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CENTRAL MOMENTS OF THE FREE ENERGY OF THE STATIONARY
O’CONNELL-YOR POLYMER
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Seppéldinen and Valké showed in (ALEA Lat. Am. J. Probab. Math.
Stat. 7 (2010) 451-476) that for a suitable choice of parameters, the variance
growth of the free energy of the stationary O’Connell-Yor polymer is gov-
erned by the exponent 2/3, characteristic of models in the KPZ universality
class.

We develop exact formulas based on Gaussian integration by parts to re-
late the cumulants of the free energy, log 2,2’ ;» to expectations of products of
quenched cumulants of the time of the first jump from the boundary into the
system, sg. We then use these formulas to obtain estimates for the kth central
moment of log Zzy ; as well as the kth annealed moment of sg for k > 2, with
nearly optimal exponents (1/3)k + € and (2/3)k + €, respectively.

As an application, we derive new high probability bounds for the distance
between the polymer path and a straight line connecting the origin to the
endpoint of the path.

1. Introduction. The semidiscrete polymer in a Brownian environment was introduced
by O’Connell and Yor in [19]. It is one of only a few known examples of integrable polymer
models. To define it, let n > 1, t > 0, and B,(¢), n = 1,2, ... be independent Brownian
motions started at 0. Introduce the energy

n
Eni(St, .. sa—1) = Y _(Bj(sj) — Bj(sj-1)),
j=1
where we set 5o := 0 and s,, := ¢. The semidiscrete (point-to-point) polymer partition function
from (0, 0) to (¢, n) is given by

Zns :/ et (toesn=t) 4oy ds,y.
O<sp<--<sp_1<t

The probabilistic interpretation of the right-hand side is as a Gibbs ensemble of up-right paths
between (0, 0) and (¢, n). Each path consists of n — 1 Poisson-distributed successive jumps
at times 0 < 51 < 52, ... < sy—1 < t of height one between discrete levels j =1,...,n. For
each j, the path remains on level j for time s; — s;_1. See [3], Definition 1.1, for a precise
description of the path interpretation. The path interpretation justifies the name polymer, and
reveals Z, ; as the partition function of the Gibbs ensemble described above.

In this paper, we consider a family of stationary versions of the polymer partition function,
also studied in [19]. To define it, we introduce an extra two-sided Brownian motion By(s),
s € R, independent of By, ..., B, and also extend the Brownian motions By, ..., B, to two-
sided Brownian motions. For 8 > 0, define

n
53’,(S0, e, Sp—1) :=60s9 — Bo(sg) + Z(Bj (sj) — Bj (Sj_l)).
j=1
Here 59 is allowed to vary.
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The stationary partition function is then

0 (¢
Zg [ = €&n.1 (50 0w025n—1) dsodsy...ds,_q.

/;oo<s0<s1 < e <Z<Spo1 <t
For n =0, we let

0 _ —By(t)+6t
ZO’, =e .

Note that now the s; can range over the entire real line. Following Seppéldinen and Valko
[21], the Gibbs distribution of the initial jump sg plays a key role in the analysis in this paper,
because it is a dual variable to the parameter 6 > 0.

The main result in [19], the Burke property for this model, implies that the free energy,
log Zﬁvt, equals a combination of a sum of i.i.d. random variables and the Brownian motion

Boy(t). The following statement is adapted from [21], Theorem 3.3.

PROPOSITION 1.1 ([19]). Foreachn >1andt > 0, write
n
(1) log Zy, , = Y rf(t) = Bo(1) + 61,
j=1

where

rj() =logZ%, —log Zj_; .

Then {rje- (t)}j=1,...,n are independent and identically distributed, with law equal to that of
the random variable
) 1
og —,
g X,

where Xy is gamma-distributed with parameter 0:

1
P(Xg € d)C) = erflefx dx,

where 1" denotes the Gamma function, see (11).

O’Connell and Moriarty [13] used the representation (1) of Proposition 1.1, to compute the
first order asymptotics of log Z, ;. Since its introduction in [19], the semidiscrete polymer
has been the subject of much investigation, revealing a rich algebraic structure far beyond
the invariant measure statement contained in Proposition 1.1. See, for example, [2, 3, 8-
10, 12-14, 17, 19, 21]. Here we mention only a few of the many existing results about the
semidiscrete polymer. In [17], O’Connell embedded the processeslog Z; ;, j =1,...,n,t >
0 in a triangular array of solutions to stochastic differential equations. He identified log Z,, ;,
as the first coordinate of an n-dimensional diffusion, the A-transform of a Brownian motion
by a certain Whittaker function. O’Connell used this connection to obtain an explicit formula
for the Laplace transform of log Z,, ;. Borodin, Corwin, and Ferrari [3] used a modification
of O’Connell’s formula to show that the centered and rescaled free energy log Z,, ; converges
in distribution to a Tracy—Widom GUE random variable.

Closer to the spirit of this paper, Seppilédinen and Valké adapted an argument from Sep-
pildinen’s work on the discrete log-gamma polymer [20] to obtain upper and lower bounds
for the fluctuation exponents associated with the polymer. Predictions from physics [11] have
led to the expectation that, for a broad family of 1 4 1-dimensional polymer models in ran-
dom environments, there exist exponents y, £ such that the variance of the free energy is of
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order n?X, while the typical deviation of the polymer paths from a straight line is of order n¢.
For the stationary semidiscrete polymer, the paper [21] contains a proof of the estimates

Var(log Z0 ) = n,

2) ,
E[E, [Isol]] = n*

with § =2y = %, where E,f’,[-] denotes the expectation with respect to the (random) poly-
mer measure (see Definition 4). See also Moreno—Flores, Seppildinen, and Valké [12] for a
derivation of the fluctuation and wandering exponents in the so-called intermediate disorder
regime where the partition function Zﬁ’, has an additional n-dependent temperature param-
eter. In Section 4, we reprove the upper bounds of (2) by an alternative argument using the
convexity of the free energy, log Z,f .+ in the parameter 6.

Our main result complements the upper bounds in (2) with nearly optimal (up to n€) es-
timates for all central moments of log Zz’ , and all annealed moments of so, implying strong
concentration on an almost optimal scale. As explained in Section 6, the proof relies on in-
equalities that appear closely related to the predicted Kardar—Parisi—Zhang scaling relations
[6, 11].

To the best of our knowledge, our results are the first bounds for higher central moments
of the partition function in any model in the KPZ class. In follow-up work [15], we build
on the technique introduced here to obtain concentration for several discrete integrable poly-
mer models: the log-gamma polymer [20], the strict-weak polymer [7, 18], the beta polymer
[2], and the inverse-beta polymer [22]. Those four models are treated simultaneously using
the Mellin-transform framework in [4]. Together with the present paper, these are the only
instances of estimates for higher moments in the KPZ class.

It may be possible to extend our argument to integrable zero-temperature models analo-
gous to the polymer models we treat here such as the Brownian last passage percolation and
last passage percolation with exponential weights. We also expect that the argument given
here extends without the need for serious modifications to the intermediate disorder regime
considered, for example, in [12]. We leave such questions to later work.

1.1. Main results. To state our results, we introduce some notation for expectations with
respect to the Gibbs measure associated with log Zfl Letd >0,n>1,1>0,and f =
f(so,...,s,—1) be areal-valued function on R” such that

3) | F (50, -y sp1)| < e7VminG0:0 forall 59 e R

with some v < 6. The assumption (3) will guarantee integrability with respect to the random
measure defined below.
We define the quenched expectation by

1 0
0 E . (50,.mn _
@ ELIfli=—p eEnaS0mSn) £ (5o, 51 s0-1) ds,
Zn,t —00<S <) < <Sp—1 <t

where

ds =dsgdsy...ds,_1.
The annealed expectation is defined by

E, Lf1:=E[E, [f1].

In many instances below, n and ¢ are fixed throughout a section or computation, and we omit
these variables from the notation: E?[ fl= Ez’ ASf1



3208 C. NOACK AND P. SOSOE
Let 14 be the indicator of a set A C R":

1 if(sg,...,sp_1) €A,
0 otherwise.

]lA(So,---,Sn—l)=!

We use the suggestive notation
P (A):=Ef,[14] and PY(A):=E[14].

We refer to the first quantity as the quenched probability of the event A, and the second
quantity as its annealed probability.

Our main result provides near-optimal estimates for any moment of the centered free en-
ergy and any annealed moment of the time of first jump:

THEOREM 1. Let y1(0) = %(F’(@)/ ['(0)) denote the trigamma function, and suppose
that

) |t —nyr1(0)] < An®3

for some constant 0 < A < co. Then, for every € > 0, 6 € (0,00), and p € (0, 00), there
exists a constant C = C(A, €, 0, p) > 0 such that for all n € N,

(6) E[flog Z ,|"] < CnV/3PF€  and
(7 Ef ,[Isol?] < Cn*/3Pte,

where X = X — E[X] denotes the centered random variable.

This result should be compared to that in [21], Theorems 2.2 and 2.3 and equation (4.12),
where the following bounds were obtained for the corresponding moments

E[llog Z ,[P] < €@, p)n'/PP,  p=2,
(8) 6 (2/3)
EY [Isol?] < €0, p)n*PP,  pe(0,3).

These authors also obtain the lower bound
E[flog 27,[%] = cn?.

By Jensen’s inequality, one sees that (6), (7) are indeed optimal up to an O (n€) factor. The
n-dependence in (8) is optimal with no €-loss, but only low moments are controlled.

Theorem 1 is based on an inductive argument involving two inequalities. A crucial tool
is an expression for the kth cumulant of log sz ; as a sum of multilinear expressions in ex-
pectations of products of quenched cumulants of ssr , the positive part of sg, as well as lower
order powers of log ZZ7 ;- This relation between the free energy and the first jump in the sys-
tem leads to a “scaling relation” which allows us to simultaneously control sar (or s, ) and
logZ 3’t.

In order to state the expression for the kth cumulant of log Zﬁ,,, let H, ,2(x) denote the
nth Hermite polynomial with respect to a Gaussian random variable of variance o2, defined
in (20), and ¥ (6) be the kth derivative of the digamma function (12). Let kx(X) denote the
kth cumulant of the random variable X. The kth cumulant of a function f with respect to the
quenched measure in (4) is denoted by K,f (f). See Section 2.1 for details.
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THEOREM 2. For integers k > 2,

kie(log 2y )+ n(=DF 'y 1(0) + 1 - 8.2

©) = -
= (1= -0 Y (%) T Elllog 2, Hy .0 (o))
j=1

wepP Ben
where the first sum ranges over partitions w of {1,...,k}, a; g =|BN{l,..., j},. bjp =
[BN{j+1,...,k}| =|B| —aj g, and §; j is the Kronecker delta function. We can omit any
product of blocks that has a block B completely contained inside {j + 1, ..., k}, as well as

any partition that contains a singleton.
Moreover, each factor in the products appearing in (9) has an expression in terms of
quenched cumulants of sar :

- b' a
E[(log Zj ;)" Hp:(Bo®))] = (=1)* Y WE[H g, (5o )}
€1+Ei—€a:b a

0oty 0
where we use the convention Kk (sy ) :=log Z,, ;.

The case k = 2 was previously obtained by Seppildinen and Valké in [21]. For explicit
expressions when k = 3 or k =4, see Lemma 5.2 and Corollary 5.5 respectively.

1.2. Application: Localization of the polymer paths. The strong estimates implied by (7)
give deviation estimates for the polymer path away from the right endpoint: with very high

probability, the entire polymer path lies within O(n%+) of the line through (0, 0) and (¢, n):

PROPOSITION 1.2.  Forany 0, € > 0 and n > 1 such that condition (5) holds.
Let k > 1 positive integer, there are constants C(A, 0, k, €) > 0 such that

sj— L1 > n%+f) <C(A,0,k, en.

n

0
Pn’t< max

O0<j=<n

PROOF. We use the Burke property of the O’Connell-Yor polymer [19] in the form of
the identity [21], equation (6.4):

Pne,t(|sj — (j/mit] > n%+6) = P} (Isol > n%+€).

n—j.(1=j/n)t
For the second quenched probability, we have the following relation between the parameters:

(1= /) -1 — (0 = P ®)] < (1 + %)v 01 0)]

<2An*"3.
Next we use (7) to obtain

2(K+ ~2(k+ 0 K
n3KFe) < pn=3 6)'En—j,(1—j/n)t[|s0|]

o
B 1=y (10l >
<CQA, e 60, Kyn~GToK 5K+
=0 (n~K=De),
Choosing K > Héﬁ, we have

PY (|sj — (/mt] > n3+) <CO, k, e+,
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The result then follows by writing

J
sj— =t
/ n

0
Pn’,( max

0<j=n| "~

n
= n3t) = 3B sy - G/t = )
j=1 O

1.3. Outline of paper. In Section 2, we introduce some basic definitions, and review ele-
mentary properties of the stationary polymer which appeared in previous literature. We also
introduce the notation used throughout the paper.

In Section 3, we use the Cameron—Martin—Girsanov theorem to derive formulas of “in-
tegration by parts” type, relating the positive part of the first jump, s(')Ir , to the free energy,
log Zﬁyt, by perturbing the path By(z), t > 0. These formulas are generalizations of a relation
in [21], which was used to derive the variance estimate

(10) cen*? < Var(log 28 ) < Cn*/?

for some n-independent constants ¢, C > 0.

Section 4 serves as an illustration of the general methodology used to derive Theorem 1,
exploiting the reciprocal relation between sé" and log Z,f’ ;- Using convexity of the free en-
ergy of the stationary polymer, we give an alternate, shorter proof of the upper bound of the
variance estimate (10), first obtained in [21].

In Section 5, we exploit Gaussian integration by parts to derive a formula for the cumulants
of log Zg’ , in terms of multilinear expressions in expectations of lower moments of log Zﬁy ‘
and quenched cumulants of sg' . The formula, which appears in Theorem 2, is a generalization
of the variance identity in [21], and it facilitates an inductive analysis of the moments of
log Z¢ ,: higher central moments of the free energy are estimated by lower moments, as well
as lower moments of sé" .

In Section 6, we use the formula in Theorem 2 to obtain near-optimal bounds on the central
moments of the free energy of the stationary polymer, as well as annealed moments of the first
jump in the system. Our proof is iterative, combining two inequalities to improve bounds on
log Zg, , using estimates on the tail of sO+ , and vice versa, with a “fixed point” at the optimal
values of the exponents (x,&) = (1/3,2/3). An important observation here is that a high
probability bound of the form saL <« 7 implies that log ng , 1s insensitive to perturbations of
the boundary path By(s), 0 <s <t that affect it only for s > t.

2. Preliminaries and notation. In this paper, we denote by P and E the probability
measure, resp. expectation on the common probability space €2 where the two-sided Brow-
nian motions (B, (#));cr, n =0, 1,2, ... are defined. For a random X on 2, we denote the
centered random variable as follows:

X := X —E[X].
The covariance and variance with respect to E are respectively denoted by
Cov(X,Y):=E[XY]—-E[X]E[Y] and Var(X):=Cov(X,X)= E[(Y)z].
2.1. Cumulants. 'The main input for the computations presented in this paper is Proposi-

tion 1.1. That result provides explicit formulas for the cumulants of sg, the first jump in the
system. To explain this, introduce the gamma function, defined for 6 > 0 by

o
(11) mm:/ s07 e ds.
0
The digamma function is the logarithmic derivative of I
I'(0)
(12) Yo(0) = ——

re
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The higher derivatives are denoted by vy, k=1,2, ...
k

d
Vi (0) = pvo(®).

We have (—1)¥(s) < 0 for any k € N and s > 0, [20]. By taking expectations in equation
(1), we find

(13) Ellog Z{ ] = —ny(0) + 61.

As we discuss below, the relation (13) gives an expression for the expected cumulant gener-
ating function of sp, the first jump in the system.
Recall that for a random variable X with exponential moments, the kth camulant, denoted
by «x(X), is equal to the kth derivative at zero of the log-moment generating function [5]:
0 gk
log E[**] =" — ki (X),

!
i—o k!

where § is small enough for the left side to converge. To define the quenched cumulants, let
0<é <1andlet f:R" — R satisfy (3). The cumulant generating function of f is given by

10g Zg:ff = 10g/ e‘sf(SOwwsnfl)+£2,1(SO »»»»» Snfl) d_s

00<S)< - <Sp_1 <t
For k > 1, the kth quenched cumulant with respect to E,f’ ([-]11s then

0 d* 0 1.8 d*
kp(f) = a5k log Ej ,[¢%] ‘5—0: F logZ,; o

For example,

() =EJIf1 and «§(f)=ES [£2] - (ES,1/1)°

Note that we suppress the dependence on n and ¢ from the notation for simplicity.
Differentiating (13) with respect to 6, we have

(14) E[kf (s0)] = t8k.1 + ni (6).

Thus, Proposition 1.1 implies that all expected quenched cumulants of so for k > 2 are of
order n. Similarly, Proposition 1.1 implies that for each# >0,k > 1,and 1 < j <mn:

(15) ki1 (r () = (=D 1y 0).

2.2. A priori bounds. In this section, we collect a few basic bounds on the quantities
we will be interested in under the condition (5). For x, y € R, we denote the minimum and
maximum of x and y by

x Ay=min{x,y} and xVy=max{x, y}.
The positive and negative parts of x are denoted by
xt =max{0,x} and x~ =max{0, —x}.

An immediate consequence of Proposition 1.1 is that log Zfl ; has finite exponential mo-
ments. Moreover, if we define

(16) R:=Y"r®,
j=1
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we see that for p > 1, the centered free energy log ZZ, ; satisfies

a7 EfjogZ{,|"]"" <E[|Boo)|"]"” + E[[RI”]"? < C'6, p)(WT + V),
From [21], Lemma 4.4, we also have
(18) E[|s0|P] < C(0, p)n?  forevery p > 0.
Expressing cumulants in terms of moments, we have
k5] = CREL [(56))-

Combining this with (18) and using Jensen’s inequality gives

]E[|K,f(s6r)|p]% <C, p,k)n* <oco forevery k e Nand p > 1.

3. Gaussian integration by parts. The Hermite polynomials are defined by the formula
k2

X

2 d
Hi(x) = (—Dke™ 7 @ﬁ, k=0,1,2,....

)

X

The polynomials are orthogonal with respect to the standard Gaussian measure \/%e 7.
The Hermite generating function is [16], equation (1.1),

(19) P = i o).
o n!
For t > 0, we also define the generalized Hermite polynomials, with variance ¢ by
k X
(20) Hy ;(x) :=t2Hk<$>.
Rescaling (19), we have
00 4n
21) e :;%Hm(x).

Recall that the cumulants of sJ with respect to the quenched measure P,f’ , are given by

k

d 9,85+
(22) i) (sg) = WloanJso . for k > 1.
For k = 0, we use the convention:
(23) kG (sg) :=log 2§ ,.
LEMMA 3.1. Fort >0, j,k>1,
0 \J k k! / 0 (.+
(24) E[(log Z§ ) He i (Bo))] = (=D* > WE l"[xzi (sd) |-
i+t =k J i=1
;>0

PROOF. Let0 < § <min{#, 1}. The expectation

0,—8sf

E[(log Z, —E[log Zg,t])j]
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equals

E[(log[ eQSo—Bo(So)—SS(T-f—gn,z(So ,,,,, Sn—1) ds — E[log Zz ’])J]'
—00<S)< - <Sp_| <t ’

By the Cameron—Martin—Girsanov Theorem ([16], Proposition 4.1.2), this equals

B[00~ l0g 2],,)']

The exponential factor in the expectation is the generating function of the generalized Her-
mite polynomials (21) with variance ¢, so (24) follows by repeated differentiation with respect
to 4.

To justify the use of differentiation under the expectation, we show the difference quotients
are dominated independently of §. The derivative

k
dsk

is a linear combination of products of the form

J
0,—6
1_[ KZ,' (S(_)F)’
i=1

0, (Sso

(25) (log Z,,;

)/

where ) ¢; =k, and Kf’f‘s is the kth cumulant with respect to the measure

st
o5 | Eade™ )
En,t [] = 0 st
E, [e %]

Using the trivial estimate

ESTLf1<e ESf]

and expressing the cumulants in terms of moments, we see that (25) is bounded up to a
constant by a sum of terms of the form

0, 8?0};

|En[653) 1l - log 2,

’

where b = #{i : £; = 0}. Since
log Z% o+ By (t)_logZG 55 + B, (t)<loan, % <loant,

and all moments of so+ and log Zg . are finite, we find that the derivative (25) is dominated by
an integrable function, so the lemma now follows from the dominated convergence theorem.
O

The next proposition is a generalization of (24) to “stopped” Brownian motions.

PROPOSITION 3.2. Let0 <1t <t,and j,k > 0. We have

- . k! J

Bllog 7, e (B0l = (-1 X ot [n < (s M]
L4+ =k ’ =1

;>0
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PROOF. We apply the Cameron—Martin—Girsanov theorem to the Brownian motion
Bo(sg), so > 0 in the form

5 J3 b(s) dBo(s)— 2 1612

(26) E[F(Bo(so) +38 /0 Sob(s)ds>] =E[e L2100 F(Boljo,))]

with F with F = (log Z{) ;)7 and b(s) = —19,](s), s0

S0
fo b(s)dBy(s) = —Bo(sy A7),

and proceed as in the proof of Lemma 3.1. Differentiation inside the expectation is justified
as in that proof. [

3.1. Applicatzon Seppdldinen and Valké’s variance identity. Recall the notation from
(16): R = Z] 175 (). By Proposition 1.1,
R=log Z{ , + Bo(r).
Squaring both sides, taking expectations, and using (15), we obtain
27) E[(R)*] = ny1(0) = Var(log Z ) +t + 2E[log Z{ , Bo(1)].
Applying the integration by parts formula (24) with j = k = 1, we obtain the identity
E[log Z% ,Bo()] = —E[E] ,[s5]]-
Plugging this into (27) and rearranging yields the key variance identity
(28) Var(log Z5 ) = ny (0) — t + 2K, [s ]-

Similar identities relating the variance of a free energy to transversal fluctuations have ap-
peared in several works of Seppélédinen and collaborators on studying anomalous fluctuations
in KPZ models. See [21], Theorem 3.6 and [20], Theorem 3.7. One of our main results yields
higher order versions of (28).

4. Convexity proof of Seppilidinen and Valké’s fluctuation estimate. In this section,
we present an alternative proof of the estimate
(29) Var(log Z% ,) < C(0)n*?
given the following characteristic direction condition
(30) |t —nyn (0)| < An®/3.
The estimate (29) and the corresponding lower bound were originally obtained by Seppilii-
nen and Valké [21]. We replace the key step in their proof by the convexity of the free energy.

LEMMA 4.1. Almost surely, the function

0 — log Zﬁ’t

is convex for all t. The first derivative with respect to 6 equals
d

(31) 518 zh, = Ef Isol,

while the second derivative with respect to 6 equals

2

d
(32) 3z log z0 = Var’ (s0) := EJ [ (s0 — EJ,[501)°] = 0.
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In particular, for n < 6 < A, almost surely, we have

log Z,f,t —log Z,’Z,t £ (s0] < log Zr)f,t —log ngt

33 <
(33) 0—n =t A—0

PROOF. The expresions for the derivatives (31) and (32) follow by direct computation,
and the remaining statements are a consequence of the nonnegativity of the second derivative.
]

The following computation relates the quenched second moment and variance of sg, to
those of saL . For simplicity, in the rest of this section, we write E = EY ,.

LEMMA 4.2. Almost surely,
G4 E[(so— Elso)’] = E[(s§ — E[s7 "]+ E[(sg — Elsg 1)*] +2E[s§ 1E[s5 ]
In particular,

. BleldT) <l o)+ 2B[E[s 1Els; )

Els
[Els0)’] = nv2(6).
PROOF. By direct computation,
E[(s0 — Els0])"] = E[((sg” — E[sg]) = (s — E[55])’]
= E[(sg — E[s¢ 1’1+ El(sy — E[s5 )]
—2E[(s — Elsg )5 — Elsy D).
Since sar and s, have disjoint support,
El(sg — ElsiD(so — Elsg )] = —E[s¢ 1E[s5 ).
which yields (34). All terms in (34) are nonnegative, so

1 1
0< E[sar]E[so_] < EE[(S() — E[so])z] = Elcg(so).

Taking expectations and using (14),
(36) E[E[s7)E[sy]] < —%1//2(9).
Finally, after expanding, we get

Elsol> = E[s; > + E[sy | — 2E[s; 1 E[s; ].
Taking expectations and applying (36) yields (35). U

The following property regarding the map 6 +— Var(log Zg’,) was already used by Sep-
példinen and Valké. See [21], Lemma 4.3.

LEMMA 4.3. For6,A >0,
(37) |Var(log Z;; ) — Var(log Z )| < n|y1 (M) — ¥1(0)].
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PROOF OF ESTIMATE (29). By (33)withA —0 =60 —n=n"1/3,
n_1/3|E[so]| < |log Zg’, —log Zﬁ’,] + |log ZZ’, —log ZZ’,}.
By a Taylor series expansion of 1/g(A) about A =6,
(38) [Yo() — Yo(0) — (A — )1 (0)] < C(O) (A — 0)>.

Combined with (13), (38), and (30), we can center the free energies to obtain
llog ngt — log Z,Xl’t| + [log Z,} , — log Z,f’,|

< An3 (|0 = A+ n — 0]) + Cn((A — 0)> + (n — 0)?)

+ |10g Zg,t — log Zﬁ,t’ + ‘log ZZ,z —log Zg,z}

<CO)n'? +logzl, —log z}:,| + |log Z, , —log Z§ ,|.

We will continue to use this simplification for the remainder of this section. Squaring, taking
expectations, and using (37), we have the bound

(39) ”_Z/SE[E[SO]Z] = C(@)(n2/3 +E[|log Zrez,t — log Zr){,t‘z] +E[|log ZZ,I —log Zrez,t‘z])
< C(®)(n*> + Var(log Z{ ) +nlr — 0] +nln — 0]).

Using (35), we find
E[E[s{]] < E[Els0]?]'/* + C(@)n'/%.
Finally, (28), (30), and (39) give
Var(log ngt) <cn'3 (112/3 + Var(log Zﬁ’t))l/z,

a quadratic relation which implies (29). [

5. Formulas for «j(log Zz, ;). In order to give exact formulas for xy (log Zgﬂ ;) we first
discuss joint cumulants and their connection to Hermite polynomials. The joint cumulant of
the random variables X1, ..., Xy is defined by
(40) K(X1,.ons Xp) = " log E[eXi=15%11j

e JE ... 05 §i=
Alternatively, it can be written as a combination of products of expectations of the underlying
random variables:

(41) k(X1,.... X =Y (x| = DI=DT=TT] E[]‘[ Xi],

meP Berm ieB
where P ranges over partitions 7 of {1, ..., k} and |A| stands for the size of the set A. This
expression is commonly used as the definition of joint cumulants, we show that it is equivalent
to (41) in the Appendix.
Note that the joint cumulant is multilinear. In the case where X| = Xy =--- = X = X,
the joint cumulant reduces to the kth cumulant of X, x4 (X). Two important properties of
cumulants that we will take advantage of are shift-invariance:

k(X +c¢) =k (X) fork > 2, where c is constant,
and additivity for independent random variables:
k(X +Y)=xr(X) + k(YY) foranyk, if X and Y are independent.

The following lemma relates the kth cumulant of the free energy to a sum of joint cumulants
involving the centered free energy Brownian motion By.
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LEMMA 5.1. Let6 > 0,t > 0, and n € N. Then for any integer k > 2,

k—1

6 k k
42) ki(logZ}, ;) = n(=1)yr_1(6) — ZO (J) k(logZ8 ,,...,log Z8 ,, Bo(t), ..., Bo(1)).
I= j-times k—j times

Note that the Oth term in the summation is kr(Bo(t)) which equals O when k £ 2, and t when
k=2.

PROOF. For convenience, put A := log Zg,t, By := By(t), and R := ?er?(t), SO

R = A + By. The shift-invariance of the cumulant along with the mulitlinearity of the joint
cumulant gives

k
- k
Kk(R):/ck(R):K(A—i—BO,A—i—Bo,...,A+Bo):Z<.>/<(A,...,A,Bo,...,Bo).
—\j) =
k-times j=0 Jj-times k—j times

The left-hand side simplifies to kx(R) = nky (rje. (1)) =n(=1k Yr—1(6) by equation (15), as
R is a sum of n i.i.d. random variables, while the kth entry in the sum on the right-hand side
gives «y (log ij,t). Rearranging yields the desired result. [J

5.1. Estimate for k3(log Zﬁ ;). To motivate computations in the upcoming sections we

use Lemma 5.1 and [21], equation (4.13), to obtain a bound of the optimal order, n1/33 for
the third centered moment of log Z? Iy

The joint cumulants simplify when the random variables are centered. For example, if X,
Y, Z are centered, then

(43) «(X,Y,Z)=E[XYZ].

Therefore the third cumulant of a random variable agrees with its third central moment. We
now use (43) to obtain an exact formula for the third cumulant/central moment of the free
energy.

LEMMA 5.2. Foranyt>0andn €N,

(@4) E[(logZ,)] = ks(log 20,) = —nipa(6) + 6E[log Zq, £ [si 1] - 3E[Var’ (s)].

PROOF. For convenience we write Z = Zg P

(45) k3(log Z) = —nr () — 3k (log Z, Tog Z, By) — 3k (log Z, By, Bo).

Bo= By(t),and E = EY ,. By Lemma 5.1,

We now analyze the joint cumulants individually. Equation (43) and two applications of
Lemma 3.1 give

(46) «(log Z,og Z, Bo) = E[log Z' Bo] = —2E[log ZE[s} ).
and
(47) «x(log Z, By, Bo) =E[log ZB3] = E[log Z(B§ — t)] = E[Var’ (s¢)].

Combining equations (45), (46), and (47) yields the desired result. [l

Next, we use Lemma 5.2 to show that «3(log Zg ;) has order at most n when n and ¢ satisfy

(5).
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COROLLARY 5.3. Assume n and t satisfy
|t — ny1(0)] < An®/3.
Then there exists a constant C = C(0) < oo such that for all n € N,

IE[(log 2§ ,)*]| < Cn.

PROOF. Applying the Cauchy—Schwarz inequality followed by Jensen’s inequality, [21],
equation (4.12), and the bound (29),

[E[log ], E} [s3 11| < E[(log 2 )] E[ ], [(s)]]?

By equation (14), we have
0 <E[Var’ (s)] < E[Var’ (s0)] = —n2(6).

Thus all terms on the right side of (44) are of order at most n. [J

5.2. Higher cumulants: Proof of Theorem 2. We now develop a systematic method to
deal with higher cumulants. The following lemma expresses the joint cumulants appearing in
the sum on the right-hand side of equation (42) as linear combinations of products of expec-
tations which only involve the free energy and Hermite polynomials of the Brownian motion
By. After multiple Gaussian integration by parts, the remaining expressions will involve ex-
pectations of quenched cumulants rather than the Brownian motion By, leading to the exact
formula in Theorem 2.

LEMMA 5.4. Let6>0,t>0,neN,keN,and 1 < j<k. Then

« (log Zn fr...,log Zﬁ’,, Boy(1), ..., Bo(1))
—_—
J-times k— j-times
= > (InI = )(=D= TT E[(log 28 ) 2™ Higagia.....iy1.0 (Bo )],
meP Bern
where P ranges over partitions w of {1, ..., k}. We can omit any partition ™ which has a
block B contained in {j + 1, ..., k}. We can also omit any partition m which contains a

singleton set.

PROOF. For convenience, again put A = log Zﬁ’, and By = By(t). Recalling the general-
ized Hermite generating function (21), we have

B0 = o Z Hnt(BO)

Therefore,

log E[e(«fl+~-'+€j)A+($j+1+"~+Ek)30]

00
—logE Z e(gl+...+gj)A (sj-i—l + -
= n!

n . P 2
&) Hn,t(BO):|+ &j+1+ . + &) ¢
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Plugging this into the right-hand side of (40), taking the derivatives 9, ..., Jg,, evaluating
at & =0, and using E[H,, ;(Bp)] = 0 for n > 1, we obtain the formula

J times k—j times mep Ber
where P ranges over partitions 7 of {1,...,k} such that no block B € 7 is contained in
{j+1,...,k}. Finally, if B is a singleton set that is contained in {1, ..., j}, then
E[APO I H o1 a1 (Bo)] = E[A] =0. O

We can now prove Theorem 2.
PROOF OF THEOREM 2. Combine Lemmas 5.1, 5.4, and 3.1. O

One can verify that the formula for £k = 3 agrees with that in Lemma 5.2. For another
concrete exact formula, one can verify that the formula for k =4 gives

COROLLARY 5.5.
kallog Z, ) = n3(0) +4E[x5 (s9)] + 12Cov (£ [s¢]. (log Z7.1)*)
— 12Var(E[s]]) — 12E[Var (s¢ )log Z§ .

6. Estimates for the central moments: Proof of Theorem 1. The proof of Theorem 1
is obtained by iterating the two inequalities (50) and (61). These relate the moments of sé"
and the central moments of log Zz’,, successively improving bounds for both. The inequality
(50) exploits the relationship between n and ¢ given in (5) to obtain a first order cancellation,
see [21], Lemma 4.2. The case k = 2 was used by the authors of [21] to estimate the variance
of the partition function, and similar bounds appear in works of Seppéldinen [20] and Baldzs—
Cator—Seppdldinen [1]. The estimate (61) is enabled by the expression in Theorem 2.

The two inequalities can be interpreted as manifestations of the conjectural scaling re-
lations between the fluctuation exponent x and the transversal fluctuation exponent & for
models in the Kardar—Parisi—Zhang class [11]:

26 <1+
(for (50)) and
2y <¢
for (61). When combined, these give the bounds

<1 g<2
X_3, =3

We give a brief sketch of the argument for the reader’s convenience.
(1) Assuming the existence of constants C, § > 0 such that for all 6 € [1, L], k > 1,
E[(log Z )] = Clkyn 0%,
we show in Section 6.1 the estimate
(48) EQ[(sg')Zk] < C'(kyn@/3+Dk+e

for 6 € [1, L — 1] and some n-independent constants C’(k). This bound corresponds to the
scaling inequality 2& <1+ .



3220 C. NOACK AND P. SOSOE

(2) Using Theorem 2, we have an expression for the cumulants of log Z .+ of the following
form:

(49) cx(log Zy Z ck.j [ 1 El(log 2§ )" Hg, . «(Bo(®))],
j=1 i€l
where Zielj oji —+ ,Bj,i <k and aji < j-
(3) Time truncation argument: by Corollary 3.2, we can replace Hg;, (Bo(t)) by the
smaller quantity Hg;; +(Bo(7)) provided S(T <LT.
Using (48), we have the truncation

0 2/34+8/2 —Qk—m)(2/3+8/2 0 2k
B [(53)" 3 > n¥ /] < Gom@AH2 O] ()]
<2k - C(k)n(2/3)m+(5/2)m—(2k—m+1)e‘

This is of sub-leading order if we choose k > (md)/e.

(4) Thanks to the previous truncations, we can now estimate (49) by effectively replacing
Bo(t) by Bo(t), where t > s(J)r is the best current bound for the typical size of sar . Simi-
larly, we can replace Hy ;(Bo(t)) by Hi (Bo(r)). The moments of the centered free energy

E[(log 22’ ,)k ] can now be estimated inductively using (49) and
Bo(r) St/

The last relation plays the role of the scaling inequality 2y <£.

6.1. Tail bound for sar . The following is one of the two pivotal inequalities in our proof.
As previously stated, the case kK = 2 appears in [21]. See also [12], Lemma 2.2.

LEMMA 6.1. Let k > 2 be an even integer, 0 < 6 < L, and suppose

|t —nyn (0)| < An®/3.

Then there exist constants s, c, C, K > 0, which are uniformly bounded in 6, such that, if

2/3

n“’><u<Kn and A—Q:cZ:9—n,
n

then the following inequalities hold.:

k _
S0 B(R] (g > u)z ) = O (Bl (l0g Z],)*] + Bl (0 Z;,)1]).

k _
(51 IP)(Pr?,t(s()_ >u) > e_suz/n) =C nzk (E[(logZ ) ] +E[(log Zg,t)k])'

PROOF. We first prove (50). Let r, u > 0. By Markov’s inequality,
Z9+)"
n,t

0 0 — 0 ) —
PY (sg >u) =P (so>u)<e ™E, [¢]=e"" 0
n,t

Thus, for any o > 0,

Z@-i—r
P(PY (s >u)>e™®) < IP( > er“_“)
' Zn,t

P(log Z5 " —log Z8 , > ru — a)

=P(log Ze+r log Z8 , > n(Yo(0 +r) — Yo(0)) — rt +ru — a).
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The last equality follows from (13). For ¢y = co(#) small enough and 0 < r < ¢,

[Wo(® + 1) — Yo(0) — ry1(0)| < —2r* Y (0).
Since |t — ny(0)| < An*/3, we have the lower bound
(52)  n(Yo® +r) — Yo0) —rt +ru —a > n(ru —a) —rAn*> 4+ 2r29,(6).
Letting

SM2

u
r=A—60=c— and a=—
n n

we can ensure the right-hand side of (52) is at least % by first fixing ¢ small enough (depend-
ing on O and A) and then fixing s, K small enough in relation to c. Finally, apply Markov’s
inequality using the kth moment.

To prove (51), let r <0 and u > 0. Then

Png,t(s(; > M) = PnGJ(S() < —M) < e_rMEZ’[[erso].

The rest of the argument is the same as in the previous case. [

COROLLARY 6.2. Let L > 1 be positive. Suppose
|t —ny1(80)| < An*/>.
Let k > 2 be an even integer and suppose that
(53) E[(@)k] < C(k)yn1/Dk+sk

for some § > 0 and all 6 € [0y, Oy + L].
Then, for any € > 0, there exists a constant C (€, k, L, 6y) such that

Ee[(sac)y{] <Cl(ek, L, go)n(4/3)k+6k+e’

forall 6 € [6y,00+ L —1].
PROOF. Write

Kn
B [(s¥)*] < (n*3)* + k) (Kn)® / y WP (sg Z ) du+ €0, k)
n

K
_ Cn(4/3)k+8k+e/ "1 dy + 0%
1213 '

In the second step, we have used Lemma 6.1 and the assumption (53). The constant K used
here is the same one that is guaranteed to exist by Lemma 6.1. To control the region {u > Kn},

we have applied Lemma [21], Lemma 4.4. Performing the integration, we obtain the result.
]

REMARK. The reduction in the upper bound on 6 from 6y + L to 6y + L — 1 in the
conclusion of Corollary 6.2 is due to our application of Lemma 6.1, which requires that the
assumption (53) hold for 6 and A, where 0 <A < 6 + 1.
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6.2. Truncation.

LEMMA 6.3. Suppose that t = O(n) and there exist constants Cy = C(k, 0) for k € N,
which are locally bounded in 0, such that for some €,6 > 0, and all k € N,

(54) B[ (sg)*] < C(k, 0)nW/Ik+ok+e  foralin e N,
Forany j, £, K > 1, there exist constants C(j, 2,0, ¢€,8, K) (locally bounded in 0) such that
[E[(log 27 )’ He.«(Bo(r))] — E[(log Z3 )’ He.+(Bo()]|
<C(j,t,0,¢8,Kn X foralineN,

where

£ = pn2/3+8/2+e

REMARK. We only require (54) hold for sar . We could equivalently replace sar with s,
in the assumption.

PROOF. By Corollary 3.2, for0 <t <t¢,

- . J
E[(log Z§, ) Hy« (Bo(0))] = (=D* 3~ el [1‘[ so/\ri|

b4+l =k
£;>0

where we interpret Kg (s(;r AT) =log Zz ;. It will therefore suffice to compare expectations of

products of quenched cumulants of sar and so+ At.LetI ={1,...,j}. We want to estimate
(55) E[]_[ Ke; (sg)] — ]E[l_[ ke, (s¢ A7) |],
iel iel

where ), ¢; = k. By a telescoping argument, it is enough to estimate

]E|:;<Za (s9) [Txe(sg) [T we(sg A r)} - E[;% (0 A7) [Trelsg) [Twe(sg A T)]’

iel iel iel iely

where I = I} U I, U {a} and ¢, # O (if ¢, = 0O, then the difference is zero). By Holder’s
estimate, this difference is bounded by

211/2 2i—-211/2j-2
E[ice, (sg) — ke, (s A 0)7] TT Ellxe, (sg) [/ 2]/
iel

56
(56) 2j—2]1/(2j—2)'

x [TEll«e; (sg A7)
ieh

To bound the two products in (56), we use equation (41) to obtain the estimate

e, (55 ATV [k (s = @ = DY TT ELG6s9)™'] i #0,

T Bem
where 7 runs over all partitions of {1,...,¢;} and E = Eﬁ’t. Taking the LP-norm, b > 1 we
have
CJn £; =0,

57 Bl (sg A 1)1V B[, (5[] < clige; — DE[(sH)] € 2.
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Recall from (23) that K()(Sa_ AT)= Ko(SO ) =log Zn ;» s0 the case ¢; = 0 follows from (17)
and the fact that r = O (n). Now define

mg = |{l elhUDL:¢; :0}{.
Proceeding with the estimate (57), we have for j > 1

[T ELlee (s) "1 T Eflie, (56" A )]/
iely ieh
< (C\/ﬁ)mo X 1_[ CZ[ (el _ 1)!]E9[(séf‘)(zj_z)zi]l/(zj_z)
(58) iel),:4;#0
< Cm()+k_ea (k _ Ea)!nmo/ZEe[(s(-)F)(zj_Z)(k_ea)]1/(2j_2).

< CIHRIC(( = D)k — £g), 0) 52Uk~ G+5+9),

The last inequality follows from n"0/% < pJ 2/3+8/2+€/2) and the assumption (54).
We now estimate the first factor in (56). Expressing k¢, (s(')Ir ), Ke, (sar A T) in terms of
moments, we see that it suffices to bound the L!-norm of the difference

l_[E S0 /\ta’ l_[E so O”,
i=1

where r < £, and ) ;_; o; = {,. Observe that

[T ElGss A0~ [T El655)]

i=1 i=1

:i(E[(Soﬂ”]-E[(SJ A T Elss 0™ TT EL63)“)

l<i<j—1 jHl<i<r
It therefore suffices to bound the expectation of

v—1 r

E[67)™ 50> 7] [T L] [T Ellsi A 7))
(59) i=1 i=v+1

v—1 r

t_M_,_aUE[(sS_)M] HE[(S(—)'—)O”] 1_[ E[(S(—)'_/\‘L')Oli]

i=1 i=v+l
where M > £,. Applying Holder’s inequality to (59) followed by (57) and assumption (54),
E[ ke, (sq7) = ke (5o A7) ]
< cla (g —1)!- M ;na)i Z TozuEO )2Mr]1/(2r) 1_[ E? [(SS-)ZV%]]/(ZV)
r=fe=2 i, i#v

l—[C(m“g)) p(MHa=a)2/3+3+5)
i#v

(60)
< C*k!'  max Zr“" MC(Mre)zr(

r<€a—2

<C'(k, 24,0, M)néa(2/3+%+%)n_M2

The maximum in the second line is over choices of 1 < r < £, and collections «;, 1 <i <r
with > a; = £,.
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Combining (58) and (60) we bound (56) by
C"(j, k, 0, MynU+R(@/3+5+e),—M5

Choosing M sufficiently large, depending on €, j, k, §, and K, we find that the difference
(55) is indeed negligible. [

6.3. Improved estimate for central moments.

LEMMA 6.4. Suppose
2

|t —nyr1(0)| < Ans.
Assuming the moment bounds (54), there are constants C(k, 0), locally bounded in 6, such
that, for k > 2 even
61) E[(@)k] < C(k, 9)n1/Dk+G/Dk
for all n sufficiently large.

PROOF. The proof is by induction on k. For k =2, (61) holds with § = 0. Assuming the
estimate for even exponents less than k, we use the first expression in Theorem 2 to express
the cumulant « (log Z,f, ;) as a sum of a term of order O (n) plus terms of the form

(62) [T El(log Z5.,)** Hp, 5.+ (Bo(0))],
Bernm

where 7 is a partition of {1, ..., k} into |7 | blocks B, and a; g + b; p = |B|.
Using (17) and Lemma 6.3 with K > 2k, we have, for T = n?/3+9/2+€,

[T El(log Z§ ,)“* Hp, ,.:(Bo(1))]

Benm

= [T El(log 2] )" Hp, 5.+ (Bo(¥)] + O(n™").

Benm

Taking absolute values and applying Holder’s inequality,

[E[(log Zg,r)aj'BHb, 5.7(Bo(D)]]

<El(log 21| ¥ LI, p.c (o) 1
< Cnl U3+ /4+e/bi 5 (og 20 ,)F]

’

where afTB + % = 1. Taking the product over B € 7, we have, up to a constant factor, the
bound:

(63) n(1/3+5/4+e/2)bjE[(@)k]%’

where

aj = Zaj,B and bj = ij,Bv

SO k + + = 1. Note that for 1 < j <k — 1, both aj,b; > 1. Applying Young’s inequality
xy < px” + 5 y‘/ to (63), we find that for n > 0, any term of the form (62) is bounded by

nE[(log Z§ )]+ Cpn/3H/4+/Dk 1 0 (k).
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Combining this with Theorem 2, we have

64)  xi(logZ ) = CmE[(log 20 )] + CUh)Cpn I+ 4 o).

Writing
- of
(65) a(logZy,) =E[(log 2] )]+ 3 ca []El(logz] )],
o,
where the sum is over multi-indices @ = (a7, ..., o), Y ; & = k. If some «; = k — 1, then the

product must equal zero. Therefore, by the induction assumption, all terms in the sum on the
right of (65) are of order n((1/3+8/3% ' Choosing 7 sufficiently small in (64) and absorbing
€/2 into §/4, we obtain the result. [

6.4. Finishing the argument. Combining Corollary 6.2 and Lemma 6.4 we obtain the
following:

LEMMA 6.5. Suppose
|t — nr (60)| < An?/3.

Assume there exist constants § >0, L > 1, and C(k) > 0 for k € {2,4, ...}, such that for any
even k,

E[(log 28 )] < Con V3 foralln =1 and 6 € [6p, 60 + L1.
Then there exist constants C'(k) > 0 for k € {2,4, ...} such that for any even k,

E[(log 28 ,)*] < C'tkynV/IFCIE - foralin > 1 and 6 €[00, 6o + L — 1].

Theorem 1 will follow from repeated application of Lemma 6.5 once we prove the follow-
ing:

PROPOSITION 6.6. For all 69 > 0 and L > 0, there exist constants Cy, = Cy(6p, L) > 0
fork e{2,4,...} such that for any even k,

E[(log Z,(z,t)k] < CenWIRHA/Ok for alln > 1 and 6 € [y, 6y + L.

PROOF. For convenience, again let A = log Zg,,, By = By(t), and R = Z§:1 rje.(t). By
Proposition 1.1, A = R — B. Thus, for even k,
(66) E[A*] < 2" (E[R"] + E[BY)).

Since R is a sum of i.i.d. random variables whose common distribution continuously depends
on 6, there exist constants Cy(6) > 0, all of which are continuous in 6, such that

E[(R)*] < CL(@)n*?  foralln > 1.
The other expectation in (66) satisfies
E[BE] = (k/2 — D% < (k2 — DA + nyr1(60)) % < Dr(6o)n*/?,

for all n > 1, where Dy (8g) > 0 are constants which are continuous in 6y. Plugging these two
inequalities into equation (66) and using the continuity of Cy(60) and Dy (6p) on (0, co) yields
the desired result. [
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PROOF OF THEOREM 1. Lete > 0, 6y € (0, 00), and p € (0, 00). Fix even integers k, M
such that p <k and

(;{‘46) e

By Jensen’s inequality, it suffices to show the bounds (6) and (7) hold with p replaced by
k. Now fix L > M and apply Proposition 6.6 followed by M consecutive applications of
Lemma 6.5 to obtain the bound (6). Finally, apply Corollary 6.2 to both sO+ and s, to obtain
the bound (7). [

APPENDIX: COMBINATORIAL FORMULA FOR CUMULANTS

Here we derive the formula (41) for the joint cumulants. This is classical and appears, for
example, on Wikipedia under Cumulants [5], but we could not locate a suitable proof to cite.
We will prove the following by induction. Denote

7= E[ez?:l E"X"],

1 n
E[]:= —E[eXi=1&Xi.],
[1=~ e ]
Note that for k <n
K (X1, ..., Xi) = 0g, -+ - 0, log Z g, =...=¢,=0.
We will show by induction that

(67) e O logZ= Y (|n|—1)!(—1)|”'—1]‘[E[]‘[xl}.

reP,...k) Ber “ieB

PROOF. Note that the result holds for k = 1. Indeed, in this case
0g, log Z = E[X1].

Assume the result for k < n — 1. We prove the result for k + 1. Differentiating (67), we obtain
for each w € P(1, ..., k) appearing in the sum (67)

e TTE[TT| = X o[ TT %] TT 2|1
Ber ‘“ieB Blen jeB’ B#B' ‘“ieB
For the derivative, we have

1 nooex.
3sk+1E[ [1 Xj] = Ogp EE[ez’—lg‘ 1 XJ}
jeB’ jeB’

:E[Xk+1 I1 Xj} —E[Xk+1]E[H X,].
jeB’ jeB’
Thus, we have

e | ] E[H Xl} => E[Xkﬂ I Xj} I E[H Xl}

Bew ieB Ben jeB’ B+#B’ ieB

- > E[Xk+1]E[H Xj] [ E[]‘[ X,}

B'en jeB’ B#B’ ieB

=> E[Xk+1 I1 Xj} I1 E[H Xl}

B'en JEB’ B+#B’ ieB

— I B [T E[]‘[ Xl}.

Bernm ieB

(68)
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The first term corresponds to adding a factor Xy to a single B block of the partition &
and the second term corresponds to adding a 1-term block {k + 1} to . Summing (68) over
w € P(,..., k), we obtain

DY (|n|—1)!(—1>'”'1nE[Hxi}

reP(l,...,k) Bern ieB
= Y (7=t ye E[Xk+1 I X]} I1 E[H Xi]
meP(,....k) B'em JjeB’ B#B’ ieB
— Y EEDTEX ] ] E[]‘[ X,-]
reP(l,...,k) Benm ieB
= > (RI-)=DFET E[]‘[ Xi].
neP(,....k+1) Bem ieB

To verify the final step, note that any partition of {1,...,k + 1} which contains {k + 1}
as a single element block induces a partition & of {1, ..., k} from the remaining blocks with
|7r| = || —1; otherwise, if {k + 1} does not appear as block in 77, the partition can be obtained
from some & € P(1,...,k) by adding k + 1 to one of the || blocks without changing the
number of blocks. [J
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