
26

Maintaining the Union of Unit Discs under Insertions with
Near-Optimal Overhead

PANKAJ K. AGARWAL, Duke University, USA
RAVID COHEN and DAN HALPERIN, Tel-Aviv University, Israel
WOLFGANG MULZER, Freie Universität Berlin, Germany

We present e!cient dynamic data structures for maintaining the union of unit discs and the lower envelope
of pseudo-lines in the plane. More precisely, we present three main results in this paper:

(i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It
can insert a disc and update the union in O ((k + 1) log2 n) time, where n is the current number of unit
discs and k is the combinatorial complexity of the structural change in the union due to the insertion of
the new disc. It can also compute, within the same time bound, the area of the union after the insertion
of each disc.

(ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x-monotone
pseudo-lines. It can handle insertion/deletion of a pseudo-line in O (log2 n) time; for a query point
x0 ∈ R, it can report, in O (logn) time, the point on the lower envelope with x-coordinate x0; and for
a query point q ∈ R2, it can return all k pseudo-lines lying below q in time O (logn + k log2 n).

(iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily
on the boundary of the union of the corresponding discs), so that for a query unit disc D, all input
arcs intersecting D can be reported in O (n1/2+ε + k) time, where k is the output size and ε > 0 is an
arbitrarily small constant. A unit-circle arc can be inserted or deleted in O (log2 n) time.

CCS Concepts: • Theory of computation;;
Additional Key Words and Phrases: Lower envelopes, pseudo-lines, unit discs, intersection searching, dynamic
data structures, tentative binary search

ACM Reference format:
Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. 2022. Maintaining the Union of Unit
Discs under Insertions with Near-Optimal Overhead. ACM Trans. Algorithms 18, 3, Article 26 (October 2022),
27 pages.
https://doi.org/10.1145/3527614

Work by P.A. has been supported by NSF under grants CCF-15-13816, CCF-15-46392, and IIS-14-08846, by ARO grant
W911NF-15-1-0408, and by grant 2012/229 from the U.S.-Israel Binational Science Foundation. Work by D.H. and R.C. has
been supported in part by the Israel Science Foundation (grant no. 1736/19), by NSF/US-Israel-BSF (grant no. 2019754), by
the Israel Ministry of Science and Technology (grant no. 103129), by the Blavatnik Computer Science Research Fund, and
by the Yandex Machine Learning Initiative for Machine Learning at Tel Aviv University. Work by W.M. has been partially
supported by ERC STG 757609 and GIF grant 1367/2016.
Authors’ addresses: P. K. Agarwal, Department of Computer Science, Duke University, Box 90219, Durham NC 27708; R.
Cohen, The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; D. Halperin, The Blavat-
nik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; W. Mulzer, Institut für Informatik, Freie
Universität Berlin, Takustraße 9, 14195 Berlin, Germany.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci"c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1549-6325/2022/10-ART26 $15.00
https://doi.org/10.1145/3527614

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

https://orcid.org/0000-0002-9439-181X
https://orcid.org/0000-0001-5275-9754
https://orcid.org/0000-0002-3345-3765
https://orcid.org/0000-0002-1948-5840
https://doi.org/10.1145/3527614
mailto:permissions@acm.org
https://doi.org/10.1145/3527614
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3527614&domain=pdf&date_stamp=2022-10-11

26:2 P. K. Agarwal et al.

1 INTRODUCTION
Problem statement. Let S = {p1, . . . ,pn } be set ofn points in R2, letD (pi) be the unit disc centered
at pi , and let U := U (S) := ⋃p∈S D (p) be the union of the unit discs centered at the points of S .
We wish to maintain the boundary ∂U of U , as new points are added to S . In particular, we wish
to maintain (i) the set of edges on ∂U and (ii) the area of U .

The e!cient manipulation of collections of unit discs in the plane is a widely and frequently
studied topic, e.g., in the context of sensor networks, where every disc represents the area covered
by a sensor. In our setting, we are motivated by the problem of multiple agents traversing a region
in search of a particular target [16]. We are interested in investigating the pace of coverage as
the agents move, and we wish to estimate at each stage the overall area that has been covered
so far. The simulation is discretized, i.e., each agent is modeled by a unit disc whose motion is
simulated by changing its location at "xed time steps. In other words, we are receiving a stream
{p1,p2, . . . ,pi } of points in R2. When the next point pi+1 arrives, we want to quickly compute the
area of D (pi+1) \⋃j≤i D (pj).

It is known that even for discs of arbitrary radii, the boundary ∂U has O (n) vertices and
edges [24], and that ∂U can be computed in O (n logn) time using power diagrams [7]. An incre-
mental algorithm [30] can maintain ∂U under n insertions in total time O (n2). This is worst-case
optimal, as the total amount of structural change to ∂U under a sequence of n insertions can be
Ω(n2) in the worst case. For instance, refer to Figure 1. Let D be a disc of radius 2 centered at
the origin (green). We "rst insert n/2 unit discs with equidistant centers on ∂D (black). Next, we
insert n/2 (red) unit discs such that the center of the ith red disc is (0, εi) on the y-axis, for some
su!ciently small constant ε > 0. The insertion of each of the last n/2 discs creates n vertices on
the union of the discs inserted so far. Our goal is thus to develop an output-sensitive algorithm
that usesO (n) space and updatesU in time proportional to the number of changes in vertices and
edges of ∂U due to the insertion of a new disc.

Maintaining the edges of ∂U requires answering intersection-searching queries of the following
form: Given a collection C of unit-radius circular arcs that comprise ∂U and a query unit disc D,
report the arcs in C that intersect D. Developing an e!cient data structure for this intersection-
searching problem led us to study the following problem, which is interesting in its own right: A
set of pseudo-lines is a set of bi-in"nite simple curves in the plane such that each pair of curves
intersect in exactly one point and they cross at that point. Given a set E of x-monotone pseudo-
lines in the plane, we wish to maintain their lower envelope L (E) (see Section 2 below for the
de"nition) under insertions and deletions of pseudo-lines, such that for a point x0 ∈ R, the point
on L (E) with x-coordinate x0 can be reported quickly.
Related work. Arrangements of pseudo-lines have been studied extensively in discrete and com-
putational geometry; see, e.g., the classic monograph by Grünbaum [18] and recent surveys [17, 20]
for a review of combinatorial bounds and algorithms involving arrangements of pseudo-lines.
For the case of lines (rather than pseudo-lines), the celebrated result by Overmars and van
Leeuwen [27] can maintain the lower envelope in O (log2 n) time under insertion and deletion
of lines. This bound has been improved over the last two decades [11–13, 21, 23]; these improve-
ments are, however, not directly applicable for pseudo-lines. If only insertions are performed, then
the data structure by Preparata [28] can be extended to maintain the lower envelope of a set of
pseudo-lines in O (logn) time per update.

A series of papers have developed powerful general data structures for maintaining the
lower envelopes of a set of curves of bounded description complexity, based on shallow cut-
tings [4, 14, 22, 25]. Many of these data structures also work in R3. However, the power of these
data structures comes at a signi"cant cost: the algorithms are quite involved, the performance

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:3

Fig. 1. An instance in which the union boundary of a set of unit discs in the plane undergoes Ω(n2) combi-
natorial changes during n insertions. The black discs are inserted first, and then red discs are inserted from
bo!om to top.

guarantees are in the expected and amortized sense, and the operations have (comparatively)
large polylogarithmic running times. For pseudo-lines, Chan’s method [14], with improvements by
Kaplan et al. [22], yieldsO (log3 n) amortized expected insertion time,O (log5 n) amortized expected
deletion time, andO (log2 n) worst-case query time. An interesting open question has been whether
the Overmars-van-Leeuwen data structure can be extended to maintaining the lower envelope of
a set of pseudo-lines.

As mentioned above, a variety of applications have motivated the study of arrangements of
unit discs. It is known that the algorithms by Overmars-van-Leeuwen [27] and by Preparata [28]
for maintaining the intersection of halfplanes can be extended to maintaining the intersection of
unit discs within the same time bound. In contrast, maintaining the union of a set of unit discs is
more involved and much less is known about this problem. The partial rebuilding technique by
Bentley and Saxe [8] leads to a linear-size semidynamic data structure for maintaining the union
of unit discs under insertions that can determine in O (log2 n) time whether a query point lies in
their union; a unit disc can be inserted in O (log2 n) time. Recently, de Berg et al. [9] improved the
update and query time to O (logn). However, neither of these two approaches can be adapted to
maintain the boundary of the union of unit discs in output-sensitive manner or to maintain the
area of the union under insertion of unit discs.

Chan [15] presented a data structure that can maintain the volume of the convex hull of a set
of points in R3 in sublinear time. Notwithstanding a close relationship between the union of discs
in R2 and the convex hull of a point set in R3, it is not clear how to extend his data structure for
maintaining the area of the union of unit discs in sublinear time, even if we only perform insertions.

We conclude this discussion by noting that there has been extensive work on a variety of
intersection-searching problems, in which we wish to preprocess a set of geometric objects into
a data structure so that all objects intersected by a query object can be reported e!ciently. These
data structures typically reduce the problem to simplex or semialgebraic range searching and are
based on multi-level partition trees; see, e.g., the recent survey by Agarwal [1] for a review; see
also [5, 6, 19].
Our results. This paper contains the following three main results:

Lower envelope of pseudo-lines. Our "rst result is a fully dynamic linear-size data structure for
maintaining the lower envelope of a set of x-monotone pseudo-lines with O (log2 n) update time
and O (logn) query time. Additionally, it can also report all k pseudo-lines lying below a query

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:4 P. K. Agarwal et al.

point inO (logn+k log2 n) time. An adaptation of the Overmars-van-Leeuwen data structure [27],
it is more e!cient and considerably simpler than the existing dynamic data structures for main-
taining lower envelopes of pseudo-lines. The key innovation is a new procedure for "nding the
intersection between two lower envelopes of planar pseudo-lines in O (logn) time, using tentative
binary search, where each pseudo-line in one envelope is “smaller” than every pseudo-line in the
other envelope, in a sense to be made precise below.

Union of unit discs. Our second result, which is the main result of the paper, is a linear-size
data structure for updating ∂U , the boundary of the union of unit discs, in O ((k + 1) log2 n) time,
per insertion of a disc, where k is the combinatorial complexity of the structural change to ∂U due
to the insertion (see Section 3). We use this data structure to compute the change in the area of the
union in additionalO ((k +1) logn) time, after having computed the changes in ∂U . At the heart of
our data structure is a semi-dynamic data structure for reporting all k edges of ∂U that intersect a
query unit disc in O (logn + k log2 n) time. Roughly speaking, we draw a uniform grid of diameter
1. For each grid cell C , we clip the edges of ∂U within C . Let EC be the set of (clipped) edges of
∂U lying inside C . For an edge e ∈ EC , let Ke be the Minkowski sum of e with D (o), where o is
the origin, i.e., Ke is the region such that a unit disc D (q) intersects e if and only if q ∈ Ke . The
problem of reporting the arcs of EC intersected by a unit disc D (q) is equivalent to reporting the
regions of K = {Ke | e ∈ EC } that contain q. Exploiting the property that the arcs of EC lie inside a
grid cell of diameter 1, we show that our pseudo-line data structure can be used for reporting the
regions of K that contain a query point.

Circular-arc intersection searching. Our "nal result is a data structure for the intersection-
searching problem in which the input objects are arbitrary unit-radius circular arcs rather than arcs
forming the boundary of the union of the unit discs, and the query is a unit disc. We present a linear-
size data structure with O (n logn) preprocessing time, O (n1/2+ε + k) query time and O (log2 n)
amortized update time, where k is the size of the output and ε > 0 is an arbitrarily small, but "xed,
constant. This result follows the same approach as earlier data structures for intersection [6, 19]
and constructs a two-level partition tree. Our main contribution is a simpler characterization of
the condition of a unit disc intersecting a unit-radius circular arc.1

Road map of the paper. The paper is organized as follows: We begin in Section 2 by describing
the dynamic data structure for maintaining the lower envelope of pseudo-lines. Next, we present
in Section 3 the data structure for maintaining the union of unit discs under insertions. Section 4
presents the dynamic data structure for unit-arc intersection searching. Finally, we conclude in
Section 5 by mentioning a few open problems.

2 MAINTAINING LOWER ENVELOPE OF PSEUDO-LINES
We describe a dynamic data structure to maintain the lower envelope of a set of x-monotone
pseudo-lines in R2 under insertions and deletions, which also works for a more general class of
planar curves; see below.

2.1 Preliminaries
Let E be a family of x-monotone pseudo-lines in R2; a vertical line crosses each pseudo-line in
exactly one point. Let " be a vertical line strictly to the left of the "rst intersection point in E. It
de"nes a total order ≤ on the pseudo-lines in E, namely, for e1, e2 ∈ E, we have e1 ≤ e2 if and only
if e1 intersects " below e2. Since each pair of pseudo-lines in E cross exactly once, it follows that
if we consider a vertical line "′ strictly to the right of the last intersection point in E, the order of
the intersection points between "′ and E, from bottom to top, is reversed.

1We believe the update time can be made worst case by using the lazy reconstruction method [26].

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:5

Fig. 2. Constructing the lower envelope v .L (purple) from w .L (red) and z.L (blue).

The lower envelope L (E) of E is the x-monotone curve obtained by taking the pointwise mini-
mum of the pseudo-lines in E, i.e., if we regard each pseudo-line of E as the graph of a univariate
function e (x), then the lower envelope L (E) is the graph of the function mine ∈E e (x), x ∈ R. A
breakpoint of L (E) is an intersection point of two pseudo-lines that appears on L (E), and an
arc or segment of L (E) is the maximal contiguous portion of a pseudo-line of E that appears on
L (E) (between two consecutive breakpoints). Combinatorially, L (E) can be represented by the
sequence of its breakpoints and arcs in the increasing x-order; the "rst and the last arcs of L (E) are
unbounded. The upper envelope U (E) of E is similarly the x-monotone curve obtained by taking
the pointwise maximum of the pseudo-lines in E.

In this section, we focus on L (E). The following two properties of L (E) are crucial for our
data structure:

(A) every pseudo-line contributes at most one segment to L (E); and
(B) the order of these segments from left to right corresponds exactly to the order ≤ on E de"ned

above.
We assume a computational model in which primitive operations on pseudo-lines, such as com-

puting the intersection point of two pseudo-lines or determining the intersection point of a pseudo-
line with a vertical line, can be performed in constant time.

2.2 Data Structure and Operations
The tree structure. Our primary data structure for maintaining L (E) is a balanced binary search
tree (e.g., a red-black tree [31]) Ξ, which supports insertion and deletion operations inO (logn) time.
The leaves of Ξ contain the pseudo-lines, sorted from left to right according to the order de"ned
above. An internal node v ∈ Ξ represents the lower envelope of the pseudo-lines contained in the
subtree rooted at v . More precisely, every leaf v of Ξ stores a single pseudo-line v .e ∈ E. For a
node v of Ξ, we write v .E for the set of pseudo-lines in the subtree rooted at v . We denote the
lower envelope of v .E by v .L . Let w (resp. z) be the left (resp. right) child of v . Then w .L and
z.L intersect at one pointv .χ , andv .L consists of the pre"x (resp. su!x) ofw .L untilv .χ (resp.
of z.L from v .χ); see Figure 2.

Each node v stores the following variables:
• f , l , r : a pointer to the parent, the left child, and the right child of v , respectively; l , r are

unde"ned for a leaf, and f is unde"ned for the root;
• max: the last pseudo-line in v .E (according to the order de"ned in Section 2.1);

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:6 P. K. Agarwal et al.

• χ : the intersection point of (v .l).L and (v .r).L , the lower envelopes of the left and right
children of v , if v is an internal node; χ is unde"ned for leaves;
• Λ: a balanced binary search tree (e.g., a red-black tree) that stores the pre"x or the su!x

of v .L , denoted by L , that is not on the lower envelope (f .v).L ; the root of Ξ stores
the entire envelope L (E). The leaves of Λ represent the segments of L sorted from left
to right. Each node ξ of Λ is associated with a contiguous portion L ξ of L . Each leaf ξ
stores the endpoints of L ξ , which consists of a single segment, and the pseudo-line of v .E
that supports L ξ . Each inner node ξ of Λ, with left and right children ζ and η, stores the
common endpoint ξ .p of L ζ and L η . We note that the two pseudo-lines supporting the
last segment of L ζ and the "rst segment of L η intersect at ξ .p and the lower envelope of
these two pseudo-lines, denoted by ξ .L, represents the lower envelope v .L locally in the
neighborhood of ξ .p. We store these two pseudo-lines at ξ . Since ξ .L can be computed in
O (1) time from the two pseudo-lines, for simplicity, we can assume that we also store ξ .L at
ξ . See Section 2.3 below for more details on Λ.

During our update procedure, we need to perform split and join operations on the secondary
trees v .Λ at various nodes v in Ξ. Each of these procedures can be implemented in O (logn) time
using the standard methods [31, Chapter 4].
Queries. We now describe the two query operations that we perform on Ξ.

Point-location query. Given a value x0 ∈ R, we report the pseudo-line e ∈ E that contains the
point on L (E) with x-coordinate x0. Since the root u of Ξ explicitly stores L (E) in a balanced
binary search tree u .Λ, this query can be answered in O (logn) time.

Lemma 2.1. For a given value x0 ∈ R, a point-location query can be answered in O (logn) time.
Ray-intersection query. Given a point q ∈ R2, we report all pseudo-lines of E that lie vertically

below q, i.e., report all pseudo-lines that intersect the ray emanating from q in the (−y)-direction.
Let qx be the x-coordinate of q. We perform a point-location query with qx on Ξ and determine

the pseudo-line e that contains the point of L (E) with x-coordinate qx . If q lies below e , we
are done. Otherwise, we store e in the result set and delete e from Ξ. We repeat this step until
either Ξ becomes empty or q lies below the lower envelope of the remaining set. Finally, we re-
insert all elements from the result set to restore the original set of pseudo-lines. Overall, we need
k+1 point-location queries, k deletions, and k insertions. By Lemma 2.1, each point-location query
needsO (logn) time, and below we show that one update operation requiresO (log2 n) time. Hence,
we obtain the following.

Lemma 2.2. Let q ∈ R2. All k pseudo-lines in E that lie below q ∈ R2 can be reported in time
O (logn + k log2 n).

Updates. To insert or delete a pseudo-line e in Ξ, we follow the method of Overmars and van
Leeuwen [27]. We delete or insert a leaf z for e in Ξ using the standard techniques for balanced
binary search trees (the v .max pointers guide the search in Ξ) [31]. We update the secondary
structure stored at the nodes of Ξ, as follows. Let π be the path in Ξ from the root to z. As we go
down along π , for each node v ∈ π and its sibling w , we construct v .L and w .L from (v . f).L ,
stored as a balanced binary tree. If v is the root, then v already stores v .L , so assume v is not the
root and inductively we have (v . f).L at our disposal. We split (v . f).L at (v . f).χ , and let Λ−

(resp. Λ+) be the pre"x (resp. su!x) of (v . f).L . If v is the left child of v . f , then v .L (resp. w .L)
is obtained by merging Λ− with v .Λ (w .Λ with Λ+). If v is the right child, then the roles of v and
w are reversed. When we reach the leaf, we have the lower envelope at the siblings of all non-root
nodes in π .

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:7

After having inserted or deleted z, we trace π back in a bottom-up manner. When we reach a
node v , we have computed (v .l).Λ, (v .r).Λ, and v .L . At the node v , we "rst compute the unique
intersection point (v . f).χ of v .L and w .L , where w is the sibling of v , using the procedure
described in the next subsection; recall that we already have computedw .L . Suppose v is the left
child of its parent. We split v .L into two parts L −

v ,L
+

v at (v . f).χ , with the former lying to the
left. Similarly, we split w .L into two parts L −

w ,L
+

w at (v . f).χ (note that v . f = w . f) with the
former lying to the left. We store L +

v ,L
−

w as v .Λ and w .Λ, respectively. We also update v .max
andw .max. We then merge L −

v and L +
w to obtain (v . f).L . We then move tov . f . If we reach the

root of Ξ, then we simply store the envelope at v . f and stop.
Since the height of Ξ is O (logn), since each split/merge operations takes O (logn) time, and

since, by Lemma 2.7 below, the intersection point of two envelopes at each node can be computed
in O (logn) time, the update procedure takes O (log2 n) time. More details can be found, e.g., in the
original paper by Overmars and van Leeuwen [27] or in the book by Preparata and Shamos [29].

Lemma 2.3. An insert/delete operation in Ξ takes O (log2 n) time.

2.3 Finding the Intersection Point of Two Lower Envelopes
Given two lower envelopes Ll and Lr , such that all pseudo-lines in Ll are smaller than all pseudo-
lines in Lr and each envelope is stored in a balanced binary tree as described above, we give a
procedure to compute the (unique) intersection point q between Ll and Lr in O (logn) time. In
our algorithm, Ll and Lr are stored as balanced binary search trees Λl and Λr .

The leaves of Λl and Λr represent the segments on the lower envelopes Ll and Lr , sorted from
left to right. To ensure that every point on Ll and Lr is associated with exactly one leaf of Λl
and Λr , we use the convention that the segments in the leaves are semi-open, containing their
right, but not their left, endpoint in Λl and their left, but not their right, endpoint in Λr . Recall that
we store both endpoints of a segment as well as the pseudo-line supporting the segment at each
leaf of Λl and Λr , but the segments are interpreted as relatively semi-open sets, where the precise
endpoint to be included depends on the role that the tree plays in the intersection algorithm. More
concretely, the intersection algorithm uses two items stored at a leaf v of Λl or Λr :

(i) the pseudo-line v .L that supports the segment represented by v ; and
(ii) an endpoint v .p of the segment, namely the left endpoint if v is a leaf of Λl , and the right

endpoint ifv is a leaf of Λr .2 Note that this is exactly the endpoint of the associated segment
that is not included in the semi-open segment represented byv . This choice is made to ensure
a uniform handling of inner nodes and leaves in the intersection algorithm.

Consider an inner node v of Λl or Λr . The intersection algorithm uses the two items stored
at v :

(i) the lower envelopev .L of the last (maximum) pseudo-line in the left subtreev .l ofv and the
"rst (minimum) pseudo-line in the right subtree v .r of v ; and

(ii) the intersection point v .p of these two pseudo-lines, which is the only breakpoint of v .L.
As discussed above, the leafu∗ of Λl and the leafv∗ of Λr whose (half-open) segments contain the

intersection point q between Ll and Lr are uniquely determined. Let πl be the path in Λl from the
root to u∗ and πr the path in Λr from the root to v∗. Our strategy is as follows: we simultaneously
descend into Λl and Λr , following the paths πl and πr , starting from the respective roots. Let u be
the current node in πl and let v be the current node in πr . At each step, we perform a local test on

2If the segment is unbounded, the endpoint might not exist. In this case, we use a symbolic endpoint at in"nity that lies
below every other pseudo-line.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:8 P. K. Agarwal et al.

Fig. 3. An example of Case 1: The pseudo-lines in Λl are shown in blue, the pseudo-lines in Λr are shown in
red.

u andv , comparingu .p withv .L andv .p withu .L, to decide how to proceed. The test distinguishes
among three possibilities:

(1) The point u .p lies on or above the (local) lower envelope v .L. In this case, u .p lies on or above
the envelope Lr . Therefore, the intersection point q between Ll and Lr must be equal to
or to the left of u .p; see Figure 3. If u is an inner node, then the desired leaf u∗ cannot lie in
the right subtree u (recall that the half-open segments in the leaves of Λl are considered to
be open to the left). If u is a leaf, then u∗ lies strictly to the left of u (recall that in this case,
u .p is the left endpoint of the segment stored in u, so u .p does not belong to the half-open
segment in u but to the half-open segment in the predecessor-leaf).

(2) The point v .p lies on or above the (local) lower envelope u .L. In this case, v .p lies on or above
the entire envelope Ll , therefore the intersection point q between Ll and Lr is equal to or
to the right ofv .p; this situation is symmetric to the one depicted in Figure 3. Ifv is an inner
node, then v∗ cannot lie in the left subtreev (recall that the segments in the leaves of Λr are
considered to be open to the right). If v is a leaf, then v∗ lies strictly to the right of v (recall
that in this case, v .p is the right endpoint of the segment stored in v , so v .p does not belong
to the half-open segment in v , but to the half-open segment in the successor-leaf).

(3) The point u .p lies below the (local) lower envelope v .L and the point v .p lies below the (local)
lower envelope u .L: in this case, the pointu .p must lie strictly to the left of the pointv .p. This
claim follows from property (B) of pseudo-lines because all pseudo-lines in Λl are smaller
than all pseudo-lines in Λr ; see Figure 4. Thus, it follows that the intersection point q is
strictly to the right of u .p or strictly to the left of v .p (both situations can occur simultane-
ously, if q lies between u .p and v .p). In the former case, if u is an inner node, then u∗ lies in
u .r or to the right of all leaves in u .r , and if u is a leaf, then either u∗ = u or u∗ is a leaf to
the right of u. In the latter case, if v is an inner node, then v∗ lies in v .l or to the left of all
leaves in v .l , and if v is a leaf, then v∗ = v or v∗ is a leaf to the left of v .

In the "rst two cases, it is easy to perform the next step in the binary search. In the third case,
however, it is not immediately obvious what to do. The correct choice might be either to go tou .r or
tov .l . For the straight-line case, Overmars and van Leeuwen resolve this ambiguity by comparing
the slopes of the relevant lines. For pseudo-lines, however, there is no notion of slope. Even worse,
it seems that there is no local test to resolve this situation. For an example, refer to Figure 4, where
the local situation at u and v does not help to determine the position of the intersection point q.
We present an alternative strategy, which also applies for pseudo-lines.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:9

Fig. 4. An example of Case 3: The pseudo-lines in Λl (resp. Λr) are shown in blue (resp. red). The solid
pseudo-lines are fixed. The dashed pseudo-lines are optional, meaning that either none or exactly one of the
dashed pseudo-lines is present. The current vertices of the binary search are u .p and v .p, and Case 3 applies.
Irrespective of the local situation atu andv , the intersection point q of Ll and Lr might be to the le" of u .p
(e.g., q1 in the figure), between u .p and v .p (e.g., q2 in the figure), or to the right of v .p (e.g., q3 in the figure),
depending on which one of the dashed pseudo-lines is present.

Fig. 5. Comparing u to v : in Case 3, we know that u∗ is in u .r or v∗ is in v .l ; we go to u .r and to v .".

Throughout the search, we maintain the invariant that the subtree at the current node u of Λl
contains the desired leaf u∗ or the subtree at the current nodev of Λr contains the desired nodev∗
(or both). In Case 3, as explained above, it holds thatu∗ must be inu .r or v∗ must be inv .l (or both);
see Figure 5. Thus, we will move u to u .r and v to v .l . One of these moves must be correct, but the
other move might be mistaken: we might go tou .r even thoughu∗ is inu .l ; or tov .l even thoughv∗
is in v .r . To account for this possible mistake, we remember the current node u in a stack uStack
and the current node v in a stack vStack. Then, if it becomes necessary, we can backtrack and
revisit the other subtree u .l or v .r . This approach leads to the general situation shown in Figure 6:
The desired leaf u∗ is in the subtree of u or in a left subtree of a node on uStack, while the desired
leaf v∗ is in the subtree of v or in a right subtree of a node on vStack, and at least one of u∗ or v∗
must be in the subtree of u or of v , respectively. Now, if Case 1 occurs when comparing u to v , we
can exclude the possibility thatu∗ is in u .r . Thus,u∗ might be in u .l , or in the left subtree of a node
in uStack; see Figure 7. To make progress, we now compare u ′, the top of uStack, with v . Again,
one of the three cases occurs:

(i) In Case 1, we can deduce that going to u ′.r was mistaken, and we move u to u ′.l , while v
does not move.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:10 P. K. Agarwal et al.

Fig. 6. The invariant: the current search nodes are u and v . uStack contains all nodes on the path from the
root to u where the path goes to a right child (orange squares), vStack contains all nodes from the root to v
where the path goes to a le" child (orange squares). The final leavesu∗ andv∗ are in one of the gray subtrees;
and at least one of them is under u or under v .

Fig. 7. Comparing u to v : in Case 1, we know that u∗ cannot be in u .r . We compare u ′ and v to decide how
to proceed: in Case 1, we know that u∗ cannot be in u ′.r ; we go to u ′.l ; in Case 2, we know that u∗ cannot be
in u .r and that v∗ cannot be in v .l ; we go to u .l and to v .r ; in Case 3, we know that u∗ is in u ′.r (and hence
in u .l) or in v .l ; we go to u .l and to v .l . Case 2 is not shown, as it is symmetric.

(ii) In the other cases, we cannot rule out that u∗ is to the right of u ′, and we move u to u .l ,
keeping the invariant that u∗ is either below u or in the left subtree of a node on uStack.
However, to ensure that the search progresses, we now must also move v :

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:11

– In Case 2, we can rule out that v∗ lies in v .l , and we move v to v .r .
– In Case 3, we move v to v .l .

In this way, we keep the invariant and always make progress: in each step, we either discover
at least one new node on either of the two correct search paths, or we pop one erroneous move
from one of the two stacks. Since the total length of the correct search paths isO (logn), and since
we push a new element onto the stack only when discovering a new node on either of the correct
search paths, the total search time is O (logn); see Figures A.1 and A.2 and Table A.1 in Appendix
for an example run of the algorithm.

The following pseudo-code gives the details of our algorithm, including all corner cases.
oneStep(u, v)

do compare(u, v):
Case 3:

if u is not a leaf then
uStack.push(u); u ← u .r

end
if v is not a leaf then

vStack.push(v); v ← v .l
end
if u and v are leaves then

return u = u∗ and v = v∗

end
Case 1:

if uStack is empty then
u ← u .l ;

else if u is a leaf then
u ← uStack.pop().l

else
u ′ ← uStack.top()
do compare(u ′, v)

Case 1:
uStack.pop(); u ← u ′.l ;

Case 2:
u ← u .l
if v is not a leaf then

v . ← v .r
end

Case 3:
u ← u .l
if v is not a leaf then

vStack.push(v); v ← v .l
end

end
Case 2:

symmetric
We will show that the search procedure maintains the following invariant:
Invariant 2.4. The leaves in all subtrees u ′.l , for u ′ ∈ uStack, together with the leaves under u

constitute a pre!x of the leaves in Λl . This pre!x contains u∗. Similarly, the leaves in all subtrees v ′.r ,
v ′ ∈ vStack, together with the leaves under v constitute a contiguous su"x of the leaves of Λr . This
su"x contains v∗. Furthermore, we have u ∈ πl or v ∈ πr (or both).

Invariant 2.4 holds at the beginning, when both stacks are empty, u is the root of Λl andv is the
root of Λr . To show that the invariant is maintained, we "rst consider the special case when one

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:12 P. K. Agarwal et al.

of the two searches has already discovered the correct leaf. Recall that πl ,πr are the root-to-leaf
paths to u∗, v∗ in Λl and Λr , respectively.

Lemma 2.5. Suppose that Invariant 2.4 holds and that Case 3 occurs when comparing u to v . If
u = u∗, then v ∈ πr and, if v is not a leaf, then v .l ∈ πr . Similarly, if v = v∗, then u ∈ πl and, if u is
not a leaf, then u .r ∈ πl .

Proof. We consider the case u = u∗; the other case is symmetric. Let eu be the segment of
Ll stored in u. By Case 3, the point u .p is strictly to the left of the point v .p. Furthermore, since
u = u∗, the intersection point q lies on eu . Thus, q cannot be to the right of v .p, because otherwise
v .p would be a point on Lr that lies below eu and to the left of q, which is impossible. Since q is
strictly to the left of v .p, Invariant 2.4 shows that if v is an inner node, then v∗ must be in v .l (and
hence both v and v .l lie on πr), and if v is a leaf, then v = v∗. !

We can now show that the invariant is maintained.
Lemma 2.6. Procedure oneStep either correctly reports the desired leaves u∗ and v∗, or maintains

Invariant 2.4. In the latter case, either it pops an element from one of the two stacks, or it discovers a
new node on π! or πr .

Proof. First, suppose Case 3 occurs. The invariant that uStack and u cover a pre"x of Ll and
that vStack andv cover a su!x of Lr is maintained. Furthermore, if bothu andv are inner nodes,
Case 3 ensures that u∗ is in u .r or to the right of u, or that v∗ is in v .l or to the left of v . Suppose
the former case holds. Then, Invariant 2.4 implies that u∗ must be in u .r , and hence u and u .r lie
on πl . Similarly, in the second case, Invariant 2.4 gives that v and v .l lie on πr . Thus, Invariant 2.4
is maintained and we discover a new node on πl or on πr . Now, assumeu is a leaf andv is an inner
node. If u ! u∗, then as above, Invariant 2.4 and Case 3 imply that v ∈ πr and v .l ∈ πr , and the
lemma holds. If u = u∗, the lemma follows from Lemma 2.5. The case that u is an inner node and
v a leaf is symmetric. If both u and v are leaves, Lemma 2.5 implies that oneStep correctly reports
u∗ and v∗.

Second, suppose Case 1 occurs. Then, u∗ cannot be in u .r , if u is an inner node, or u∗ must be to
the left of a segment left of u, if u is a leaf. Now, if uStack is empty, Invariant 2.4 and Case 1 imply
that u cannot be a leaf (because u∗ must be in the subtree of u) and that u .l is a new node on πl .
Thus, the lemma holds in this case. Next, if u is a leaf, Invariant 2.4 and Case 1 imply that v ∈ πr .
Thus, we pop uStack and maintain the invariant; the lemma holds. Now, assume that uStack is
not empty and that u is not a leaf. Let u ′ be the top of uStack. First, if the comparison between
u ′ and v results in Case 1, then u∗ cannot be in u ′.r , and in particular, u " πl . Invariant 2.4 shows
that v ∈ πr , and we pop an element from uStack, so the lemma holds. Second, if the comparison
between u ′ and v results in Case 2, then v∗ cannot be in v .l , if v is an inner node. Also, if u ∈ πl ,
then necessarily also u .l ∈ πl , since Case 1 occurred between u and v . If v ∈ πr , since Case 2
occurred between u ′ and v , the node v cannot be a leaf and v .r ∈ πr . Thus, in either case the
invariant is maintained and we discover a new node on πl or on πr . Third, assume the comparison
between u ′ and v results in Case 3. If u ∈ πl , then also u .l ∈ πl , because u .r ∈ πl was excluded by
the comparison betweenu andv . In this case, the lemma holds. If u " πl , then alsou ′.r " πl , so the
fact that Case 3 occurred between u ′ and v implies that v .l must be on πr (in this case, v cannot
be a leaf, since otherwise we would have v∗ = v and Lemma 2.5 would give u ′.r ∈ πl , which we
have already ruled out). The argument for Case 2 is symmetric. !

The following lemma "nally shows that our intersection procedure "nds the desired point in
logarithmic time.

Lemma 2.7. The intersection point q between Ll and Lr can be computed in O (logn) time.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:13

Fig. 8. The grid imposed over the union of unit discs. The active cells are highlighted in pale red.

Proof. In each step, we either discover a new node of πl or of πr , or we pop an element from
uStack or vStack. Elements are pushed only when at least one new node on πl or πr is discovered.
As πl and πr are each a path from the root to a leaf in a balanced binary tree, we need O (logn)
steps. !

Putting everything together, we obtain the following:

Theorem 2.8. A set E of n pseudo-lines can be maintained in a data structure so that (i) a pseudo-
line can be inserted/deleted in O (log2 n) time; (ii) for a query value x0 ∈ R, the point of L (E) with
the x-coordinate x0 and the input pseudo-line containing this point can be computed inO (logn) time;
and (iii) all k pseudo-lines of E lying below a query point q ∈ R2 can be reported inO (logn+k log2 n)
time.

3 MAINTAINING THE UNION OF UNIT DISCS UNDER INSERTIONS
Let S be a set of n points in R2, and let U := U (S) =

⋃
p∈S D (p) be the union of the unit discs

centered at the points of S . In this section, we describe a data structure that maintains E , the set of
edges of ∂U . After the insertion of a new point to S , it updates E inO (logn+k log2 n) time, where
k is the number of changes (insertions plus deletions) in the set E . It can also report, within the
same time bound, the area of U , denoted AreaU , after the insertion of each point.

This section is organized as follows. Section 3.1 gives a high-level description of the overall data
structure and of the update procedure. Section 3.2 describes the data structure for reporting the set
of edges in E that intersect a unit disc, which relies on the data structure described in the previous
section. Finally, Section 3.3 proves a few key properties of E that are crucial for our data structure.

3.1 Overview of the Data Structure
The overall data structure consists of two parts. Let G be a uniform grid in R2 such that the diameter
of each grid cell is 1. We call a grid cell of G active if it intersectsU . Let G ⊂ G be the set of active
grid cells. Each unit disc intersects O (1) grid cells, so |G | = O (n). We de"ne the key of a grid cell
to be the x- and y-coordinates of its bottom left corner, and we induce a total ordering on the grid
cells by using the lexicographic ordering on their keys. Using this total ordering, we store G in a
balanced binary search tree (e.g., red-black tree) Ω. A membership query and an update operation
on G can be performed in O (logn) time [31].

We overlayU with G. If an edge of ∂U intersects more than one grid cell, then we split it at the
boundaries of the cells that it crosses (see Figure 8). We can therefore assume that each edge of E
lies within a single cell. For each cell C ∈ G , let EC ⊆ E denote the set of edges that lie inside C .
We maintain EC in a dynamic data structure ΨC , described in Section 3.2, that

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:14 P. K. Agarwal et al.

(i) for a query point q, reports, in O (logn + kC log2 n) time, the subset Eq,C ⊆ EC of edges that
intersect D (q), where kC = |Eq,C |; and

(ii) can handle insertion or deletion of an edge in EC in O (log2 n) time.
See Lemma 3.7 below.
Using Ω and ΨC , for all grid cells C ∈ G , the insertion of a point q into S is handled as follows.

To avoid confusion, we use U (resp. U new) to denote U (S) immediately before (resp. after) the
insertion of q.

(1) Compute the set Gq of O (1) grid cells that the new disc D (q) intersects.
(2) Find the subset Gq = Gq ∩ G of active cells (before the insertion of q) that intersect D (q).
(3) For each cell C ∈ Gq , using the data structure ΨC , report the subset Eq,C ⊆ EC of edges that

D (q) intersects. Set Eq =
⋃

C ∈Gq Eq,C and k = |Eq |.
(4) Compute the set Iq of new edges onU new. We split the edges of Iq at the grid boundaries so

that each edge lies within one grid cell. For each cellC ∈ Gq , let Iq,C ⊆ Iq be the set of edges
that lie inside C .

(5) For each cell C ∈ Gq , delete the edges of Eq,C from ΨC and insert the edges of Iq,C into ΨC .
If C " G , insert C into Ω.

(6) Compute AreaU new.
Steps 1 and 2 are straightforward and can be implemented in O (logn) time using Ω. Steps 3

and 5 can be implemented using the procedures described in Section 3.2. By Lemma 3.7, the total
time spent in these two steps3 is O (logn + (k + |Iq |) log2 n) = O ((k + 1) log2 n) because as we will
see below, |Iq | = O (k + 1). We now describe how to compute the set Iq of new edges (Step 4) and
AreaU new (Step 6).
Updating the boundary of the union. First, consider the case when k = 0, then either D (q) ⊂ U
or D (q)∩U = ∅. Since the diameter of each grid cell in G is 1, at least one of the grid cells, denoted
by ω, is fully contained in D (q). If ω ∈ Gq , then ω ⊂ U (because ω ∩U ! ∅ but ω ∩ ∂U = ∅ since
Eq = ∅) and therefore D (q) ⊂ U ; otherwise D (q) ∩ U = ∅. If D (q) ⊂ U , then ∂U new = ∂U , and
there is nothing to do. On the other hand, if D (q)∩U = ∅, then the entire ∂D (q) appears on ∂U new.
We split ∂D (q) at the boundary of the grid cells, and Iq is the resulting set of edges.

We now assume that k > 0. The set Iq contains two types of edges:
(i) The edges that lie on the boundaries of older discs. These edges are the portions of the edges

of Eq that lie outside D (q).
(ii) The edges that lie on ∂D (q). These edges are (maximal) connected arcs of ∂D (q) \U .

To compute the "rst type of edges, for each edge e ∈ Eq , we compute the intersection points of
e ∩ ∂D (q). If e # D (q) then we compute e \D (q), which comprises one or two arcs, and which we
add to Iq .

Let V be the set of intersection points of ∂D (q) and the edges of Eq . We sort V along ∂D (q).
These intersection points partition ∂D (q) into arcs. Each such arc γ either lies insideU or outside
U , and we can detect it in O (1) time. If γ lies outside U , we add γ to Iq .

It follows from the above discussion that |Iq | = O (k + 1) and that the total time spent in com-
puting I (q) is O ((k + 1) logn).
Computing the area of the union. We now describe how we extend the procedure for computing
Iq to compute ∆A = AreaU new −AreaU . If k = 0, then as described above, we determine whether

3Wherever we describe a certain data structure, the parameter k pertains to the output size of a query in that speci"c data
structure.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:15

Fig. 9. Arrangement A and its vertical decomposition A ∇; shaded pseudo-trapezoids do not lie in U .

D (q) ⊂ U or D (q) ∩U = ∅. We have ∆A = 0 in the former case, and ∆A = AreaD (q) = π in the
latter case. We now focus on the case k > 0.

Let E in
q = {e ∩ D (q) | e ∈ Eq } be the portions of edges in Eq clipped within D (q). E in

q can be
computed, in O (k) time, by adapting the procedure for computing Iq . We note that the relative
interiors of edges in E in

q are pairwise disjoint. Let A be the arrangement of E in
q ∪ ∂D (q) within

D (q), i.e., the decomposition ofD (q) induced by these arcs (see [20] for further details on geometric
arrangements). Let A ∇ be the vertical decomposition of A , i.e., the re"nement of A obtained by
drawing vertical rays in both +y- and −y-directions from each vertex of A or a point of vertical
tangency on an arc of E in

q , within D (q), until it meets another edge of A . A ∇ partitions the faces
of A into pseudo-trapezoids, each bounded by at most two vertical segments and by two circular
arcs at top and bottom. See Figure 9. Each pseudo-trapezoid τ ∈ A ∇ is either contained in U or
disjoint from U . Let F be the set of faces of A ∇ that do not lie in U . Then ∆A =

∑
τ ∈F Areaτ .

A ∇ can be computed inO (k logk) time using a sweep-line algorithm [10] (recall thatk > 0 here).
The sweep-line algorithm can be adapted in a straight-forward manner to compute F within the
same time bound. For each face τ ∈ F , we compute Areaτ in O (1) time and then add them up to
compute ∆A. Finally, we set AreaU new = AreaU + ∆A. After having computed the edges ofU new,
the total time spent in computing AreaU new is O (k logk).

Putting everything together, we obtain the following.
Theorem 3.1. (i) The boundary edges of the union of a set of n unit discs can be maintained under

insertion in a data structure of O (n) size so that a new disc can be inserted in O ((k + 1) log2 n) time,
where k is the total number of changes on the boundary of the union.

(ii) The same data structure can also report the area of the union after the insertion of each disc in
O ((k +1) log2 n) time, where k , as above, is the total number of changes on the boundary of the union.

3.2 Edge Intersection Data Structure
Let C be an axis-parallel square with diameter 1, representing a grid cell of G, and let EC be the
set of edges of ∂U that lie inC . We describe a dynamic data structure ΨC to report the edges of EC
intersected by a unit disc. It can quickly insert or delete an edge of EC .

Let "1 and "2 be the lines that support the diagonals of C . The lines "1 and "2 divide the plane
into four quadrants: the top quadrant Qt , the right quadrant Qr , the bottom quadrant Qb , and the
left quadrantQl . We partition the edges of EC into four sets Et , Er , Eb , and El , depending on which
quadrant Qt , Qr , Qb , or Ql contains the center of the respective disc; see Figure 10. If a disc center

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:16 P. K. Agarwal et al.

Fig. 10. An example of ∂U ∩C with four types of edges Et (red), Eb (blue), El (magenta), and Er (green).

lies on a dividing line "1, "2, then the tie is broken in favor of Et or of Eb (in that order). We focus
on the edges of Et ; analogous statements hold also for the other three edge sets.4 Before describing
the data structure, we prove a few key properties of Et .

Lemma 3.2. Each edge in Et is a portion of a lower semi-circle.

Proof. Let e ∈ Et , and let c ∈ Qt be the center of the unit disc whose boundary contains e .
Since the cell C has unit diameter, c lies outside C and above the line that supports the top side of
C . Thus, e , which lies inside C , is a portion of the open lower semi-circle of D (c). !

Lemma 3.3. The x-projections of the (relative interiors of the) edges in Et are pairwise disjoint.

Proof. Let ei and ej be two distinct edges of Et . Suppose that there is a vertical line " that
intersects both ei and ej , in points pi and pj , respectively. For concreteness, assume that pi lies
below pj . By Lemma 3.2, the point pi lies on the lower semi-circle of a disc Di whose center is
above the upper side ofC . This means that the vertical segment that connects pi to the upper side
of C is fully contained in Di . But then, pj cannot be on the boundary ∂U of U . Thus, the vertical
line " cannot exist, and the x-projections of the edges in Et have pairwise disjoint interiors. !

By Lemma 3.3, the edges in Et can be ordered from left to right, according to their x-projections.
We number them as e1, . . . , em , according to this order.

For an edge ei ∈ Et , let Ki = ei ⊕ D (0) be the Minkowski sum of ei with the unit disc centered
at the origin, i.e.,

Ki = {a ∈ R2 | ∃b ∈ ei ‖a − b‖ ≤ 1}.
It is easily seen that a unit disc D (q) intersects ei if and only if q ∈ Ki . See Figure 11. We divide
∂Ki at its leftmost and rightmost points li , ri into an upper arc γ+i and a lower arc γ−i . We say that
a point x lies above (resp. below) an arc if the vertical ray emanating from x in +y-direction (resp.
−y-direction) intersects the arc. The following observation is straightforward:

4The algorithm in De Berg et al. [9] also draws a uniform grid so the diameter of each grid cell is 1. For each grid cell, they
build data structures for the unit discs whose centers lie in that cell. In contrast, for each grid cell, we build data structures
on union arcs that lie in that cell.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:17

Fig. 11. An arc ei of Et with endpoints p and q, its Minkowski sum with a unit disc, and its upper (blue)
and lower arcs (red) γ+ and γ−, respectively. A unit disc D (q) intersects ei if and only if q lies above γ−i and
below γ+i .

Lemma 3.4. (i) The unit disc D (q) intersects ei if and only if q lies below γ+i and above γ−i .
(ii) Let c be the center of the unit disc whose boundary contains ei , and let p and q be the endpoints

of ei . The upper arc γ+i is the upper envelope of the upper semi-circles of D (p) and D (q). The
lower arc γ−i consists of portions of the lower semi-circles of D (p), D (q), and the disc of radius
2 centered at c .

Set Γ+ = {γ+i | ei ∈ Et } and Γ− = {γ−i | ei ∈ Et }. The following lemma states three crucial
properties of the arcs in Γ+ and Γ−.

Lemma 3.5. The arcs in Γ+ and Γ− have the following properties.

(P1) Let ei , ej ∈ Et be two distinct edges with i < j. Then the lower arcs γ−i and γ−j intersect and
cross in exactly one point, and γ−i (resp. γ−j) appears on L ({γ−i ,γ−j }) only before (resp. after)
their intersection point.

(P2) Let ei , ej , and eh be three edges in Et with i < j < h, and let q ∈ R2. If q lies below γ+i and
γ+h , then q also lies below γ+j . Furthermore, the upper semi-circle of the disc centered at every
endpoint of an edge in Et appears on the upper envelope U (Γ+), and the order of arcs on U (Γ+)
corresponds to the x-order of the endpoints of the edges of Et .

(P3) For every vertical line ", all intersection points of " with the arcs in Γ− lie below all intersection
points of " with the arcs in Γ+.

Lemma 3.5 is proved in Section 3.3. In the remainder of this section, we describe the edge-
intersection data structure and the query procedure assuming Lemma 3.5 holds.

The data structure ΨC for Et consists of two parts: ∆+ and ∆− that dynamically maintain the
sets Γ+ and Γ−, respectively. The purpose of ∆+ (resp. ∆−) is to e!ciently answer the following
query: given a point q ∈ R2, report the upper (resp. lower) arcs that are above (resp. below) q.
Additionally, ∆+ has the property that it returns the answer incrementally, one arc at a time on
demand. Both ∆+,∆− support insertion/deletion of arcs.
Answering an edge-intersection query. With ∆+,∆− at our disposal, the edges of Et that inter-
sect a unit disc D (q) are reported as follows. By Lemma 3.4 (i), we wish to report the edges ei such

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:18 P. K. Agarwal et al.

Fig. 12. Illustration of the search procedure. There are four pairs of upper and lower arcs (each pair has a
distinct color), and two query points q1 and q2 lying on a vertical line "; ξ is the intersection point of " with
U (Γ−). The point q1 (resp. q2) lies above (resp. below) ξ , so it su#ices to search in Γ+ (resp. Γ−).

that γ−i lies below q and γ+i lies above q. Here is the basic idea: Let " be the vertical line passing
through q. Assume, for the sake of exposition, that we know the intersection point ξ between "
and the upper envelope of Γ−. If q lies above ξ (e.g., q1 in Figure 12), then q lies above all the lower
arcs that cross ". Therefore it su!ces to search the structure ∆+ to report the upper arcs γ+i that
lie above q—in this case, ei intersects D (q) if and only if γ+i lies above q. On the other hand, if the
center q coincides with or lies below ξ (e.g., q2 in Figure 12), then by property (P3), q lies below all
upper arcs that " intersects. We therefore search ∆− to report the lower arcs that lie below q—in
this case, ei intersects D (q) if and only if γ−i lies below q.

Unfortunately, we cannot easily maintain U (Γ−) and thus cannot compute the point ξ . Hence,
the query procedure is a bit more involved: We use ∆+ to return the upper arcs that lie above q
incrementally, one by one, on demand. For each upper arc γ+i reported by ∆+, we check in O (1)
time whether ei intersects D (q). If so, we add ei to the output list and ask ∆+ to report the next
upper arc that lies above q. If all the upper arcs above q turn out to be induced by edges of Et that
intersect D (q), we output this list of edges as the desired set Eq and stop. Indeed, if all the reported
edges from the query of ∆+ intersect D (q), then we can conclude that q is above ξ and this is the
complete answer.

On the other hand, if we detect that the edge ej ∈ Et corresponding to an upper arc γ+j reported
by ∆+ does not intersect D (q), then by Lemma 3.4 (i), q lies below γ−j and thus below ξ . As argued
above, in this case, we will obtain the full result by querying ∆−. We note that an edge of Et
intersecting D (q) is reported at most twice.

As we will see below, if |Eq | = k then searching in ∆−,∆+ takesO (logn+k log2 n) andO (logn+k)
time, respectively. Hence, the total query time is O (logn + k log2 n). We now describe the data
structures ∆− and ∆+.
Maintaining the lower arcs. We extend each lower arc γ−i into a bi-in"nite curve γ −i by adding
a ray of very large positive (resp. negative) slope in the +y-direction from its right (resp. left)
endpoint; see Figure 13. We choose the same slope for all rays and their values are chosen in"nitely
large so that any query point q lies below the extended curve if and only if it lies below the original
lower arc γ−i . (We should regard this extension as symbolic in the sense that we do not choose any
speci"c value of the slope of these rays.) Let Γ

− denote the resulting set of bi-in"nite curves.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:19

Fig. 13. (a) Extending each lower arc to a bi-infinite curve. (b) Illustration of the proof of Lemma 3.6.

Lemma 3.6. Γ
−

is a set of pseudo-lines. Furthermore, L (Γ
−

) is the same as L (Γ−) except the two
extension rays that appear as unbounded segments at each end of the lower envelope.

Proof. Suppose there are two extended curves γ −i ,γ −j ∈ Γ
−, with i < j, that intersect at two

points σ1,σ2. By (P1), one of these intersection points, say, σ1, is the intersection point of γ−i and
γ−j , and γ−j appears below γ−i to the right of σ1. Suppose σ2 lies to the right of σ1; see Figure 13.
Then σ2 is the intersection point of γ−i and the extension ray from the right endpoint of γ−j . But
this would imply that the lower arc γ−i extends beyond the right endpoint of the arc γ−j and thus
γ−i appears on L ({γ−i ,γ−j }) to the right of σ1, contradicting (P1).

A similar contradiction arises if σ2 lies to the left of σ1. Hence, γ −i ,γ −j intersect in exactly one
point and the two arcs cross at that point, which implies that Γ

− is a set of pseudo-lines. The
second part of the lemma now follows from the fact that every pair of arcs in Γ− intersects. !

In view of Lemma 3.6, we can use the data structure described in Section 2 to report the lower
arcs that lie below a query point q ∈ R2. Recall that this data structure uses linear space, answers a
ray-intersection query inO (logn+k log2 n) time, where k is the output size, and handles insertion/
deletion of a curve in O (log2 n) time.

Remark. After we insert a new unit disc, we update the set Et , which leads to deleting or inserting
many lower arcs. In order to ensure that Property (P1) holds at all times, we "rst delete all the old
lower arcs from ∆− and then insert the new ones.
Maintaining the upper arcs. Let P = 〈p1 <x p2 <x · · · <x · · · <x pr 〉 be the sequence of
endpoints of the edges of Et . To keep the structure simple, if two edges of Et meet at a single point,
we keep only one copy of that point, but for each point pi , we remember the upper arcs incident
to pi , from left to right. For a point pi ∈ P , let s+ (pi) denote the upper semi-circle of D (pi). By
Lemma 3.4 (ii), U (Γ+) is the upper envelope of {s+ (pi) | 1 ≤ i ≤ r }, and by property (P2), each
point in P contributes an arc si to U (Γ+).

The arcs s+ (pi) can be extended to pseudo-lines (similar to lower arcs), and we can construct
the pseudo-line data structure of Section 2 to maintain U (Γ+). Here, we describe a simpler and
slightly more e!cient data structure. The data structure ∆+ is a red-black tree. The ith leftmost
leaf stores the point pi of P . For a leaf v , we will use pv to denote the point stored at v . Each leaf
also stores pointers rn and ln to the right and the left neighboring leaf, respectively, if they exist.
Each internal node stores a pointer lml to the leftmost leaf of its right subtree. Each subtree of ∆+

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:20 P. K. Agarwal et al.

corresponds to a contiguous portion of U (Γ+). For each pi , we store the centers of the (at most
two) unit discs whose boundaries contain pi .

Query. Let q be a query point, and let " be the vertical line passing through q. Recall that the
structure ∆+ reports the upper arcs lying above a query point q incrementally, one arc at a time.
Here is the outline of the query procedure: We "rst "nd the arc sq of U (Γ+) intersected by ". If q
lies above sq , thenq does not lie below any upper arc in Γ+, and we stop. So assume thatq lies below
sq . Let pi ∈ P be the point such that s+ (pi) contains sq . We report the upper arc(s) corresponding
to pi . Next, we traverse the sequence P starting at pi , going both to the right and to the left, and
reporting the upper arcs corresponding to these points until we "nd a point pj (in each direction)
such that q lies above s+ (pj). By (P2), if s+ (pj) for j > i (resp. j < i) lies below q then so does s+ (ph)
for all h > j (resp. h < j), so we can stop. We now describe how we perform these steps e!ciently
using ∆+.

By following a path from the root, we "rst "nd the leafv storing the pointpv such that the sq lies
on s+ (pv). The search down the tree is carried out as follows: Suppose we are at an internal node
u. We compute the breakpoint σu of U (Γ+) that separates the portions of U (Γ+) represented by
the left and right subtrees of u: We use the pointer lml(u) to obtainw , the leftmost leaf in the right
subtree of u. Using ln(w), we "nd the predecessor of pw . The breakpoint σu is the intersection
point of s+ (pw) and s+ (pln(w)). If x (σu) ≤ x (q), we visit the right child of u; otherwise we visit the
left child of u.

Once we reach the leaf v such that the arc sq of U (Γ+) lies on s+ (pv), we traverse the leaves
of ∆+, starting at v and going both to the right and to the left, say, we "rst go right and then left.
Suppose we are going right and we are at a leaf u. When we are asked to report an upper arc, we
test whether q lies below s+ (pu). If the answer is yes, then we report the (at most two) arcs of Γ+

corresponding to pu , and move to the next leaf in the right direction. If u was the rightmost leaf
or q lies above s+ (pu), we start visiting left starting from ln(v) and do the same as above. Once
we visited the leftmost leaf u or detected that q lies above s+ (pu), then we stop and declare that all
upper arcs of Γ+ lying above q have been reported.

The correctness of the query procedure follows from property (P2) of upper arcs. If the procedure
reported a total of k arcs, then the time taken by the procedure is O (logn + k).

Update. An upper arc may be inserted into or deleted from ∆+ in O (logn) time by simply
removing the endpoints of the deleted arc and inserting the endpoints of the new arc into ∆+

and updating the auxiliary information stored at the node of ∆+.
Building similar data structures for Eb ,El , and Er and putting everything together, we obtain

the main result of this subsection.
Lemma 3.7. The edges of ∂U lying inside a grid cell of G can be maintained in a linear-size data

structure so that all edges intersecting a unit disc can be reported inO ((k + 1) log2 n) time, where k is
the number of reported arcs. The data structure can be updated inO (log2 n) time per insertion/deletion.

3.3 Proof of Lemma 3.5
We now prove properties (P1)–(P3) of upper and lower arcs stated in Lemma 3.5. We begin with
Property (P1).

Lemma 3.8. Let ei , ej ∈ Et be two distinct edges with i < j. Then the lower arcs γ−i and γ−j inter-
sect in exactly one point and the two arcs cross at that point. Furthermore, γ−i (resp. γ−j) appears on
L ({γ−i ,γ−j }) only before (resp. after) their intersection point.

Proof. First, we observe that if ei and ej have a common endpoint q, then q does not contribute
to L ({γ−i ,γ−j }), i.e., the unit disc D (q) lies strictly above L ({γ−i ,γ−j }). Indeed, assume for a

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:21

Fig. 14. Illustration of the proof that γ−i and γ−j intersect exactly once (see Lemma 3.8).

contradiction that L ({γ−i ,γ−j }) contains a point r with distance 1 from q. Then, the unit disc D (r)
is tangent to ei and ej at the point q. However, this is impossible, since ei and ej belong to the
lower semi-circles of two distinct unit discs.

Next, notice that the arcs γ−i and γ−j intersect at least once since any two points in the grid cell
C have distance at most 1. Suppose p−1 is a point on γ−j and p−2 a point on γ−i , with p−1 <x p−2 ; refer
to Figure 14. Assume for a contradiction that both p−1 and p−2 appear on L ({γ−i ,γ−j }). Consider the
upper semi-circle σ+1 of D (p−1) and the upper semi-circle σ+2 of D (p−2). The upper semi-circle σ+1
touches ej in a point pj , and the upper semi-circle σ+2 touches ∂D (p−1) in a point pi . Since p1,p2 lie
on the lower semicircles of ∂D (pj), ∂D (pi), respectively, and ‖pi − pj ‖ ≤ 1, the upper semi-circles
σ+1 and σ+2 intersect exactly once, and since p−1 <x p−2 , the semi-circle σ+1 appears to the left of σ+2
on the upper envelope U of σ+1 and σ+2 . The point pi must be on U , since otherwise p−1 would
be inside D (pi), which contradicts the fact that p−1 belongs to L ({γ−i ,γ−j }); and similarly for pj .
This implies that pi ≥x pj . Now, recall that the common endpoint of ei and ej (if it exists) does
not contribute to L ({γ−i ,γ−j }), so we actually have pi >x pj , which contradicts the assumption
i < j. Thus, it follows that γ−i and γ−j intersect exactly once and that γ−i appears before γ−j on
L ({γ−i ,γ−j }). Furthermore, this argument also implies that γ−i lies above γ−j after their intersection
point and vice-versa. We can conclude that γ−i (resp., γ−j) appears on L ({γ−i ,γ−j }) only before
(resp., after) their intersection point. !

Lemma 3.9. Let ei , ej , and eh , for i < j < h, be three edges in Et , and let q ∈ R2 be a point. If q is
below γ+i and γ+h then q is also below γ+j . Furthermore, for every endpoint p of every edge of Et , the
upper semi-circle of D (p) appears on U (Γ+). The x-order of the arcs on U (Γ+) corresponds to the
x-order of the endpoints of the edges of Et .

Proof. Let p1, p2, and p3 be points on three distinct edges of Et , with p1 <x p2 <x p3; see
Figure 15. Let σ+1 , σ+2 , and σ+3 be the upper semi-circles of D (p1), D (p2), and D (p3), respectively.
Let p+12 and p+23 be the intersection points σ+1 ∩ σ+2 and σ+2 ∩ σ+3 , respectively. Note that these
intersection points exist, since the distance between any two points in the grid cell C is at most
1. Since p1 <x p2, we have that σ+1 appears to the left of σ+2 on U ({σ+1 ,σ+2 }). Let c be the center
of the circle containing the edge e of Et that contains p2. The point c is on σ+2 , since p2 belongs to

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:22 P. K. Agarwal et al.

Fig. 15. Illustration of the proof of Lemma 3.9.

a lower semi-circle of radius 1. Moreover, c is not below σ+1 , since otherwise we would have that
p1 is in the interior of D (c), contradicting the fact that p1 lies on an edge of Et . This means that
p+12 ≤x c . The same argument implies that p+23 ≥x c and therefore p+12 ≤x p+23. This in turn implies
that the intersection point, p+13, between σ+1 and σ+3 is below or on σ+2 and therefore every point
that lies below σ+1 and σ+3 also lies below σ+2 .

The lemma readily follows from the above observations. !

Next, we show that for any two distinct edges ei , ej ∈ Et , the upper arc γ+i and the lower arc γ−j
are disjoint. Furthermore, we show that γ+i is above γ−j , hence proving Property (P3).

Lemma 3.10. Let ei and ej be two distinct edges in Et , and let " be a vertical line. If " intersects with
γ+i and γ−j in the points p and q, respectively, then, p >y q.

Proof. First, we show that γ−i and γ+j do not intersect. Suppose for a contradiction that γ−i
and γ+j intersect at a point a. This means that a is one of the intersection points of ∂D (pi) and
∂D (pj), where pi ∈ ei and pj ∈ ej . Then a ≤y pi and a ≥y pj , since a lies on γ−i and on γ+j . The
same argument applies to the second intersection point, b, between ∂D (pi) and ∂D (pj). Assume
that a <x b, which implies that a and b belong to Ql and Qr , respectively. Let c j be the center
point of ej . The point c j lies on the upper semi-circle of D (pj), and it belongs to Qt which means
that c j ∈ D (pi). This means that pi ∈ D (c j) which contradicts the fact that ei belongs to Et ; see
Figure 16.

Since γ+i and γ−j do not intersect, it must be that that in the common x-interval of γ+i and γ−j ,
the arc γ+i is strictly above or below γ−j . The edge ei is above γ−j and therefore γ+i is above γ−j . !

4 INTERSECTION SEARCHING OF UNIT ARCS WITH A UNIT DISC
In this section, we address the following intersection-searching problem: Preprocess a collection
C of circular arcs of unit radius into a data structure so that for a query point x ∈ R2, the arcs
in C intersecting the unit disc D (x) can be reported e!ciently. By splitting each arc of C into
at most three arcs, we can ensure that each arc of C lies in the lower or upper semi-circle of its
supporting disc. We assume for simplicity that every arc in C belongs to the lower semi-circle of
its supporting disc. A similar data structure can be constructed for arcs lying in upper semi-circles.

Let e ∈ C be a unit-radius circular arc whose center is at c , and let p1 and p2 be its endpoints. A
unit disc D (x) intersects e if and only if e ⊕ D (0), the Minkowski sum of e with a unit disc at the
origin, contains the center x . Let z = D (p1) ∪ D (p2), and let D+ (c) be the disc of radius 2 centered
at c ; z divides D+ (c) into three regions (see Figure 17): (i) z+, the portion of D+ (c) \ z above z, (ii)

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:23

Fig. 16. Illustration of the proof that γ−i and γ+j do not intersect (Lemma 3.10).

Fig. 17. (On the le") Partition of D+ (c) into three regions: z+, z and z−. (On the right) Illustration of
Lemma 4.1.

z itself, and (iii) z−, the portion of D+ (c) \ z below z. It can be veri"ed that e ⊕ D (0) = z ∪ z−. We
give an alternate characterization of z ∪ z−, which will help in developing the data structure.

Let " be a line that passes through the tangent points, p ′1 and p ′2, of D (p1) and D (p2) with D+ (c),
respectively, and let "− be the halfplane below ". Set L(e) = D+ (c) ∩ "−.

Lemma 4.1. If ∂D (p1) and ∂D (p2) intersect at two points (one of which is always c), then " passes
through q = (∂D (p1) ∩ ∂D (p2)) \ {c}. Otherwise, c ∈ ".

Proof. Assume that q exists. The quadrilateral (c,p1,q,p2) is a rhombus, since all its edges have
length 1. Let α be the angle ∠p1qp2 and β be the angle ∠cp1q. The angle ∠qp1p ′1 is equal to α , since
the segment (c,p ′1) is a diameter of D (p1). The angle ∠p1qp ′1 is equal to β

2 , since 3p1qp ′1 is an
isosceles triangle. The same arguments apply to the angle ∠p2qp ′2, implying that the angle ∠p ′1qp ′2
is equal to π .

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:24 P. K. Agarwal et al.

Assume now that q does not exist. Then the segment (p1,p2) is a diameter of D (c). The segment
(c,p ′1) is a diameter of D (p1). The segment (p1,p2) coincides with (c,p ′1) at the segment (c,p1). The
same argument applies to the segment (c,p ′2), implying that the angle ∠p ′1qp ′2 is equal to π . !

The following corollary summarizes the criteria for the intersection of a unit circular arc with
a unit disc.

Corollary 4.2. Let e be a circular arc in C with endpoints p1 and p2 and center c . Then z ∪ z− =
z∪L(e). Furthermore, e intersects a unit discD (x) if and only if at least one of the following conditions
is satis!ed: (i) x ∈ D (p1) (or p1 ∈ D (x)), (ii) x ∈ D (p2) (or p2 ∈ D (x)), and (iii) x ∈ L(e).

We thus construct three separate data structures. The "rst data structure preprocesses the left
endpoints of the arcs in C for unit-disc range searching, the second data structure preprocesses the
right endpoints of arcs in C for unit-disc range searching, and the third data structure preprocesses
L = {L(e) | e ∈ C } for inverse range searching, i.e., reporting all regions in L that contain a query
point. Using standard disk range-searching data structures (see e.g., [2, 3]), we can build these three
data structures so that each of them takes O (n) space and answers a query in O (n1/2+ε + k) time,
where k is the output size. Furthermore, these data structures can handle insertions/deletions in
O (log2 n) time using the lazy-partial-rebuilding technique [26]. We conclude the following:

Theorem 4.3. Let C be a set of n unit-circle arcs in R2. Then, C can be preprocessed into a data
structure of linear size so that for a query unit disc D, all arcs of C intersecting D can be reported
in O (n1/2+ε + k) time, where ε is an arbitrarily small constant and k is the output size. Furthermore,
the data structure can be updated under insertion/deletion of a unit-circle arc in O (log2 n) amortized
time.

5 CONCLUSION
In this paper, we presented linear-size dynamic data structures for maintaining the union of unit
discs under insertions and for maintaining the lower envelope of pseudo-lines in the plane under
both insertions and deletions. We also presented a linear-size structure for storing a set of circular
arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that
all input arcs intersecting a query unit disc can be reported quickly. We conclude by mentioning
a few open problems:

(i) Can the boundary of the union of unit discs be maintained in an output-sensitive manner
when we allow both insertions and deletions of discs? The challenge in extending our data
structure to handle the deletion of a unit disc D is to quickly report the new edges of U that
lie in the interior of D.

(ii) Can our data structure be extended to maintain the boundary of the union of discs of arbi-
trary radii? Although the union boundary still has linear size, many of the structure proper-
ties of the union used by our data structure no longer hold, e.g., two upper (or lower) arcs
may intersect at two points and they cannot be treated as pseudo-lines.

(iii) Can the area of the union of unit discs be maintained under insertions and deletions in
sublinear time per update? As mentioned in the introduction, it is not clear how to extend
Chan’s data structure [15] for maintaining the volume of the convex hull of a set of points
in R3 to our setting.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:25

APPENDIX
A AN EXAMPLE RUN OF THE ALGORITHM IN SECTION 2.3
In this appendix we illustrate the algorithm, described in Section 2.3, for computing the intersection
point of the lower envelopes of two sets of pseudo-lines such that all lines in one set are smaller
than all in the other set.

Fig. A.1. Two sets of pseudo-lines and their lower envelopes: (i) the blue and green pseudo-lines, (ii) the red
and orange pseudo-lines. The blue and the red dots represent the vertices on the lower envelopes.

Table A.1. The Progress of the Search for the Example
in Figure A.2

Step u v uStack vStack Procedure case
1 4 4 ∅ ∅ Case 3
2 6 2 4 4 Case 2→ Case 2
3 6 6 4 ∅ Case 3
4 7 5 4, 6 6 Case 1→ Case 3
5 7* 5* 4, 6 6, 5 Case 3→ End

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

26:26 P. K. Agarwal et al.

Fig. A.2. Top: the two lower envelopes Ll and Lr for the pseudo-lines in Figure A.1. Bo!om: the correspond-
ing trees Λl and Λr . The labels u (i) and v (i) indicate the position of the pointers u and v at step i , during
the search.

ACKNOWLEDGMENTS
We thank Haim Kaplan and Micha Sharir for helpful discussions, and reviewers for their useful
comments.

REFERENCES
[1] Pankaj K. Agarwal. 2017. Range searching. In Handbook of Discrete and Computational Geometry (3rd ed.), Jacob E.

Goodman, Joseph O’Rourke, and Csaba Tóth (Eds.). CRC Press, Chapter 40, 1057–1092.
[2] Pankaj K. Agarwal. 2017. Simplex range searching and its variants: A review. In A Journey Through Discrete Mathe-

matics: A Tribute to Jiří Matoušek, Martin Loebl, Jaroslev Nešetřil, and Robin Thomas (Eds.). Springer-Verlag, 1–30.
[3] Pankaj K. Agarwal and Jiří Matoušek. 1994. On range searching with semialgebraic sets. Discrete Comput. Geom. 11,

4 (1994), 393–418.
[4] Pankaj K. Agarwal and Jiří Matoušek. 1995. Dynamic half-space range reporting and its applications. Algorithmica 13,

4 (1995), 325–345.
[5] Pankaj K. Agarwal, Marco Pellegrini, and Micha Sharir. 1993. Counting circular arc intersections. SIAM J. Comput. 22,

4 (1993), 778–793.
[6] Pankaj K. Agarwal, Marc J. van Kreveld, and Mark H. Overmars. 1993. Intersection queries in curved objects. J. Algo-

rithms 15, 2 (1993), 229–266.
[7] Frand Aurenhammer. 1988. Improved algorithms for discs and balls using power diagrams. J. Algorithms 9, 2 (1988),

151–161. https://doi.org/10.1016/0196-6774(88)90035-1
[8] Jon Louis Bentley and James B. Saxe. 1980. Decomposable searching problems I: Static-to-dynamic transformation.

J. Algorithms 1, 4 (1980), 301–358.
[9] Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard J. Woeginger. 2021. Fine-grained complexity analysis of

two classic TSP variants. ACM Transactions on Algorithms 17, 1 (2021), 5:1–5:29.
[10] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. 2008. Computational Geometry: Algorithms

and Applications, 3rd edition. Springer.
[11] Gerth Stølting Brodal and Riko Jacob. 2000. Dynamic planar convex hull with optimal query time. In Proc. 7th Scandi-

navian Workshop on Algorithm Theory (SWAT). 57–70.
[12] Gerth Stølting Brodal and Riko Jacob. 2002. Dynamic planar convex hull. In Proc. 43rd Annu. IEEE Sympos. Found.

Comput. Sci. (FOCS). 617–626.
[13] Timothy M. Chan. 2001. Dynamic planar convex hull operations in near-logarithmaic amortized time. J. ACM 48,

1 (2001), 1–12.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

https://doi.org/10.1016/0196-6774(88)90035-1

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead 26:27

[14] Timothy M. Chan. 2010. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor queries. J. ACM 57,
3 (2010), 16:1–16:15.

[15] Timothy M. Chan. 2020. Dynamic geometric data structures via shallow cuttings. Discrete Comput. Geom. 64, 4 (2020),
1235–1252. https://doi.org/10.1007/s00454-020-00229-5

[16] Ravid Cohen, Yossi Yovel, and Dan Halperin. 2019. Sensory Regimes of E2ective Distributed Searching without Lead-
ers. (2019). http://arxiv.org/abs/1904.02895.

[17] Stefan Felsner and Jacob E. Goodman. 2017. Pseudoline arrangements. In Handbook of Discrete and Computational
Geometry (3rd ed.), Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth (Eds.). CRC Press, Chapter 5, 83–109.

[18] B. Grünbaum. 1972. Arrangements and Spreads. Conference Board of the Mathematical Sciences.
[19] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. 1994. On intersection searching problems involving curved

objects. In Proc. 4th Scandinavian Workshop on Algorithm Theory (SWAT). 183–194.
[20] Dan Halperin and Micha Sharir. 2017. Arrangements. In Handbook of Discrete and Computational Geometry (3rd ed.),

Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth (Eds.). CRC Press, Chapter 28, 1343–1376.
[21] John Hershberger and Subhash Suri. 1991. Finding tailored partitions. J. Algorithms 12, 3 (1991), 431–463.
[22] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. 2020. Dynamic planar Voronoi dia-

grams for general distance functions and their algorithmic applications. Discrete Comput. Geom. 64, 3 (2020), 838–904.
https://doi.org/10.1007/s00454-020-00243-7

[23] Haim Kaplan, Robert Endre Tarjan, and Kostas Tsioutsiouliklis. 2001. Faster kinetic heaps and their use in broadcast
scheduling. In Proc. 12th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA). 836–844.

[24] Klara Kedem, Ron Livne, János Pach, and Micha Sharir. 1986. On the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete Comput. Geom. 1 (1986), 59–70.

[25] Chih-Hung Liu. 2020. Nearly optimal planar k nearest neighbors queries under general distance functions. In Proc.
31st Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA). 2842–2859. https://doi.org/10.1137/1.9781611975994.173

[26] Mark H. Overmars. 1983. The Design of Dynamic Data Structures. Lecture Notes in Computer Science, Vol. 156.
Springer-Verlag.

[27] Mark H. Overmars and Jan van Leeuwen. 1981. Maintenance of con"gurations in the plane. J. Comput. System Sci. 23,
2 (1981), 166–204.

[28] Franco P. Preparata. 1979. An optimal real-time algorithm for planar convex hulls. Commun. ACM 22, 7 (1979), 402–
405.

[29] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry. An Introduction. Springer-Verlag.
[30] Paul G. Spirakis. 1983. Very Fast Algorithms for the Area of the Union of Many Circles. Technical Report 98. Courant

Institute, New York University.
[31] Robert Endre Tarjan. 1983. Data Structures and Network Algorithms. SIAM.

Received February 2021; revised December 2021; accepted March 2022

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 26. Publication date: October 2022.

https://doi.org/10.1007/s00454-020-00229-5
http://arxiv.org/abs/1904.02895
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1137/1.9781611975994.173

