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CENTRAL MOMENTS OF THE FREE ENERGY OF THE STATIONARY
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Seppäläinen and Valkó showed in (ALEA Lat. Am. J. Probab. Math.
Stat. 7 (2010) 451–476) that for a suitable choice of parameters, the variance
growth of the free energy of the stationary O’Connell–Yor polymer is gov-
erned by the exponent 2/3, characteristic of models in the KPZ universality
class.

We develop exact formulas based on Gaussian integration by parts to re-
late the cumulants of the free energy, logZθ

n,t , to expectations of products of
quenched cumulants of the time of the first jump from the boundary into the
system, s0. We then use these formulas to obtain estimates for the kth central
moment of logZθ

n,t as well as the kth annealed moment of s0 for k > 2, with
nearly optimal exponents (1/3)k + ε and (2/3)k + ε, respectively.

As an application, we derive new high probability bounds for the distance
between the polymer path and a straight line connecting the origin to the
endpoint of the path.

1. Introduction. The semidiscrete polymer in a Brownian environment was introduced
by O’Connell and Yor in [19]. It is one of only a few known examples of integrable polymer
models. To define it, let n ≥ 1, t > 0, and Bn(t), n = 1,2, . . . be independent Brownian
motions started at 0. Introduce the energy

En,t (s1, . . . , sn−1) =
n∑

j=1

(
Bj(sj ) − Bj(sj−1)

)
,

where we set s0 := 0 and sn := t . The semidiscrete (point-to-point) polymer partition function
from (0,0) to (t, n) is given by

Zn,t =
∫

0<s1<···<sn−1<t
eEn,t (s1,...,sn−1) ds1 . . .dsn−1.

The probabilistic interpretation of the right-hand side is as a Gibbs ensemble of up-right paths
between (0,0) and (t, n). Each path consists of n − 1 Poisson-distributed successive jumps
at times 0 < s1 < s2, . . . < sn−1 < t of height one between discrete levels j = 1, . . . , n. For
each j , the path remains on level j for time sj − sj−1. See [3], Definition 1.1, for a precise
description of the path interpretation. The path interpretation justifies the name polymer, and
reveals Zn,t as the partition function of the Gibbs ensemble described above.

In this paper, we consider a family of stationary versions of the polymer partition function,
also studied in [19]. To define it, we introduce an extra two-sided Brownian motion B0(s),
s ∈ R, independent of B1, . . . ,Bn and also extend the Brownian motions B1, . . . ,Bn to two-
sided Brownian motions. For θ > 0, define

Eθ
n,t (s0, . . . , sn−1) := θs0 − B0(s0) +

n∑

j=1

(
Bj(sj ) − Bj(sj−1)

)
.

Here s0 is allowed to vary.
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The stationary partition function is then

Zθ
n,t =

∫

−∞<s0<s1<···<sn−1<t
eEθ

n,t (s0,...,sn−1) ds0 ds1 . . .dsn−1.

For n = 0, we let

Zθ
0,t = e−B0(t)+θ t .

Note that now the sj can range over the entire real line. Following Seppäläinen and Valkó
[21], the Gibbs distribution of the initial jump s0 plays a key role in the analysis in this paper,
because it is a dual variable to the parameter θ > 0.

The main result in [19], the Burke property for this model, implies that the free energy,
logZθ

n,t , equals a combination of a sum of i.i.d. random variables and the Brownian motion
B0(t). The following statement is adapted from [21], Theorem 3.3.

PROPOSITION 1.1 ([19]). For each n ≥ 1 and t ≥ 0, write

(1) logZθ
n,t =

n∑

j=1

rθ
j (t) − B0(t) + θ t,

where

rθ
j (t) := logZθ

j,t − logZθ
j−1,t .

Then {rθ
j (t)}j=1,...,n are independent and identically distributed, with law equal to that of

the random variable

log
1

Xθ
,

where Xθ is gamma-distributed with parameter θ :

P(Xθ ∈ dx) = 1
#(θ)

xθ−1e−x dx,

where # denotes the Gamma function, see (11).

O’Connell and Moriarty [13] used the representation (1) of Proposition 1.1, to compute the
first order asymptotics of logZn,t . Since its introduction in [19], the semidiscrete polymer
has been the subject of much investigation, revealing a rich algebraic structure far beyond
the invariant measure statement contained in Proposition 1.1. See, for example, [2, 3, 8–
10, 12–14, 17, 19, 21]. Here we mention only a few of the many existing results about the
semidiscrete polymer. In [17], O’Connell embedded the processes logZj,t , j = 1, . . . , n, t >
0 in a triangular array of solutions to stochastic differential equations. He identified logZn,t ,
as the first coordinate of an n-dimensional diffusion, the h-transform of a Brownian motion
by a certain Whittaker function. O’Connell used this connection to obtain an explicit formula
for the Laplace transform of logZn,t . Borodin, Corwin, and Ferrari [3] used a modification
of O’Connell’s formula to show that the centered and rescaled free energy logZn,t converges
in distribution to a Tracy–Widom GUE random variable.

Closer to the spirit of this paper, Seppäläinen and Valkó adapted an argument from Sep-
päläinen’s work on the discrete log-gamma polymer [20] to obtain upper and lower bounds
for the fluctuation exponents associated with the polymer. Predictions from physics [11] have
led to the expectation that, for a broad family of 1 + 1-dimensional polymer models in ran-
dom environments, there exist exponents χ , ξ such that the variance of the free energy is of
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order n2χ , while the typical deviation of the polymer paths from a straight line is of order nξ .
For the stationary semidiscrete polymer, the paper [21] contains a proof of the estimates

Var
(
logZθ

n,t

) % n2χ ,

E
[
Eθ

n,t

[|s0|
]] % nξ ,

(2)

with ξ = 2χ = 2
3 , where Eθ

n,t [·] denotes the expectation with respect to the (random) poly-
mer measure (see Definition 4). See also Moreno–Flores, Seppäläinen, and Valkó [12] for a
derivation of the fluctuation and wandering exponents in the so-called intermediate disorder
regime where the partition function Zθ

n,t has an additional n-dependent temperature param-
eter. In Section 4, we reprove the upper bounds of (2) by an alternative argument using the
convexity of the free energy, logZθ

n,t in the parameter θ .
Our main result complements the upper bounds in (2) with nearly optimal (up to nε) es-

timates for all central moments of logZθ
n,t and all annealed moments of s0, implying strong

concentration on an almost optimal scale. As explained in Section 6, the proof relies on in-
equalities that appear closely related to the predicted Kardar–Parisi–Zhang scaling relations
[6, 11].

To the best of our knowledge, our results are the first bounds for higher central moments
of the partition function in any model in the KPZ class. In follow-up work [15], we build
on the technique introduced here to obtain concentration for several discrete integrable poly-
mer models: the log-gamma polymer [20], the strict-weak polymer [7, 18], the beta polymer
[2], and the inverse-beta polymer [22]. Those four models are treated simultaneously using
the Mellin-transform framework in [4]. Together with the present paper, these are the only
instances of estimates for higher moments in the KPZ class.

It may be possible to extend our argument to integrable zero-temperature models analo-
gous to the polymer models we treat here such as the Brownian last passage percolation and
last passage percolation with exponential weights. We also expect that the argument given
here extends without the need for serious modifications to the intermediate disorder regime
considered, for example, in [12]. We leave such questions to later work.

1.1. Main results. To state our results, we introduce some notation for expectations with
respect to the Gibbs measure associated with logZθ

n,t . Let θ > 0, n ≥ 1, t > 0, and f =
f (s0, . . . , sn−1) be a real-valued function on Rn such that

(3)
∣∣f (s0, . . . , sn−1)

∣∣ ≤ e−ν min(s0,0) for all s0 ∈ R

with some ν < θ . The assumption (3) will guarantee integrability with respect to the random
measure defined below.

We define the quenched expectation by

(4) Eθ
n,t [f ] := 1

Zθ
n,t

∫

−∞<s0<s1<···<sn−1<t
eEθ

n,t (s0,...,sn−1)f (s0, s1 . . . , sn−1)ds,

where

ds = ds0 ds1 . . .dsn−1.

The annealed expectation is defined by

Eθ
n,t [f ] := E

[
Eθ

n,t [f ]].
In many instances below, n and t are fixed throughout a section or computation, and we omit
these variables from the notation: Eθ [f ] = Eθ

n,t [f ].
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Let 1A be the indicator of a set A ⊂ Rn:

1A(s0, . . . , sn−1) =
{

1 if (s0, . . . , sn−1) ∈ A,

0 otherwise.

We use the suggestive notation

P θ
n,t (A) := Eθ

n,t [1A] and Pθ (A) := Eθ [1A].

We refer to the first quantity as the quenched probability of the event A, and the second
quantity as its annealed probability.

Our main result provides near-optimal estimates for any moment of the centered free en-
ergy and any annealed moment of the time of first jump:

THEOREM 1. Let ψ1(θ) = d
dθ (#′(θ)/#(θ)) denote the trigamma function, and suppose

that

(5)
∣∣t − nψ1(θ)

∣∣ ≤ An2/3

for some constant 0 ≤ A < ∞. Then, for every ε > 0, θ ∈ (0,∞), and p ∈ (0,∞), there
exists a constant C = C(A, ε, θ,p) > 0 such that for all n ∈ N,

E
[∣∣logZθ

n,t

∣∣p] ≤ Cn(1/3)p+ε and(6)

Eθ
n,t

[|s0|p
] ≤ Cn(2/3)p+ε,(7)

where X = X − E[X] denotes the centered random variable.

This result should be compared to that in [21], Theorems 2.2 and 2.3 and equation (4.12),
where the following bounds were obtained for the corresponding moments

E
[∣∣logZθ

n,t

∣∣p] ≤ C(θ,p)n(1/3)p, p = 2,

Eθ
n,t

[|s0|p
] ≤ C(θ,p)n(2/3)p, p ∈ (0,3).

(8)

These authors also obtain the lower bound

E
[∣∣logZθ

n,t

∣∣2] ≥ cn2/3.

By Jensen’s inequality, one sees that (6), (7) are indeed optimal up to an O(nε) factor. The
n-dependence in (8) is optimal with no ε-loss, but only low moments are controlled.

Theorem 1 is based on an inductive argument involving two inequalities. A crucial tool
is an expression for the kth cumulant of logZθ

n,t as a sum of multilinear expressions in ex-
pectations of products of quenched cumulants of s+

0 , the positive part of s0, as well as lower
order powers of logZθ

n,t . This relation between the free energy and the first jump in the sys-
tem leads to a “scaling relation” which allows us to simultaneously control s+

0 (or s−
0 ) and

logZθ
n,t .

In order to state the expression for the kth cumulant of logZθ
n,t , let Hn,σ 2(x) denote the

nth Hermite polynomial with respect to a Gaussian random variable of variance σ 2, defined
in (20), and ψk(θ) be the kth derivative of the digamma function (12). Let κk(X) denote the
kth cumulant of the random variable X. The kth cumulant of a function f with respect to the
quenched measure in (4) is denoted by κθ

k (f ). See Section 2.1 for details.
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THEOREM 2. For integers k ≥ 2,

κk
(
logZθ

n,t

) + n(−1)k−1ψk−1(θ) + t · δk,2

=
∑

π∈P

(|π | − 1
)!(−1)|π |

k−1∑

j=1

(
k
j

) ∏

B∈π

E
[(

logZθ
n,t

)aj,BHbj,B,t
(
B0(t)

)]
,

(9)

where the first sum ranges over partitions π of {1, . . . , k}, aj,B = |B ∩ {1, . . . , j}|, bj,B =
|B ∩ {j + 1, . . . , k}| = |B| − aj,B , and δi,j is the Kronecker delta function. We can omit any
product of blocks that has a block B completely contained inside {j + 1, . . . , k}, as well as
any partition that contains a singleton.

Moreover, each factor in the products appearing in (9) has an expression in terms of
quenched cumulants of s+

0 :

E
[(

logZθ
n,t

)a
Hb,t

(
B0(t)

)] = (−1)b
∑

,1+···+,a=b
,i≥0

b!
,1! · · ·,a!

E
[

a∏

i=1

κθ
,i

(
s+

0
)
]

,

where we use the convention κθ
0 (s+

0 ) := logZθ
n,t .

The case k = 2 was previously obtained by Seppäläinen and Valkó in [21]. For explicit
expressions when k = 3 or k = 4, see Lemma 5.2 and Corollary 5.5 respectively.

1.2. Application: Localization of the polymer paths. The strong estimates implied by (7)
give deviation estimates for the polymer path away from the right endpoint: with very high
probability, the entire polymer path lies within O(n

2
3 +) of the line through (0,0) and (t, n):

PROPOSITION 1.2. For any θ, ε > 0 and n ≥ 1 such that condition (5) holds.
Let k ≥ 1 positive integer, there are constants C(A, θ, k, ε) > 0 such that

Pθ
n,t

(
max

0≤j≤n

∣∣∣∣sj − j

n
t

∣∣∣∣ ≥ n
2
3 +ε

)
≤ C(A, θ, k, ε)n−k.

PROOF. We use the Burke property of the O’Connell–Yor polymer [19] in the form of
the identity [21], equation (6.4):

P θ
n,t

(∣∣sj − (j/n)t
∣∣ > n

2
3 +ε) = P θ

n−j,(1−j/n)t

(|s0| > n
2
3 +ε).

For the second quenched probability, we have the following relation between the parameters:
∣∣(1 − (j/n)

) · t − (n − j)ψ1(θ)
∣∣ ≤

(
1 + j

n

)∣∣t − nψ1(θ)
∣∣

≤ 2An2/3.

Next we use (7) to obtain

Pθ
n−j,(1−j/n)t

(|s0| > n
2
3 (K+ε) ≤ n− 2

3 (K+ε) · Eθ
n−j,(1−j/n)t

[|s0|K
]

≤ C(2A, ε, θ,K)n−( 2
3 +ε)Kn

2
3 K+ε

= O
(
n−(K−1)ε).

Choosing K ≥ k+1+ε
ε , we have

Pθ
n,t

(∣∣sj − (j/n)t
∣∣ > n

2
3 +ε) ≤ C(θ, k, ε)n−k−1.
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The result then follows by writing

Pθ
n,t

(
max

0≤j≤n

∣∣∣∣sj − j

n
t

∣∣∣∣ ≥ n
2
3 +ε

)
≤

n∑

j=1

Pθ
n,t

(∣∣sj − (j/n)t
∣∣ > n

2
3 +ε).

!

1.3. Outline of paper. In Section 2, we introduce some basic definitions, and review ele-
mentary properties of the stationary polymer which appeared in previous literature. We also
introduce the notation used throughout the paper.

In Section 3, we use the Cameron–Martin–Girsanov theorem to derive formulas of “in-
tegration by parts” type, relating the positive part of the first jump, s+

0 , to the free energy,
logZθ

n,t , by perturbing the path B0(t), t ≥ 0. These formulas are generalizations of a relation
in [21], which was used to derive the variance estimate

(10) cn2/3 ≤ Var
(
logZθ

n,t

) ≤ Cn2/3

for some n-independent constants c, C > 0.
Section 4 serves as an illustration of the general methodology used to derive Theorem 1,

exploiting the reciprocal relation between s+
0 and logZθ

n,t . Using convexity of the free en-
ergy of the stationary polymer, we give an alternate, shorter proof of the upper bound of the
variance estimate (10), first obtained in [21].

In Section 5, we exploit Gaussian integration by parts to derive a formula for the cumulants
of logZθ

n,t in terms of multilinear expressions in expectations of lower moments of logZθ
n,t

and quenched cumulants of s+
0 . The formula, which appears in Theorem 2, is a generalization

of the variance identity in [21], and it facilitates an inductive analysis of the moments of
logZθ

n.t : higher central moments of the free energy are estimated by lower moments, as well
as lower moments of s+

0 .
In Section 6, we use the formula in Theorem 2 to obtain near-optimal bounds on the central

moments of the free energy of the stationary polymer, as well as annealed moments of the first
jump in the system. Our proof is iterative, combining two inequalities to improve bounds on
logZθ

n,t using estimates on the tail of s+
0 , and vice versa, with a “fixed point” at the optimal

values of the exponents (χ , ξ) = (1/3,2/3). An important observation here is that a high
probability bound of the form s+

0 * τ implies that logZθ
n,t is insensitive to perturbations of

the boundary path B0(s), 0 ≤ s ≤ t that affect it only for s + τ .

2. Preliminaries and notation. In this paper, we denote by P and E the probability
measure, resp. expectation on the common probability space . where the two-sided Brow-
nian motions (Bn(t))t∈R, n = 0,1,2, . . . are defined. For a random X on ., we denote the
centered random variable as follows:

X := X − E[X].
The covariance and variance with respect to E are respectively denoted by

Cov(X,Y ) := E[XY ] − E[X]E[Y ] and Var(X) := Cov(X,X) = E
[
(X)2]

.

2.1. Cumulants. The main input for the computations presented in this paper is Proposi-
tion 1.1. That result provides explicit formulas for the cumulants of s0, the first jump in the
system. To explain this, introduce the gamma function, defined for θ > 0 by

(11) #(θ) =
∫ ∞

0
sθ−1e−s ds.

The digamma function is the logarithmic derivative of #

(12) ψ0(θ) = #′(θ)

#(θ)
.



MOMENTS OF THE OY POLYMER 3211

The higher derivatives are denoted by ψk , k = 1,2, . . .

ψk(θ) = dk

dθk
ψ0(θ).

We have (−1)kψk(s) < 0 for any k ∈ N and s > 0, [20]. By taking expectations in equation
(1), we find

(13) E
[
logZθ

n,t

] = −nψ0(θ) + θ t.

As we discuss below, the relation (13) gives an expression for the expected cumulant gener-
ating function of s0, the first jump in the system.

Recall that for a random variable X with exponential moments, the kth cumulant, denoted
by κk(X), is equal to the kth derivative at zero of the log-moment generating function [5]:

logE
[
eδX] =

∞∑

k=0

δk

k! κk(X),

where δ is small enough for the left side to converge. To define the quenched cumulants, let
0 < δ < 1 and let f : Rn → R satisfy (3). The cumulant generating function of f is given by

logZ
θ,δf
n,t := log

∫

−∞<s0<···<sn−1<t
eδf (s0,...,sn−1)+Eθ

n,t (s0,...,sn−1) ds.

For k ≥ 1, the kth quenched cumulant with respect to Eθ
n,t [·] is then

κθ
k (f ) = dk

dδk
logEθ

n,t

[
eδf ] ∣∣∣∣

δ=0
= dk

dδk
logZ

θ,δf
n,t

∣∣∣∣
δ=0

.

For example,

κθ
1 (f ) = Eθ

n,t [f ] and κθ
2 (f ) = Eθ

n,t

[
f 2] − (

Eθ
n,t [f ])2

.

Note that we suppress the dependence on n and t from the notation for simplicity.
Differentiating (13) with respect to θ , we have

(14) E
[
κθ
k (s0)

] = tδk,1 + nψk(θ).

Thus, Proposition 1.1 implies that all expected quenched cumulants of s0 for k ≥ 2 are of
order n. Similarly, Proposition 1.1 implies that for each t > 0, k ≥ 1, and 1 ≤ j ≤ n:

(15) κk+1
(
rθ
j (t)

) = (−1)k+1ψk(θ).

2.2. A priori bounds. In this section, we collect a few basic bounds on the quantities
we will be interested in under the condition (5). For x, y ∈ R, we denote the minimum and
maximum of x and y by

x ∧ y = min{x, y} and x ∨ y = max{x, y}.
The positive and negative parts of x are denoted by

x+ = max{0, x} and x− = max{0,−x}.
An immediate consequence of Proposition 1.1 is that logZθ

n,t has finite exponential mo-
ments. Moreover, if we define

(16) R :=
n∑

j=1

rθ
j (t),



3212 C. NOACK AND P. SOSOE

we see that for p ≥ 1, the centered free energy logZθ
n,t satisfies

E
[∣∣logZθ

n,t

∣∣p]1/p ≤ E
[∣∣B0(t)

∣∣p]1/p + E
[|R|p]1/p ≤ C′(θ,p)(

√
t + √

n).(17)

From [21], Lemma 4.4, we also have

(18) Eθ [|s0|p
] ≤ C(θ,p)np for every p > 0.

Expressing cumulants in terms of moments, we have
∣∣κθ

k

(
s+

0
)∣∣ ≤ C(k)Eθ

n,t

[(
s+

0
)k]

.

Combining this with (18) and using Jensen’s inequality gives

E
[∣∣κθ

k

(
s+

0
)∣∣p] 1

p ≤ C(θ,p, k)nk < ∞ for every k ∈ N and p ≥ 1.

3. Gaussian integration by parts. The Hermite polynomials are defined by the formula

Hk(x) = (−1)ke− x2
2

dk

dxk
e

x2
2 , k = 0,1,2, . . . .

The polynomials are orthogonal with respect to the standard Gaussian measure 1√
2π

e− x2
2 .

The Hermite generating function is [16], equation (1.1),

(19) eλx− λ2
2 =

∞∑

n=0

λn

n! Hn(x).

For t > 0, we also define the generalized Hermite polynomials, with variance t by

(20) Hk,t (x) := t
k
2 Hk

(
x√
t

)
.

Rescaling (19), we have

(21) eλx− λ2t
2 =

∞∑

n=0

λn

n! Hn,t (x).

Recall that the cumulants of s+
0 with respect to the quenched measure P θ

n,t are given by

(22) κθ
k

(
s+

0
) = dk

dδk
logZ

θ,δs+
0

n,t

∣∣∣∣
δ=0

for k ≥ 1.

For k = 0, we use the convention:

(23) κθ
0
(
s+

0
) := logZθ

n,t .

LEMMA 3.1. For t > 0, j, k ≥ 1,

(24) E
[(

logZθ
n,t

)j
Hk,t

(
B0(t)

)] = (−1)k
∑

,1+···+,j=k
,i≥0

k!
,1! · · ·,j !

E
[ j∏

i=1

κθ
,i

(
s+

0
)
]

.

PROOF. Let 0 < δ < min{θ,1}. The expectation

E
[(

logZ
θ,−δs+

0
n,t − E

[
logZθ

n,t

])j ]
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equals

E
[(

log
∫

−∞<s0<···<sn−1<t
eθs0−B0(s0)−δs+

0 +En,t (s0,...,sn−1) ds − E
[
logZθ

n,t

])j]
.

By the Cameron–Martin–Girsanov Theorem ([16], Proposition 4.1.2), this equals

E
[
eδB0(t)− δ2

2 t (logZθ
n,t

)j ]
.

The exponential factor in the expectation is the generating function of the generalized Her-
mite polynomials (21) with variance t , so (24) follows by repeated differentiation with respect
to δ.

To justify the use of differentiation under the expectation, we show the difference quotients
are dominated independently of δ. The derivative

(25)
dk

dδk

(
logZ

θ,−δs+
0

n.t

)j

is a linear combination of products of the form

j∏

i=1

κθ,−δ
,i

(
s+

0
)
,

where
∑

,i = k, and κθ,−δ
k is the kth cumulant with respect to the measure

Eθ,−δ
n,t [ ·] := Eθ

n,t [e−δs+
0 · ]

Eθ
n,t [e−δs+

0 ]
.

Using the trivial estimate

Eθ,−δ
n,t [f ] ≤ etEθ

n,t [f ]
and expressing the cumulants in terms of moments, we see that (25) is bounded up to a
constant by a sum of terms of the form

∣∣Eθ
n,t

[(
s+

0
)k]∣∣ · ∣∣logZ

θ,−δs+
0

n,t

∣∣b,

where b = #{i : ,i = 0}. Since

logZθ
n,0 + Bn(t) = logZ

θ,−δs+
0

n,0 + Bn(t) ≤ logZ
θ,−δs+

0
n,t ≤ logZθ

n,t ,

and all moments of s+
0 and logZθ

n,t are finite, we find that the derivative (25) is dominated by
an integrable function, so the lemma now follows from the dominated convergence theorem.

!

The next proposition is a generalization of (24) to “stopped” Brownian motions.

PROPOSITION 3.2. Let 0 < τ ≤ t , and j, k ≥ 0. We have

E
[(

logZθ
n,t

)j
Hk,τ

(
B0(τ )

)] = (−1)k
∑

,1+···+,j=k
,i≥0

k!
,1! · · ·,j !

E
[ j∏

i=1

κθ
,i

(
s+

0 ∧ τ
)
]

.
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PROOF. We apply the Cameron–Martin–Girsanov theorem to the Brownian motion
B0(s0), s0 ≥ 0 in the form

(26) E
[
F

(
B0(s0) + δ

∫ s0

0
b(s)ds

)]
= E

[
e
δ

∫ t
0 b(s)dB0(s)− δ2

2 ‖b‖2
L2([0,t])F (B0|[0,t])

]

with F with F = (logZθ
n,t )

j and b(s) = −1[0,τ ](s), so
∫ s0

0
b(s)dB0(s) = −B0

(
s+

0 ∧ τ
)
,

and proceed as in the proof of Lemma 3.1. Differentiation inside the expectation is justified
as in that proof. !

3.1. Application: Seppäläinen and Valkó’s variance identity. Recall the notation from
(16): R = ∑n

j=1 rθ
j (t). By Proposition 1.1,

R = logZθ
n,t + B0(t).

Squaring both sides, taking expectations, and using (15), we obtain

(27) E
[
(R)2] = nψ1(θ) = Var

(
logZθ

n,t

) + t + 2E
[
logZθ

n,tB0(t)
]
.

Applying the integration by parts formula (24) with j = k = 1, we obtain the identity

E
[
logZθ

n,tB0(t)
] = −E

[
Eθ

n,t

[
s+

0
]]

.

Plugging this into (27) and rearranging yields the key variance identity

(28) Var
(
logZθ

n,t

) = nψ1(θ) − t + 2Eθ
n,t

[
s+

0
]
.

Similar identities relating the variance of a free energy to transversal fluctuations have ap-
peared in several works of Seppäläinen and collaborators on studying anomalous fluctuations
in KPZ models. See [21], Theorem 3.6 and [20], Theorem 3.7. One of our main results yields
higher order versions of (28).

4. Convexity proof of Seppäläinen and Valkó’s fluctuation estimate. In this section,
we present an alternative proof of the estimate

(29) Var
(
logZθ

n,t

) ≤ C(θ)n2/3

given the following characteristic direction condition

(30)
∣∣t − nψ1(θ)

∣∣ ≤ An2/3.

The estimate (29) and the corresponding lower bound were originally obtained by Seppäläi-
nen and Valkó [21]. We replace the key step in their proof by the convexity of the free energy.

LEMMA 4.1. Almost surely, the function

θ 1→ logZθ
n,t

is convex for all t . The first derivative with respect to θ equals

(31)
d

dθ
logZθ

n,t = Eθ
n,t [s0],

while the second derivative with respect to θ equals

(32)
d2

dθ2 logZθ
n,t = Varθ (s0) := Eθ

n,t

[(
s0 − Eθ

n,t [s0]
)2] ≥ 0.
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In particular, for η < θ < λ, almost surely, we have

(33)
logZθ

n,t − logZ
η
n,t

θ − η
≤ Eθ

n,t [s0] ≤ logZλ
n,t − logZθ

n,t

λ − θ
.

PROOF. The expresions for the derivatives (31) and (32) follow by direct computation,
and the remaining statements are a consequence of the nonnegativity of the second derivative.

!

The following computation relates the quenched second moment and variance of s0, to
those of s+

0 . For simplicity, in the rest of this section, we write E = Eθ
n,t .

LEMMA 4.2. Almost surely,

(34) E
[(

s0 − E[s0]
)2] = E

[(
s+

0 − E
[
s+

0
])2] + E

[(
s−

0 − E
[
s−

0
])2] + 2E

[
s+

0
]
E

[
s−

0
]
.

In particular,

E
[
E

[
s+

0
]2] ≤ E

[
E[s0]2] + 2E

[
E

[
s+

0
]
E

[
s−

0
]]

≤ E
[
E[s0]2] − nψ2(θ).

(35)

PROOF. By direct computation,

E
[(

s0 − E[s0]
)2] = E

[((
s+

0 − E
[
s+

0
]) − (

s−
0 − E

[
s−

0
]))2]

= E
[(

s+
0 − E

[
s+

0
])2] + E

[(
s−

0 − E
[
s−

0
])2]

− 2E
[(

s+
0 − E

[
s+

0
])(

s−
0 − E

[
s−

0
])]

.

Since s+
0 and s−

0 have disjoint support,

E
[(

s+
0 − E

[
s+

0
])(

s−
0 − E

[
s−

0
])] = −E

[
s+

0
]
E

[
s−

0
]
,

which yields (34). All terms in (34) are nonnegative, so

0 ≤ E
[
s+

0
]
E

[
s−

0
] ≤ 1

2
E

[(
s0 − E[s0]

)2] = 1
2
κθ

2 (s0).

Taking expectations and using (14),

(36) E
[
E

[
s+

0
]
E

[
s−

0
]] ≤ −n

2
ψ2(θ).

Finally, after expanding, we get

E[s0]2 = E
[
s+

0
]2 + E

[
s−

0
]2 − 2E

[
s+

0
]
E

[
s−

0
]
.

Taking expectations and applying (36) yields (35). !

The following property regarding the map θ 1→ Var(logZθ
n,t ) was already used by Sep-

päläinen and Valkó. See [21], Lemma 4.3.

LEMMA 4.3. For θ,λ > 0,

(37)
∣∣Var

(
logZλ

n,t

) − Var
(
logZθ

n,t

)∣∣ ≤ n
∣∣ψ1(λ) − ψ1(θ)

∣∣.
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PROOF OF ESTIMATE (29). By (33) with λ − θ = θ − η = n−1/3,

n−1/3∣∣E[s0]
∣∣ ≤ ∣∣logZθ

n,t − logZλ
n,t

∣∣ + ∣∣logZ
η
n,t − logZθ

n,t

∣∣.

By a Taylor series expansion of ψ0(λ) about λ = θ ,

(38)
∣∣ψ0(λ) − ψ0(θ) − (λ − θ)ψ1(θ)

∣∣ ≤ C(θ)(λ − θ)2.

Combined with (13), (38), and (30), we can center the free energies to obtain
∣∣logZθ

n,t − logZλ
n,t

∣∣ + ∣∣logZ
η
n,t − logZθ

n,t

∣∣

≤ An
2
3
(|θ − λ| + |η − θ |) + Cn

(
(λ − θ)2 + (η − θ)2)

+ ∣∣logZθ
n,t − logZλ

n,t

∣∣ + ∣∣logZ
η
n,t − logZθ

n,t

∣∣

≤ C(θ)n1/3 + ∣∣logZθ
n,t − logZλ

n,t

∣∣ + ∣∣logZ
η
n,t − logZθ

n,t

∣∣.

We will continue to use this simplification for the remainder of this section. Squaring, taking
expectations, and using (37), we have the bound

n−2/3E
[
E[s0]2] ≤ C(θ)

(
n2/3 + E

[∣∣logZθ
n,t − logZλ

n,t

∣∣2] + E
[∣∣logZ

η
n,t − logZθ

n,t

∣∣2])

≤ C(θ)
(
n2/3 + Var

(
logZθ

n,t

) + n|λ − θ | + n|η − θ |).
(39)

Using (35), we find

E
[
E

[
s+

0
]] ≤ E

[
E[s0]2]1/2 + C(θ)n1/2.

Finally, (28), (30), and (39) give

Var
(
logZθ

n,t

) ≤ Cn1/3(
n2/3 + Var

(
logZθ

n,t

))1/2
,

a quadratic relation which implies (29). !

5. Formulas for κk(logZθ
n,t ). In order to give exact formulas for κk(logZθ

n,t ) we first
discuss joint cumulants and their connection to Hermite polynomials. The joint cumulant of
the random variables X1, . . . ,Xk is defined by

(40) κ(X1, . . . ,Xk) := ∂k

∂ξ1 . . . ∂ξk
log E

[
e

∑k
j=1 ξjXj

]|ξi=0.

Alternatively, it can be written as a combination of products of expectations of the underlying
random variables:

(41) κ(X1, . . . ,Xk) =
∑

π∈P

(|π | − 1
)!(−1)|π |−1

∏

B∈π

E
[∏

i∈B

Xi

]
,

where P ranges over partitions π of {1, . . . , k} and |A| stands for the size of the set A. This
expression is commonly used as the definition of joint cumulants, we show that it is equivalent
to (41) in the Appendix.

Note that the joint cumulant is multilinear. In the case where X1 = X2 = · · · = Xk = X,
the joint cumulant reduces to the kth cumulant of X, κk(X). Two important properties of
cumulants that we will take advantage of are shift-invariance:

κk(X + c) = κk(X) for k ≥ 2, where c is constant,

and additivity for independent random variables:

κk(X + Y) = κk(X) + κk(Y ) for any k, if X and Y are independent.

The following lemma relates the kth cumulant of the free energy to a sum of joint cumulants
involving the centered free energy Brownian motion B0.
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LEMMA 5.1. Let θ > 0, t > 0, and n ∈ N. Then for any integer k ≥ 2,

(42) κk
(
logZθ

n,t

) = n(−1)kψk−1(θ) −
k−1∑

j=0

(
k
j

)
κ
(
logZθ

n,t , . . . , logZθ
n,t︸ ︷︷ ︸

j -times

,B0(t), . . . ,B0(t)︸ ︷︷ ︸
k−j times

)
.

Note that the 0th term in the summation is κk(B0(t)) which equals 0 when k 2= 2, and t when
k = 2.

PROOF. For convenience, put A := logZθ
n,t , B0 := B0(t), and R := ∑n

j=1 rθ
j (t), so

R = A + B0. The shift-invariance of the cumulant along with the mulitlinearity of the joint
cumulant gives

κk(R) = κk(R) = κ(A + B0,A + B0, . . . ,A + B0︸ ︷︷ ︸
k-times

) =
k∑

j=0

(
k
j

)
κ(A, . . . ,A︸ ︷︷ ︸

j -times

,B0, . . . ,B0︸ ︷︷ ︸
k−j times

).

The left-hand side simplifies to κk(R) = nκk(r
θ
j (t)) = n(−1)kψk−1(θ) by equation (15), as

R is a sum of n i.i.d. random variables, while the kth entry in the sum on the right-hand side
gives κk(logZθ

n,t ). Rearranging yields the desired result. !

5.1. Estimate for κ3(logZθ
n,t ). To motivate computations in the upcoming sections we

use Lemma 5.1 and [21], equation (4.13), to obtain a bound of the optimal order, n(1/3)·3, for
the third centered moment of logZθ

n,t .
The joint cumulants simplify when the random variables are centered. For example, if X,

Y , Z are centered, then

(43) κ(X,Y,Z) = E[XYZ].
Therefore the third cumulant of a random variable agrees with its third central moment. We
now use (43) to obtain an exact formula for the third cumulant/central moment of the free
energy.

LEMMA 5.2. For any t > 0 and n ∈ N,

(44) E
[(

logZθ
n,t

)3] = κ3
(
logZθ

n,t

) = −nψ2(θ) + 6E
[
logZθ

n,tE
θ
n,t

[
s+

0
]] − 3E

[
Varθ

(
s+

0
)]

.

PROOF. For convenience we write Z = Zθ
n,t , B0 = B0(t), and E = Eθ

n,t . By Lemma 5.1,

(45) κ3(logZ) = −nψ2(θ) − 3κ(logZ, logZ,B0) − 3κ(logZ,B0,B0).

We now analyze the joint cumulants individually. Equation (43) and two applications of
Lemma 3.1 give

(46) κ(logZ, logZ,B0) = E
[
logZ

2
B0

] = −2E
[
logZE

[
s+

0
]]

,

and

(47) κ(logZ,B0,B0) = E
[
logZB2

0
] = E

[
logZ

(
B2

0 − t
)] = E

[
Varθ

(
s+

0
)]

.

Combining equations (45), (46), and (47) yields the desired result. !

Next, we use Lemma 5.2 to show that κ3(logZθ
n,t ) has order at most n when n and t satisfy

(5).
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COROLLARY 5.3. Assume n and t satisfy
∣∣t − nψ1(θ)

∣∣ ≤ An2/3.

Then there exists a constant C = C(θ) < ∞ such that for all n ∈ N,
∣∣E

[(
logZθ

n,t

)3]∣∣ ≤ Cn.

PROOF. Applying the Cauchy–Schwarz inequality followed by Jensen’s inequality, [21],
equation (4.12), and the bound (29),

∣∣E
[
logZθ

n,tE
θ
n,t

[
s+

0
]]∣∣ ≤ E

[(
logZθ

n,t

)2] 1
2 E

[
Eθ

n,t

[(
s+

0
)2]] 1

2

≤ C
(
n

2
3
) 1

2
(
n

4
3
) 1

2 = Cn.

By equation (14), we have

0 ≤ E
[
Varθ

(
s+

0
)] ≤ E

[
Varθ (s0)

] = −nψ2(θ).

Thus all terms on the right side of (44) are of order at most n. !

5.2. Higher cumulants: Proof of Theorem 2. We now develop a systematic method to
deal with higher cumulants. The following lemma expresses the joint cumulants appearing in
the sum on the right-hand side of equation (42) as linear combinations of products of expec-
tations which only involve the free energy and Hermite polynomials of the Brownian motion
B0. After multiple Gaussian integration by parts, the remaining expressions will involve ex-
pectations of quenched cumulants rather than the Brownian motion B0, leading to the exact
formula in Theorem 2.

LEMMA 5.4. Let θ > 0, t > 0, n ∈ N, k ∈ N, and 1 ≤ j ≤ k. Then

κ
(
logZθ

n,t , . . . , logZθ
n,t︸ ︷︷ ︸

j -times

,B0(t), . . . ,B0(t)︸ ︷︷ ︸
k−j -times

)

=
∑

π∈P

(|π | − 1
)!(−1)|π |−1

∏

B∈π

E
[(

logZθ
n,t

)|B∩{1,...,j }|
H|B∩{j+1,...,k}|,t

(
B0(t)

)]
,

where P ranges over partitions π of {1, . . . , k}. We can omit any partition π which has a
block B contained in {j + 1, . . . , k}. We can also omit any partition π which contains a
singleton set.

PROOF. For convenience, again put A = logZθ
n,t and B0 = B0(t). Recalling the general-

ized Hermite generating function (21), we have

eλB0 = e
λ2t
2

∞∑

n=0

λn

n! Hn,t (B0).

Therefore,

log E
[
e(ξ1+···+ξj )A+(ξj+1+···+ξk)B0

]

= log E
[ ∞∑

n=0

e(ξ1+···+ξj )A (ξj+1 + · · · + ξk)
n

n! Hn,t (B0)

]

+ (ξj+1 + · · · + ξk)
2t

2
.
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Plugging this into the right-hand side of (40), taking the derivatives ∂ξ1, . . . , ∂ξk , evaluating
at ξi = 0, and using E[Hn,t (B0)] = 0 for n ≥ 1, we obtain the formula

κ(A, . . . ,A︸ ︷︷ ︸
j times

,B0, . . . ,B0︸ ︷︷ ︸
k−j times

) =
∑

π∈P

(|π |−1
)!(−1)|π |−1

∏

B∈π

E
[
A|B∩{1,...,j }|H|B∩{j+1,...,k}|,t (B0)

]
,

where P ranges over partitions π of {1, . . . , k} such that no block B ∈ π is contained in
{j + 1, . . . , k}. Finally, if B is a singleton set that is contained in {1, . . . , j}, then

E
[
A|B∩{1,...,j}|H|B∩{j+1,...,k}|,t (B0)

] = E[A] = 0. !

We can now prove Theorem 2.

PROOF OF THEOREM 2. Combine Lemmas 5.1, 5.4, and 3.1. !

One can verify that the formula for k = 3 agrees with that in Lemma 5.2. For another
concrete exact formula, one can verify that the formula for k = 4 gives

COROLLARY 5.5.

κ4
(
logZθ

n,t

) = nψ3(θ) + 4E
[
κθ

3
(
s+

0
)] + 12Cov

(
Eθ

n,t

[
s+

0
]
,
(
logZθ

n,t

)2)

− 12Var
(
E

[
s+

0
]) − 12E

[
Varθ

(
s+

0
)
logZθ

n,t

]
.

6. Estimates for the central moments: Proof of Theorem 1. The proof of Theorem 1
is obtained by iterating the two inequalities (50) and (61). These relate the moments of s+

0
and the central moments of logZθ

n,t , successively improving bounds for both. The inequality
(50) exploits the relationship between n and t given in (5) to obtain a first order cancellation,
see [21], Lemma 4.2. The case k = 2 was used by the authors of [21] to estimate the variance
of the partition function, and similar bounds appear in works of Seppäläinen [20] and Balázs–
Cator–Seppäläinen [1]. The estimate (61) is enabled by the expression in Theorem 2.

The two inequalities can be interpreted as manifestations of the conjectural scaling re-
lations between the fluctuation exponent χ and the transversal fluctuation exponent ξ for
models in the Kardar–Parisi–Zhang class [11]:

2ξ ≤ 1 + χ

(for (50)) and

2χ ≤ ξ

for (61). When combined, these give the bounds

χ ≤ 1
3
, ξ ≤ 2

3
.

We give a brief sketch of the argument for the reader’s convenience.

(1) Assuming the existence of constants C, δ > 0 such that for all θ ∈ [1,L], k ≥ 1,

E
[(

logZθ
n,t

)k] ≤ C(k)n(1/3+δ)k,

we show in Section 6.1 the estimate

(48) Eθ [(
s+

0
)2k] ≤ C′(k)n(4/3+δ)k+ε

for θ ∈ [1,L − 1] and some n-independent constants C ′(k). This bound corresponds to the
scaling inequality 2ξ ≤ 1 + χ .
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(2) Using Theorem 2, we have an expression for the cumulants of logZθ
n,t of the following

form:

(49) κk
(
logZθ

n,t

) =
k−1∑

j=1

ck,j

∏

i∈Ij

E
[(

logZθ
n,t

)αj,iHβj,i ,t
(
B0(t)

)]
,

where
∑

i∈Ij
αj,i + βj,i ≤ k and αj.i ≤ j .

(3) Time truncation argument: by Corollary 3.2, we can replace Hβj,i ,t (B0(t)) by the
smaller quantity Hβj,i ,τ (B0(τ )) provided s+

0 * τ .
Using (48), we have the truncation

Eθ
n,t

[(
s+

0
)m

, s+
0 > n2/3+δ/2+ε] ≤ n−(2k−m)(2/3+δ/2+ε)Eθ

n,t

[(
s+

0
)2k]

≤ 2k · C(k)n(2/3)m+(δ/2)m−(2k−m+1)ε .

This is of sub-leading order if we choose k + (mδ)/ε.
(4) Thanks to the previous truncations, we can now estimate (49) by effectively replacing

B0(t) by B0(τ ), where τ + s+
0 is the best current bound for the typical size of s+

0 . Simi-
larly, we can replace Hk,t (B0(t)) by Hk,τ (B0(τ )). The moments of the centered free energy
E[(logZθ

n,t )
k] can now be estimated inductively using (49) and

B0(τ ) " τ 1/2.

The last relation plays the role of the scaling inequality 2χ ≤ ξ .

6.1. Tail bound for s+
0 . The following is one of the two pivotal inequalities in our proof.

As previously stated, the case k = 2 appears in [21]. See also [12], Lemma 2.2.

LEMMA 6.1. Let k ≥ 2 be an even integer, 0 < θ ≤ L, and suppose
∣∣t − nψ1(θ)

∣∣ ≤ An2/3.

Then there exist constants s, c,C,K > 0, which are uniformly bounded in θ , such that, if

n2/3 ≤ u ≤ Kn and λ − θ = c
u

n
= θ − η,

then the following inequalities hold:

P
(
P θ

n,t

(
s+

0 > u
) ≥ e−su2/n) ≤ C

nk

u2k

(
E

[(
logZθ

n,t

)k] + E
[(

logZλ
n,t

)k])
,(50)

P
(
P θ

n,t

(
s−

0 > u
) ≥ e−su2/n) ≤ C

nk

u2k

(
E

[(
logZθ

n,t

)k] + E
[(

logZ
η
n,t

)k])
.(51)

PROOF. We first prove (50). Let r, u > 0. By Markov’s inequality,

P θ
n,t

(
s+

0 > u
) = P θ

n,t (s0 > u) ≤ e−ruEθ
n,t

[
ers0

] = e−ru Zθ+r
n,t

Zθ
n,t

.

Thus, for any α > 0,

P
(
P θ

n,t

(
s+

0 > u
) ≥ e−α) ≤ P

(
Zθ+r

n,t

Zθ
n,t

≥ eru−α
)

= P
(
logZθ+r

n,t − logZθ
n,t ≥ ru − α

)

= P
(
logZθ+r

n,t − logZθ
n,t ≥ n

(
ψ0(θ + r) − ψ0(θ)

) − rt + ru − α
)
.
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The last equality follows from (13). For c0 = c0(θ) small enough and 0 < r < c0,
∣∣ψ0(θ + r) − ψ0(θ) − rψ1(θ)

∣∣ ≤ −2r2ψ2(θ).

Since |t − nψ1(θ)| ≤ An2/3, we have the lower bound

(52) n
(
ψ0(θ + r) − ψ0(θ)

) − rt + ru − α ≥ n(ru − α) − rAn2/3 + 2r2ψ2(θ).

Letting

r = λ − θ = c
u

n
and α = su2

n

we can ensure the right-hand side of (52) is at least cu2

2n by first fixing c small enough (depend-
ing on θ and A) and then fixing s, K small enough in relation to c. Finally, apply Markov’s
inequality using the kth moment.

To prove (51), let r < 0 and u > 0. Then

P θ
n,t

(
s−

0 > u
) = P θ

n,t (s0 < −u) ≤ e−ruEθ
n,t

[
ers0

]
.

The rest of the argument is the same as in the previous case. !

COROLLARY 6.2. Let L > 1 be positive. Suppose
∣∣t − nψ1(θ0)

∣∣ ≤ An2/3.

Let k ≥ 2 be an even integer and suppose that

(53) E
[(

logZθ
n,t

)k] ≤ C(k)n(1/3)k+δk

for some δ > 0 and all θ ∈ [θ0, θ0 + L].
Then, for any ε > 0, there exists a constant C(ε, k,L, θ0) such that

Eθ [(
s±

0
)2k] ≤ C(ε, k,L, θ0)n

(4/3)k+δk+ε,

for all θ ∈ [θ0, θ0 + L − 1].

PROOF. Write

Eθ [(
s±

0
)2k] ≤ (

n2/3)2k + (2k)(Kn)ε
∫ Kn

n2/3
u2k−1−εPθ (

s±
0 ≥ u

)
du + C(θ, k)

= Cn(4/3)k+δk+ε
∫ Kn

n2/3
u−1−ε du + O

(
n(4/3)k).

In the second step, we have used Lemma 6.1 and the assumption (53). The constant K used
here is the same one that is guaranteed to exist by Lemma 6.1. To control the region {u ≥ Kn},
we have applied Lemma [21], Lemma 4.4. Performing the integration, we obtain the result.

!

REMARK. The reduction in the upper bound on θ from θ0 + L to θ0 + L − 1 in the
conclusion of Corollary 6.2 is due to our application of Lemma 6.1, which requires that the
assumption (53) hold for θ and λ, where θ < λ * θ + 1.
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6.2. Truncation.

LEMMA 6.3. Suppose that t = O(n) and there exist constants Ck = C(k, θ) for k ∈ N,
which are locally bounded in θ , such that for some ε, δ > 0, and all k ∈ N,

(54) Eθ [(
s+

0
)2k] ≤ C(k, θ)n(4/3)k+δk+ε for all n ∈ N.

For any j, ,,K ≥ 1, there exist constants C(j, ,, θ, ε, δ,K) (locally bounded in θ ) such that
∣∣E

[(
logZθ

n,t

)j
H,,τ

(
B0(τ )

)] − E
[(

logZθ
n,t

)j
H,,t

(
B0(t)

)]∣∣

≤ C(j, ,, θ, ε, δ,K)n−K for all n ∈ N,

where

τ = n2/3+δ/2+ε .

REMARK. We only require (54) hold for s+
0 . We could equivalently replace s+

0 with s−
0

in the assumption.

PROOF. By Corollary 3.2, for 0 ≤ τ ≤ t ,

E
[(

logZθ
n,t

)j
Hk,τ

(
B0(τ )

)] = (−1)k
∑

,1+···+,j=k
,i≥0

k!
,1! · · ·,j !

E
[ j∏

i=1

κθ
,i

(
s+

0 ∧ τ
)
]

,

where we interpret κθ
0 (s+

0 ∧ τ ) = logZθ
n,t . It will therefore suffice to compare expectations of

products of quenched cumulants of s+
0 and s+

0 ∧ τ . Let I = {1, . . . , j}. We want to estimate

(55) E
[∏

i∈I

κ,i

(
s+

0
)] − E

[∏

i∈I

κ,i

(
s+

0 ∧ τ
)|

]
,

where
∑

i ,i = k. By a telescoping argument, it is enough to estimate

E
[
κ,a

(
s+

0
) ∏

i∈I1

κ,i

(
s+

0
) ∏

i∈I2

κ,i

(
s+

0 ∧ τ
)] − E

[
κ,a

(
s+

0 ∧ τ
) ∏

i∈I1

κ,i

(
s+

0
) ∏

i∈I2

κ,i

(
s+

0 ∧ τ
)]

,

where I = I1 ∪ I2 ∪ {a} and ,a 2= 0 (if ,a = 0, then the difference is zero). By Hölder’s
estimate, this difference is bounded by

(56)

E
[∣∣κ,a

(
s+

0
) − κ,a

(
s+

0 ∧ τ
)∣∣2]1/2 ∏

i∈I1

E
[∣∣κ,i

(
s+

0
)∣∣2j−2]1/(2j−2)

×
∏

i∈I2

E
[∣∣κ,i

(
s+

0 ∧ τ
)∣∣2j−2]1/(2j−2)

.

To bound the two products in (56), we use equation (41) to obtain the estimate
∣∣κ,i

(
s+

0 ∧ τ
)∣∣ ∨ ∣∣κ,i

(
s+

0
)∣∣ ≤ (,i − 1)!

∑

π

∏

B∈π

E
[(

s+
0

)|B|]
, ,i 2= 0,

where π runs over all partitions of {1, . . . ,,i} and E = Eθ
n,t . Taking the Lb-norm, b ≥ 1 we

have

(57) E
[∣∣κ,i

(
s+

0 ∧ τ
)∣∣b]1/b ∨ E

[∣∣κ,i

(
s+

0
)∣∣b]1/b ≤

{
C

√
n ,i = 0,

C,i (,i − 1)!Eθ [(
s+

0
),ib

]1/b
,i 2= 0.
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Recall from (23) that κ0(s
+
0 ∧ τ ) = κ0(s

+
0 ) = logZθ

n,t , so the case ,i = 0 follows from (17)
and the fact that t = O(n). Now define

m0 := ∣∣{i ∈ I1 ∪ I2 : ,i = 0}∣∣.
Proceeding with the estimate (57), we have for j > 1

∏

i∈I1

E
[∣∣κ,i

(
s+

0
)∣∣2j−2]1/(2j−2)

∏

i∈I2

E
[∣∣κ,i

(
s+

0 ∧ τ
)∣∣2j−2]1/(2j−2)

≤ (C
√

n)m0 ·
∏

i∈I1,I2:,i 2=0

C,i (,i − 1)!Eθ [(
s+

0
)(2j−2),i

]1/(2j−2)

≤ Cm0+k−,a (k − ,a)!nm0/2Eθ [(
s+

0
)(2j−2)(k−,a)]1/(2j−2)

.

≤ Cj+kk!C(
(j − 1)(k − ,a), θ

) 1
2j−2 n(j+k−,a)( 2

3 + δ
2 + ε

2 ).

(58)

The last inequality follows from nm0/2 ≤ nj(2/3+δ/2+ε/2) and the assumption (54).
We now estimate the first factor in (56). Expressing κ,a (s

+
0 ), κ,a (s

+
0 ∧ τ ) in terms of

moments, we see that it suffices to bound the L1-norm of the difference
r∏

i=1

E
[(

s+
0 ∧ τ

)αi
] −

r∏

i=1

E
[(

s+
0

)αi
]
,

where r ≤ ,a and
∑r

i=1 αi = ,a . Observe that

r∏

i=1

E
[(

s+
0 ∧ τ

)αi
] −

r∏

i=1

E
[(

s+
0

)αi
]

=
r∑

j=1

(
E

[(
s+

0
)αj

] − E
[(

s+
0 ∧ τ

)αj
]) ∏

1≤i≤j−1

E
[(

s+
0 ∧ τ

)αi
] ∏

j+1≤i≤r

E
[(

s+
0

)αi
]
.

It therefore suffices to bound the expectation of

E
[(

s+
0

)αv , s0 > τ
] v−1∏

i=1

E
[(

s+
0

)αi
] r∏

i=v+1

E
[(

s+
0 ∧ τ

)αi
]

≤ τ−M+αvE
[(

s+
0

)M] v−1∏

i=1

E
[(

s+
0

)αi
] r∏

i=v+1

E
[(

s+
0 ∧ τ

)αi
]

(59)

where M ≥ ,a . Applying Hölder’s inequality to (59) followed by (57) and assumption (54),

E
[∣∣κ,a

(
s+

0
) − κ,a

(
s+

0 ∧ τ
)∣∣2]1/2

≤ C,a (,a − 1)! · τ−M max
r≤,a=∑

αi

r∑

v=1

ταvEθ [(
s+

0
)2Mr ]1/(2r)

∏

i 2=v

Eθ [(
s+

0
)2r·αi

]1/(2r)

≤ Ckk! max
r≤,a=∑

αi

r∑

v=1

ταv−MC(Mr, θ)
1
2r

(∏

i 2=v

C(rαi , θ)

) 1
2r

n(M+,a−αv)(2/3+ δ
2 + ε

2 )

≤ C′(k, ,a, θ,M)n,a(2/3+ δ
2 + ε

2 )n−M ε
2 .

(60)

The maximum in the second line is over choices of 1 ≤ r ≤ ,a and collections αi , 1 ≤ i ≤ r
with

∑
αi = ,a .
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Combining (58) and (60) we bound (56) by

C ′′(j, k, θ,M)n(j+k)((2/3)+δ+ε)n−M ε
2 .

Choosing M sufficiently large, depending on ε, j , k, δ, and K , we find that the difference
(55) is indeed negligible. !

6.3. Improved estimate for central moments.

LEMMA 6.4. Suppose
∣∣t − nψ1(θ)

∣∣ ≤ An
2
3 .

Assuming the moment bounds (54), there are constants C(k, θ), locally bounded in θ , such
that, for k ≥ 2 even

(61) E
[(

logZθ
n,t

)k] ≤ C(k, θ)n(1/3)k+(δ/3)k

for all n sufficiently large.

PROOF. The proof is by induction on k. For k = 2, (61) holds with δ = 0. Assuming the
estimate for even exponents less than k, we use the first expression in Theorem 2 to express
the cumulant κk(logZθ

n,t ) as a sum of a term of order O(n) plus terms of the form

(62)
∏

B∈π

E
[(

logZθ
n,t

)aj,B Hbj,B,t
(
B0(t)

)]
,

where π is a partition of {1, . . . , k} into |π | blocks B , and aj,B + bj,B = |B|.
Using (17) and Lemma 6.3 with K > 2k, we have, for τ = n2/3+δ/2+ε ,

∏

B∈π

E
[(

logZθ
n,t

)aj,B Hbj,B,t
(
B0(t)

)]

=
∏

B∈π

E
[(

logZθ
n,t

)aj,B Hbj,B,τ
(
B0(τ )

)] + O
(
n−k).

Taking absolute values and applying Hölder’s inequality,
∣∣E

[(
logZθ

n,t

)aj,B Hbj,B,τ
(
B0(τ )

)]∣∣

≤ E
[(

logZθ
n,t

)k] aj,B
k E

[∣∣Hbj,B,τ
(
B0(τ )

)∣∣k′] 1
k′

≤ Cn((1/3)+δ/4+ε/2)bj,B E
[(

logZθ
n,t

)k] aj,B
k ,

where aj,B

k + 1
k′ = 1. Taking the product over B ∈ π , we have, up to a constant factor, the

bound:

(63) n(1/3+δ/4+ε/2)bj E
[(

logZθ
n,t

)k] aj
k ,

where

aj :=
∑

B

aj,B and bj :=
∑

B

bj,B,

so aj

k + bj

k = 1. Note that for 1 ≤ j ≤ k − 1, both aj , bj ≥ 1. Applying Young’s inequality
xy ≤ 1

pxp + 1
q yq to (63), we find that for η > 0, any term of the form (62) is bounded by

ηE
[(

logZθ
n,t

)k] + C(η)n(1/3+δ/4+ε/2)k + O
(
n−k).
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Combining this with Theorem 2, we have

(64) κk
(
logZθ

n,t

) = C(k)ηE
[(

logZθ
n,t

)k] + C(k)C(η)n((1/3)+δ/4+ε/2)k + O(n).

Writing

(65) κk
(
logZθ

n,t

) = E
[(

logZθ
n,t

)k] +
∑

|α|=k
0≤αi<k

cα

|α|∏

i=1

E
[(

logZθ
n,t

)αi
]
,

where the sum is over multi-indices α = (α1, . . . ,αk),
∑

i αi = k. If some αi = k−1, then the
product must equal zero. Therefore, by the induction assumption, all terms in the sum on the
right of (65) are of order n((1/3)+δ/3)k . Choosing η sufficiently small in (64) and absorbing
ε/2 into δ/4, we obtain the result. !

6.4. Finishing the argument. Combining Corollary 6.2 and Lemma 6.4 we obtain the
following:

LEMMA 6.5. Suppose
∣∣t − nψ1(θ0)

∣∣ ≤ An2/3.

Assume there exist constants δ > 0, L > 1, and C(k) > 0 for k ∈ {2,4, . . . }, such that for any
even k,

E
[(

logZθ
n,t

)k] ≤ C(k)n(1/3)k+δk for all n ≥ 1 and θ ∈ [θ0, θ0 + L].
Then there exist constants C′(k) > 0 for k ∈ {2,4, . . . } such that for any even k,

E
[(

logZθ
n,t

)k] ≤ C′(k)n(1/3)k+(δ/3)k for all n ≥ 1 and θ ∈ [θ0, θ0 + L − 1].

Theorem 1 will follow from repeated application of Lemma 6.5 once we prove the follow-
ing:

PROPOSITION 6.6. For all θ0 > 0 and L > 0, there exist constants Ck = Ck(θ0,L) > 0
for k ∈ {2,4, . . . } such that for any even k,

E
[(

logZθ
n,t

)k] ≤ Ckn
(1/3)k+(1/6)k for all n ≥ 1 and θ ∈ [θ0, θ0 + L].

PROOF. For convenience, again let A = logZθ
n,t , B0 = B0(t), and R = ∑n

j=1 rθ
j (t). By

Proposition 1.1, A = R − B . Thus, for even k,

(66) E
[
Ak] ≤ 2k−1(

E
[
R

k] + E
[
Bk

0
])

.

Since R is a sum of i.i.d. random variables whose common distribution continuously depends
on θ , there exist constants Ck(θ) > 0, all of which are continuous in θ , such that

E
[
(R)k

] ≤ Ck(θ)n(k/2) for all n ≥ 1.

The other expectation in (66) satisfies

E
[
Bk

0
] = (k/2 − 1)!!t (k/2) ≤ (k/2 − 1)!!(An(2/3) + nψ1(θ0)

)(k/2) ≤ Dk(θ0)n
(k/2),

for all n ≥ 1, where Dk(θ0) > 0 are constants which are continuous in θ0. Plugging these two
inequalities into equation (66) and using the continuity of Ck(θ) and Dk(θ0) on (0,∞) yields
the desired result. !



3226 C. NOACK AND P. SOSOE

PROOF OF THEOREM 1. Let ε > 0, θ0 ∈ (0,∞), and p ∈ (0,∞). Fix even integers k, M
such that p ≤ k and

(1/6)

3M
≤ ε.

By Jensen’s inequality, it suffices to show the bounds (6) and (7) hold with p replaced by
k. Now fix L > M and apply Proposition 6.6 followed by M consecutive applications of
Lemma 6.5 to obtain the bound (6). Finally, apply Corollary 6.2 to both s+

0 and s−
0 to obtain

the bound (7). !

APPENDIX: COMBINATORIAL FORMULA FOR CUMULANTS

Here we derive the formula (41) for the joint cumulants. This is classical and appears, for
example, on Wikipedia under Cumulants [5], but we could not locate a suitable proof to cite.

We will prove the following by induction. Denote

Z := E
[
e

∑n
i=1 ξiXi

]
,

E[·] := 1
Z

E
[
e

∑n
i=1 ξiXi ·].

Note that for k ≤ n

κk(X1, . . . ,Xk) = ∂ξ1 · · · ∂ξk logZ|ξ1=···=ξn=0.

We will show by induction that

(67) ∂ξ1 · · · ∂ξk logZ =
∑

π∈P(1,...,k)

(|π | − 1
)!(−1)|π |−1

∏

B∈π

E

[∏

i∈B

Xi

]
.

PROOF. Note that the result holds for k = 1. Indeed, in this case

∂ξ1 logZ = E[X1].
Assume the result for k ≤ n−1. We prove the result for k +1. Differentiating (67), we obtain
for each π ∈ P(1, . . . , k) appearing in the sum (67)

∂ξk+1

∏

B∈π

E

[∏

i∈B

Xi

]
=

∑

B ′∈π

∂ξk+1E

[ ∏

j∈B ′
Xj

] ∏

B 2=B ′
E

[∏

i∈B

Xi

]
.

For the derivative, we have

∂ξk+1E

[ ∏

j∈B ′
Xj

]
= ∂ξk+1

1
Z

E
[
e

∑n
i=1 ξiXj

∏

j∈B ′
Xj

]

= E

[
Xk+1

∏

j∈B ′
Xj

]
− E[Xk+1]E

[ ∏

j∈B ′
Xj

]
.

Thus, we have

∂ξk+1

∏

B∈π

E

[∏

i∈B

Xi

]
=

∑

B ′∈π

E

[
Xk+1

∏

j∈B ′
Xj

] ∏

B 2=B ′
E

[∏

i∈B

Xi

]

−
∑

B ′∈π

E[Xk+1]E
[ ∏

j∈B ′
Xj

] ∏

B 2=B ′
E

[∏

i∈B

Xi

]

=
∑

B ′∈π

E

[
Xk+1

∏

j∈B ′
Xj

] ∏

B 2=B ′
E

[∏

i∈B

Xi

]

− |π |E[Xk+1]
∏

B∈π

E

[∏

i∈B

Xi

]
.

(68)
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The first term corresponds to adding a factor Xk+1 to a single B block of the partition π

and the second term corresponds to adding a 1-term block {k + 1} to π . Summing (68) over
π ∈ P(1, . . . , k), we obtain

∂ξk+1

∑

π∈P(1,...,k)

(|π | − 1
)!(−1)|π |−1

∏

B∈π

E

[∏

i∈B

Xi

]

=
∑

π∈P(1,...,k)

(|π | − 1
)!(−1)|π |−1

∑

B ′∈π

E

[
Xk+1

∏

j∈B ′
Xj

] ∏

B 2=B ′
E

[∏

i∈B

Xi

]

−
∑

π∈P(1,...,k)

|π |!(−1)|π |E[Xk+1]
∏

B∈π

E

[∏

i∈B

Xi

]

=
∑

π̃∈P(1,...,k+1)

(|π̃ | − 1
)!(−1)|π̃ |−1

∏

B∈π̃

E

[∏

i∈B

Xi

]
.

To verify the final step, note that any partition of {1, . . . , k + 1} which contains {k + 1}
as a single element block induces a partition π of {1, . . . , k} from the remaining blocks with
|π | = |π̃ |−1; otherwise, if {k+1} does not appear as block in π̃ , the partition can be obtained
from some π ∈ P(1, . . . , k) by adding k + 1 to one of the |π | blocks without changing the
number of blocks. !
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