �i \ Cj 6= ; for some j 6= i. Then in �

i
, �i \ Cj is

replaced with the shorter arc � of @ Cz , determined by the first and last endpoints, say p and q, of

P. K. Agarwal, T. Geft, D. Halperin, E. Taylor 52:19

�i \ @ Cj . Therefore, `(�)∂ 2 sin�1
Ä kp�qk

2

ä
∂ 2`(Cj \ �i). Hence, `(�̄i)∂ 2`(�i) and we obtain:

¢(�̄)∂ 2¢(�).

… Lemma 16. For an instance I of optimal MRMP with revolving areas, let ⇧(I) be the path

ensemble returned by the algorithm. Then ¢(⇧(I)) = O(1) · ¢⇤(I).

Proof. Set ⇧ = ⇧(I). We already argued that ¢(�) = O(¢⇤(I)), where � is the path ensemble
computed in stage II of the algorithm. We thus need to prove ¢(⇧) = O(¢(�)). For a pair
1∂ i, j ∂ n, let ⇡i j = ⇡i[j � 1, j]. By construction, `(⇡ii) = `(�i

). For a fixed i,

`(⇡i) =
nX

j=1

`(⇡i j) = `(�i
) +
X

j 6=i

`(⇡i j) = `(�i
) +
X

j 6=i

O(`(⇡ j[� ji])).

Where the last equality follows from Corollary 15. Hence,

¢(⇧) =
nX

j=1

`(⇡i) =
nX

i=1

`(�
i
) +

nX

i=1

X

j 6=i

O(`(⇡ j[� ji])) = ¢(�) +
nX

i=1

X

j 6=i

O(`(⇡ j[� ji])).

By definition of � ji , � ji ✓ [j � 1, j] and ⇡ j[� ji] ✓ Bzi
. Fix a point x 2 R2. Consider a disk D of

radius 4 centered at x . If x 2 Bz for some z 2 s[f, then Cz ✓ D. Since cores are pairwise-disjoint
(cf Lemma 7(i)), D can contain at most 16 core disks and any t 2 [j � 1, j] lies in O(1) � ji ’s.
Therefore,
X

i 6= j

O(`(⇡ j[� ji])) = O(`(⇡ j[j � 1, j])) = O(`(�
j
)).

Plugging this back in we obtain: ¢(⇧) = ¢(�) +
P

n

j=1 O(¢(�
j
)) = O(¢(�)).

ISAAC 2022

	1 Introduction
	2 Hardness of Distance Optimal MRMP-RA
	3 Algorithm
	3.1 Modifying path
	3.2 Retracting a robot

	4 Correctness and Analysis of the Algorithm
	4.1 Feasibility
	4.2 Cost of path ensemble

	5 Computing a Good Ordering
	A Appendix
	A.1 Running-time Analysis
	A.2 Missing Proofs

