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Abstract

We consider the problem of reconfiguring a set of physical objects into a desired target
configuration, a typical (sub)task in robotics and automation, arising in product assem-
bly, packaging, stocking store shelves, and more. In this paper we address a variant,
which we call space-aware reconfiguration, where the goal is to minimize the phys-
ical space needed for the reconfiguration, while obeying constraints on the allowable
collision-free motions of the objects. Since for given start and target configurations,
reconfiguration may be impossible, we translate the entire target configuration rigidly
into a location that admits a valid sequence of moves, where each object moves in
turn just once, along a straight line, from its starting to its target location, so that the
overall physical space required by the start, all intermediate, and target configurations
for all the objects is minimized. We investigate two variants of space-aware recon-
figuration for the often examined setting of n unit discs in the plane, depending on
whether the discs are distinguishable (labeled) or indistinguishable (unlabeled). For
the labeled case, we propose a representation of size O (n*) of the space of all feasible
initial rigid translations, and use it to find, in 0(n6) time, a shortest valid translation,
or one that minimizes the enclosing disc or axis-aligned rectangle of both the start
and target configurations. For the significantly harder unlabeled case, we show that
for almost every direction, there exists a translation in this direction that makes the
problem feasible. We use this to devise heuristic solutions, where we optimize the
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translation under stricter notions of feasibility. We present an implementation of such
a heuristic, which solves unlabeled instances with hundreds of discs in seconds.

Keywords Motion planning - Disc reconfiguration - Smallest enclosing disc

Mathematics Subject Classification 68Q25 - 68U05 - 68W40

1 Introduction

Consider a set of n objects in the plane or in three-dimensional space and two config-
urations of these objects, a start configuration S and a target configuration 7', where in
each configuration the objects are pairwise interior disjoint. A typical reconfiguration
problem asks to efficiently move the objects from S to T, subject to constraints on the
allowable motions, the most notable of which is that all the moves be collision-free.

In the specific problem studied in this paper, we are given n unit discs in the plane
and we wish to move them from some start configuration to a target configuration.
A valid move is a translation of one disc in a fixed direction from one placement to
another without colliding with the other discs. The goal in earlier works on this problem
was to minimize the number of moves, and the goal in the present study is to find an
initial rigid translation of the discs of 7', that minimizes the size of the physical space
needed for the reconfiguration, under the constraint that each disc moves exactly once.
This problem, like most problems in the domain of reconfiguration, comes in (at least)
two flavors: labeled and unlabeled. In the labeled version, each object has a unique
label, which marks its start placement and its unique target placement. In the unlabeled
version the objects are indistinguishable, and we do not care which object finally gets
to any specific target placement, as long as all the target placements are occupied at
the end of the process; in particular all the objects are isothetic (as are the unit discs in
our study). For the unlabeled case, without an initial shift of the target configuration,
Abellanas et al. [1] have shown that 2n — 1 moves are always sufficient. Dumitrescu
and Jiang [12] have shown that [5n/3] — 1 moves are sometimes necessary, and that
finding the minimum number of moves is NP-hard. For the labeled case, Abellanas et
al. [1] have shown that 2n moves are always sufficient and sometimes necessary. These
are several examples of reconfiguration problems that have been studied in discrete
and computational geometry; see, e.g., [4, 5, 8, 11]. Varying the type of objects, the
ambient space, the constraints on the motion and the optimization criteria, we get a
wide range of problems, many of which are hard.

Similar problems arise in robotics. For example, such problems arise when a robot
needs to arrange products on a shelf in a store, or when a robot needs to move objects
around in order to access a specific product that needs to be picked up; see, e.g., [21,
22, 26]. In robotics, these problems are often referred to as object rearrangement
problems. In this paper, though, we will stick to the term reconfiguration, which is
also in common use.

Another prominent example from robotics and automation is the assembly planning
problem (see, e.g., [20]), in which the target configuration of the objects comprises
their positions in the desired product. The goal of assembly planning is to design a
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sequence of motions that will bring the parts together to form the desired product,
and we want this sequence to be (collision-free and) optimal according to various
criteria [14, 15]. Yet another area where variants of the reconfiguration problem arise
is in motion planning for a swarm of robots, where the goal is to minimize the total
execution time of parallel collision-free motions of the robots; see, e.g., the recent
work by Demaine et al. [10].

We address a certain criterion, which, to the best of our knowledge, has hardly been
studied earlier: minimizing the physical space needed to carry out the desired assembly
or reconfiguration. Abellanas et al. [1] did study a similar set of problems, in which the
discs are placed inside different types of confined spaces. Their technique shows how
to minimize the number of moves, given a prescribed size for a bounding rectangle of
S and 7. We adopt a different approach. We consider T a rigid configuration that can
be placed anywhere in the workspace, and the goal is to find a placement for T for
which there exists a feasible (collision-free) sequence of moves, where each disc moves
exactly once along the straight segment that connects its start placement and to its target
placement. The region occupied by the discs at their start configuration S and at their
target configuration 7 in its translated location, together with the space required for
the reconfiguration motion of all the objects, should be minimal according to various
possible criteria. In this paper we consider the setup where we allow T only to be
translated. We call this problem space-aware reconfiguration; we study it in this paper
for the case of unit discs in the plane. Rigidly translating 7 into a different location in
the plane ensures that the target objects maintain the same positional relations between
them. This is a desired property in some reconfiguration problems, such as assembly
planning. In this approach we do not care where the position of the final product is,
as long as the space required for the reconfiguration is minimized. Moreover, as we
will see, the variant where only translations of 7" are allowed is already quite difficult
to solve. Tackling the general case, where we allow an arbitrary initial rigid motion
of T, is left as a challenging open problem.

We say that a disc is placed at a point p if its center is placed at p. To avoid confusion
between placeholder positions for discs (start or target) and the actual discs placed at
these positions, we define a valid configuration P to be a finite set of points, such that
every pair of points in the set lie at distance > 2 from one another, that is, we can
place a unit disc at each point of P, so that the discs are pairwise interior disjoint. For
any point p, we denote by D, (p) the open disc centered at p with radius r. If r is not
specified, then D(p) is a unit disc (» = 1). For any valid configuration P, we denote
D(P)={D(p)| pe P}

Let S and T be two valid configurations, of n points each, where S represents the
centers of the start positions, at which n unit discs are initially placed, and T represents
the centers of the target positions. We look for a sequence of n moves that bring the
discs from S to T. A move consists of a single translation of one disc from D(S) to
a position in 7, such that the disc does not collide with any other (stationary) disc
on its way—mneither with a disc in a start position, which has not been moved yet,
nor with a disc that has already been moved to a target position. Each disc has to
perform exactly one such move. We call such a sequence of moves an itinerary. We
say that an itinerary is valid if all of its moves are collision-free. We denote such an
Unlabeled Single Translation instance of the problem by UST(S, T'), and a Labeled
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Fig.1 Aninfeasible instance for the stationary unlabeled (or labeled) version. The discs of D(S) are drawn
empty while the discs of D(T') are drawn shaded

Single Translation instance by LST(S, T, M), where M is the matching between S
and T induced by the labels; that is, each position in S is matched by M to the position
in T with the same label. We call an instance of the problem feasible if it has a valid
(collision-free) itinerary.

It is easy to see (consider Fig. 1) that even in the unlabeled version, the stationary
version of this problem, in which T cannot be translated, may not have a solution. If
the shaded discs in the figure were placed higher (so that their centers were collinear
with the center of the top empty disc, say), the problem would have been feasible. We
therefore look for a vector v for which a valid itinerary exists from S to T + ¥ (i.e.,
T translated by v).! In the labeled case, the translated targets retain their labels after
the translation. That is, if target position i was at the point #;, the point #; + v is now
the ith target position. Observe that the initial location of T (when v = (0, 0)) is now
meaningless. From now on, we assume that the input location of T is placed to overlap
with S as much as possible, e.g., S and T share their centers of mass or the centers of
their smallest enclosing discs. A placement of this kind is ideal for the space-aware
paradigm used in this work (although in practice it may not be valid).

In the space-aware variant studied in this paper, we look for a translation v such that
(a) S and T + v admit a valid itinerary, and (b) some measure of ‘nearness’ of 7 + 9 to
S is minimized. One typical variant of (b) is to require that some prescribed bounding
shape (e.g., an axis-aligned rectangle or a disc), of D(S) together with D(T + ),
have minimum area. We denote these space-aware variants as SA-UST(S, T), and
SA-LST(S, T, M), for the unlabeled and labeled variants, respectively (ignoring in
these notations the specific optimization criterion to be used). We note again that our
space-aware variant differs from the previous studies in that we insist on executing only
n moves, one move per disc. This model raises several problems: The first challenge
is to construct the space of valid translations (those that have a valid itinerary), or, in
the unlabeled case, to construct a sufficiently large subset thereof. Second, we want
to find a valid translation that minimizes some measure of optimality.

To the best of our knowledge, it has not been proven that deciding the existence of
a valid itinerary for the unlabeled version (assuming 7' is stationary, and allowing one
move per disc) is NP-hard, but similar reconfiguration problems, such as those called
OMC [1] and U-TRANS-RP [12], have been shown to be NP-hard. Both problems
seek to find a valid itinerary of translations of discs from a start configuration to a
target configuration. Specifically, in OMC (one move per coin), each of the discs is

! The translations from T to T + ¥ do not count as moves. We often refer to it as the initial translation.
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given a subset of possible final targets, and can move (as in our model) exactly once.
In U-TRANS-RP, the goal is to decide whether a valid itinerary of at most k moves
exists, for the unlabeled variant. The NP-hardness of U-TRANS-RP is shown for the
case where k is smaller than n (some discs are already at the target locations, and some
may move more than once). Although at the moment we do not know whether it is
possible to reduce any of these problems to our setting, we believe that the unlabeled
version of our setting is indeed NP-hard.

There is a large body of related research on algorithms for multi-robot motion
planning and multi-agent path finding; for recent reviews, see, e.g., [17] and [29].
Notice however that in contrast to these more general problems, the focus of our work
here (as in [1, 4, 5, 11, 12]) is on the special case where every object is transferred
by a very small number (typically one or two) of simple atomic moves (e.g., each
is a translation along a segment). Therefore the planning techniques are of a rather
different nature.

Contribution. The unlabeled case appears to be (and most likely is) much harder
than the labeled case. We therefore begin by studying the labeled case. We present,
in Sect. 2, an algorithm for the labeled case that runs in O (n®) time, for construct-
ing the space of all valid initial translations, which has combinatorial complexity
0(n4). We then show, in Sect. 3, how to find a valid translation that minimizes
some measure of space-aware optimality. Specifically, we consider three such mea-
sures: (i) minimizing the length of the translation vector v, relative to some ideal
placement, as discussed above; (ii) minimizing the area of the axis-aligned bounding
rectangle of D(S) U D(T + v); (iii) minimizing the area of the smallest enclosing
disc of D(S) U D(T + v). We refer to the corresponding variants of the problem
as SA-LST5(S, T, M), SA-LSTapsr(S, T, M), and SA-LSTsep(S, T', M). All the
variants that we study can be solved by algorithms that run in O (n%) time. (The min-
imization steps of the algorithms are actually faster; this bound is the cost of the first
step, of constructing the space of all valid translations.)

The unlabeled case appears, as already noted, to be much harder. We first show, in
Sect. 4, that we can find a valid translation in almost any prescribed direction,? if we
translate T sufficiently far away (see Sect. 4 for a more precise statement). Although
this is a useful result, it suffers from two problems: (i) It does not produce the space
of all valid translations (which is likely a very difficult task). (ii) It is contrary to our
goal of achieving space-aware optimality.

We study in Sect. 5.1 practical heuristic techniques that aim to find shorter valid
translations, at the cost of further restricting the notion of validity. That is, the solutions
that we obtain are valid, but we may be missing other, more optimal valid solu-
tions. Under our strictest notion of validity, in which we only consider translations
in some fixed direction, subject to a particular order of the moves of the discs, we
present an algorithm for finding an optimal translation for SA-LST3(S, T', M) and
SA-LSTapgr(S, T, M) in O (n? log n) time, which deteriorates as we consider other
more relaxed and related (albeit still rather restrictive) notions of validity, such as

2 The only exceptional directions are those of common inner tangents of pairs of tangent discs. If no
tangency between the discs is allowed, all directions admit a valid translation.
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choosing a fixed direction, deriving from it some fixed itinerary, but then allowing the
translation to be arbitrary.

In Sect. 5.2, we consider the more involved problem of finding the optimal transla-
tion for SA-LSTsep (S, T, M) under the same strictest notion of validity. We show that
the problem can be solved in O (nza (n) log n) time, where «(n) denotes the extremely
slowly growing inverse Ackermann function.

We also show, in Sect. 5.3, that we can always find a valid translation v for which
the radius of the smallest enclosing disc of D(S) U D(T + v) is at most O (n) times
the sum of the radii of the smallest enclosing discs of D(S) and of D(T) (clearly, the
sum of the radii is asymptotically optimal). The factor O (n) reduces to a constant if
every pair of discs of D(S), and every pair of discs of D(T') are separated by at least
some distance ¢ (where the above constant depends on ¢).

Finally, in Sect. 5.4, we present experimental results of an implementation of the
heuristic algorithm, for the most restrictive notion of validity as considered above, and
show that it performs well in practice. The algorithm solves unlabeled instances with
hundreds of discs, of several different input types, in seconds.

We conclude the paper with Sect. 6, where we pose several open problems for
further research. In the arXiv version of the paper [18, Appendix A] we also review
animations of some of the concepts and techniques developed in this paper, using the
Geogebra software [23].

Related Work. Reconfiguration problems stand at the base of many algorithmic prob-
lems and have many different applications. Abellanas et al. [ 1] consider it as a measure
for the distance between various configurations, similarly to measuring the difference
between two strings of text by their edit distance. Some works [1, 12] consider the
reconfiguration problem as a simplified version of multi-robot motion planning, such
that the robots need to move, one at a time, from the start configuration to the target
configuration, and there are no other obstacles but the robots themselves. Another
application of the reconfiguration problem is to move large objects in a warehouse
[10, 12]—one is clearly interested in minimizing the number of moves each object has
to perform. From a different perspective, reconfiguration problems (mainly on graphs)
can abstract combinatorial puzzle games, for example the 15-puzzle [24].

The typical workspace of reconfiguration problems is either the plane, three-
dimensional space or discrete domains like (infinite) graphs and grids. The simplest,
and most widely studied, kind of moving objects are discs (coins), but other objects
can be found in the literature such as segments [5, 16], rectangles or squares [13, 16],
general convex objects [12], pseudodiscs [4], and chips on a graph [8].

Most papers consider three versions of the discs reconfiguration problem, similar
to the versions discussed above:

Unlabeled version where the discs in both configurations are congruent (or isothetic)
and indistinguishable, so each start disc can occupy any target disc.

Labeled version where the discs are congruent but distinguishable by labels, so that
each start disc has to occupy the target disc with the corresponding label.

Arbitrary radii version where the discs are not congruent. A start disc may occupy
any of the target disc locations of its size.

@ Springer



Discrete & Computational Geometry (2023) 69:1157-1194 1163

Table 1 Summary of the lower and upper bounds for the different models and versions. A similar table can
be found in [11]

Model Version Lower bound Upper bound

Lifting Unlabeled n+Qn!/?) 4] n+ 023 (4]
Labeled/Arbitrary radii |5n/3] [4] 9n/5 [4]

Sliding Unlabeled (14 1/15)n — O(/n) [5] 3n/2 + O(y/nlogn) [5]
Labeled [5n/3] 2n
Arbitrary radii 2n — o(n) [5] 2n [5]

Translating Unlabeled [5n/3] —1[12] 2n —1[1]
Labeled/Arbitrary radii 2n [1] 2n [1]

In the earlier works, three different models have been considered for the reconfiguration
problem of discs in the plane. In each of the models, one must construct a valid
itinerary (also called a schedule or a motion plan), i.e., a collision-free sequence of
moves, moving the discs one-by-one, until every disc reaches one of its possible target
locations. The term “move” differs between the models.

The models are (i) the lifting model, in which each move consists of lifting a disc
(in the third dimension, say), and placing it at a free position, (ii) the sliding model,
in which the discs slide along continuous curves, and (iii) the translating model, in
which the discs move along straight-line trajectories.

Most of the papers focus on the combinatorial aspects of the problem, namely
obtaining lower and upper bounds on the minimum number of moves in a valid
itinerary in each model. For the lower bound, an input instance (construction) for
the reconfiguration problem is provided such that every valid itinerary has to have at
least some number of moves to perform the reconfiguration task. For the upper bound,
an algorithm is presented that outputs a valid itinerary with a bounded number of
moves for every input instance.

The results for the lower and upper bounds in each model and version are summa-
rized in Table 1. The unreferenced entries are easy exercises.

Other models were also considered in the literature, each with its own restrictions.
Demaine et al. [9], for example, consider a move to be a placement of a disc in a grid,
such that it has to touch at least two other discs. In another work by Demaine et al. [8],
a move consists of shifting one chip from its current vertex to a different vertex on a
graph, such that any intermediate vertex on the path is not occupied by other chips.

Many more details concerning previous related work, including the results men-
tioned in the table, but also other results, such as hardness of several related problems,
are given in the arXiv version of this paper [18].

2 Labeled Version: Analysis of the Translation Plane

In this section we consider the labeled version LST of the problem. First, in Sect. 2.1,
we formally define the problem. We then present an algorithm that determines whether
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there is a valid itinerary for a fixed initial translation v, and computes such an itinerary
if it exists. We then compute, in Sect. 2.2, the region Q of all initial translations for
which there exists a valid itinerary. Finally, we present the data structure D, that is
used to query Q efficiently, in preparation for the optimization algorithms in Sect. 3.

2.1 Preliminary Analysis

We are given two valid configurations S and T of n points each, and a one-to-one
matching M between the positions of § and those of 7', which is the set of pairs
{(s, M(s)) | s € S}, where s and M (s) share the same label, for each s € S. Our goal
is to find a translation v € R? such that there is a valid collision-free itinerary of 1 unit
discs from S to T + v with respect to the matching M. That is, the goal is to define an
ordering on the elements of M, denoted by (s1, M (s1)), (s2, M(s2)), ..., (Sn, M(sn)),
so that, for each i =1, ..., n in this order, we can translate the disc placed at s; to the
position M (s;) + v, so that it does not collide with any still unmoved discs, placed
at sjy1, ..., Sy, nor with any of the already translated discs, placed at M(s1) + v,
co M(si—p) + 0.

We call a translation v a valid translation if it yields at least one valid itinerary. In
the labeled version, we show how to compute the set of all valid translations, whose
combinatorial complexity is O(n*),in O(n6) time. We then present, in Sect. 3, three
algorithms, each of which finds a valid translation v that minimizes a different measure
of proximity between S and T + 9, as previewed in the introduction.

We first address the subproblem in which ¥ is fixed and our goal is to order M
so as to obtain a valid itinerary, if at all possible. Let A = (s, M (s)) be a pair in the
matching. For convenience, we denote s and M (s) by AS and A7, respectively. Define
the hippodrome of two unit discs D, D’ to be the convex hull of their union. Observe
that the hippodrome is exactly the area that a unit disc will cover while moving from
D to D' along a straight trajectory. Define Hy(A) to be the hippodrome of D(AS) and
D(AT + ¥). Denote by k; the overall number of intersecting pairs of hippodromes
{H3(A), H;(B)}, forall A # B € M. See Fig. 2 for an illustration.

Theorem 2.1 (Abellanasetal. [1]) Let S and T be two valid configurations of n points
each, and let v be a fixed translation. Let M : S — T be a bijection between the two
configurations. Then one can compute, in O(nlogn + ky) time, a valid itinerary for
S and T + v with respect to M, if one exists.

We review the proof of the theorem, adapting it to our notations, and exploit later the
ingredients of the analysis for the general problem (where we allow T to be translated).
The constraints that the positions of the discs impose on the problem are as follows.
We say that a pair A = (A5, AT) (in M) has to perform a motion (from D(A%) to
D(AT + v)) before another pair B, for a given translation v, if in any ordering IT of
M that yields a valid itinerary, the index of A in IT is smaller than the index of B.
In other words, for any two pairs A, B € M, A has to perform a motion before B if
either the disc D(AS) blocks the movement of D(B?%) to the position BT + v, or the
disc D(BT + ) blocks the movement of D(A%) to the position A7 + v. Formally, we
have shown:
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AS

|

AT+

Fig. 2 The hippodromes Hj for four pairs A, B, C, D € M and some fixed v. Notice that even though
H;(A) N Hy(B) # ), there is no restriction that the motion of A must precede or succeed the motion of B.
Such restrictions do exist for many other pairs, such as B and C (C has to perform a motion before B)

Lemma 2.2 Givenpairs A, B € M and afixed translation v, A has to perform amotion
before B (with respect to ) if and only if at least one of the following conditions hold:

(i) D(AS) N Hz(B) # 9,
(i) D(BT +v) N Hz(A) # 0.

We next create a digraph whose vertices are the pairs of M, and whose edges are all
the ordered pairs (A, B) e M 2 for A # B, that satisfy (i) or (ii). Borrowing a similar
notion from assembly planning [20], we call the graph, for a fixed translation v, the
translation blocking graph (TBG), and denote it as G. Denote the number of edges
in G; as myg, and observe that my < kg. Indeed, for every edge (A, B) € Gj the
hippodromes H;(A) and H;(B) intersect, as is easily verified, but not every pair of
intersecting hippodromes necessarily induce an edge; see the pairs A, B in Fig. 2. As
proved in [1], and as is easy to verify, the subproblem for a fixed v is feasible if and
only if Gy is acyclic.

The circular arcs of a hippodrome can be split into two arcs, each of which is x-
monotone. This allows us to construct G in O (n log n + k3) time, by the sophisticated
sweep-line algorithm of Balaban [2], which applies to any collection of well-behaved
x-monotone arcs in the plane. (A standard sweeping algorithm would take O (n log n+
kg logn) time.) Checking whether Gy is acyclic, and, if so, performing topological
sorting on G, takes O (n+mjy) time. By definition, any topological order of the vertices
of G, that is of M, defines a valid itinerary. If G has cycles, no valid itinerary exists
for v.

We now consider the translation plane R2, each of whose points corresponds to
a translation vector v. We say that a point v in the translation plane is valid, if the
corresponding translation vector is valid, i.e., admits a valid itinerary from S to T + v.
We say that a set of points (in the translation plane) is valid, if each of its points is
valid. Our goal is to construct the region Q of all the valid points (translations), and
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=
\

AS\
\ . \
Fig.3 An infeasible instance for the labeled version: no valid itinerary exists between S and T + v, for any
translation v

to partition Q into maximal connected cells, so that all translations in the same cell
have the same TBG. Thus, for each cell, either all its points are valid (with the same
set of common valid itineraries) or all its points are invalid.

Remark For some instances, Q is empty, as in the scenario depicted in Fig. 3. In that
case, our algorithms will report that no valid translation exists. We also remark that
tangency is not a necessary characteristic of infeasible instances, as we will shortly
show.

We first fix two pairs A, B € M, and consider the region V4p, which is the locus
of those v for which the (directed) edge AB is present in Gy. We can write Vap =
Vfl]; U Vf;, where Vxl); (resp., Vf;) is the locus of all ¥ for which condition (i)

(resp., (i1)) in Lemma 2.2 holds. We thus have

Vilh = (i € R? | D(A%) N Hy(B) # 0,
V® = (5 e R? | D(BT +3) N Hy(A) # 0.

We call V/gl; (resp., Vft);) the vippodrome of (A, B) of the first (resp., second) type.

To construct Vf(‘ll)g, we proceed as follows; see Fig. 4. For given pairs A, B € M,
consider the two inner tangent lines, 7~ (B%, AS) and t7(B%, AS), to D(B®) and
D(AS), and assume that they are both directed from BS to AS, so that BY lies to
the right of 7= (BS, A%) and to the left of 7T(BS5, AS), and A lies to the left of
77 (BS, AS) and to the right of tH(BS, AS). Let W(AS, BY) denote the wedge whose
apex is at AS and whose rays are parallel to (and directed in the same direction as)
1= (B5, A%) and tH(BS, AS). Denote the origin as 0. We then have the following
representation.

Lemma 2.3

V) = WA, BS) @ Da(0) — BT = W(A®, BS) — BT) @ D»(0),

(1)
V= -W(B", AT) @ D1(0) + A5 = ~W(B”, A7) — A%) @ D1(0).
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Fig.4 The vippodrome Vﬁ&lt)?’ which is the region to the right of the dashed curve in the translation plane.

The wedge W(AS, BS) is colored in blue. The vippodrome is obtained by first expanding W(AS, BS)
by D;(0), and then by shifting by the vector —BT (in orange)

Proof V/gll)g is the locus of all translations v at which D(A) intersects H;(B). Equiv-

alently, V/gll); is the locus of all translations ¥ at which D, (A%) intersects the segment

e; = (BS, BT + v). The boundary of Vixlz; thus consists of all translations v for which

either ey is tangent to D2(AS) or BT + v touches Dy (A%). That is, 8]/5411)3 consists of
all translations v for which BT + ¥ lies on the boundary of W(AS, BS) @ D (0), from
which the claim easily follows. The claim for Vfl)g follows by a symmetric argument,
switching between S and T and reversing the direction of the translation. O

Note that the boundary of a vippodrome Vgll)g is the smooth concatenation of two rays
and a circular arc, where the rays are parallel to the rays of W(AS, BS), and where
the arc is an arc of the disc D2(AS — BT), of central angle w — 6, where 6 is the

angle of W(AS, BS). The same holds for Vfl)g, with the same disc Dy(AS — BT).

Hence the boundaries of V/gll); and of VIE‘Z; (more precisely, the circular portions of
these boundaries) might overlap. See Fig. 5 for an illustration.

Using vippodromes, we can give, as promised, a scenario of a start and target con-
figurations that admit no valid translation even though the discs of each configuration
do not touch each other (as was the case in Fig. 3). Such a scenario is depicted in
Fig. 6.

It is clear that, unless they partially overlap, any pair of vippodrome boundaries
intersect in a constant number of points. The following lemma gives a sharp estimate
on the number of intersections.

Lemma 24 Foranyi, j € {1,2}andanypairs A # B, C # D € M, the vippodromes
boundaries BVX 1)9 s ng l)) intersect at most four times.
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AS

BT

Fig.5 The vippodromes Vl(qlg and Vﬁ;, colored in blue and orange, respectively. The arc « is the overlap

portion of the two vippodrome boundaries

Fig. 6 A scenario where no valid translation exists. Left: The start and target configurations. Right: All

the 12 vippodromes are drawn (in the translation plane). Observe that the vippodromes Vf(‘zl)g and Vl(gl/)‘

coincide (their boundaries are drawn in orange), and so does every other similar pair of vippodromes for
the other pairs of positions. Each point in the translation plane is covered by at least two vippodromes of
contradicting constraints (e.g., for points inside the orange vippodrome, A has to perform a motion before
B and vice versa), and so every translation is invalid (its TBG contains a 2-cycle)

Proof Consider for simplicity two vippodromes of the form V/glt); and Vgl)), and the
corresponding wedges U = W(AS, BS) — BT and V. = W(C?, D5) — DT . Observe
that 9U and 9V intersect in at most four points, because each boundary consists of
two rays. Let Z = U N V; it is a possibly unbounded convex polygon with at most
four edges. Let V/ = V \ Z.Itis easy to see that at most one vertex of Z can lie in the
interior of V. If there is such a vertex then V' is connected but not convex. If there is
no such vertex, then V'’ consists of at most two connected components (it can also be
empty), and each component is convex. See Fig. 7 for an illustration.

Let g be an intersection point of SVS; and BV(ClL)); see Fig. 8. By (1), ¢ lies at
distance 2 from dU and 9V . Let p be the point on 9V nearest to g. It is easily checked
that p lies on 9V’, so it lies either on V| or on dV,. Since V| and U are interior-
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(0 (d)

Fig.7 Some of the possible intersections of U and V, with the intersection Z highlighted. In all cases, V’
consists either of one non-convex connected component, see (b) and (d), or of at most two convex connected
components, see (a) and (c)

Fig. 8 Two vippodrome boundaries BV;% and 8V(C1 l)) marked by dashed curves. V/ and U’ = U \ Z are

colored in blue and orange, respectively. Note that p cannot lie on 9Z

disjoint and convex, it follows from a result by Kedem et al. [25] that the boundaries
of their expansions by D, (0, 0) intersect at most twice (unless they partially overlap).
The same holds for V, and U, implying that 8V£‘ll); and 8V(Cll)) intersect in at most four

points, as claimed. O
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2.2 Constructing the Set of Valid Translations

Let V! = {9V} |i € {1,2}), A # B € M} and observe that [V?| = 2n(n — 1).
Define the vippodrome arrangement A(V?), induced by M, to be the arrangement
formed by the curves of V7 it is an arrangement of 0 (n?) rays and circular arcs.
Assuming general position, the only overlaps between features of the arrangement are
between circular arcs of the two vippodromes of the same ordered pair A, B (see Fig. 5
again). To avoid these overlaps, we partition each of these arcs into two subarcs at
the point where the overlap begins or ends (so each circle d D>(AS — BT) contributes
at most three arcs to the arrangement). It is worth mentioning that it is fairly easy to
handle instances that are not in general position, where degeneracies may appear, such
as collinear rays, or overlapping circular arcs, of two unrelated vippodromes. In the
rest of the paper, we assume general position of pairs of unrelated vippodromes, to
simplify the presentation. Nevertheless, degeneracies can also be handled by suitable
(and standard) extensions of our techniques. We do, however, allow tangency between
discs, which will require some special consideration.

We now observe that any pair of features (rays and circular arcs) of the (modified)
arrangement intersect at most twice. Hence the number of vertices in A(V?) is at most
O (n*), and so the overall complexity of the arrangement is also O (n*). Consider a face
f of A(V?). We showed that for every ordered pair of pairs3 (A,B) € M?, A # B,
the edge AB is either in every graph G, for v € £, or in none of these graphs. Hence
all the graphs Gy, for v € f, are identical, and we denote this common graph as G .

We can construct A(V?) either in O (n* log n) time using a plane-sweep procedure,
or in O(n%i4(n?)) time,* using the incremental procedure described by Sharir and
Agarwal in [28, Theorem 6.21, p. 172].

After A(V?) has been constructed, we traverse its faces and construct the graphs G 7
over all faces f, noting that when we cross from a face f to an adjacent face f’, the
graph changes by the insertion or deletion of a single edge.> We then test each graph
G y for acyclicity. The union of (the closure of) all the faces f for which G  is acyclic
is the desired region Q of valid translations. For each face f that participates in Q,
we run a linear-time procedure for topological sorting of G ¢, and the order that we
obtain® defines a valid itinerary for all translations v € f. The running time, for a
fixed face f,is O(n + my), where m s is the number of edges of G y. In the worst
case we have m y = O (n?), so the overall cost of the algorithm is O(nﬁ).

We obtain the following main result of this section.

Theorem 2.5 Given a labeled instance LST(S, T, M) of the reconfiguration problem,
with a valid start configuration S, a valid target configuration T, of n points each, and

3 Recallthat A = (AS, AT)and B = (BS, BT); thuseachof A and Bisa pair of start and target placements
of a disc.

4 Here As(m) denotes the maximum length of a Davenport—Schinzel sequence of order s on m symbols;
see [28] for details.

5 As already mentioned, although we assume general position, circular arcs of vippodromes may still
overlap (see Fig. 5). Notice, however, that the overlapping arcs bound vippodromes that induce the same
constraint on the itinerary and hence crossing the overlapping arcs still incurs insertion or deletion of a
single edge to the graph.

6 In general, G ¢ can have exponentially many topological orders, each of which yields a valid itinerary.
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a matching M between S and T, we can compute the region of all valid translations
for T, whose combinatorial complexity is O(n*), in O (n®) time.

Remark Clearly, Theorem 2.5 implies that we can find a valid translation, if one exists,
within the same time bound O (n°).

Remark The bottleneck that determines the efficiency of the algorithm in Theorem 2.5
is the cost of testing for acyclicity of each of the graphs G ¢ from scratch. It would be
interesting to see whether dynamic algorithms for maintaining acyclicity in a directed
graph, under insertions and deletions of edges (namely, fully dynamic cycle detection
algorithms), could be applicable when we traverse the faces of A(V?). Such algorithms
can be found in a work by Pearce and Kelly [27], but they do not seem to improve the
asymptotic running time of our algorithm. The only efficient algorithms that we are
aware of, those with low total update time, only support insertions of edges but not
deletions; see [6, 7]. If a dynamic algorithm of this kind, that can handle both insertions
and deletions on a prespecified sequence of operations, were available, with sublinear
update time for each insertion and deletion, it would clearly improve the total running
time of our procedure of finding Q, as well as the space-aware optimizations that are
presented in the next section.

In the algorithms of Sect. 3, we need to minimize some function of v along the
boundaries of the vippodromes (edges of .A(V?)). Since we require the translations
to be valid, we are only interested in the valid intervals along the boundaries of the
vippodromes, namely the edges of Q. Moreover, for each vippodrome boundary, we
will need to search, for any query point and direction along the boundary, for the
nearest valid interval to the point in this direction. Instead of iterating over each edge
of A(V?) or of Q (which might take overall O (n*) time), we construct, as a by-product
of the construction of @, an auxiliary data structure Dy (y), whose performance is
given in the following lemma.

Lemma 2.6 We can construct, for each vippodrome boundary vy, a “ray-shooting”
data structure Do(y), so that each query to Dg(y) is a triplet (p1,d, p2), where
P1 € v isastarting point, d is a direction, which can be clockwise or counterclockwise
along y, and py € y is a limit point beyond which the search stops, and which can
be oo if the interval along y is unbounded. The answer to the query is the interval
of y N Q nearest to p1 along y in the direction d, which starts before we reach p»,
or else is an indication that no such interval exists. If p1 € Q, it is reported as the
beginning of the desired interval. D (y) can be constructed in O (n?) time, and each
query takes O (logn) time.

Proof We construct D (y) as a balanced binary search tree of the endpoints of the
arcs of y N Q. It can be trivially built in O(nz) time while constructing Q, requires
0(n?) storage (as there are O (n?) other vippodrome boundaries that can intersect y)
and answers a query in O (logn) time. O

Let Dy denote the collection of the structures Do(y ), over all vippodrome bound-
aries y. Do can be constructed in O (n*) time while constructing @, and its overall
complexity is O (n*).
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3 Labeled Version: Space-Aware Optimization

In Sects. 3.1, 3.2, and 3.3, we study the following three respective variants of the
optimization criteria for the SA-LST problem:

(i) SA-LST3(S, T, M), for minimizing the length of the translation vector v.
(i1) SA-LSTapsr(S, T, M), for minimizing the area of the axis-aligned bounding rect-
angle of D(S) U D(T + ), denoted as AABR(D(S) U D(T + v)).
(iii) SA-LSTsep(S, T', M), for minimizing the area of the smallest enclosing disc of
D(S) U D(T + v), denoted as SED(D(S) U D(T + 1)).

Our algorithms begin by computing Q and Dy, in O (n®) time, using the algorithm of
the previous section. They then use D to solve the respective optimization problems,
in time that is substantially smaller—it is 0 (n? log n) for problems (i) and (ii), and
O (n” log n) for problem (iii). The results and bounds presented in this section cater
only to the optimization phases.

3.1 Minimizing the Translation Vector

We define SA-LST (S, T, M) as the following problem: Given an LST instance,
of two configurations S and 7', and a matching M between S and T, find a valid
translation v € R?, with respect to M, such that |v| is minimized.’

Theorem 3.1 Once Q and Do have been computed, SA-LST(S, T, M) can be
solved in O(n? log n) time.

Proof Let v (v) = |v| and observe that it has a single global minimum at the origin
o and no other local minima. It thus follows that v attains its minimum over any
connected region K at a point on 0K, unless 0 € K. We claim that for every valid
face f of A(V?), 3 f is also valid. This is a straightforward consequence of the fact
that we allow the translating disc to touch other discs (without penetrating into them).
Thus, a valid translation of minimum length ¥ is either o or a point (in the valid
portion) of some vippodrome boundary. This suggests the following procedure. We
check whether o is a valid translation in O (n?) time, according to Theorem 2.1. If
so, we report it as the desired valid translation of minimum length. If not, iterate over
all the O (n?) vippodrome boundaries. For each such boundary y, we find the point
v € y that minimizes v (V) (i.e., that is nearest to the origin), as follows.

Itis easily checked that /|, has only O (1) points of local extrema along y. (There
is an exceptional situation when o is the center of the circle containing the circular arc
of y. In this case we use a single arbitrary point on this boundary as a local extremum.)
We split y at these points into O(1) subarcs, and 1 is monotone along each subarc.

Let y be one of these subarcs, let p; denote its endpoint at which | is minimal,
let p> be its other endpoint (possibly 00), and let d denote the direction from p; to p;
(along y). We search along y, using Lemma 2.6, for the nearest point to p; thatisin Q.

7 Recall that we assume that at translation & = 0 the centers of mass of S and T + ¢ = T, or the centers of
their smallest enclosing discs, coincide. This makes the shortest valid translation a plausible criterion for
space-aware optimization.
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Repeating this to each subarc of each vippodrome boundary, we get, in O (n*logn)
time, O (n?) candidate translations, and return the one with the smallest value of v/, if
it exists. Hence, after having computed Q and Dy, SA-LST (S, T, M) can be solved
in O(n? log n) time, as asserted. ]

3.2 Minimizing the Area of the Axis-Aligned Bounding Rectangle

We define SA-LSTapsr(S, T, M) as the following problem: Given an LST instance,
of two configurations S and 7', and a matching M between S and T, find a valid
translation v € R?, with respect to M, such that the area of AABR(D(S) U D(T + 7))
is minimized.

Theorem 3.2 Once Q and Dy have been computed, SA-LSTapgr(S, T, M) can be
solved in O (n* logn) time.

Proof Denote AABR(D(S)) by Ry and AABR(D(T)) by R;. Note that AABR(D(S) U
D(T + 7)) is the axis-aligned bounding rectangle of R; U (R + v). Write R| =
las, bs] x [cs,ds] and Ry = [ar, br] X [cT, dr]. Then, putting v = (x, y), we have
that AABR(D(S) U D(T + v)) is the axis-aligned bounding rectangle of

([as, bs] x [cs,dsD U ([x +ar,x +br] x [y +cr,y +dr]),
so it is the rectangle [a*(x), b*(x)] x [c*(¥), d*(y)], where

a*(x) = min {as, x + ar}, b*(x) = max {bg, x + b},

c*(y) = min {cs, y + ¢}, d*(y) = max {ds, y +dr}.
Let ¢(¥) = @(x, y) denote the area of AABR(D(S) U D(T + v)). That is,

p(x,y) = (b (x) —a* () (d*(y) — * ().

The function b*(x) — a™(x) is piecewise linear in x, with the two breakpoints ag —ar,
bs — br. Similarly, the function d*(y) — c*(y) is piecewise linear in y, with the two
breakpoints cs — c7, ds — dr (the breakpoints of either function may appear in any
order). Each function is constant over the interval between the breakpoints, has slope
—1 to the left of the interval, and slope +1 to the right of the interval.

Consider the vertical lines through the breakpoints of 5*(x) — a*(x) and the hor-
izontal lines through the breakpoints of d*(y) — ¢*(y), and denote the set of these
four lines by L. L partitions the plane into nine rectangular (bounded and unbounded)
regions; see Fig. 9. The function ¢(x, y) is constant over the center region Ry, is a
linear function in x over the regions to the left and to the right of Ry, is a linear function
in y over the regions above and below Ry, and is a hyperbolic paraboloid, of the form
+(x — a)(y — B), over each of the other four regions. Observe that ¢ is continuous.
Since none of the expressions for ¢ has any local minimum in the interior of its region
(except for Ry where the expression is constant), it thus easily follows that, for any
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Fig. 9 An example of AABR(D(S)) (in blue), AABR(D(T)) (in orange) and AABR(D(T + 9)) (in light
orange) for some v € Ry. The lines of L partition the translation plane into nine regions, in each of which
¢ behaves differently, as indicated. The boundaries of AABR(D(S) U D(T)) and AABR(D(S) U D(T + 1))
are depicted by red and green dashed contours, respectively. Observe that AABR(D(S) U D(T + v)) is of
minimal area

connected region K, ¢ attains its minimum over K at a point on d K, unless Ry is fully
contained in K, in which case the minimum is attained at all the translations in Ry.
Hence, we proceed exactly as in the previous problem. We check whether an arbi-
trary point in Ry is valid. If so, report it as the desired valid translation that minimizes
@ (V). If not, it means that R is not contained in any cell of Q, and so it suffices to
check for the minimum on the vippodrome boundaries. We iterate over the O (n?)
vippodrome boundaries, and for each such boundary y, we minimize ¢ over y, by
applying a variant of the procedure presented for the case of the shortest valid transla-
tion, in O (log n) time. (Here too, ignoring validity, y contains only O (1) local extrema
of ¢ restricted to y, and we split y at these points, as in the preceding case. Note that
y may cross some lines of L. In such a case, we split y further into O (1) subarcs,
each fully contained in one of the rectangular regions of the partition, and minimize
@ separately over each subarc.) We output the translation v that minimizes ¢(9), over
all the translations that we have obtained. Hence, after having computed Q and Dy,
SA-LSTapgr(S, T, M) can be solved in O (n? log n) time, as asserted. m]

3.3 Minimizing the Area of the Smallest Enclosing Disc

The problem here, denoted as SA-LSTsgp(S, T, M), is to find a valid translation
v (with respect to M) that minimizes the radius of the smallest enclosing disc® of
S U (T + v). We denote the smallest enclosing disc of a set P as SED(P), and its
radius as r(P). A similar problem was studied by Banik et al. [3], who characterize
the locus of the center of the smallest enclosing disc and its radius for a static set of

8 This is indeed an equivalent formulation to the one given earlier: The smallest enclosing disc of D(S) U
D(T + ) has the same center as the disc that we find, and its radius is larger by 1. In contrast to other
sections in the paper, here we consider the SED to be a closed disc.
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points and only one mobile point, moving along a straight line. Here, we study a more
intricate problem, as our mobile points are more numerous and are not moving along
a line, but are moving rigidly according to the valid translations of the region Q. In
other words, we want to optimize SED(S U (T + v)) only over translations v € Q.
(Note that without this constraint the problem is trivial: simply translate T by v for
which the centers of SED(S) and SED(T + v) coincide, and output the larger of the
two discs.)

Theorem 3.3 Once Q and Dy have been computed, SA-LSTsep(S, T, M) can be
solved in O (n° logn) time.

Proof If we fix v, the smallest enclosing disc D = SED(S U (T + v)) passes through
either two points, in which case D is the diametral disc formed by the two points,
or three points (or more, which we handle as degenerate instances of the first two
options). We conclude that d D passes through either:

(i) two diametral points or three points that belong to the same set (S or T + v); or
(i1) two points that belong to one set and a third point that belongs to the other set; or
(iii) two diametral points, each belonging to a different set.

For each case, we collect valid translations which are candidates to realize the smallest
enclosing disc under the specific requirements of that case. We then output v as the
valid translation realizing the smallest SED(S U (T + v)) among the candidates.

Case (i) is the simplest. If D is determined by points of the same set, say S, then
SED(S) = SED(SU(T +7)). Indeed, this is trivial by the uniqueness of the SED. By the
symmetry of the setup, assume without loss of generality that 7(S) > r(T). It is then
sufficient to find one valid translation v such that T + v C SED(S). Let £ be the center
of SED(S). In order for SED(S) to contain T + v for some translation v, £ has to lie in
the intersection of all the discs of radius r(S) centered at the points of T + v. Observe
that this region of translations, denoted as V (£), is the intersection (), (SED(S) —1).
We thus construct V (§) and overlay it with the valid portion Q of the arrangement
A(V?) of the vippodrome boundaries. It is then easy to find, in time proportional to
the complexity of the overlay, a valid translation v such that T + v C SED(S), namely
a translation in Q N V (§), if one exists. The intersection of n congruent discs can be
computed in O (nlogn) time, but we can also afford to do it using a less efficient and
simpler algorithm. Since the complexity of the overlay is still O (n*) (its new vertices
are intersections of edges of V(&) with edges of AV, and there are only o3
such intersections), this takes O (n*) time. Observe that in this case only, if a valid
translation was found, we do not need to consider other candidates from different
cases, as SED(S) is clearly the smallest possible disc we are looking for.

Next, consider case (ii), where the boundary of the smallest enclosing disc passes
through two points of S and one point of T + v. (Handling the case where it passes
through two points of 7 + v and one point of S is fully symmetric.) Any such pair
of points of § must define an edge of the farthest-neighbor Voronoi diagram FVD(S)
of S, and this diagram has only O (n) edges. Fix such an edge, defined by two points
51, 82 € S, and denote it as e = ey, 5,; see Fig. 10. Assume, without loss of generality,
that the perpendicular bisector b(s, s2) of s1s; is the x-axis, with the origin placed
at the midpoint of sys. Then we can write e as an interval [&1, &]. Without loss

@ Springer



1176 Discrete & Computational Geometry (2023) 69:1157-1194

s, o
° D(£) D, )
O
O
o El Smin %_2
O
s o
2 (@) o

Fig. 10 The origin o is the midpoint of s1s5. The points of 7 + v are drawn in orange. The other points of
S are not drawn, but they lie in all the discs D (&), for & € [£1, &]. D(&1) (in blue) is the smallest enclosing
disc of § among those centered on the Voronoi edge es,,5, = [£1,62]. D(émin) (in orange) is the smallest
enclosing disc of S U (T + v) whose center lies on s,

of generality, assume that 0 < & < &. (If 0 is an interior point of e, split it into
two subintervals at 0 and handle each of them separately. Note also that e may be
unbounded, in which case one of its endpoints is £00.) For each & € e, let D(§)
denote the disc centered at £ so that its bounding circle passes through s and s,.
Clearly, for a translation v, D (&) is the smallest enclosing disc of S U (T + ), with
respect to placements in e, if and only if 7 + v C D(£) and D(£) is the smallest such
disc (meaning that & is closest to the origin); by definition, S C D(&) for every such
D(£).Let V(£),for& € e, denote the set of all translations v for which T +v C D(£).
As in case (i), we have V(&) = (1,7 (D(§) — 1). Define

V={@.6)§ece vV}

which is a subset of R3. We claim that V is connected. For this, note that when &’ < &”,
D(&”) is a larger disc than D(&’), and therefore V (§") can be translated to a subset of
V (&§”). More precisely, we have, as is easily verified,

VE)+E"-¢.0cV(E.

In particular, if V (¢’) is nonempty then so is V (¢”). Moreover, if v € V(§') then
v+ (" —&,0) € V(£"), implying that we can continuously move from any point
in V to any point in a higher cross section of V along a path that is contained in V,
which clearly implies the connectivity of V.

The coordinate &m;i, of the global minimum (¥, £min) of V can be attained at one
of two specific points on e (with a suitable v), which is either & if 7(D(&1)) > r(T),
or else the point &yin for which D(&pin) is of radius 7(7T). In the latter case, the
corresponding disc D is D(&yin) = SED(T + v), for some translation v, and so is
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handled in case (i). In the former case, the corresponding disc D is D(£1) and we
show below that either it is discovered by case (i) of the algorithm, or it cannot be
the smallest among the candidates. If D(&;) = SED(S), it is discovered by case (i).
Otherwise, we argue that the translation ¥ where the minimum is attained must be
on the boundary of a vippodrome, a case that will be handled further below. Assume
to the contrary that there exists some valid translation v such that v is not on any
vippodrome boundary and D(&;) encloses S U (T + v). Since D(&;) is not SED(S),
the uniqueness of SED(S) implies that »(S) < r(D(&€1)). Moreover, & cannot be the
midpoint o of 5152, for otherwise D(&1) would be SED(S). For the same reason, the
three points of S on dD(&1) must form an obtuse triangle, implying that there exists
a point &{ in the neighborhood of &1, not necessarily on e, such that D(&]) is smaller
than D(&1). We now claim that D (&) cannot be the smallest among the candidates
and so it can be ignored. Indeed, since »(T) is smaller than r(D(&1)), we can choose
the point 51/ in the preceding argument so that »(7) < r(D(S]’)). Since v is not on a
vippodrome boundary, there exists another valid translation v sufficiently close to v
so that T + V' C D(&/). Therefore, D(§/) is a smaller candidate than D(§1).

Hence, the minimum is attained at a (valid) translation v that lies on the boundary
of some vippodrome. We thus take each of the O (n?) such boundaries y, and mark
on it the maximal subarcs of valid translations (which are delimited at intersection
points of y with other vippodrome boundaries). For each # € T and each translation
v, the range of & € e for which # + v € D(£) is a subinterval of e. If the subinterval is
nonempty, one of its endpoints is either &; or &;. We write this interval, if nonempty, as
f:(¥) < & < g/(V), write the empty intervals as § < —oo or § > 400, and conclude
that the range of & for which T + v C D(&) is given by

max f;(v) < & < min g, (V).
teT teT

We thus compute this sandwich region E between the upper envelope of the functions
f;(¥) and the lower envelope of the functions g, (v), as ¥ ranges over y, and seek a pair
(v, £) € E such that v is a valid translation and & has the minimum value under these
conditions. Clearly (v, &) lies on the upper envelope of the functions f;(v). Since
the functions f;, g; are partially defined piecewise algebraic functions of constant
degree, and v varies along a one-dimensional curve (a vippodrome boundary), this
takes O (X (n)logn) time, for some constant parameter s (see, e.g., [28]).

For the running time of this procedure, computing FVD(S) and FVD(T) first takes
O (nlog n) time. We then repeat the procedure for the O (n) pairs of neighbors (s1, 52)
in FVD(S) (and similarly for FVD(T')). For each pair we run O (n?) one-dimensional
minimization procedures, over the vippodrome boundaries, each costing O (n?) time
(just to mark on it the valid portions). Thus the total running time in this case is O ().

Consider finally case (ii), in which the smallest enclosing disc is the diametral disc
of two points s € Sand¢+v € T +v. There are O (n?) pairs (s, t) to test. Fix one such
pair (so, fo), and, for each v, denote the corresponding diametral disc as Dy, 10 V).

A points € S\ {so} is in Dy, 4, (V) if and only if Z(so, s, fo + V) > /2, which is
equivalent to 7o + v lying in the halfplane Hj, s, defined so that it does not contain s,
its bounding line passes through s, and is orthogonal to sps. This in turn is equivalent
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H\‘o to,s—1

hh+ D

Fig. 11 The points sg, s (in blue), #y (in orange), and their respective translated points according to —#q
and v. The halfplane Hgy—19.5—19 lies to the right of its bounding line, which is marked in red. Observe
that v € Hyy—14,5—1t, and so s is inside the diametral disc of so and 7o + v

to v lying in the similarly defined halfplane Hy,—_y, s—s,; see Fig. 11. This has to hold
for every s, and, symmetrically, v also has to lie in each halfplane Hyy—1y,50—1, for each
t € T\ {to}, as is easily checked. We thus form the intersection of these 2(n — 1)
halfplanes, in O(nlogn) time, to obtain a convex polygon Ky, ,, with O(n) edges,
which we abbreviate as K. Note that K is always an unbounded region, unless it is
empty. We then seek a valid translation 9 inside K for which the function ¢ (V) =
|U + 19 — sol (that is, the diameter of Dy, 4 (V)) is minimized; namely, we want to
minimize ¢|gnp. In other words, we seek the valid translation v inside K that is
closest to sg — fp. Since, by construction, s — t lies outside each of the halfplanes that
form K, it follows that the desired translation v lies either on 9K or on the boundary
of some valid face of Q, that is, on the valid portion of some vippodrome boundary.
Specifically, v is either a point of some connected component e of the valid portion of
some vippodrome boundary y within K so that ¥ minimizes ¢ over e, or the unique
point Ui on 9K that is closest to so — fo, if that point is valid. (Note that in this latter
case, Umin 18 an inner point of some cell of Q.)

All these observations suggest the following procedure. We first construct K, in
O (nlogn) time. We then find vy, the unique point on 9 K (sg, #9) closest to so — tg,
and check the validity of Ui, in O(n?) time, according to Theorem 2.1. If Dy is
valid, we output it as the valid translation that minimizes the radius of Dy, ;, (V) (for
the fixed pair (so, ?p)).

Otherwise, we look for the desired translation on a vippodrome boundary. For
each vippodrome boundary y, we apply the following procedure, which finds the
valid translation that minimizes ¢|, g, and output the translation that minimizes
®lonk» by taking the translation with minimum value of ¢, among all the candidate
translations, collected over all vippodrome boundaries, if such candidate translations
exist at all.
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We prepare a data structure D (y) along y for K, which is similar to the data
structure Dy (y) described in Lemma 2.6. The structure D (y) is a balanced binary
search tree over the O(n) points y N K, it can be built in O (nlogn) time, and a
query takes O(logn) time.

We split y at local extrema of ¢l,,. Notice that we have only up to three local
extrema’ (in the worst case we have one minimum on each ray of y and one maximum
on its circular portion) and they split y into at most four subarcs, along each of which
¢l,, is monotone.

Let y be one of these subarcs, let p; denote its endpoint at which ¢|[;; is minimal,
let p; be its other endpoint (possibly o), and let d denote the direction from p; to p»
(along y). We search along y for the nearest point to p; thatis in K N Q. Finally we
compare the outputs over all the subarcs and return the point with the smallest value
of @, which is the optimal valid translation v along y, if it exists.

Searching along one subarc y is carried out as follows. Using D (y) we obtain the
next interval of y N K nearest to pj, if it exists, and use it (with trivial adaptations)
to query Dy (y). If Do (y) returns an interval, we use the first point of this interval
as our answer (namely the value of ¢ at this point) and by that conclude handling the
subarc y. If Dy (y) returns an indication that such an interval does not exist, we use
Dk (y) to fetch the next interval along y N K nearest to pp, and so on until we find a
valid solution or reach the other end of y.

Since there are at most O (n) intervals in y N K, the overall number of queries to
Dk (y) will be O (n) at the cost of O (logn) time each. For each of the at most O (n)
such queries we query Dg (y) once, in O (logn) time. Thus processing y takes a total
of O(nlogn) time.

Repeating this over the O (n?) vippodrome boundaries, and repeating the entire
process for the 03 pairs (so, fo), the overall cost of this case is o’ logn) time.
The total running time of all the cases is thus O (n° log n). This completes the proof
of the theorem. O

We note that the other two optimization criteria (shortest translation and minimum-area
AABR) have considerably simpler and significantly more efficient solutions (modulo
the preprocessing stage of constructing Q and D). We leave it as a challenging open
problem to improve the running time of the optimization phase for this case, at least
to nearly quartic in n.

4 Unlabeled Version: Preliminary Analysis

In this section we study the reconfiguration problem for unlabeled discs. The main
result of the section is summarized in the following theorem.

Theorem 4.1 Let S and T be two valid configurations, of n points each. For every
direction §, except possibly for finitely many directions, there exists a translation
v € R? in direction § such that the unlabeled problem UST(S, T + ) is feasible.

9 Unless y is BVS; or BVIE‘ZI); such that AS = so and BT = to. In this exceptional case, the entire circular

subarc of y is a continuum of minima. This case is easily handled by a slight modification to the algorithm,
which we omit here.
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Remark Note that the theorem implies that we can always move the discs from S to T’
in 2n moves: first move the discs from S to T + 9, using the valid itinerary provided
by the theorem, and then move the discs from 7' + v to T by translating each of
them by —1, in the order of their centers in direction v (which can easily be shown
to be collision-free). This almost reproduces the result of Abellanas et al. [1], already
mentioned in the introduction, where the bound is 2n — 1, for the case where we are
not allowed to shift the target locations. In some sense, our result is stronger, in that
in the second step, all the discs are translated by the same vector —v.

Proof Let C be a valid configuration of n points in the plane. Let ¢, ¢’ be two
points in C and let b(c,c’) denote their perpendicular bisector. Put B(C) =
{b(c,c") | c,c’ € C, dist(c, ¢') = 2}, which is the set of all perpendicular bisectors
(common inner tangents) of any pair of touching discs of D(C). We say that a direc-
tion is generic for C if it is not parallel to any line in B(C). (Note that, by Euler’s
formula for planar maps, there are only O (n) non-generic directions.) We fix a generic
direction § for both S and T. Observe that § is also generic for T + v, for any vec-
tor v. Without loss of generality, assume that § is horizontal and points to the right.
We define I15(C) to be the reverse lexicographical order of the points in C, that is,
I15(C) = (c1,¢2,...,¢p), so that, forany 1 < i < j < n, ¢; is to the right of
(or at the same x-coordinate but above) ¢;. We now fix a matching Ms according
to the orders I1s(S) and I1s5(T), by aligning both orders, i.e., Ms(s;) = t;, where s;
(resp., ;) is the i-th point in I15(S) (resp., [15(T)), fori = 1, ..., n. The matching
M transforms the problem to the labeled version LST(S, T, Ms). We claim that this
specific instance is always feasible, and, moreover, admits valid translations in direc-
tion §. Order Mj in the same order of I15(S) and I15(7), i.e., (s1, t1), ..., (Su, 1), and
denote this order as I1(Ms). We claim that one can always choose v, in direction §,
such that (s1, t; + 0), ..., (sy, t, + ) is a valid itinerary.

We apply a simpler variant of the techniques developed in Sect. 2. Since we have
already assigned the fixed order I1(M;) to Mg, we do not need to take into consideration
all the vippodromes, but only the ones that impose constraints that violate IT(Mj). Let
A; be the pair (s;, t;) € M; (so D(s;) is the disc that moves at step i). Let

Voad(8) = (Vi) | J € (1,2}, A, A € My, k > 1},

and observe that |Vpaq(8)| = n(n — 1). In other words, Vp,q4(8) is the subset of all the
vippodromes V, such that, for each ¥ € V, the constraint that V represents violates
the itinerary according to I1(Ms) between S and T + v. Thus, in order to find a
valid translation v in direction §, it suffices to show that the ray p from the origin in
direction § (the positive x-axis by assumption) is not fully contained in the union of
the vippodromes in Vy,q(6).

We claim that there exists aray o’ C p suchthat p'NV = @ forevery V € Vpaqa(6).
Indeed, let V = ng\, such that A, B € Ms and A performs a motion before B
according to IT(Mjs); that is, V € Vpaq(8). By construction, if A performs a motion
before B according to the itinerary, then A is lexicographically larger than BS, and so
B is to the left of (or has the same x-coordinate and is below) AS: see Fig. 12. Since
the positive x-direction § is generic, D(A®) and D(BS) cannot lie vertically above one
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W(BS, 4%) \

Fig. 12 According to IT1(Ms), A preforms a motion before B. Therefore, we need to rule out translations
v for which B has to perform a motion before A, whose locus is exactly the bad vippodrome Vgl)l. Here §

is horizontal and points to the right. The wedge W(BS, AS) (in blue), and thus also the bad vippodrome,
cannot fully contain p, and thus there exists p’ (in orange) that is disjoint from the vippodrome

another and have a common inner tangent. Let o be the ray that emanates from B* in
the direction from A to BS. By our assumption, o points either directly downwards,
or else to the left (contained in the open left vertical halfplane that contains BS on its
right boundary). Note that o is the mid-ray of the wedge W (B3, AS). In the former
case, the opening angle of W(BS, AS) is strictly smaller than 7, and in the latter
case, it is at most 7r. In either case, W(B?S, AS) is disjoint from the rightward-directed
horizontal ray from B (the ray in direction 8). This implies that W(BS, A%) cannot
fully contain any rightward-directed ray. Since V = W(BS, AS) @ D>(0) — AT, the
same claims hold for V as well. The argument for Vﬁ: is similar. In conclusion, p
must exit from every vippodrome of V},4(8), which establishes the claim.

Hence, there are infinitely many translations v in o that do not belong to any
vippodrome of Vp,q(8). By construction, this implies that UST(S, T + v) is feasible
for every such v (with the valid itinerary induced by I1(Mjs)). Furthermore, the above
holds for every generic direction 6. This completes the proof of the theorem. O

It is now fairly simple to devise an algorithm for finding a valid translation v and for
constructing a valid itinerary from S to T + v. First, choose a generic direction §,
in O(nlogn) time, and assume it to point in the positive x-direction. Calculate
I15(S), I15(T), and M;s in O(nlogn) time. Construct Vy,g(8) according to Ms, in
O (n?) time. Intersect all the vippodromes of Vy,q(8) with the positive x-axis, and find
the rightmost intersection point Um,x with these vippodromes, which can be done in
O (n?) time. Any translation v on the x-axis to the right of Umax has a valid itinerary
from S to T + v, given by the order IT(Ms). The overall running time of this algorithm
is therefore O (n?).

Note that limiting the range of valid translations to the ray to the right of ¥y,.x may
be too restrictive—any translation on the positive x-axis that lies outside the union of
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the bad vippodromes is valid, and we can simply return the one closest to the origin,
say. We will exploit this simple observation in the following section.

5 Unlabeled Version: Space-Aware Practical Solutions

In this section we provide practical heuristic solutions for the different optimization
variants of the unlabeled version, namely SA-UST3/(S, T), SA-USTaagr(S, T), and
SA-USTsep(S, T),defined in full analogy to the corresponding versions for the labeled
case. In Sect. 5.1 we propose several optimization algorithms, each of which considers
a different notion of validity, so that the running time improves as we make the problem
more constrained. We defer the details for the more involved case of minimizing the
smallest enclosing disc, under the strictest notion of validity, to Sect. 5.2. Our fastest
algorithms are restricted to valid translations in any fixed direction §, such that the
matching (between S and 7') and the itinerary are set according to §. In Sect. 5.3, we
prove that these algorithms provide valid translations that are larger by at most a linear
factor than the shortest translation or the radius of SED(S U (T + v)), for a suitable
choice of §. Assuming that the distance between any two points in each configuration
is at least 2+ ¢, for some parameter ¢ > 0, we prove that the heuristic solution is larger
by only a factor of O(1/./¢). Experimental results obtained with our implementation
of the heuristic algorithm, for the most restrictive notion of validity, as just defined,
for SA-UST3((S, T), are presented in Sect. 5.4.

5.1 Heuristics for Short Valid Translations

The analysis in Sect. 4, while providing an abundance of valid translations, has the
disadvantage that the valid translations that it yields are potentially too long (one needs
to go sufficiently far away in the §-direction to get out of all the bad vippodromes).
This is undesirable with our space-aware objective in mind, where we seek short valid
translations. In this section, we provide heuristics for finding shorter valid translations,
thereby obtaining shorter heuristic solutions to SA-UST (S, T'). Similar techniques
also yield heuristic solutions to SA-USTaagr(S, T) and to SA-USTsep (S, T'). Here
SA-UST3 (S, T), SA-USTanpr(S, T), and SA-USTsep(S, T') stand for the SA-UST
problem under the three minimization criteria used in Sect. 3. The resulting algorithms
are faster than those obtained for the labeled case (at the cost of not guaranteeing
optimality over the entire space of valid translations). As the unlabeled problem is much
harder than the labeled problem (and we believe it to be NP-hard), we make no attempt
at solving it exactly. We exploit Theorem 4.1, which shows the existence of at least one
valid translation for any generic direction 8, and the algorithm, presented in Sect. 4,
for finding such translations. This machinery motivates the following algorithms.

In Sect. 5.3 we will show how to choose a good direction é for which we can
give reasonable upper bounds on the length of the shortest valid translation, or of the
valid translation v that minimizes the area of the axis-aligned bounding rectangle, or
the smallest enclosing disc of S U (T + ). In practice, one might want to choose a
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sufficiently dense set of generic directions, in the hope of improving the quality of the
following solutions.

For now, fix a generic direction § for S and 7', and assume, for simplicity and with
no loss of generality, that it is the positive x-direction. Recall that it takes O (nlogn)
time to compute I15(S), [15(7T"), My, and I1(Ms). This transforms the problem to a
labeled instance, according to Ms, with the additional constraint that we require the
discs to move according to the order IT(M;). Since the order is now fixed, it suffices
to consider, as in Sect. 4, only the vippodromes in Vy,q(6). We form the arrangement
Apag of their boundaries, and collect all the faces of Ap,q that lie outside the union of
the bad vippodromes. This is the set of all the valid translations Q, with respect to the
matching Ms and the order IT(Ms).

Constructing é, that is, collecting the faces of 4pyq outside the union of the bad
vippodromes, takes O(n‘uog n), or O (n?r4(n?)) time, as shown in Sect. 2.10 Finding
an optimal translation in Q where we either minimize its length or the area of the axis-
aligned bounding rectangle, can be done in O (n? log ) additional time (see Sects. 3.1
and 3.2). Optimizing the size of the smallest enclosing disc, using the algorithm of
Sect. 3.3, is more expensive, and takes O(n5 log n) time.

We note that a major role of the direction § is to define the orders I15(S) and IT5(7T)
(and thus also the order IT1(Ms) of Ms), as the reverse lexicographical order, induced
by § and its orthogonal direction, of the disc centers. The algorithms mentioned above
will find an optimal valid translation within the entire set of valid translations é not
necessarily in direction §.

We can do better, at the cost of further constraining the set of valid trarlslations,
considering only the translations v in direction §, namely the intersection of Q and the
ray emanating from the origin in direction §. Recall the algorithm for finding a valid
translation at the end of Sect. 4. As noted at the end of that section, it is likely that
the translation Um,x computed there is not the shortest valid translation in direction §,
according to IT(Ms). In order to find the shortest such valid translation, we again
construct the bad vippodromes and intersect them with the positive x-axis. Instead of
finding the rightmost intersection point, we sort the resulting valid intervals along the
x-axis (the ones that are free of all bad vippodromes), and output the leftmost valid
point, which is clearly the shortest valid translation, under the present restricted setup.
This process is mildly slower than the original algorithm (see the end of Sect. 4), since
we need to sort O (n?) intervals, and can be carried out in O (n? logn) time.

The above performance bounds also hold for finding the translation v that minimizes
the area of the axis-aligned bounding rectangle of D(S)U D(T +v): here, at each valid
interval I along the ray, we need to compute the minimum of a univariate function of
constant complexity over /, which takes constant time.

The problem of minimizing the smallest enclosing disc of D(S) U D(T + v) is
more involved, and is discussed next.

10 Recall that the optimization procedures in Sect. 3 require a preprocessing stage that computes Q in O (n%)
time. This cost is only a consequence of the (expensive) need to test each face of A(V‘i) for acyclicity,
which is no longer needed under our new notion of validity. This is why constructing Q is faster. Note
also that restricting the analysis to the bad vippodromes cleans the presentation, but is not the source of the
above improvement, as the number of bad vippodromes is still half the number of all vippodromes.
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5.2 Smallest Enclosing Disc for Translations Along a Line

We next show how to adapt the algorithm for finding a valid translation that minimizes
the radius of D := SED(S U (T + v)), which is described in Sect. 3.3 and to which we
will refer as the original algorithm, to the case where the translations are restricted
to lie on a single line A in some generic direction §, and A passes through the origin.
Moreover, the matching M; and the order I1(Mj) are fixed according to §. We show
that the algorithm can be implemented so that it runs in nearly quadratic time for this
special case.

In what follows, we only highlight the necessary adjustments of the original algo-
rithm to fit this special case. The main differences come from searching for translations
along A instead of searching for translations along the many vippodrome boundaries.

Recall that Q is the set of all valid translations according to the matching M and
the order I1(Ms), i.e., the set of all translations that are not contained in any bad
vippodrome of Vpaq(8). We begin by computing the O (n?) intersection points of the
bad vippodrome boundaries with A, select those points that lie on 9 Q, and sort them
in their order along . The cost of this step is O (n”logn). Let F denote this sorted
sequence. Ignoring degenerate situations in which A is tangent to some vippodrome
boundary, F partitions X into an alternating sequence of valid and invalid intervals. We
store F' in a balanced binary search tree D, similarly to thatin Lemma 2.6. Using D,
we can answer two types of queries: (i) Given a translation v, determine whether v is
valid. (ii) Given an interval I C A, find the smallest or largest point of F' N I. Each
query of either type can be answered in O (logn) time.

We now address the three cases mentioned in the proof of Theorem 3.3. Case (i),
where two or three points that belong to the same set, in this restricted variant of the
algorithm is almost identical to the original algorithm—the sole difference is the need
to calculate the intersection / = V (£) N A, and then test, by searching in D, whether
I N F # (. If so, the translation v € I N F is valid, and we can halt the algorithm,
returning v and SED(S). This case can be trivially executed in O (n logn) time.

Consider next case (ii), where two points belong to one set and a third point belongs
to the other set. Recall that for each translation v, the functions f;, g; are defined to be
the endpoints of a subinterval of e, such that ¢ + ¥ is enclosed by the disc centered at
any point of the subinterval and passes through s; and s». Since the functions f;, g; are
simpler in this case, we can more precisely bound the running time of the algorithm.
(We note though that the difference in running time is negligible.) We construct the
sandwich region E where v varies along the line A, defined by

max f; (V) < & < min g (V).

teT teT
This is a univariate sandwich computation, which takes O (s, (n)logn) time,!!
where s is the maximum number of intersections between a pair of functions f;(v),

f(V), or a pair g;(v), g (v), for t,#' € T. Any such intersection occurs at a trans-
lation v at which s, 2, ¢ + v, t’ + ¥ become cocircular. If we assume, without loss

' The reason why the index in the above bound is s + 1 is that each of the domains of the partial functions
f+(¥), g:(V) is an interval with at least one endpoint coinciding with an endpoint of e; see [28] for details.
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of generality, that A is the x-axis, and use v to denote the x-coordinate of ¥, then the
cocircularity property is expressed by the equation

2 2
I s s1y s12x+s12y
I soc sy 55, +2S2y L=
Lty +v 1y (tix +v) +t1y
1 tox + vty (t2x +0)? + t22y

Subtracting the fourth row from the third one, one can easily verify that the resulting
equation is quadratic in v, implying that s = 2. Hence the sandwich region can be
constructed in O (A3(n) logn) = O (na(n)logn) time.

To find this pair, we break the portion of the upper envelope within E into maximal
connected subarcs, so that each arc y lies on the graph of a single function f;(v). We
further break y into O (1) subarcs, so that in each of them f;(?) is monotone.

We search with each subarc ¥’ in D, compute the smallest (resp., largest) point
of ' N F, when f; is increasing (resp., decreasing) over y’, and add it to the list of
candidate solutions. We return the translation ¥ from the list that has smallest value
of the corresponding f; ().

The overall cost of this step, for a fixed pair (s1, 52), continues to be O (n«(n) logn).
Summing over all the pairs (sq,s2), the overall cost of handling case (ii) is
O (na(n)logn).

We finally turn to case (iii), where the smallest enclosing disc is defined by two
diametral points, each belonging to a different set. Recall that we want to compute
the intersection of K = Ky, s, with A, for any pair so € S and #p € T, and then find
a valid translation (contained in the intersection) that is closest to sg — fy. In order to
do that efficiently, we refrain from calculating K explicitly, and so we take a different
approach as follows.

We seek the translations v so that the center of the diametral disc D (v) determined
by so and 79+ v, which is ¢y, 1, (V) = (1/2)(s0+10) + (1/2)v, satisfies: () ¢y, 1, (V) lies
in the cell V (sg) of s in FVD(S) (thus guaranteeing that S C D(v)), and (b) Cs0.10 (D)
lies in the cell of #y + v in FVD(T + ©) = FVD(T) + v (thus guaranteeing that
T + v C D(¥)). This latter cell is V (#9) + v, where V () is the cell of 7y in FVD(T).
In other words, v has to satisfy

1 1. 1 1. -
E(SO + 1) + zv € V(so), E(SO + 1) + zv € V(tp) +v, or

v €2V (sy) — (5o + t9), v e =2V(ty) + (so + to),

where 2V (so) = {2z |z € V(sp)} and similarly for 2V (7). Note that the cells V (sg)
and V (¢y) are convex.

These observations lead to the following procedure: We first compute FVD(S) and
FVD(T), in O (nlogn) time, and enlarge both diagrams by the factor 2. We then pre-
process each of the (convex polygonal) cells of both (enlarged) diagrams for efficient
line intersection queries, where all the query lines have a fixed direction (that of 1).
This preprocessing is trivial and takes linear time. Answering a query is equally trivial
and takes O (logn) time.
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We now iterate over all pairs so € S, typ € T. For each such pair, we (a) take the line
(so 4 tp) + A and intersect it with 2V (sp), to obtain an interval I, ;, and (b) take the
line (sg 4 79) — A (since we assume that A passes through the origin, this is the same as
the line (so + fo) + A) and intersect it with 2V (), to obtain an interval Jy, ;,. All this
takes O (logn) time. We map these intervals back into A and intersect the resulting
intervals, that is, we obtain the interval

K 0 o= gt — (50 4 1)) N ((s0 + 10) — Jso.10)

along A, in additional constant time.

Note that our goal is to find in K 3‘0 1, @ valid translation that minimizes the diameter
of Dy, 1 (v), which is ||sg — fo — v||. That is, we seek the translation that is closest to
50 — to among all valid translations in K% , . To do so, we first compute the closest

$0,10°
sko’to (which may be an endpoint of K* ), and check whether

translation to so — 1o in K So.to

it is valid. If so, we output it as a candidate solution. Otherwise, we break K ?MO into
two subintervals at the point of A closest to sg — 7y (if that point lies in K sk(),to)* search

DF with each subinterval, and output the first or last point of F in that interval, as
appropriate. We repeat this step for each pair so € S and o € T, and return the
candidate translation that minimizes the corresponding distance |lso — fo — v||. The
overall cost of this step is O (n>logn). In summary, we have:

Theorem 5.1 Finding the valid translation v € AN é that minimizes SED(SU (T +v))
can be done in O(nza(n) logn) time.

5.3 Bounding the Heuristic Solutions

The analysis in the preceding subsection provides heuristics for obtaining short valid
translations, but gives no guarantees on how well we approximate the optimal valid
translation. In this subsection we show how to choose a good direction § for which
we can give a reasonable (and sometimes asymptotically optimal) upper bound on
the length of the shortest valid translation in direction 8, or of a valid translation ¥ in
direction § that minimizes SED(S U (T + v)).'? Recall that we denote by r(P) the
radius of the smallest enclosing disc of a set of points P. Our main result is

Theorem 5.2 Let S and T be two valid configurations, of n points each, such that S and
T share the centers of their smallest enclosing discs. There exists a translation v such
that UST(S, T + V) is feasible and |v| = O((r(S) + r(T))n). The same asymptotic
bound also applies to r (S U (T + v)).

Proof Consider the discs in D(S) (the case of T is essentially identical). We define the
following set Ag of directions. For each pair s1, s2 € S of neighbors in the (nearest-
neighbor) Delaunay triangulation of S, we include in A 5 the directions of the two inner
tangents of D(s1) and D(s), obtaining at most 12n — 24 directions (each tangent is
directed both ways). We obtain a similar set A7 of at most 12n — 24 directions from
the pairs of neighbors in the Delaunay triangulation of 7. O

12 Similar techniques can be applied to the variant of optimizing the area of the axis-aligned bounding
rectangle. To keep the presentation somewhat shorter, we do not include this case in this section.
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e
S
)

Fig. 13 The segment pj pp (in blue) is not a Delaunay edge, so its diametral disc contains another point
q € S,and then Zpygpy > /2

Lemma 5.3 For any pair of unit discs in D(S) whose centers are not Delaunay neigh-
bors, the angle between their inner tangents in the wedges that contain neither of the
two discs is at least w /2. The same holds for D(T).

Proof Let p; and p; be two points in S so that p; and p; are not Delaunay neighbors.
Hence the diametral disc determined by p; and p, must contain another point g € S,
so the angle / pigp> is at least 7r/2, and so p; and p; are at least 2+/2 apart (recall
that the discs are interior disjoint). See Fig. 14 for an illustration. The argument for T
is identical, and the lemma follows. O

Note that the lemma holds for any pair of discs whose centers are not neighbors in the
Gabriel graph of D(S) or of D(T).

Let § be a direction whose smallest angle from any direction in Ag U A7 is as
large as possible. In particular, we can choose § such that the angle it forms with
the direction of any of the Delaunay inner tangents is €2(1/n); actually, the reasoning
above implies a lower bound of at least 77 /(24n). Observe that § is generic for S and T,
and so, by Theorem 4.1, there exists a valid translation in direction §. By rotating the
plane, we may assume, as before, that § is the positive x-direction. We compute the
reverse lexicographical orders I15(S), I1s(T), as defined in Sect. 4, and obtain the
corresponding matching M and its order IT(Mjy).

Lemma 5.4 The translation v = ((r(S) +r(T) +2)(1 4+ 8n), 0) is a valid translation
(in direction §) with respect to the matching Mg and its order T1(Ms).

Proof By the analysis of Sect. 4, it suffices to show that v does not belong to any
bad vippodrome. For this, it suffices to show that any bad vippodrome intersects the

positive x-axis to the left of ¥. Consider such a bad vippodrome, say VSI);, where
A, B € Ms, so that A appears after B in [1(M;). Symmetric arguments apply to bad
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(K80

Astpr "

q (K(1+8n),0)

Fig. 14 The x-axis is drawn in black, a bad vippodrome qulf)} in blue. The orange line, with slope
—tan(r /(24 n)), meets the x-axis to the right of any bad vippodrome of the first type, which is directed

downwards (and to the left), like Vi‘l 1)3

vippodromes of the form V(Z;. Assume, without loss of generality, that BS is above,
or at the same height, as A° (note that, by construction, this is always the case when
AS and B have the same x-coordinate). Since A appears;afier B in T1(Ms;), AS is
lexicographically smaller than B, so the direction of BSAS points to the left (or
vertically down); recall the proof of Theorem 4.1. Let rq, > be the two rays of Vf(lll);,
and assume that rq intersects the x-axis to the right of the intersection point of r, with
the x-axis (r; is in direction of the tangent tT(BS, AS)); see Fig. 14. Let p be the
point that r; emanates from, and let ¢ = (g, 0) be the intersection point of r; and the
x-axis. We observe that the y-component of the direction of r| is negative. Indeed, r|
forms an angle of at most 77 /2 with the direction of BS AS, which is leftward-directed
or points down; in the latter case the angle is strictly smaller than v /2, as easily follows
from our choice of §. It follows that g, increases as p moves either to the right or up.
By the vippodrome construction, and the locations of S and 7', both the x- and the
y-coordinates of p cannot exceed K := r(S) + r(T) + 2. We may thus assume that
p = (K, K); for any other point, g, is smaller.

If the x-component of the direction of r is non-positive, g, < K, so we may
assume that it is positive. If AS and BS are not neighbors in the Delaunay diagram
of S, the angle of W(AS, BS) is at most /2, by Lemma 5.3. Thus, the slope of r;
is at most —1. If A% and B® are neighbors in the Delaunay diagram of S, then the
directions of their common inner tangents are in Ag, and so, by the choice of §, the
slope of ry is at most — tan(r/(24n)). We then again may assume that the slope of r
is —tan(;r/(24n)), as for any smaller slope, g, is smaller.

The supporting line of rq, according to our upper bounding assumptions, is

+ x tan il K| 1+tan il =0
Y S 2n) =
and thus
k(1+ : K(1+8n)
= _— << .
9= tan(r/(24n)) "
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where one can verify that the inequality holds for any n > 1. This is the inequality
asserted in the lemma. O

Repeating a symmetric argument for bad vippodromes of the second type, Theo-
rem 5.2 now follows readily, both for the length of v and for (S U (T + v)), as both
of them are clearly O ((r(S) +r(T))n).

The physical space needed for the reconfiguration is worse by the factor O (n),
compared to the ideal bound O (r(S) +r(T)), which is (asymptotically) the minimum
value of 7(S U (T + ©)), over all translations v. Interestingly, we can attain this bound
asymptotically if the discs of D(S), as well as the discs of D(T), are sufficiently
separated. That is, we have

Theorem 5.5 Let S and T be two valid configurations, of n points each, such that S
and T share the centers of their smallest enclosing discs. Assume that there exists a
fixed constant ¢ > 0, so that the distance between any pair of points in S, or any pair
of points in T, is at least 2 + €. Then, for any direction §, there exists a translation v
in direction 8, such that UST(S, T + v) is feasible and |0| = O ((r(S) + r(T))/+/€).
The same asymptotic bound also holds for r (S U (T + v)).

Proof Observe that the separation property guarantees that every direction is generic.
As is easily checked, the angle between the inner tangents of any pair of discs in D(S),
within the wedge containing none of the discs, is at least c/¢, for a suitable constant c.
Hence, the opening s angle of any vippodrome is at most 7t —c+/¢. This implies that, for
any direction 8, and for any bad vippodrome, with respect to IT(Mjs), the angle that its
ray r1, in the notation of the proof of Lemma 5.4, forms with the §-direction is at least
c+/€/2. Following the same analysis as in the proof of Lemma 5.4, we can show that
there exists a valid translation v in direction 8, whose lengthis O ((r(S) +7(T))//€).
This also bounds (S U (T + v)). O

Note that Theorem 5.5 is stronger than Theorem 5.2 also in that it holds for every
direction 8, whereas Theorem 5.2 only holds for restricted values of §.

5.4 Implementation and Experimentation with the Heuristic Algorithm

We implemented the heuristic algorithm for finding an approximate shortest valid
translation for UST instances, as outlined in Sect. 5.1, by choosing arandom direction §
(which is generic with probability 1), fixing a matching My and itinerary IT(Ms)
accordingly, and then finding the shortest translation (in direction §) that is valid in this
more restricted setting. Our program is written in Python3.7, and the experiments
that we report below were carried out on an Intel Core i7-7500U CPU clocked at
2.9 GHz with 24 GB of RAM.

We consider the following input types.

Circle: the points of the configurations are densely placed on the circumference of
a circle. The discs of D(T) are slightly rotated (by 7z /n) in order to avoid
an easy matching.
Packing: the discs of D(S) are placed in a squared grid. The discs of D(T') are placed
in a Kepler’s packing.
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Table 2 Different input types of UST. For each input type, the configurations are first presented separated,
for better visualization, then in their initial positions (sharing the centers of their smallest enclosing discs)
and with 7' translated according to an approximate shortest valid translation (in red), produced by our
heuristic algorithm

Conf. D(S)/D(T) Initial Translated n r(S)+r(T) |V

ez
o

-
Circle

100 65.67 190.19
200 129.32 376.24
500 320.31 913.79
1,000 638.60 1,757.26
Packing \WJ% 100 27.01 553
210 38.88 2.18
506 60.76 3.25
1,024 87.22 19.75
JOOO 0000
)
Cross ) 100 200 140.07
200 400 281.43
500 1,000 706.15
1,000 2,000 1413.47
Random O uQ O OO CQCS)C vgj 100 36.78 16.96
200 5170 34.01
500 8226 78.49
1,000 116.06 147.61

The numbers n are chosen such that the start configuration in each instance will be as square-like as possible.
The results are averaged over ten different instances, one of which is depicted

Cross: the discs of D(S) (resp., D(T)) are tightly placed along a vertical (resp.,
horizontal) line.
Random: both configurations are sampled uniformly at random'® from a square of
size 2.64/n x 2.64/n. For each configuration size, we average the results
over ten different runs.

13 The random choice of each configuration is modified so as to ensure that they are valid—no two points
are at distance smaller than 2. Random choices that violate this property are discarded and replaced by other
random choices.
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(a) The Circle input type. (b) The Packing input type.
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(c) The Cross input type. (d) The Random input type. The results are
averaged on ten different random input
configurations.

Fig. 15 Running time of the heuristic as a function of the number of discs in the start (and hence also the
target) configuration, for the different input types. Each entry (# Discs = 100, 200, ..., 1,000) in the first
three graphs is the average running time of ten different runs, in each of which a different direction § is
sampled uniformly at random. In the fourth graph (Random input), each entry is the average on ten random
inputs, each run ten times on different directions

Table 2 shows the results obtained with our implementation for four different types
of input, with the number of discs per type ranging between 100 and 1,024. For each
input, we tried 1,000 different directions §, and in the table we compare the shortest
valid translation that the algorithm produced (over all different directions) with the
asymptotically optimal value (S) + r(T).

In Fig. 15 we present the running times of the implementation for all four kind
of input instances. For the Circle, Packing, and Cross inputs, for n = 100i discs
(i =1,...,10), we optimize in ten random directions §. For the Random input, for
n = 100i discs (i =1, ..., 10), we choose ten random configurations of n discs (see
Table 2), and for each of them, we optimize in ten random directions §, for a total
of 100 runs per input size n. As expected, the running time of the implementation is
slightly super-quadratic. The running times for the other three kinds of input behave
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remarkably similarly. Our program runs in about 30 seconds on inputs with 1,000
discs; notice that the number of bad vippodromes in such instances is 999,000.

6 Future Work

Our research can be extended in various ways within the space-awareness framework.
We could, for example, allow two translations per disc while aiming for minimal
physical space (that also contains all the intermediate positions, in terms of the size of
the bounding rectangle or disc). These problems can be studied with or without a global
rigid translation of the target configuration. Alternatively, we could have considered
variants where we allow an arbitrary initial rigid motion of the target configuration, or
allow other motion paths instead of straight line paths. Since these problems are more
general, they are likely to be much harder to solve with optimal space usage. One can
also study space-aware reconfiguration for discs of varying sizes (the labeled version
only), or for other, more complex shapes.

Viewing assembly planning from the space-aware perspective raises many challeng-
ing problems. We aim to find the smallest space (e.g., a round tabletop of minimum
radius) where we can put the separate parts that need to be assembled into the final
product (given in some prespecified, translation-independent layout), and such that
the entire assembly process can take place within this space. The problem is more
involved since we may need to store intermediate subassemblies, such that we can
bring together some subassemblies into their relative placement in the final product,
while avoiding other subassemblies, all within the same space.
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