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ABSTRACT: Three-dimensional (3D) characterization of organ-
isms is important for the study of cellular phenotypes, structural
organization, and mechanotransduction. Existing optical techni-
ques for 3D imaging rely on focus stacking or complex multiangle
projection. Focus stacking has deleterious axial resolution due to
the one-angle optical projection. Herein, we achieve high-
resolution 3D imaging and classification of organisms based on
standard optical microscopy coupled to optothermal rotation.
Through a seamless fusion of optical trapping and rotation of organisms on a single platform, our technique is applicable to any
organism suspended in clinical samples, enabling contact-free and biocompatible 3D imaging. Moreover, when applying deep
learning to distinguish different types of biological cells with high similarity, we demonstrate that our platform improves the
classification accuracy (96% vs 85%) while using one-tenth the number of training samples compared with conventional deep-
learning-based classification.
KEYWORDS: optical tweezer, cell imaging, thermophoresis, machine learning, optical rotation

nalysis and visualization of three-dimensional (3D)
properties of cells and organisms are of fundamental

importance for the understanding of cell lineage and
communication networks.1,2     Volumetric imaging of single
organisms can be acquired through the form of a focal stack by
taking sequential images in tens to hundreds of two-
dimensional focal planes. Despite high lateral resolution (x
axis), the optical sectioning along a single axis causes missing
cones in optical transfer function and low axial resolution (over
1 μm) along the z axis, which is insuficient to resolve
subcellular phenomena3 (Figure 1a). Other emerging optical
imaging systems such as selective plane illumination
microscopy4 (SPIM) and total internal reflection fluorescence5

only allow a small portion of the sample that is close to the
objectives to be imaged at high resolution.5,6     Recently,
multiview SPIM has been developed to reduce the deleterious
effects of optical shadowing, occlusion, and scattering by
adding more objectives to view the specimen from multiple
directions, which improves the axial resolution and overall 3D
imaging resolution.7,8 However, adding more objectives still
cannot provide full 360° optical imaging with high resolution
(Figure 1b).

Continuously rotating the sample can achieve full 360°
optical imaging with a standard optical microscope9,10 (Figure
1c). Achieving multiple views of the specimen is equivalent to
rotating the optical transfer function in 3D. Therefore, the
sample rotation resolves the missing cone issue along the z axis
in a conventional wide-field microscope while providing the
finer features. However, the most common methods for sample
rotation require high hardware precision and stability along

with cells being fixed on the substrate.5 Emerging sample
rotation by external fields (i.e., optical, acoustic, and magnetic)
is contact-free, cell-friendly, and easy to integrate with
microfluidic devices. These field-based manipulation techni-
ques exhibit their best performances in certain applica-
tions.11,12     Acoustic tweezers are most suitable for large
organisms and have dificulty in handling single cells with
their sizes smaller than the ultrasound wavelength.13−15

Optical tweezers have a better control on cells with their
sizes ranging from the nanoscale to microscale when using a
tightly focused laser beam with a wavelength of <1 μm.16

Optical tweezers have been applied for 3D manipulation of
colloidal nanoparticles, cells, and proteins.17−21 Precise control
of the orientation of colloidal nanoparticles can be achieved
based on the predictable optical forces and the corresponding
motion of samples,22 providing tomographic characterization
down to the single-molecule level.23,24 However, conventional
optical trapping cannot achieve a stable rotation of organisms
with high asymmetry and mobility due to their unpredictable
shapes and optical properties, resulting in inaccurate imaging
with optical microscopy25,26 (Figure 1d). Meanwhile, excellent
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Figure 1. Illustration of volumetric imaging of cells using different
techniques and our optical trapping and rotation method for
enhanced cell imaging and classification. (a) Top panel: schematic
showing the conventional focal stacking for cell imaging. Bottom
panel: optical transfer function of the cell imaging. (b) Top panel:
schematic showing the cell imaging by adding more objectives.
Bottom panel: optical transfer function of the cell imaging. (c) Top
panel: schematic showing the cell imaging with sample rotation.
Bottom panel: optical transfer function of the cell imaging. (d) In
conventional optical trapping, the optical force traps the object at the
center of the laser beam where the cell asymmetry induces wobbling.
As a result, the image is typically captured from the cell with a random
orientation, causing the imaging inaccuracy. (e) By adding a heating
laser, we achieve optical rotation of the trapped cell, which allows
multiangle projection imaging in deterministic angles. (f) A series of
planar images of a rotating cell can be stacked to provide volumetric
information on the cell. The cell images at the variable rotating states
enable us to train ML to achieve a more accurate cell classification
with small sample quantities. The black arrows in (a)−(c) indicate the
light propagation direction.

work on cell rotation through hydrodynamic flows has been
reported.27−29

To enhance volumetric imaging and classification of
organisms with conventional optical microscopy, we develop
a universal optothermal rotation technique integrated with an
optical microscope. Different from conventional optical
rotation requiring specific shapes and optical properties of
the target objects, our technique exploits optothermally
generated osmotic force from a heating laser to drive the
rotation of an arbitrary organism (Figure 1e). Since we can
achieve out-of-plane rotation by simply adding another laser
beam without using bulky microfluidic pumps and tubes, our
technique shows several advantages in terms of the size, cost,
throughput, and sample volume over conventional hydro-
dynamic rotation (Supporting Text 1). To further facilitate 3D
imaging, we achieve out-of-plane rotation of organisms around
the direction orthogonal to the laser beam propagation
direction.30     The stable out-of-plane rotation of organisms
provides multiangle projection imaging stacking and in situ
volumetric visualization with an overall 3D resolution of 85 nm
approaching the lateral resolution of the parent microscopy
(Figure 1f). We have demonstrated volumetric imaging for a
wide range of organisms from nanometer-scale bacteria to
micrometer-scale neutrophils and cells in clinical samples.

Furthermore, we apply a machine learning (ML) method to
enhance classification of organisms based on their volumetric
images. ML has rapidly developed into a powerful tool for
interpreting and differentiating cell images.31−35 However, the
high economic and time cost required to acquire suficiently
sized high-quality data sets remains a significant bottleneck for
ML in many applications.36     When applied to the cell
classification between pathogenic and nonpathogenic cells,
our multiangle projection imaging enabled by the optical out-
of-plane rotation allows the collection of large numbers of
unique images for each cell, improving the cell classification
accuracy (96% vs 85%) while using one-tenth the number of
samples for the ML training (Figure 1f). Accordingly, we can
easily detect rare and barely distinguishable pathogenic cells in
the clinical samples and trap the target cells for single-cell
analysis based on a simple optical microscope.

The experimental setup and working principle of our
optothermal rotation, which is universally applicable to various
organisms, are illustrated in Figure 2a. The substrate is a
transparent Au thin film with a thickness of 4.5 nm. Two laser
beams with wavelengths of 785 and 532 nm are focused on a
heating substrate, and the real-time optical images of the cell
are collected using a high-speed CMOS camera. Specifically, a
785 nm laser with an intensity of 1 mW/μm2 and beam
diameter of 2 μm is used to trap the cell with optical forces.
The absorption of our substrate near 785 nm is low,37 and
therefore the heating effect from the 785 nm laser can be
ignored (Figure S1). The distance between the cell and the
substrate can be precisely adjusted by moving the z axis
through the 785 nm laser. The 532 nm laser with an intensity
of 0.6 mW/μm2 and beam diameter of 1 μm is used to heat the
light-absorbing substrate near the trapped cell to create a
temperature gradient field (Figure 2b), generating thermopho-
retic force and thermo-osmotic force that repel and trap the
cell, respectively.38,39 Thermo-osmosis is a surface-driven effect
that is parallel to the substrate where its slip velocity decreases
with the increasing distance to the heating center.40,41 We
simulated the flow profile around a suspended hard sphere
with a diameter of 5 μm under the temperature gradient
(Figure 2c).42     The thermo-osmotic force generates an
unbalanced flow along the sphere surface and exerts a torque
on the trapped sphere for its stable rotation. The rotation is
anticlockwise when a cell is trapped at the left side of the laser
beam, and vice versa. It should be noted that the osmotic
velocity decreases with increasing distance between the
substrate and the cell, and therefore the rotational speed also
decreases. As a demonstration, Figure 2d shows the successive
images of light-driven trapping and rotation of a single
bacterium above a substrate (movie S1). As shown in movie
S2, once the cell gets trapped by the laser and rotation starts,
the rotating cell will remain at the trapping center and the
rotational speed stays the same without escape for over 90 s.
To further verify the proposed mechanism for optothermal
manipulation, we tracked the central position of a cell being
trapped and rotated relative to the laser beam center. The
temporal trajectory distribution of the cell center shows that
the stable cell-trapping position is away from the laser center
(0, 0) and the cell moves around the laser beam (Figures 2e,f),
which matches well with our force analysis (Figure S2). Since
the thermo-osmotic flow increases monotonically with the
laser power, a linear relation between rotational speed and
heating laser power further indicates that the rotation is mainly
contributed by the thermo-osmotic flow. It should be noted
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Figure 2. Working principle of optical trapping and rotation. (a) Experimental setup to achieve optical trapping and rotation. BS denotes a beam
splitter. CW denotes a continuous wave. (b) Temperature profile at the focal plane. The 532 nm laser intensity is 0.6 mW/μm2. (c) The flow
profile around the trapped objects with a diameter of 5 μm. (d) Image sequence showing a cycle of rotational bacteria. The arrow highlights the
changing features at each orientation angle. (e) A temporal trajectory in x−y plane of the center of a rotating cell relative to the laser beam center (0,
0). (f) Histogram with Gaussian fitting of the radial distance from the cell center to the laser beam center. Scale bars in (b) and (c): 2 μm.

that, while the heating laser might reduce the cell viability, the
distance between the heating center and the trapped cell center is
over 2 μm due to the repelling thermophoretic force and the
actual temperature on the cell membrane is approximately 37
°C when the laser power is 0.6 mW/μm2, which causes no
damage to the cell (Figure 2b).

To demonstrate the general capability of our optical
rotation, we took human clinical samples (i.e., blood and
urine), which contain different cells with a variety of shapes
and sizes (Figure 3a). We injected separated blood and native
urine into a microfluidic channel and identified our targeted
organisms under an optical microscope (see Materials and
Methods in the Supporting Information). Continuous rotation
of a wide range of organisms is achieved in human urine and
blood (Figure S3 and movie S3). The rotation stops
immediately once we turn off the laser beam. With the same
laser power, the rotational speed is different for organisms with
different sizes. We also achieved optical rotation of a small
organism with a size of 500 nm ×  300 nm (Figure S4). To
retrieve the rotation behaviors of a diffraction-limited
organism, we collected the time-dependent total light intensity
signals of the trapped cell and the time-dependent oscillatory
intensity of the optical images corresponding to its continuous
rotation with a rotational speed of �1.5 Hz (Figure S4). For
the smaller organisms, the imaging quality for the rotation
becomes poor. However, it should be noted that, since our
rotation is based on the localized fluidic flow rather than the
optical torque, rotation of a small organism with its size below
the diffraction limit of light is still feasible.

Multiangle projection imaging based on optical rotation
leads to tomographic architectures of cells with high lateral
resolution. As a demonstration, we recorded a series of optical

images of rotating bacterium, neutrophil, and fungus (Figure
3b−d). The cell contour images were extracted from the raw
images. To eliminate the noise in contour points, we took 5−6
rounds of rotational images and generated a point cloud with
3D coordinates, from which 3D surface consisting of optimized
triangles was constructed (movies S4−S6). To retrieve the 3D
surface of a bacterium, we collected the rotational images at an
interval of 10 rotational degrees, which corresponds to
approximately 85 nm resolution for a bacterium with a
diameter of �1 μm along its rotational axis. For small
organisms with a high rotational rate, the tomographic
reconstruction rates can reach 2 Hz, allowing high-speed
real-time tomographic visualization of the trapped organisms.
It should be noted that the current acquisition rate is limited
by the camera frame rate (�50 Hz), which can be enhanced by
using a high-speed camera (1 kHz frame rate). From the
retrieved 3D surface, a variety of biological information can be
obtained for the organism. For example, the surface area and
volume of the bacterium are 50 μm2 and 15 μm3, respectively,
while the neutrophil shows a larger surface area and volume
with values of 687 μm2 and 803 μm3, respectively. From in situ
volumetric imaging, we can clearly observe the locally curved
shape on the bacterium membrane. Compared with the
bacterium, the neutrophil exhibits a rougher surface with
microvilli and tethers nonuniformly distributed on its surface.
We further conducted the intracellular imaging using
quantitative phase imaging camera (SID4-Bio, PHASCIS).
We acquired 2D quantitative phase images of a rotating cell
and retrieved the refractive index (RI) imaging.27 As shown in
Figure 4, we achieved RI mapping of a yeast cell at different
rotation angles. We can observe a clear high RI region that
corresponds to the nucleus. Owing to the reduced optical
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Figure 3. General applicability of rotational manipulation for
volumetric imaging of organisms in clinical samples. (a) Schematic
illustrating the collection and purification of clinical samples and the
optical trapping and rotation of targeted biological cells for volumetric
imaging. The rotational images (left panel) are extracted to generate
the contours (middle panel), which are reconstructed into the 3D
surfaces (right panel) for (b) human bacterium, (c) human
neutrophil, and (d) human fungus. S denotes the surface area of the
cell and V the volume of the cell. The scale bars for (b)−(d) are 1, 3, and
2 μm, respectively.

shadowing, occlusion, and scattering with multiangle angle
imaging, our technique can visualize the individual neutrophil
microvilli or tethers with a diameter of around 100 nm at the
different sites along the neutrophil surface. Therefore, our
optical rotation integrated with optical microscopy is
instrumental in high-resolution volumetric characterizations
of wide-ranging biological samples at the subcellular level.

The ability to acquire optical images from multiple
perspectives of individual cells also offers a unique opportunity
for ML-based cell identification with high accuracy. Multiangle
projection imaging with deterministic angles allows the
collection of large numbers of unique images per cell, which
can ease the process of data collection for image identification.
By rotating cells in an out-of-plane fashion, our platform can
record a series of cell images with each projection angle
offering slight differences in the orientation of features on and
within the cell membranes. With these images as an input data
set, our trained ML algorithm can better generalize for
predicting the identity of new cells with arbitrary angles
relative to the imaging plane (Figure 5). A standard stationary
imaging approach, however, needs significantly more cells to
be imaged to cover a wide range of samples with variable
internal feature orientations required for training ML algorithm
to generalize to identify new data. Labeled data collection time
is often one of the most significant bottlenecks in ML image
recognition tasks.36 A multiangle projection approach based on
optical rotation can collect images far faster and provide viable
data sets with small numbers of different cells, offering a
significant utility in studying rare cells.

We demonstrate the advantage of our imaging platform in
ML applications by training ML algorithms for cell
identification on different data sets (Figure 5). One data set
was collected with our multiangle projection imaging on
rotating cells where a small number of cells was used with
multiple-angle images per cell. A second data set was collected
from a higher number of cells imaged with a stationary
method, leading to one image for each cell. We utilized a
convolutional neural network (CNN) to train an image
recognition algorithm to differentiate between pathogenic
fungus cells (Candida albicans: CA) and nonpathogenic fungus
cells (Saccharomyces cerevisiae: SC) (Figure 5a), which show
similar volumetric geometries (Figure S5).43 The structure of

Figure 4. Refractive index (RI) mapping of a yeast cell. (a) Image sequence showing refractive index images of a yeast cell at different angles. The
dashed white line indicates the boundary of the cell. The black line indicates the boundary of the nucleus. Scale bar: 1 μm. Refractive index values
along the red lines in the images in (a) with angles of 45° (b) and 135° (c).
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Figure 5. Comparison of ML image recognition results using rotation-enabled multiangle imaging and stationary imaging. (a) Schematic of
convolutional neural network used to differentiate between cell images. (b) Loss curve over 200 epochs for a model trained with rotational data. (c)
Comparison of test set accuracy curves for three data sets. The first data set features 25 rotational images collected for each of 24 unique cells
(black). The second uses 240 unique cells with a stationary image for each (red). The final data set uses 24 unique stationary images expanded to the
same size as the first data set with traditional image augmentation (blue). For each data set, the number of unique cells refers to the total number
across the training and test sets. Each training curve is an average of 10 models. (d) Confusion matrix for the rotational model, with the model
prediction rates for SC and CA cells compared with the true cell classifications.

the CNN utilized multiple layers of convolution and max
pooling to break down each image into a series of useful
features.44 A final fully connected layer mapped these features
into the predicted cell classes.45 The full architecture is given in
Figure S6 in the the Supporting Information.

A loss curve for a single model trained on the multiangle set
is shown in Figure 5b. The loss sees an initial large rise in early
epochs, likely due to variance and instability from the relatively
small data set, before eventually decreasing to a low, consistent
value with minimal overfitting from the training loss. To
address any potential instability, 10 models for each data set
are trained to average the results. Overall, we find that models
trained on the multiangle set consistently outperform those
trained on the stationary data, despite the stationary set using
10 times the number of cells (i.e., 24 cells vs. 240 cells) (Figure
5c). As also shown in Figure 5c, the multiangle set reaches an
average of 96% accuracy on test data (black curve), while the
stationary set converges to an accuracy rate of 85% (red
curve). A confusion matrix analysis of the multiangle model
predictions is shown in Figure 5d.

Lastly, we demonstrate that multiangle projection imaging
with optical rotation surpasses traditional image augmentation
methods in ML. With the traditional methods, image data sets
can have their size inflated by using in-plane rotations,
translations, and mirror inversions of the relevant objects
within the frame to generate new images46−48 (Figure S7). All
these changes cannot, however, replicate the differences in
orientation of internal cell features that adjusting the rotation
angle can reveal. We constructed a third data set using a
limited set of 12 unique stationary image cells for each type
and augmented to a total data set size of 600, which was the
same as the original multiangle projection set. To offer the
strongest point of comparison, the data augmentations were
limited to just in-plane rotations, as additional types of image
manipulation for the augmentations weakened the predictive
power of the model. We averaged 10 trained models on this

data set. The results show that traditional augmentation
techniques cannot compensate for a small initial sample, as the
augmented data set only reaches a test accuracy of 53% (blue
curve in Figure 5c), only marginally higher than a model
making a random guess. We further trained the same model on
data sets by varying the number of unique stationary cell
images and found a consistent trend that, even using traditional
augmentation techniques, the model prediction accuracy rises
with the higher number of unique cells (Figure S8). Using the
full 240 unique images as well as augmentation to give a total
data set size of 600 images, the same as the multiangle set, the
resulting trained model gives a prediction accuracy of 91%,
slightly less than the 96% accuracy achieved with the
multiangle data that uses only 24 unique cells.

In summary, optothermal rotation integrated into optical
microscopy opens new opportunities for volumetric imaging
and classification of organisms. High-speed rotation of
organisms with precise control of their orientations offers
multiangle imaging projection that is capable of rapidly
acquiring volumetric data at high resolution. In contrast to
previous optical rotation methods using shaped laser beams,
our optothermal method is applicable to a wide range of
organisms in clinical samples. The multiangle projection
imaging based on the optothermal rotation can generate
suficient data sets from a small number of unique cells for ML
training and enhanced classification of organisms using one-
tenth the number of training samples. Since the rotation occurs
on organisms near the substrate (with �10 nm gap), emerging
characterization methods based on near-field effects (i.e., total
internal reflection fluorescence microscopy5     and plasmon-
enhanced phase microscopy49) can be readily applied to fully
profile single organisms, pushing the frontiers of cellular
biology. With ML-assisted organism identification and
classification, our technique will also enhance detection of
rare pathogenic cells and disease diagnosis.50,51 In addition, by
incorporating super-resolution optical imaging and spectros-
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copy with optical rotation and ML, we could achieve a higher
level of precision and detail in our biochemical and biophysical
analysis, leading to a more comprehensive understanding of
the complex biological processes taking place at the cellular
level.52
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