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MIND-S is a deep-learning prediction model for
elucidating protein post-translational modifications
in human diseases

Graphical abstract

MIND-S Supports PTM Elucidation in Health and Disease.
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MIND-S predicts PTM based on protein sequence and
structure by a deep-learning method

MIND-S applies a multi-label strategy to predict multiple PTM
types and sites

MIND-S predicts important amino acids for a given PTM

MIND-S examines the impact of SNP mutations at proteome
level from a PTM perspective
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In brief

Yan et al. develop a deep-learning-based
post-translational modification (PTM)
prediction tool, MIND-S. We demonstrate
the performance of MIND-S via its
prediction of 26 types of PTM at the
proteome level utilizing both protein
sequence and structure. MIND-S also
provides an interpretation module to
better understand PTM mechanisms and
a mutation evaluation method to study
the relationship between mutation (e.g.,
SNP) and PTM.
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MOTIVATION Post-translational modifications (PTMs) serve as key regulatory mechanisms in many
cellular processes; altered PTMs contribute significantly to disease pathogenesis in humans. Due to the
high complexity and a large quantity of PTM studies, computational methods to predict PTMs have been
appreciated to be effective approaches to study PTMs. Here, we present MIND-S, a deep-learning-based
PTM prediction tool utilizing protein-level information combined with its sequence and structure. MIND-S
demonstrates excellent performance on simultaneous prediction of multiple types of PTM in a proteome
setting. Integrating with SNP information identified from GWAS, MIND-S can offer molecular insights and
evaluate the impact of SNP from a PTM perspective.

SUMMARY

We present a deep-learning-based platform, MIND-S, for protein post-translational modification (PTM) pre-
dictions. MIND-S employs a multi-head attention and graph neural network and assembles a 15-fold
ensemble model in a multi-label strategy to enable simultaneous prediction of multiple PTMs with high per-
formance and computation efficiency. MIND-S also features an interpretation module, which provides the
relevance of each amino acid for making the predictions and is validated with known motifs. The interpreta-
tion module also captures PTM patterns without any supervision. Furthermore, MIND-S enables examination
of mutation effects on PTMs. We document a workflow, its applications to 26 types of PTMs of two datasets
consisting of ~50,000 proteins, and an example of MIND-S identifying a PTM-interrupting SNP with validation
from biological data. We also include use case analyses of targeted proteins. Taken together, we have
demonstrated that MIND-S is accurate, interpretable, and efficient to elucidate PTM-relevant biological pro-
cesses in health and diseases.

INTRODUCTION

Protein post-translational modifications (PTMs) are covalent
processing events that alter the biophysical properties of a
protein through the addition of a modifying group to one or
more amino acids. PTMs serve as key regulatory mechanisms
governing a broad spectrum of sub-proteomes and are
commonly involved in many disease phenotypes.'* The diver-
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sity of PTM types and the large number of amino acid residues
involved enable the greater regulatory capacity of PTMs,
yet substantial challenges remain in detecting and under-
standing PTMs. Although large-scale PTM identification
has been improved with proteomics tools,® they remain costly,
labor-intensive, and time-intensive, especially when PTM-
specific enrichment approaches are necessary for their
detection.
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Recently, computational approaches to predict PTM sites
have gained traction.?*°> A common and widely used prediction
schema is to predict PTMs based on local amino acids spanning
the target sites.” Specifically, amino acids flanking the PTM site
are leveraged to make predictions on the target residual. Howev-
er, this strategy relies heavily upon surrounding amino acids,
whereas whole-protein-level information is less considered.
Moreover, these approaches require selecting an optimal length
of flanking amino acid sequence for different types of PTMs,
limiting the transferability among PTM types.

Another major consideration is the interpretability pertaining to
the underlying mechanism supporting model predictions. This is
especially the case for deep-learning-based approaches, which
often demonstrate excellent prediction results but without
reasonable explanations (i.e., interpretation). Thus, the selection
of interpretation methods becomes essential to help us under-
stand the anticipated model output upon a certain set of input.
The optimal interpretation methods enable us to uncover hidden
patterns affecting PTM occurrence. For example, feature impor-
tance is one of the interpretation methods that evaluate which in-
puts (in this case, amino acids) are important for the anticipated
output. Although several amino acid patterns related to phos-
phorylation have been uncovered,® many PTM patterns as well
as their underlying mechanisms largely remain a mystery.
Indeed, many phosphosites are orphans without information
on their associated kinases.”

To overcome these challenges, we developed an artificial in-
telligence (Al)-based tool, MIND-S (multi-label interpretable
deep-learning method for PTM prediction-structure version),
which predicts PTMs at the protein level. Specifically, the protein
sequence and structure are given as the input and the predic-
tions are made on all possible residuals at the same time. This
schema allows the model to make batch predictions across mul-
tiple protein sequences, multiple amino acid sites, and multiple
PTM types at a proteome scale. We also adapted the integrated
gradient method to interpret MIND-S by identifying residues
important for prediction. We demonstrated that MIND-S
achieves great performance for PTM prediction with excellent
computational efficiency and interpretability. We present use
cases of MIND-S, including an examination of how the SNP
can affect PTM occurrences, which bridges the gap between
genetic data and PTMs.

RESULTS

MIND-S model design and performance

We present a computation model, MIND-S, for protein PTMs
prediction, utilizing graph neural network (GNN) and multi-head
attention to extract information from protein structure and pro-
tein sequence. The overall design of MIND-S is detailed in the
graphical abstract.

Our model is built at the protein level, where all PTMs pertain-
ing to one protein are put within the same instance. All protein
data were split into training, testing, and validation sets on the
protein level as well. To ensure fair evaluation, proteins assigned
in the testing set must share less than 50% sequence similarity
with proteins in training and validation sets.® To increase model
robustness, a bootstrap method was implemented, where multi-
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ple models are trained on sampled datasets and ensembled
together at the end stage (Figure 1A). A fixed testing set (~5%
of the whole dataset) was retained and the remaining data
were split into training and validation sets at random at each iter-
ation. To account for the various length of proteins and to
alleviate the problem of redundant padding, the full-length pro-
tein with its PTM is split into multiple core sequences, on which
the model will predict. Core sequences were then extended on
both sides (up to 128 amino acids) to ensure sufficient contextual
sequence information (Figure 1B). Extended core sequences
were input to our model for multi-label training, and all PTMs fall-
ing within core sequences will be trained simultaneously (Fig-
ure 1C). The trained model was evaluated on the validation set
by the area under the precision-recall curve (AUPR).° AUPR
was chosen over the area under the receiver operating curve
(AUC)'® as AUPR vyields a more informative evaluation when
the data are imbalanced,"’ which is especially true for PTMs.
The number of negative PTM samples (targeted residue without
PTM) is far greater than the number of positive PTM samples
(target residue with a PTM) (Table S1). The above training pro-
cess was repeated 15 times to ensemble the final model, which
is the weighted average of predictions from 15 models.

For the model architecture, MIND-S takes protein sequences
and structures as the input and outputs PTM prediction scores
(ranging from 0 to 1) for every targeted residue. One-hot encod-
ings of these protein sequences are passed through a feedfor-
ward neural network, which converts the sparse representation
into a dense numeric vector capturing biochemical properties
(Figure S1). The embedding is then passed to a bidirectional
long-short term memory (LSTM)'? layer, which passes informa-
tion along the sequence bidirectionally and encodes positional
information. The LSTM embedding serves as the token embed-
ding and node embedding for multi-head self-attention block'®
and graph attention layer,’* a GNN model, respectively. The
multi-head self-attention is designed to capture information
about the protein sequence while the graph attention layer is em-
ployed to gather information from important and spatially close
(close in 3D space) amino acids guided by the protein contact
map. Last, the outputs of the two components are concatenated
and converted to prediction score PTMs by a feedforward neural
network layer. Detailed descriptions of our model architecture
are described in the STAR Methods section. In addition, we
also provide MIND, an alternative version to MIND-S that makes
predictions solely based on the protein sequence. In the
following paragraphs, we performed analyses to demonstrate
the contribution of different modules or layers of our model.

MIND-S has several unique design features that facilitate its
performance of the prediction task, as demonstrated by our ex-
periments. We have selected 13 types of curated PTM as the
benchmark dataset to test the model performance (Table S1).
We also constructed a dataset consisting of 13 types of oxidative
PTM (O-PTM) from a mass spectrometry project as an indepen-
dent dataset (Table S2). We investigated the contribution of
sequence and structure components of MIND-S to gain a deeper
understanding of the PTM prediction task. We showed that
adequate data are a vital part of the model. We trained and eval-
uated MIND-S with different amounts of data sampling from the
whole dataset, and the results indicated that the performance of
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Figure 1. Design of MIND-S

(A) A workflow on ensemble MIND-S. A fixed dataset is retained for testing, with the remaining data split into a training set and a validation set in the data splitting
step; PTM data at the protein level are mapped to core sequences using the split and extend strategy detailed in (B); each individual model is trained on the
processed data under the multi-label setting as detailed in (C); each model is subsequently evaluated in the evaluation steps. This process is repeated 15 times to
ensemble the final model, MIND-S.

(B) The splitting and extending strategy. The full-length protein is first split into multiple core sequences. To ensure sufficient information for prediction, each core
sequence is then extended (additional 128 amino acid residues on both C and N termini; on only one side when it is the N terminus or C terminus core sequence).
(C) The multi-label training on the core sequence. The prediction score matrix representing one core sequence is shown. Columns of the matrix correspond to
amino acid residues, rows of the matrix correspond to PTM types, and each cell corresponds to the prediction score of the specific PTM.

the model is proportional to the amount of training data performance. We constructed an ablated version of MIND-S
(Figure 2A). Furthermore, we uncovered that the sequence with either multi-head attention or graph attention layer removed
(modeled by multi-head attention) and structure (modeled by as structure-only and sequence-only models. Individually, the
graph attention layer) components together provide the best sequence-only model performs better than the structure-only
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Figure 2. MIND-S performance on PTM prediction

(A) The line plot presents the relationship between the number of data points and performance. The x axis is the proportion of training data employed to train the model,
and the y axis is the performance (macro-average AUPR) of the model. The red line shows the performance of the model with both the sequence and the structure
components; the green line and the blue line show the performance of the model with only the sequence component and the model with only the structure component,
respectively. All models achieve performances with more data, and the model with both components performs the best.
(B-D) Both positive and negative data points in each PTM type were applied and analyzed. Radar plots present PTM prediction and model performance. The
baseline AUPR (total detected PTMs divided by total available AA residues) for each PTM type is shown in red. (B) The AUPR for PTM under single-label setting is
shown in blue, and the AUPR under multi-label setting is shown in green. The multi-label model shows better performance than the single-label setting in all PTM
types. (C) The AUPR for benchmark PTMs on the model trained with 5- and 15-fold bootstrapping is shown in green and purple, respectively. The AUPR of the
model without bootstrapping is shown in green. The bootstrap method shows better performance, and the 15-fold bootstrap method achieves the best per-
formance. (D) The AUPR for benchmark PTMs of MIND-S, MusiteDeep, CNN, and RNN are shown in orange, purple, blue, and green respectively. Overall,
MIND-S shows the best performance in most of the PTM types.
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model, which suggests that protein sequence is most informa-
tive for PTM prediction. However, the two components com-
bined achieve the best performance, suggesting that graph
attention layer can provide valuable information not captured in
the protein sequence (Figure 2A).

Another feature, multi-label’® training and prediction, in
MIND-S was shown to improve the overall performance of
the model. Unlike the conventional approaches, where one
model is trained to predict one type of PTM, multi-label allows
one model to be trained to predict multiple types of PTM. This
strategy can benefit PTM with fewer samples available. Such
PTMs are usually more challenging to predict due to the limited
availability of relevant datasets; as demonstrated in the previ-
ous section, the amount of data is proportional to the perfor-
mance. MIND-S addresses this issue by employing multi-label
prediction such that the learning process (parameters in the
network) of different types of PTM is shared during training;
PTM types with fewer data can “borrow” knowledge learned
from other PTM types. Moreover, instead of separately training
each PTM type, all PTM types were trained and predicted
simultaneously, which speeds up the training and predicting
processes, alleviating the computational burden. We evaluated
model performance under the single-label settings (where
training is performed separately for each PTM) compared
with the multi-label setting on each PTM type. Our results
reveal that multi-label substantially improved the prediction
performance for most PTM types, especially for PTMs with
limited data, such as hydroxyl lysine and O-linked glycosylation
on serine and threonine (Figure 2B). Using a multi-label strat-
egy, MIND-S greatly improves the prediction of these PTM
types. To a lesser extent, commonly studied PTM types also
benefit from a multi-label strategy. However, the performance
of one such PTM, N-linked glycosylation, showed little
improvement, suggesting the improvement from adding data
for this PTM was saturated.

In addition, we showed that utilizing a bi-LSTM layer, instead
of fixed positional encoding methods to capture positional infor-
mation (i.e., the sequential order of amino acid),'® improves
model performance such that the representation of positional in-
formation is learnable and can be better utilized to improve pre-
dictions. Indeed, Figure S2A shows that the model performs
poorly without any position information; amino acid composition
by itself is not sufficient for prediction.

Last, a bootstrap method is applied: the dataset is split 15
times to generate 15 training and validation sets, where the
size of the validation set is 5% of the total size of the dataset.
The 15 models were trained on each set, and an ensemble model
was obtained by averaging the output prediction scores from N
models weighted by AUPR scores on validation sets. The boot-
strap step is to enhance the robustness of MIND-S, and the
weighting is to adjust for the variation of the performance by
the models."” As a result, Figure 2C highlights that the bootstrap
method enhanced the model’s performance, and the model

¢ CellP’ress

achieved its best performance at N = 15. Therefore, we chose
N = 15 for bootstrapping in MIND-S.

Few tools are available for multiple PTM predictions.” MIND-S
is benchmarked against MusiteDeep, which is a valid PTM pre-
diction tool that allows multiple PTMs prediction, outperforming
several other single-PTM prediction tools.'® MusiteDeep is a
convolutional neural network (CNN)-based model for multiple
PTM predictions, and it takes in the one-hot encoded flanking
sequences of length 33 and passes to an ensemble of multi-
CNN and Capsnet models. We also construct a straightforward
CNN and a recurrent neural network (RNN) under our protein-
level prediction schema as a comparison between the two sche-
mas. The performances of MIND-S, MusiteDeep, CNN, and RNN
models are shown in Figure 2D. MIND-S has the best perfor-
mance in most types of PTM when evaluated by AUPR.
MIND-S also shows the best performances on all aggregate met-
rics (Figure 2E). Moreover, thanks to the multi-label and protein-
level training design, MIND-S has a far smaller size (698,765
parameters for 13 types of PTM together) compared with
MusiteDeep (2,342,680 parameters for each PTM), which ren-
ders superior computation speed for the training process and
demands fewer computational resources. In addition, the CNN
model outperforms MusiteDeep in terms of micro-average met-
rics even though it is simple in terms of model design, indicating
that our protein-level prediction schema may help the model bet-
ter capture the information needed. In addition, analyses on the
hyperparameters of MIND-S can be found in Table S4.

MIND-S provides biological interpretation through
integrated gradients

Given that MIND-S can accurately predict PTM occurrences, we
seek to interpret its predictions to gain insight into how PTMs
occur. MIND-S adapts a post hoc interpretation method, inte-
grated gradients,'® to provide a way to interpret the model pre-
diction. This interpretation method can evaluate to what extent
each amino acid residue can affect the final prediction. In other
words, it can identify the important amino acids for PTM. The in-
tegrated gradients method was originally designed for contin-
uous values; we adapted this approach to amino acid residue
embeddings. Since each amino acid is mapped to a multi-
dimension embedding, integrated gradients of each dimension
of the embedding were summed to generate a single saliency
score for that amino acid as a measurement of importance to
prediction.

To evaluate if the interpretation method can capture biologi-
cally relevant information, we compared the interpretation with
the known PTM motif and consensus sequence patterns of the
flanking sequence of a PTM.° We first investigated its application
on the N-linked glycosylation, which possesses a relatively stable
recognition pattern: Asn-X-Ser/Thr, where Asn is the PTM site
and X is any amino acid except proline.”' To evaluate the robust-
ness of our interpretation method, we apply it to all confident and
correct predictions in the test set, as the model has not “seen”

(E) Table of model performances. Micro- and macro-aggregated metrics (AUPR, AUC, F1 score, Matthews correlation coefficient [MCC]) on benchmark PTM
data of four models: MIND-S, CNN, RNN, and MusiteDeep. MIND-S shows the best performance in every metric measured. One-sided paired t test was per-
formed on binary cross-entropy loss between MIND-S and other models; *p < 0.001.

See also Table S5.

Cell Reports Methods 3, 100430, March 27, 2023 5




¢? CellPress

OPEN ACCESS

Cell Reports Methods

A
>
g
£
o
]
Lo
é o
N T T T T T T T C
-6 -4 -2 0 2 4 6
N-linked glycosylation
o 0.20
3 0.15-
n
20.10
c
.2 0.05
©
(2] 0
T T T T T T T T T T T T T T T
6 -4 2 0 2 4 6
AA Sites next to the N-Glycosylated Site
in Consensus Sequence
C
N
c
o
‘@
c
@
E
o
T T T T T T T
-60 -40 -20 0 20 40 60
Dimension 1
Clusters: ©1 ©2 3 04 5 6 7 8
@9 @10 @11 @12 ®13 14 @15 ©16 ®17

B
40+
204
N
s
.‘7, 0_
c
[
£
A -20-
-40 -
-60-
T T T T T T T
-60 -40 -20 0 20 40 60
Dimension 1
= mmm e e e e e e e e m -
! Kinases: @ Proline-directed @ Basophilic
1 ® Acidophilic
__________ I m e - = ==
D
>
2
3o
o
T
e 9
Lo
g o
Cluster 1 in Panel (B)
o 0.20
S 0.15-
»
3 0.10-
f=
£ 0.05]
P
0 -
— T T T T
-6 -4 -2 0 2 4 6
AA Sites next to PhophoSite
in Consensus Sequence

Figure 3. Validation of the interpretation module of MIND-S

(A) The upper panel shows the sequence frequency plot of all sequences from glycosylation sites investigated, where the +2 position shows enrichment of serine
(S) or threonine (T). The bottom panel shows the averaged saliency scores of the same glycosylation sites, where the 0 and +2 position has a peak saliency score.

The two panels show a matching of emphasis at the +2 position.

(B and C) The t-SNE plot of flanking saliency scores of phosphosites. Points in (A) are colored by the kinase group of the phosphosites: proline-directed kinase
(red), basophilic kinase (blue), and acidophilic kinase (green). The three kinase groups are roughly distributed in three regions: left, right, and middle. Points in
(B) are colored by the clusters (17 clusters in total). (C) The upper panel is the sequence frequency plot of all sequences from cluster 1, where the —3 position
shows enrichment of arginine (R). The bottom panel is the saliency scores of the representative of cluster 1, where the —3 position has a peak saliency score. The

two panels show a matching of emphasis at the —3 position.

the test set during training. Saliency scores of the amino acids
surrounding the N-linked glycosylation site were calculated and
averaged by their relative position to the PTM sites (Figure 3A).
Obvious peaks at the position of 0 (the glycosylation site) and
the position of +2, matching the consensus recognition pattern
Asn-X-Ser/Thr, were shown in the averaged saliency scores.
The comparison with the sequence frequency plots from the

6 Cell Reports Methods 3, 100430, March 27, 2023

corresponding flanking sequences of the PTM sites further dem-
onstrates that our model is able to faithfully capture recognition
patterns. We then evaluate the method in the scenario that there
is a mixture of various recognition patterns. We focused on phos-
phorylation where a variety of recognition patterns exist.?° Ki-
nases are responsible for phosphorylating proteins with specific
recognition patterns. We searched for protein sequences in our
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dataset to find all the phosphorylation sites with a studied motif
region through Scansite 4.0°%; 13,689 phosphosites were found
with at least one motif, and MIND-S predicted 13,377 of them
correctly. To evaluate if our interpretation method can distinguish
phosphorylations introduced by different kinase groups, we
calculated the saliency scores of the flanking amino acid
(of length 21, including the PTM site itself) of each phosphoryla-
tion. We applied t-SNE (t-distributed stochastic neighbor embed-
ding) on the saliency scores of each phosphorylation to reduce
the dimension for visualization, and we colored them based on
the associated kinases motif. Three groups of kinases were de-
picted: proline-dependent, basophilic, and acidophilic kinases
(Figure 3A). From the t-SNE plot, the three groups of kinases
are roughly separated, with proline-dependent kinases falling
on the left, basophilic kinases falling on the right, and acidophilic
falling in the middle. This suggests that MIND-S’s interpretation
module can mostly separate the phosphorylation originating
from different kinase groups. However, the interpretation module
is not expected to make perfect separation due to the following
reasons: (1) Scansite is a tool to predict phosphorylation based
on the motif, which does not represent ground-truth, and (2) the
interpretation module is developed to identify the important
amino acid for prediction and not for motif discovery. To further
understand the results from the interpretation module, we per-
formed clustering on the saliency scores, such that different pat-
terns can be separated. K-means clustering was applied, and the
number of clusters (17) was determined by the elbow methods
(Figure S3A). The clustering results are shown in Figure 3B
colored by clusters. We used the cluster center as a representa-
tion of the clusters (Figures 3C and S3) and gathered the
sequence from the corresponding cluster to create a frequency
plot. We found several clusters with an obvious consensus
sequence pattern. Correspondingly, the interpretation module
is able to highlight those positions. For example, Figure 3C shows
cluster 0’s saliency scores where, at the —3 position, saliency
score reached the peak, indicating that MIND-S considered the
—3 position as important. We then investigated the sequence
pattern and found an enrichment of arginine at —3 position, indi-
cating that the arginine there is important for phosphorylation. We
also found other matching patterns (+1 proline, —2 arginine, —2
and 3 arginine), suggesting that MIND is able to capture the
sequence consensus pattern hidden in the input even though
we did not explicitly design a module to detect the consensus
pattern. Other patterns exist in the clusters, while not exactly
matching the enrichment of amino acid, which suggests that
MIND-S has other ways in addition to the consensus sequence
for making a prediction. Last, we also show one specific example
of saliency scores that exhibit the same trend as the phosphory-
lation motif. MIND-S correctly predicted the phosphorylation site
on protein P04150 site 203 (glucocorticoid receptor), which falls
in a CDK1 motif. We compared the consensus sequence fre-
quency of the CDK1 motif with the saliency scores of the flanking
amino acids (Figure 3D). The interpretation module detects that
the proline on position +1 is important for phosphorylation, which
is in accord with the pattern shown in the kinase motif, where po-
sition +1 is a highly conserved proline. Similar analysis can be
performed on any predictions made by MIND-S for users pursu-
ing details of the prediction.

¢ CellP’ress

MIND-S examinates SNP effects on PTMs

Dysregulation of PTMs could potentially lead to disease, and the
identification of the disease mechanism is of vital importance.
Non-synonymous mutation can interrupt the recognition of
the corresponding enzyme responsible for PTM addition and
may therefore interrupt the PTM occurrence.”®?° Although
genome-wide association studies (GWAS) have associated ge-
netic variants with various traits, including disease phenotypes,
less has been done to investigate associations between SNP
and PTM. This may be due to the lack of coupling datasets
from the two modalities. MIND-S is able to identify SNP
candidates that affect PTM occurrences without requiring such
datasets. We demonstrate two use scenarios here: in scenario
1, if a PTM is given, to predict whether an SNP will interfere
with a known PTM (identified experimentally); in scenario 2, if a
PTM is not known, to predict the change of the PTM landscape.
We demonstrated scenario 1 with 1,054 non-synonymous car-
diac-related SNPs that are proximal to PTMs (within five amino
acids; limits to four common PTMs: phosphorylation, methyl-
ation, ubiquitination, and sumoylation) retrieved from
PhosphoSitePlus PTMVar.?’” The protein sequence was mutated
in silico based on the SNPs and input to MIND-S. The prediction
score of the proximal PTM was compared against the one from
the unmutated protein sequence (Figure S4A). In total, 51 SNPs
that change the PTM prediction from positive to negative
(Table S3) with a stringent criterion (wild-type prediction score
>0.8 and mutation prediction score <0.2) For example, SNP
R272C on myosin-binding protein C (Uniprot: Q14896), is an
SNP found in hypertrophic cardiomyopathy and is responsible
for a decrease in the phosphorylation level on the protein.?®
MIND-S examined this SNP and revealed a change in the score
of phosphorylation on site 275S from 0.986 to 0.0031. This is also
in accord with decreased phosphorylation level of myosin-bind-
ing protein C in heart failure.”® The other SNP, P251S, on potas-
sium voltage-gated channel subfamily H member 2 (Uniprot:
Q12809), is a mutation found in long-QT syndrome.*® MIND-S
detects this SNP to interrupt the phosphorylation on site 250S,
with the score dropping from 0.898 to 0.016. This may suggest
a potential role of the mutation. We next demonstrated the use
case when PTM information is not known in advance. Similar
to scenario one, the original protein sequence and mutated pro-
tein sequences are both used as input to MIND-S. Instead of
making prediction on each single PTM, MIND-S makes predic-
tions on every amino acid that can be targeted by PTM, which
generates PTM maps for both original protein and mutated pro-
tein. Providing a PTM map can not only examine PTM that may
be distal but also discover PTM that might be promoted by
SNP. We demonstrate the effects of both interference and pro-
motion of SNPs on protein leucine-rich repeat kinase 2
(LRRK2), a protein associated with familial and sporadic Parkin-
son disease (PD) and also shown to be associated with cardiac
diseases.’’ Eleven SNPs on LRRK2 were retrieved from UniProt
and examined, and four of them are found to potentially affect
PTMs. SNP R1441C was predicted to interfere with the phos-
phorylation on site 1444 with the prediction score changed
from 0.972 to 0.154. Such interference has been reported”®
and therefore provides validation on the method. On the other
hand, the effect of promoting a PTM is found in SNP R1628P
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on phosphosite 1627 with the prediction score changed greatly
from 1.45e—3 to 0.912 (Figure 4A). We visualized the PTM map
of the wild-type and mutant LRRK2 in Figure 4B. Through com-
parisons of PTM maps between wild type and mutant, full-length
protein effects of SNP can be examined and protein-wide distri-
bution of PTMs over the protein sequence can be comprehen-
sively viewed. For example, in SNP R1441C, in total, two phos-
phorylations were predicted to be interfered and carbonylation
on cysteine is predicted to be promoted. In summary, MIND-S
can effectively examine the effect of protein mutation from a
PTM perspective.

Other use cases of MIND-S

Furthermore, we demonstrate MIND-S’s usage by providing
several use cases in cardiovascular research. while similar ap-
proaches can be adapted to other research fields as well.
MIND-S is able to make high-throughput predictions on unanno-
tated proteins. We chose pig cardiac proteome for prediction
because of its high research value in cardiac disease modeling
but relatively few PTM annotations.***®* MIND-S predicted
PTMs on the pig cardiac proteome from text mining (unpublished
data), which consists of 7,016 proteins where 6,596 of them have
no PTM reported. MIND-S identified 48,841 PTMs with high con-
fidence (prediction score >0.8) as a pig cardiac PTMome. MIND-S
can also be utilized as an approach to determine the exact PTM
location. Some experimental approaches, such as antibody-
based approaches, can confirm the existence of PTMs while be-
ing unable to determine the exact location of PTM on the protein.
MIND-S can serve as a follow-up analysis that provides putative
locations. Pyruvate dehydrogenase complex (PDH) is reported
to be modified by O-linked-N-acetylglucosamine (O-GIcNAc) in
mice, while the sites were not determined.>* We used MIND-S
to identify the glycosylation sites and found three O-GIcNAc sites:
Uniprot: P35486 site 232, Uniprot: P35486 site 300, and Uniprot:
Q8BKZ9 site 200. Uniprot: P35486 is a pyruvate dehydrogenase
E1 component subunit alpha, somatic form. in mitochondria.
and both sites 232 and 300 can be modified by kinase for phos-
phorylation. This may suggest a crosstalk between glycosylation
and phosphorylation. Uniprot: Q8BKZ9 is a pyruvate dehydroge-
nase protein X component in mitochondria, where site 200 falls in
the peripheral subunit-binding (PSBD) domain. PSBD domain,
consisting of ~35 residues, binds to the E1 or E3 subunit of
PDH. This suggests the regulatory role glycosylation may play in
regulating the PDH functionality.

DISCUSSION

In this report, we describe a PTM prediction schema with its
coupled modeling method, MIND-S. Most existing PTM tools
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are based on local amino acids spanning the target sites.” Spe-
cifically, several amino acids flanking the PTM site are taken as
the input, with predictions on the target residual as the output.
Several major limitations exist in this approach (discussed
below). Our workflow with MIND-S has overcome these limita-
tions. We have applied a strategy to train and predict at the pro-
tein level, which provides a much larger receptive field to the
model and relieves the burden of tuning window size. Moreover,
it converts the single-site, single-PTM prediction task to a multi-
ple-site and multiple-PTM prediction task, allowing the features
learned to be shared across PTM types and improving training
and predicting efficiency. In addition, reframing the peptide-level
question into a protein-level question opened up opportunities
for us to address the question on integration with other pro-
tein-level features and/or tasks available. One important element
in our workflow architect design is the application of GNN to
overcome the challenges on the integration of protein structure
with protein sequence. This was not trivial since protein structure
data are 3D data, whereas the protein sequence is 1D. We em-
ployed GNN to model the protein structure as a contact map,
which provided spatial closeness relationship between any pairs
of amino acids. We demonstrated that integration of GNN
offered new information and enhanced the prediction perfor-
mance. We believe that, with the growing computing power
and rapid development of deep learning, modeling at the protein
level will make the model interoperable among different applica-
tions involving proteins in the future.

Over the past decade, many pioneer studies contributed
significantly to the growing field of machine learning applica-
tions to decode PTMs.?*>*% One popular area is the amino
acid recognition-domain-based PTM predictions. This direc-
tion has offered important information, e.g., associated
kinases, to the targeted sequences.'®®” However, they also
bear several limitations: (1) information outside of the flanking
region is often lost. Short flanking sequences may not be able
to capture longer sequence information or protein-level infor-
mation. For example, docking sites on the substrate increase
the binding affinity of the kinase for the substrate, which in-
creases the likelihood of phosphorylation.®® Docking sites can
be far away from the phosphosites and would be missed if
only local flanking sequences were considered. (2) Training
and predicting are inefficient when input amino acid sequences
are overlapping. For PTM prediction, both training and predict-
ing will be done on a large scale given the large amount of ex-
isting PTM data and proteins with no PTM annotation. In addi-
tion, methods such as deep neural networks are time-costly on
training. These require a less redundant dataset, while overlap-
ping flanking sequences create redundancy in both training and
prediction processes. (3) Different PTM types may have distinct

Figure 4. MIND-S examines the effect of SNP on LRRK2 PTM

(A) An illustration of SNPs interrupting or promoting PTM occurrences on a particular molecule, LRRK2. SNP R1441C on protein LRRK2 is found to have reduced
phosphorylation scores on site 1444 from 0.972 to 0.754 and site 1445 from 0.778 to 0.227. SNP R1628P is found to have an elevated score of phosphorylation on

site 1627 from 2.6e-4 to 0.903.

(B) PTM maps of wild-type and two mutant LRRK2. PTM types are annotated. The mutation amino acid (aa) is highlighted by the black triangles on the x axis. The
area affected is shown with a white background; the major changes in the PTM prediction score are indicated by black arrows. In the R1441C mutant, two
phosphorylation sites are interrupted, and an O-PTM on cysteine is promoted. In the R1628P mutant, one phosphorylation site is promoted.

See also Table S3.
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optimal sizes of the flanking sequence; the fixed window size of
the flanking sequence may limit the model’s ability to transfer
between PTM types. In addition, studies of PTM motifs are
limited, which makes it difficult to determine the optimal size
by existing biological knowledge.

With the above considerations, we created MIND-S using a
deep-learning method to perform the prediction under the
schema. While machine learning approaches such as support
vector machines and random forest have been applied to PTM
site prediction,*'®*°~** these methods often rely heavily on en-
gineered features such as amino acid composition profiles, po-
sition-specific scoring matrix profiles, and surface accessibility.
These engineered features are computationally expensive to
build, store, and predict, and are often unavailable. On the other
hand, while protein sequences are widely available, they are diffi-
cult to encode as numeric values to be “machine-readable.”
Compared with conventional machine learning approaches,
deep-learning methods can accept a wider range of raw input,
such as sequence data and graph data. Features important for
prediction are thus implicitly extracted and utilized, relieving
the feature extraction burden and enhancing performance.®
Various neural networks have been proposed to process
sequence data in the field of natural language processing
(NLP).*® However, model architectures that succeed in general
NLP tasks may not be generalizable to tasks directed toward
protein amino acid sequence. For example, the amino acid
sequence comprising a protein is usually much longer than a nat-
ural language sentence, the “vocabulary” of protein sequences
(i.e., 20 common amino acids) is much less complex than the
word dictionary, but the amino acid sequence order of a given
protein offers important insights.

We applied an LSTM layer to effectively deliver sequential in-
formation instead of using fixed positional encoding, such that
the sequential information can be represented in a way that the
model can best utilize. As for protein structure data, as the
number of experimental determined structure data grows and
computational methods for structure prediction improve,
various methods are becoming available to model the protein
structure data with deep learning.*®*® Here we utilized the
AlphaFold DB as one example to illustrate the utilities of struc-
ture data. AlphaFold DB has an excellent coverage of protein
structure, and we converted the structure to a protein contact
map to adapt for GNNs. We observed benefits from incorpo-
rating structure information for enhanced PTM prediction. In
addition, we provide another version, MIND, that takes only
protein sequence as the input as an alternative for proteins
without reliable structure data. We also examined strategies
in addition to model architecture, such as multi-label learning
and bootstrap methods, which can considerably enhance
MIND-S’s ability to accurately predict PTMs, demonstrating
the need for consideration from both computational elements
as well as protein features and for developing methods on
PTM predictions. The architecture design of the model is
mostly driven by functionality. Specifically, the embedding layer
is to vectorize the protein sequence, the bidirectional-LSTM
layer is to encode positional information, the multi-head self-
attention layer is to process the sequence data, the graph
attention layer is to process the structure data, and the final
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fully connected neural network is to construct the embedding
above to multi-label output.

By model design, MIND-S is able to process arbitrarily long
protein sequences as input, but we truncated protein se-
quences when they were at excessive length due to practical
restrictions. First, protein sequences need to be padded to
the same length as the longest sequence in the batch, even
though the padding does not provide any meaningful informa-
tion; second, computational memory cost is quadratic to the
protein length. Thus, we split the protein into sufficiently long
subsequences to ensure memory efficiency and still allow the
model learning on long-distance interactions between amino
acids. We also developed an approach to split the sequence
to ensure the interaction between amino acids falls into two
subsequences that will not be lost. While such restriction can
be loosened if preferred during inference time, e.g., when
only a few proteins are investigated, full-length proteins can
be used as input since parameters in MIND-S are independent
of protein length.

MIND-S also provides a way to evaluate the contribution from
individual residuals to the final prediction. Although deep
learning is powerful on complicated tasks, the internal deci-
sion-making process is complex and less understood by hu-
mans. We use integrated gradients to simplify the interpretation
process from tracking complicated decision-making processes
to calculating saliency scores associated with every residual,
which is easier to be understood by humans. Overall, three
important features define a good model on PTM predictions: it
implicitly detects innate patterns, it makes reasonable predic-
tions with effective model interpretation, and it will unveil under-
lying patterns in a human-understandable fashion. Specifically,
we considered two types of mechanism insights: (1) for a biolo-
gist who is interested in a specific PTM, MIND-S can point out
the amino acids that might be important for the occurrence of
that PTM. Thus, further experimental investigations can be per-
formed on those prioritized amino acids instead of every amino
acid in that protein. (2) When predictions and interpretations of
PTM are performed on a proteome scale, the results can be
treated as a database to mine the recognition pattern. For
example, our analysis of phosphorylation recognition pattern
not only discovered known recognition patterns but also re-
vealed recognition patterns that have not yet been found.
Different from regular motif-finding tools, which mine patterns
from sequences bearing PTM (positive case), MIND-S utilized
both positive and negative PTM cases (sequence without PTM
site) to identify amino acids that are essential to the PTM occur-
rence. Thus, MIND-S provides a perspective on mining recogni-
tion/modification patterns.

Last, we showed several use cases of MIND-S. MIND-S is
capable of studying the functionality of SNPs by identifying
SNPs that disrupt PTM occurrences. We prioritized the SNPs
most likely to change the PTM occurrence from a large pool of
disease-associated SNPs. In this study, only mutations in the
protein sequence due to SNPs are considered; however, any
mutational processes that result in a mutant protein can be stud-
ied with MIND-S. For example, RNA splicing of introns and exons
results in multiple different isoforms of the same protein and
therefore can affect the occurrence of a PTM on a given site.
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Taken together, our tool empowers researchers to understand
how sequence variation can affect downstream biological
processes and their PTM landscape.

Limitations of the study

We envision the following important tasks will further elevate the
performance and broaden the applications of MIND-S: (1)
improve the structure modeling to better present spatial informa-
tion for PTM predictions, (2) incorporate additional PTM types to
further benefit from multi-label training and allow broader usage,
(8) further investigate results from saliency scores to mine pat-
terns for PTM occurrences, and (4) evaluate effects of biological
processes altering protein sequence (e.g., RNA splicing) from a
PTM perspective.
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METHOD DETAILS

Dataset

Two separate large PTM datasets encompassing a total of 26 PTM types, including 50,000 + proteins with 260,000 + total PTMs,
are employed in this study. First, we selected the PTM dataset previously published by MusiteDeep'® (09/2021), where 13 PTM
types were included. For training/validation/testing split, to prevent information leakage from similar proteins, we applied Uniref.
50 8, where protein in the clusters has at least 50% sequence identify to and 80% overlap with the longest sequence in the cluster;
during splitting, we enforced proteins from the same Uniref. 50 cluster go into the same split. The 13 PTM types are detailed in
Table S1.

The second dataset is an Oxidative PTM (O-PTM)-centric dataset we have collected in-house combined with a publicly available
dataset.*® In short, O-PTM was searched from MS raw file through IP2 program, and 13 types of O-PTMs are included in this study.
Similarly, we applied Uniref. 50 8to guide the splitting. A summary of the O-PTM data in each split is shown in Table S2.

An amino acid residue with/without a PTM will be treated as a positive/negative label for that PTM, respectively. Both positive and
negative labels were utilized to train our model. An example is shown in Figure S5.

In addition, we only considered negative PTM when there is at least one positive PTM in the same protein; for example, if a protein
has one phosphorylation on serine or threonine, all other serine and threonine that do not bear phosphorylation will be treated as
negative samples; if the same protein has no ubiquitination, all lysine will neither be treated as positive or negative labels for ubig-
uitination. This is to ensure the integrity of the negative samples, since a protein with no positive PTM may indicate no PTM identi-
fication experiment has been performed on that protein.

Protein sequences were downloaded from the UniProt website (https://www.uniprot.org/)*® by UniProt ID.
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Protein structures were downloaded from AlphaFoldDB by UniProt ID from Google Cloud Public Datasets, with name as “AF-UID-
F1-model_v3.cif”. In total, 38,947 proteins have predicted structure from AlphaFold. We used Biopython®' to parse the protein struc-
ture and built the contact map. Specifically, model 0 and chain A of each protein was used, “CA” atom in each amino acid was used to
calculate the pairwise distance between amino acids. From the pairwise distance matrix, we filtered out amino acid pairs with
distance greater than 10 A and binarized it as our contact map. We regarded each amino acid is close to itself.

Model architecture

The MIND-S architecture consists of one embedding layer, one bidirectional LSTM layer, three multi-head self-attention blocks, one
graph attention layer and one fully connected layer. The embedding layer converts protein sequence to an embedding of the size of
128 through a feedforward dense layer. The bidirectional LSTM layer has a dimension of 64 for each direction. Tanh activation is
used for cell and hidden state; sigmoid activation is used for gate activation. After the LSTM layer, a dropout layer is added. The feature
vector from the LSTM layer is passed to the multi-head self-attention block. The multi-head self-attention block consists of a multi-head
self-attention layer, a dropout layer, a layer normalization layer, two feedforward dense layers, another dropout layer, and another
normalization layer in sequential. Graph attention layer used multi-head attention with the number of heads equals to 8 and a dropout
rate equals to 0.5. Lastly, output from the multi-head self-attention block and graph attention layer will be concatenated at the last
dimension and passed to a feedforward neural network with an output dimension of 13 (number of PTM types) for each amino acid.
Sigmoid activation is applied to output a final score. Unless specified otherwise, all layers have 128 hidden dimensions and the dropout
score is set to 0.1. The model is built using Tensorflow 2.0, Keras API and spektral.>® The detail of each layer is descripted below.

Fully connected neural network layer

a = reluWX + b)

where X is the input matrix, W is the weight matrix, b is the bias term, relu is the rectified linear activation function, a is the output of the
layer.

Bidirectional LSTM layer
Hidden states of each amino acid in LSTM are calculated following the sequential order:

fy = sigmoid(Wex; + Ushy 1 + by)
iy = sigmoid(Wjx; + Uih;_1 + b;)
o; = sigmoid(Wox; + Uoht 1 + by)
c't = tanh(Wex; + Ushy 1 + b)
Ct = fyCiq+ipeCy

hy = os-tanh (cy)

where x; is the input of the ¢t-th amino acid input embedding, h; _ 1 isthet — 1-th hidden state, h; _ 1 isthet — 1-th hidden state, f; is the
t-th forget gate, i; is the t-th input gate, oy is the t-th output gate, c; is the t-th cell state, Wy, W;, W,, W,, Us, U;, U,, U, are the weight
matrices and by, b;, b,, bc are the biases.

Bidirectional LSTM are combined by LSTM from N-terminal to C-terminal and LSTM from C-terminal to N-terminal:

Out; = Concat(h},h?)

where Out; is the t-th output, hf and h? are hidden state from forward and backward direction respectively.

Multi-head self-attention

Qi = WQ,'X
Ki = WX
Vi = WyX
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A; = softmax (QiKi 'T)

Vi

Out = Concat!'_,(AV;)

where X is the input matrix, Wq,, Wk,, Wy, are the weight matrices to generate query matrix Q;, key matrix K; and value matrix V;,
respectively. i represent the i-th head. A; is the matrix of scaled attention of the i-th head, T is the matrix transpose operation, di
is the second dimension of matrix K;. Out is the output from concatenating all heads.

Model training

Sequence preprocessing

The input sequence is one-hot encoded into a matrix with the shape as (length of sequence +2, 26), where 2 is the “<START>" and
“<END>" added before and after the sequence; 26 is the total number of tokens: 22 amino acids (20 common amino acids plus Se-
lenocysteine and any) and four special tokens “<OTHER>"”, “<PAD>", “<START>" and “<END>". ‘<START>’ and ‘<END>’" will be
added before and after the input sequence to indicate the start and end of the sequence; “<OTHER>" will be used if the amino acid in
the sequence is not in the 22 amino acid tokens mentioned earlier; “<PAD>" is used to pad the sequence to the maximum length,
which is 512 amino acids with “<START>" and “<END>" tokens in our study. The padding is to batch the data for computation; we
mask the attention involving padding during multi-head attention calculation by adding negative 1e3 to the corresponding attention
scores before softmax, rendering the value close to 0 after softmax. A binary protein contact map is used as the adjacency matrix for
the graph attention layer. To match the sequence length, the protein contact map is also padded to a dimension of (514, 514) with
zeros.

We have chosen 512 amino acids as the maximum segment length with three primary considerations: first, we anticipate that a 512
amino acid long segment has sufficient length to encompass various protein domains, which are on average 100 amino acids long,
typically of length between 50 and 200 amino acids.®® Second, our multi-head self-attention and structure graph layers require
quadratic computational memory with respect to length, restricting the protein segment length. Third, about 60% of the 48,811 pro-
teins in our dataset are shorter than 512, which is not affected by the maximum length.

Thus, we selected a computation segment length of around 512 amino acids.

PTM mapping strategy

To address long sequences, we arranged proteins into extended core sequences with overlap. We set the segments with maximum
length (i.e., 512), where the N terminal of the extended core sequence has 128 amino acids overlapping with the C terminal of the last
extended core sequence. The PTM data falling in the core sequence (i.e., the middle 256 amino acids of the extended core sequence)
were selected for training, assuring interactions within a distance of at least 128 (mostly longer) will not be lost.

Specifically, we cut the whole protein sequence Seq into extended core sequences ECSeq;:

ECSeq; = Seq {MTC : MaxSeq,},

. s —1
s,1:7—1
MaxSeq; = . ,
(I+2)*Ci¢8 -1 1
2 2c

where Seq|a : b] represents subsequence of Seq from position a to position b — 1, s is the length of the sequence, c is the size of core
sequence (i.e., 256).

To ensure enough context for each instance, for each ECSeq;, we only consider the CoreSeq; within the positions from / to r of
ECSeq;, where

s-1)

0,i=0 swi= -
CoreSeq; = ECSeqill:r] =1 ¢ . = cx
Zi#0 3 (1)
4’ Ccx*2

s; is the length of the i-th subsequence ECSeq;.
Label and sample weight preprocessing
To adapt to the multi-label setting, we constructed a label matrix with the shape as (length of sequence, the number of PTM types);
where the rows correspond to the residues in the protein sequence while columns correspond to the PTM types. We used “1” to
present the positive labels and “0” to represent the negative labels. The entry was “1” if/when the amino acid hosts PTM(s) or,
“0” if the amino acid is naked or not the target of the PTM. We also constructed the sample weight matrix to (a) inform which
PTMs to be included during training and evaluation; and (b) apply class weights during training. We weighted different PTM labels
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to provide higher weight for PTM types with fewer samples to address the class imbalance issue. The sample weight matrix has the
same shape as the label matrix, where entry will be weights if/when the PTM was hosted. The entry will be “1” if no weighting is

applied.
Model loss
We have chosen the weighted binary cross-entropy loss for each label. Specifically,
1 LY
Loss = — > > (vjlog(py) xw; + (1 —y;) xlog (1 — p;))
SN j=1i=1

ji=1
where N; is the number of samples in the classj, N is the total number of PTM classes, yj is the true label in i sample of PTM class j, pji
is the output prediction scores from model in i sample of the PTM class j, w; is the positive class weight for PTM class j.

Considering that many amino acids do not host any PTMs, we applied sample masks to retain only positive or negative samples
during loss calculation. All other amino acids that are not targets of PTM will not be included in the loss calculation.

One challenge in PTM site prediction is the class imbalance issue; the number of negative samples, target residuals without PTMs,
is much larger than the number of positive samples, target residuals with PTMs. To ensure the model learns from balanced data, we
computed the loss with the inverse proportion of positive or negative samples as the weights.

Specifically, the weight was calculated as:

W/ - npOS,‘ +nnegj

2Npos;
where npos; is the number of positive samples in the PTM class j, nneq, is the number of negative samples in the PTM class j. The
consideration of such weighting is to assign higher weights for classes with fewer data and lower weights for classes with more
data. So the weight is set proportional to the inverse of the number of samples in negative or positive samples and normalized by
the total number of samples.®”

This calculation was only performed during training; no weighting was involved during evaluation.

Training settings

We set the number of epochs as 300 and batch size as 64. An early stopping strategy with patience equal to 2 was enforced, and
loss was monitored for early stopping. The model will stop training after 2 epochs if there was no improvement in the loss. And the
model with the least loss during the training was accepted as the final model. We utilized the Adam stochastic optimization
method with the following parameters: learning rate 1e-3, the decay rate for the first moment estimate as 0.9, and exponential
decay rate for the second moment estimate as 0.999. We employed the AMSgrad variant. The model evaluation metric was calcu-
lated through the scikit-learn package,®® where the average precision score was selected to determine the AUPR. Metric using
micro-average was to calculate the metric for all predictions made together, whereas macro-average calculated the metric for
each PTM type first and averaged them. AUC, f1 score, and Matthews correlation coefficient (MCC) were determined through
the scikit-learn package as well.

Bootstrapping was performed by splitting the dataset randomly into two separate sets iteratively, where one set was one-fifth of
the total size and was ultimately used as the validation set whereas the remaining was the training set. 15 different training/validation
sets were generated to train 15 models. After training, AUPR was calculated for the validation set. The AUPR scores were applied to
weight the score outputted by corresponding models to ensemble a final model for each PTM type for each amino acid.

Two models were trained individually for the 13 PTMs and 13 O-PTMs as these two PTM datasets were generated from different
sources.

Model comparisons

For evaluating the effects of data size, we had the testing set fixed, and randomly sampled the remaining data without replace-
ment with a proportion of 10%, 30%, 50%, and 100%. For the sequence only model, we remove the input of protein structure
and graph attention layer. For the structure only model, we removed the multi-head self-attention blocks. For the single label
setting, we changed the final output of the model to one dimension and train the model for each PTM type individually. For
evaluating the positional information, we constructed a model without the biLSTM layer as the no positional information model;
we constructed a model without the biLSTM layer but instead we add the sinusoidal positional encoding before next layers as
the sinusoidal model. MusiteDeep was trained on the combined training and validation sets and tested on the testing dataset
with default settings. CNN model is constructed under our schema with protein mapped to Core sequences. The CNN model
consists of four layers of 1D convolution with the size of dimension as 256, same padding, and kernel size as 3, 6, 9, and 12
respectively. A LeakyReLU layer with alpha = 0.01 and a dropout layer with probability = 0.6 are added after each 1D convo-
lution layer. The remaining setting was identical in MIND-S without bootstrap application. RNN model is constructed similar as
CNN model, instead of using CNN layers, RNN model use three layer of Bidirectional LSTM layer with identical setting as MIND
without bootstrapping.
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Amino acid embedding

The amino acid embeddings are generated by the embedding layer in MIND-S, where each amino acid has one corresponding
embedding associated. We extracted the embeddings from 20 amino acids and used principal component analysis (PCA) to extract
the first two components for visualization.

Saliency scores

Integrated gradients were selected to determine saliency scores. The integrated gradients method requires the integration of gradi-
ents from a series of interpolated values from background to actual input. However, one-hot encoding cannot be interpolated. There-
fore, we applied the embedding from one-hot encoding instead to perform the interpolation. This would not interfere with the saliency
attribution given that the embedding layer is unique for each amino acid. We utilized the same vectors as input for background
embedding, with the exception that the corresponding embedding of the residual to be evaluated as zero. We calculated 50 inter-
polations between the background and the actual embedding, specifically:

A background embedding embg of the amino acid residue interested is created first:

embg = 0

where the emby is a zero vector.
A series of interpolated embedding emb; are generated from the background embedding and the original embedding emb:

emb; = embg + a;(emb — emby)

! i
QO = —
i Na
where N, is the total number of interpolations to be performed and emb; is the i th embedding.
Interpolated embeddings and the original embeddings were then input into the model to arrive at the prediction. The prediction of a
PTM was then determined to calculate the gradients of the interpolated inputs. The gradient of interpolated embedding emb; is calcu-
lated as s;

_ Oloss
~ demb;

i

Finally, the gradients of interpolated embeddings are accumulated with trapezoidal rule and scaled with respect to input to get the
final saliency vector s:

Ny -1 Ng
Z Si+ Z S;
s = % (emb — emby)

The sum of all entry of s will be used as saliency score for this amino acid residue.

Flanking sequence of length equal to 21 (including the PTM site) is used to calculate the flanking saliency scores and perform t-SNE
plot. Only phosphosites that have prediction scores greater than 0.8 and have associated kinases defined were selected. Kinases are
determined by scansite4”* web service to scan protein sequences in our datasets to locate the phosphorylation motifs. t-SNE plot is
generated by sklearn with default setting except that perplexity is set to 100. Clustering analysis is performed by kmeans in sklearn
with the default setting and the number of clusters (17) is determined by the elbow method using the sum of squared distances of
samples to the corresponding cluster center. The sequence frequency plot of the cluster was generated by aggregating the sequence
of samples in that cluster by WebLogo.”® The sequence frequency plot of kinase was generated by aggregating the substrate

sequences of that kinases retrieved from PhosphoSitePlus.”” The representative of the cluster is the cluster center from kmeans.

SNP PTM association

Human disease-associated SNPs proximal to PTM sites were downloaded from PTMVar®’ and UniProt. SNP related to cardiovas-
cular diseases were selected for analysis. In silicon mutated protein was generated according to SNP. The prediction scores of the
same PTM site were compared between the mutated and wild-type proteins. An SNP-PTM pair was set to be confident when the wild
type has a prediction score higher than 0.8 and the subsequent mutation prediction score is lower than 0.2 or vice versa.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical test was performed to compare the cross-entropy loss made by MIND and the other models. All predictions on the test set
from the models were used to calculate the binary cross-entropy loss with true labels (n = 182,872 losses). We then performed a one-

sided t-test (the alternative hypothesis is loss from MIND is smaller than the other model) on cross-entropy losses from MIND the
other model compared. We used ttest_rel from scipy.stats in python to perform the t-test.
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