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Abstract—We study information diffusion modeled by epi-
demic models on a class of growing preferential attachment
networks. We show through a thorough simulation study that
there is a fundamental difference in the nature of the epidemic
process on growing temporal networks in comparison to the
same process on static networks. The empirical distribution of
the epidemic lifetime on growing networks has a considerably
heavier, and possibly infinite, tail. Furthermore, the notion
of the epidemic threshold has only minor significance in this
context, since network growth reduces the critical value of the
corresponding static graph.

Index Terms—information diffusion, epidemic models, tempo-
ral networks, time-varying networks, preferential attachment

I. INTRODUCTION

Social networks and the world-wide web in general have
a huge influence over our lives today. Many depend on the
power of information diffusion on social networks - almost
every company has marketing strategies for social networks,
news agencies use social networks to increase their site traffic,
and celebrities use social network to increase their brand value.
Unfortunately, we also see harmful uses of this mechanism
where adversaries spread fake news to drive their propaganda.
Understanding the spread of information on networks is thus
a topic of great interest, see [1], [6].

Epidemic models, which were historically developed to
study disease spread in a network, have been applied to model
information diffusion on the web, see [6], [13]. The study of
epidemic spreading processes on complex networks in general
has been a research topic of interest for a long time, typically
under classical models like Susceptible-Infectious-Susceptible
(SIS) and Susceptible-Infectious-Recovered (SIR) [9]. Recent

efforts have been made on time-varying or temporal networks,
in which nodes and edges exist for only a subset of the entire
time [3], [8], [12]. We consider an SIS model on a specific
class of temporal networks: those that are strictly increasing
in time.

In the epidemic process modeled after the SIS model, nodes
exist in one of two possible states, Susceptible and Infected. A
susceptible node may become infected at the next time step if
it is adjacent to an infected node. An infected node transmits
the infection to the susceptible node in the next time step with
probability �. The higher the value of �, the higher the rate
of transmission of the infection and the longer the infection
persists in the network. A notable result specifies an epidemic
threshold �c, below which the infection dies out quickly, and
above which the infection may survive for a “long” time [4].
The notion of “long” depends on the cardinality of the node
set, as the SIS process on an infinite graph may survive for an
infinite amount of time, while a finite graph necessarily dies
out in finite time.

Most theoretical results on epidemic threshold are limited
to static graphs, that do not change over time. In the specific
case of a growing complete graph, it has been proved that
infinite survival is possible [11], however, to our knowledge
this result has not been extended to more general graphs. We
conduct a thorough simulation study of the SIS model on a
class of graphs generated by the Preferential Attachment (PA)
model. The PA model is a generative graph process where we
start with a single node and zero edges and at each time step,
we add a new node and an edge between this node and an
existing node. The existing node for the new edge is selected
with probability proportional to its degree. Note that while all
graphs in the sequence are finite, the limiting graph is infinite.
A major difference in our model from other work is that the
epidemic process continues concurrently with the PA model.

We use simulations to compare the lifetime distributions of
SIS processes on growing graphs versus finite static graphs.
Our computational results show that the distribution of an
infection’s lifetime has a heavier tail in the growing case
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compared to the static case. Contrary to the static case, the
empirical lifetime distribution can be classified as long-tailed.
Further, for large enough values of the spreading rate �, we
give evidence that infinite survival may be possible on the
growing graph. We also argue that, unlike static graphs, the
epidemic threshold for long survival does not depend on initial
graph size.

The main contribution of our paper is that we show that the
epidemic lifetime distribution for the SIS model on a growing
network is significantly different from that in the case of a
static network. Through simulations we find a strong evidence
that

• there is a critical value �c such that for � > �c, the
lifetime is infinite with a positive probability,

• lifetime distribution has a heavier tail compared to that
on a static graph, and

• the typical notion of epidemic threshold is less pertinent
in the case of growing networks.

II. RELATED WORK

A. SIS Model

A continuous-time SIS model on a finite graph G is
characterized by an infection rate ⌫ > 0 and a recovery rate
� > 0. On a graph of n nodes, we define the vector process
(Xt, t � 0), Xt 2 {0, 1}n, where we say that a node i is
infected at time t if Xt(i) = 1, and susceptible if Xt(i) = 0.

An infected node becomes susceptible again after an ex-
ponentially distributed amount of time with rate �. For every
edge (i, j), there is a Poisson process with rate ⌫ representing
contact between nodes i and j. If one node is susceptible and
the other is infected at a contact time, then the susceptible
node becomes infected. That is, if there is an arrival at time
t, and Xt�(i) = 1, Xt�(j) = 0, then we set Xt(j) = 1.

Without loss of generality, we can define the effective
spreading rate � = ⌫/�, and consider the recovery rate to
be 1. Thus the parameter space is truly only one-dimensional,
in � > 0 [10].

Often of interest is a critical �c, with the property that
if the spreading rate is greater than the critical value, then
there is a positive probability that an infection will survive
for a sufficiently long time. On an infinite graph G1, a
process with spreading rate � > �c has positive probability
of infinite survival, and a process with spreading rate � < �c

is guaranteed to die out in finite time. It has been stated that
infinite scale-free networks have �c = 0 [2].

Infections on finite graphs necessarily have finite lifetime,
so Ganesh et al. divide extinction time into two regimes. On
a finite graph with n nodes, extinction is said to be quick
when E[⌧ ] = O(log n) and slow when E[⌧ ] = ⌦(en

↵

) for
some ↵ > 0. It has been established that a sufficient condition
for quick extinction on finite graphs is � <

1
⇢ , where ⇢ is

the spectral radius of the graph [4]. Then there may exist a
critical value �c � 1

⇢ , above which the process may survive
for a long amount of time. The value �c is often referred to
as the epidemic threshold.

For finite graphs grown via preferential attachment, the
critical value is shown to be inversely related to the size of
the graph [4]. As a preferential attachment graph increases in
size, the critical value decreases, with limit 0 as size increases
to infinity.

B. Time-varying networks

Many real-life networks change over time and are called
temporal or time-varying graphs [7]. For example, an email
communication network may contain different connections
during work hours than during evening hours. These types of
networks, where edges disappear and reappear periodically, are
discussed in [9], and a mean-field method has been developed
for more general classes of time-varying networks in [5]. Some
graphs like online social networks are constantly changing and
are mostly growing over time.

The vast majority of epidemic research considers spreading
processes on static graphs: the graph remains fixed as the
virus propagates, and has no interaction with the spreading
process. One interesting study on temporal graphs considers
the interaction of SIR spreading on a preferential attachment
network where nodes and edges arrive over time, but nodes
are removed (along with their corresponding edges) after being
infected [3]. Interestingly, the remaining nodes were seen to
have a degree distribution that decreased from a power law to
exponential as infection rate increased.

In this paper, we consider the class of preferential attach-
ment graphs that are increasing with time and do not interact
with the spreading process. Nodes and edges arrive indepen-
dently according to the usual preferential attachment rules, and
the infection may access new edges and nodes as soon as they
are available. This model allows us to directly understand the
effect of network growth on a SIS-type spreading process.

III. MODEL

We consider a discrete-time model with a graph sequence
generated by the preferential attachment model. Letting PA0

be the graph with a single node and zero edges, we generate
recursively. Given PAn, we let Dn(w) denote the degree of
node w at time n, and we form PAn+1 by

• adding a new node v, and
• forming the edges (v, wi), i = 1, . . . ,m, where wi is

selected with probability

Dn(wi)

mn+ i� 1
.

We define the growing graph sequence G = (G0, G1, G2, . . .)
where G0 is PAn0�1 and has n0 � 1 nodes and Gn =
PAn+n0�1 is a subgraph of Gn+1 for all n � 0.

A discrete-time SIS model on the graph sequence G is
characterized by the state vector Xn and is defined as follows:

• Initialize X0 2 {0, 1}n0 .
• If Xn(i) = 1 at time n � 0, then set Xn+1(i) = 0.
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• If Xn(j) = 0 or j is born at step n + 1, let M be the
number of neighbors i of j in Gn+1 such that Xn(i) = 1,

M :=
X

i

An+1(i, j) (Xn(i) = 1),

where An+1 is the adjacency matrix of Gn+1. Set

Xn+1(j) =

(
1 with probability 1� (1� �)M

0 with probability (1� �)M .

• The extinction time, or lifetime, of the process is

⌧ := inf{n � 0 : Xn(i) = 0 for all i = 1, 2, . . . , n0+n}.

We assume that all infected nodes always recover in exactly
1 time step. The sole parameter in the model, � 2 (0, 1), is
the transmission probability and is related to the transmission
rate � as

� = 1� e
��

.

IV. SIMULATION AND RESULTS

In our simulations, unless stated otherwise, we use n0 =
1000, m = 1 and let

G0 = PAn0�1

Gn = PAn0�1+n, n = 1, 2, 3, . . . .

Note that Gn has n0 + n nodes and m(n0 + n � 1) edges.
The simulation is initialized by creating the graph sequence
G = (G0, G1, . . . , G5000) and randomly labeling half of the
node population as infected, and the other half as susceptible at
n = 0. The discrete-time SIS model then runs until extinction
or until timestep to n = 5000 (with final graph size of
n0 + 5000 = 6000), whichever comes first. At least 1000 iid
observations of termination time were recorded for the values
of � = 0.10, 0.11, . . . , 0.21.

Network growth has the effect of prolonging the lifetime
of an infection. The availability of new nodes and edges
allows the infection to spread over a larger area, and when
the infection dies out on the original portion of the graph,
it may still be alive on the newer portion of the graph.
This implies that the lifetime of an infection on the static
graph G0 is stochastically dominated by extinction time over
G = (G0, G1, . . .). In this case, the static graph would give
a lower bound on extinction time and probability of infinite
survival, and an upper bound on the critical value for long
survival.

We observe that a SIS process on a growing graph se-
quence has a fundamentally different lifetime distribution and
a notion of critical value as compared to the SIS process
on a static graph. Intuitively, the longer the process survives,
the larger the graph, and hence the easier the spreading and
the more likely it is to continue to survive. This contributes
to a heavier-tailed lifetime distribution and the possibility of
infinite survival. Further, it diminishes the notion of a critical
spreading rate, because critical rates tend to decrease as graph
size increases.

Our computational results lead us to believe that on G:

(a)

(b)

Fig. 1: Complementary cumulative distribution functions
for SIS processes on (a) a growing graph and (b) a
static graph. For both graph types, the spreading processes
have been run for a range of spreading probabilities � =
0.10, 0.11, . . . , 0.21, plottedinthisorder, fromlefttorightontheplots.
(Markers pictured only for purpose of visual guidance.)

• infinite survival is possible;
• lifetime distribution has a heavier tail compared to that

on a static graph;
• the typical notion of epidemic threshold is not as useful

to the SIS model on growing graphs.

A. Evidence for infinite survival

Figure 1 shows the complementary cumulative distribution
function (CCDF) of the lifetime of an SIS process on a
growing graph (top) and on a static graph (bottom). We notice
that the CCDF in the growing case may follow a power law,
for at least some values of �, and suggests a possibly infinite
tail for � � 0.17.

1) Mass at 1: One surprising result was seen on the
growing graph for large values of � � 0.17. Once the process
had survived for a certain amount of time, it seemed to
always survive until termination. Empirically, on simulations
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(a) (b)

Fig. 2: Histograms of SIS log-lifetime with � = 0.21 on (a) growing
graph sequences and (b) a static graphs.

Fig. 3: Fraction of infected nodes at time n for n = 10k, k =
1, 2, . . . , 500 on a growing graph sequence with � = 0.19.

terminated at 5000 timesteps, we never observed extinction
times in the interval (2000, 5000). Letting ⌧ be the lifetime
of our simulated process, there was always a value ⌘ ⌧ 5000
such that, empirically,

P (⌧ � 5000 | ⌧ � ⌘) = 1.

This suggests that if a process survives for a certain number
of time steps, then the graph has now grown large enough that
future extinction is highly unlikely.

When termination was increased to 10,000 time steps, the
same phenomenon occurred, with no extinctions in the interval
(2000, 10000). We believe this is evidence that such long-
surviving processes will survive indefinitely.

On the other hand, on static graphs, we saw extinctions
at any point up until termination. Specifically, there were
extinctions at around 4000, as seen in the histograms in Figure
2. This shows that in the static case, conditioning on long
survival does not guarantee continued survival.

To test the hypothesis of potentially infinite survival in the
growing case, we ran one long simulation of 50,000 time steps.
The infection prevalence, or the proportion of nodes infected at
any time, for this process was recorded every ten time steps
and plotted in Figure 3, where the prevalence at time n is
defined to be the fraction of infected nodes at time n.

We see that the infection prevalence became quite stable
over time suggesting that prevalence may converge to this rate
as n ! 1. This indicates a possible steady-state where, once
reached, the infection will never become extinct.

2) Conditional survival probability: Letting ⌧ denote the
lifetime of an SIS process, we consider

P (⌧ > n+ b | ⌧ > n), (1)

the probability that the infection will survive for an additional
b timesteps, given that the infection is still present at time n.
Our main observation for spreading processes on a growing
graph is that the conditional survival probability (1) tends to
increase as n ! 1. That is, the longer the infection has
survived, the more likely it is to continue to survive.

This quantity is directly related to long-tailed distributions.
We say that a random variable X has a long-tailed distribution
if for all t > 0

lim
x!1

P (X > x+ t | X > x) = 1.

The above statement will be true for any distribution with a
mass at infinity, in addition to some non-infinite heavy-tailed
distributions.

In our simulations, we fix a value of � and generate
1000 independent graph sequences G

(i) = (G(i)
0 , G

(i)
1 , . . .),

i = 1, . . . , 1000. For each graph sequence G
(i), we run the

discrete-time SIS model with transmission probability � and
record the extinction/termination time ⌧i, i = 1, . . . , 1000. We
estimate (1) for b = 1000 by plotting

P1000
i=1 (⌧i > n+ 1000)
P1000

i=1 (⌧i > n)
(2)

for n = 1, . . . , 1000 in Figure 4a. This process is repeated for
several values of �.

In Figure 4b, we plot the same estimate for the SIS model
on static graphs. Specifically, for each value of �, we generate
1000 independent preferential attachment graphs PA

(i)
n0�1, i =

1, . . . , 1000. We run the discrete-time SIS model on each of the
static graphs PA

(i)
n0�1, record the extinction/termination time

⌧
0
i , and plot the fraction resulting from putting ⌧

0
i in place of

⌧i in (2).
In Figure 4, in both the static and growing cases, we

see an increase in the conditional probability as n increases.
However, the conditional probability increases faster with n

in the growing case than it does in the static case. Further, as
n ! 5000, the conditional probability in Figure 4a appears to
converge to 1, whereas in the static case (Figure 4b), the limit
seems to be less than 1. In the growing case, this is evidence of
a long-tailed distribution and consistent with mass at infinity.

We must consider, however, an alternate explanation to the
increasing slopes in both parts of Figure 4. Each point in the
plots is calculated from the extinction times of the SIS model
on 1000 independent graph sequences (or static graphs). It is
possible that there are some especially communicable graphs
on which an infection is likely survive longer than it would
on another graph. For instance, Figure 5 shows two possible
outcomes of the preferential attachment model on 50 nodes.
The star graph (Figure 5a) is more conducive to spreading than
the path (Figure 5b), and thus a large extinction time is more
likely on the star graph than the path.
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(a)

(b)

Fig. 4: Empirical P (⌧ > n+1000 | ⌧ > n) for SIS processes on (a)
growing graph sequences and (b) a static graphs.

(a) (b)

Fig. 5: (a) Star graph on 50 nodes. (b) Path graph on 50 nodes.

In our analysis we only observe the extinction times, not the
graph structure. If we observe a large extinction time, then it
is more likely that the underyling graph associated with that
extinction time was especially “communicable”, and similarly
a small extinction time is more likely to have occurred due
to a less communicable graph. Therefore, the extinction times
⌧i and ⌧

0
i , i = 1, . . . , 1000 may be positively correlated with

some “communicability” property of graph i. This correlation
may cause a spurious increase with n in the calculation of
(2), because if an infection has survived for at least n time
steps, then it is more likely to be acting on a “communicable”
graph, and therefore more likely to survive for a very long
time. Thus, we must make sure that the increase observed in
Figure 4 is not only due to this lurking variable.

In short, the increase could be due to the fact that the prefer-
ential attachment model may output an entire range of graphs,
some of which are more conducive to spreading than others.
To understand whether this truly causes a noticeable effect
in the plots of Figure 4a, we ran another set of simulations
in which 1000 SIS simulations were run on a single graph.
That is, we fixed a graph sequence G = (G0, G1, . . .), fixed
� = 0.17, and then ran 1000 independent SIS simulations
on this single instance of G. Letting ⌧1, . . . , ⌧1000 denote the
extinction/termination times, we then plotted

P1000
i=1 (⌧i > n+ 100)
P1000

i=1 (⌧i > n)
(3)

for n = 1, . . . , 5000 in Figure 6a. This process was repeated
12 times in total, corresponding to the 12 curves in Figure 6a.
Note that all curves correspond to � = 0.17. The difference
between the curves correspond to difference graph sequences
G.

In the static case, we fixed PAn0�1, fixed � = 0.19, and
then ran 1000 independent SIS simulations on PAn0�1. We
plotted the equivalent of (3) for n = 1, . . . , 5000 in Figure 6b.
All curves in this plot correspond to � = 0.19, but each
curve is associated with a different instance of the preferential
attachment graph PAn0�1.

It should be noted that in Figure 6, we are only looking b =
100 steps into the future, as opposed to b = 1000 in Figure 4.
This is because, for each of the 12 instances of G and PAn0�1

in Figure 6, it was very rare for the infection to survive longer
than 1000 time steps, and so taking b = 1000 does not yield
informative results. In comparison, in the data for Figure 4
there were over 1000 instances each of G and PAn0�1, and on
a few of the SIS simulations, the lifetime was longer than 1000
time steps. This supports our claim of “communicability”: that
there are some graphs and graph sequences that are especially
advantageous for the infection.

In Figure 6b, we see that, for a given static graph, the
conditional survival probability P (⌧ 0 > n + 100 | ⌧ 0 > n)
remains more or less constant with n. The curves remain flat
and perhaps even decrease as n increases. This is quite differ-
ent from the previous plot, and indicates that the increasing
curves of Figure 4b may indeed be spurious, caused solely by
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(a)

(b)

Fig. 6: Empirical P (⌧ > n + 100|⌧ > n) for SIS processes with
(top) � = 0.17 on a growing graph and (bottom) � = 0.19 on a
static graph. Each curve corresponds to a distinct graph or graph
sequence.

differences in the simulated graphs.
For growing graphs, as in Figure 6a, we also see interesting

behavior. In many of the simulations, the curve remains flat,
while in others, there is an increase as n increases. Therefore
we can conclude that for some, but not all, graph sequences,
the conditional survival probability P (⌧ > n + 100 | ⌧ > n)
may increase with n. In fact, the sharp increase in Fig-
ure 4a could result from an averaging effect over the curves
in Figure 6a. Therefore, in the growing case, our alternate
explanation accounts for some of the increase, but not all. We
believe that Figure 6a still shows evidence of long tails, but
that the lifetime distribution may be strongly graph-dependent.

In summary, Figure 4a and Figure 6a show that on growing
graphs, the longer an infection has survived, the more likely
it is to continue to survive. Further, the lifetime distribution
may be long-tailed. Meanwhile, on static graphs, survival up
to a certain time does not necessarily imply greater probability
of continued survival, as evidenced by Figure 6b. Figure 4b

depicts what may be a spurious increase due to a lurking
variable: the variation in output of the preferential attachment
model. We conclude that for infections on growing graphs, the
lifetime distribution may have longer tails, as well as heavier
tails, compared to infections on static graphs.

B. Lifetime distributions

Recall the empirical CCDFs of lifetime in Figure 1. To
compare the distributions in the growing and static cases
more closely, we consider three regions of �. First, consider
Figure 7a, where the tails are plotted for both distributions for
�  0.14.

For these smallest values of �, we see virtually no difference
between the two cases. This is consistent with the explanation
that for � small enough, the process doesn’t live long enough
to gain the advantage of the growing graph. We conjecture that
there is some first critical value �1, where if � < �1, there
is negligible difference between SIS processes on the growing
graph and those on the static graph.

Above this critical value, however, there appears to be
significant difference in the two cases. In Figure 7b, for
example, the distribution on the growing graph appears to
have heavier tails than the distribution on the static graph
for � = 0.15, 0.16, 0.17. In fact, lifetime in the growing case
seems to follow a power law. We conjecture that above the
critical value, for � > �1, the lifetime in in the growing case
has heavier tails than the static case.

In Figure 7c, we see the lifetime distributions for � =
0.18, 0.19, 0.20, 0.21. In this region of �, the lifetime distribu-
tion appears infinite-tailed for the growing case, but finite for
the static case. We conjecture a second critical value, �2 � �1,
and that for � > �2, SIS processes may survive for an infinite
amount of time on growing sequences of graphs.

C. Epidemic threshold

Often, we are interested in a critical transmission probability
that marks the threshold for “long survival”. Whatever the
definition of long survival, it is usually the case that the so-
called epidemic threshold �c tends to decrease as size of
the graph n increases. For this reason, we now argue that
these threshold values have minimal relevance to spreading
processes on a growing sequence of graphs, because no matter
the transmission rate or the size of the initial graph, the
process may theoretically survive for long enough that the
graph becomes sufficiently large and the relevant threshold
becomes sufficiently small.

Suppose that there is some critical �n for each n, such that
if � > �n, then a SIS process on a static graph of size n

survives for a long time. Let there be an SIS process with rate
� on a sequence of growing graphs G that initializes at G0

with size n0. If � � �n0 , clearly lifetime will be “long” on
the growing graph as well.

On the other hand, suppose �n0+k < � < �n0 for some k

potentially large. Then long survival is possible as long as the
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(a) � in the first region. (b) � in the second region. (c) � in the third region.

Fig. 7: Tails of lifetime distributions in the growing (solid) and static (dashed) cases.

virus survives on the growing graph for at least k timesteps.
This implies that the critical value �c for G is actually

�c = lim inf
n!1

�n. (4)

On preferential attachment networks, the epidemic threshold
has been stated to vanish with an increasing number of nodes
[2]. In this case, lim infn!1 �n = 0, and so the growing
preferential attachment graph would theoretically have no
epidemic threshold. This means that for any values of n0 � 1
and � 2 (0, 1), there is a positive probability p(�;n0) of
long survival. Certainly, p(�;n0) may be quite small for small
values of �, since survival to k timesteps may be highly
unlikely. In this case, this notion of epidemic threshold may
be of little relevance to practical applications.

For infections on static networks, the epidemic threshold
has been defined as the transmission rate above which long
survival is possible [4]. In the context of growing networks,
however, we posit that it may not be expedient to merely
consider the possibility of long survival. Depending on the
application, there may be a more useful threshold value, such
as a transmission rate corresponding to a critical point in the
likelihood of long survival.

V. CONCLUSION

We have given evidence that network growth causes a
fundamental shift in the distribution of the lifetime of an
infection under the SIS model. The addition of new nodes
and edges over time may allow the infection to spread further
and survive longer than the static case, resulting in a lifetime
distribution with heavier tails compared to the static case.

For very small values of the transmission rate parameter �,
the effect of growth on the lifetime distribution is minimal,
as the infection is likely to die out before it has a chance to
take advantage of the new connections. However, for larger
values of �, possibly above some threshold �1, the infection
may survive for a longer time. If it survives long enough so
that the graph has grown sufficiently big, then spreading may
become even easier over time. Thus, the longer an infection
has survived, the less likely it is to die out in the immediate
future. This contributes to heavy-tailed behavior in the lifetime
distribution, and possibly long-tailed behavior. For � above a

secondary threshold, �2, this effect may be strong enough that
the infection persists indefinitely.

We also discuss that the epidemic threshold 1/⇢, defined
for the SIS model on static graphs, may be of minimal utility
in the growing case, because the threshold is graph-dependent
and decreases as the graph increases.

Future steps would be to prove mathematically the condi-
tions for infinite survival on growing preferential attachment
graphs and to study the behavior of infection prevalence as
n ! 1. If infinite survival is possible, then the SIS model
on the growing graph may converge to a steady-state, and the
steady-state infection prevalence on the growing graph may be
related to the steady-state infection prevalence on the infinite
graph, which can be difficult to estimate via simulation. If
there is a relation between steady-state prevalence on growing
and infinite graphs, then the growing graph may be a useful
tool to estimate spreading behavior on infinite graphs.
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[3] Güven Demirel, Edmund Barter, and Thilo Gross. Dynamics of epidemic
diseases on a growing adaptive network. Scientific Reports, 7:42352, Feb
2017.

[4] A. Ganesh, L. Massoulie, and D. Towsley. The effect of network
topology on the spread of epidemics. In Proceedings IEEE 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.,
volume 2, pages 1455–1466 vol. 2, March 2005.
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