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Abstract. In this paper, we consider four integrable models of directed polymers for which the free energy is known to exhibit KPZ
fluctuations. A common framework for the analysis of these models was introduced in (ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018)
509-547).

We derive estimates for the central moments of the partition function, of any order, on the near-optimal scale N , using the
iterative method we applied to the semi-discrete polymer in (Noack and Sosoe (2020)). Among the innovations exploiting the integrable
structure, we develop formulas for correlations between functions of the free energy and the boundary weights that replace the Gaussian
integration by parts appearing in our previous paper (Noack and Sosoe (2020)).

1/3+€

Résumé. Dans cet article, nous considérons quatre modeles intégrables de polyméres dirigés pour lesquels on sait démontrer que
I’énergie libre a des fluctuations de type KPZ. Un cadre d’analyse commun pour ces modeles est présenté dans (ALEA Lat. Am. J.
Probab. Math. Stat. 15 (2018) 509-547).

Nous obtenons des estimées pour les moments centraux de la fonction de partition, d’ordre quelconque, a 1’échelle quasi-optimale

N s+e , al’aide d’une méthode itérative déja appliquée au polymere semi-discret dans (Noack and Sosoe (2020)). Parmi les nouveautés
qui tirent profit de la structur structure intégrable, nous développons des formules pour les corrélations entre des fonctions de 1’énergie
libre et les poids au bord. Ces formulent remplacent I’intégration par partie gaussienne qui apparait dans notre précédent travail (Noack
and Sosoe (2020)).
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1. Introduction

In this paper, we consider four models for 1 4 1 dimensional integrable polymers in random environment, and study
the higher moments of the centered free energy: the log-gamma polymer, introduced by Seppéldinen [14]; the strict-
weak polymer, which was simultaneously introduced and analyzed by Corwin—Seppildinen—Shen [10] and O’Connell—
Ortmann [12]; the beta random walk of Barraquand and Corwin [5]; and the inverse beta model introduced by Thiery and
Le Doussal [15].

The models in question are distinguished because they each possess algebraic structure that has enabled the verification
of several predictions regarding their fluctuations. These include upper and lower bounds for the variance of the free
energy, of order O(N?/3) (see [14] for log-gamma and [9] for the three other models) as well as asymptotic Tracy—
Widom distribution (see [6] for the log-gamma polymer, the original papers [5,10,12] for the strict-weak polymer and beta
random walk models, as well a formal argument for the inverse beta model in [15]). Results of this type are characteristic
of the KPZ universality class [8], and are expected to hold in a more general setting where the integrable structure is not
available, but proving this is out of reach using current methods.

We note that the techniques used to prove asymptotic Tracy—Widom distribution by relating the free energy to a
Fredholm determinant are markedly different from those that have been used to obtain variance bounds starting with the
work of Seppildinen [14]. The ideas in that work have their origins in earlier work of Seppildinen and co-authors on
fluctuations of one-dimensional interacting particle systems [1-4]. Despite their power, the Bethe ansatz methods used to
obtain the asymptotic distribution are not easily adapted to estimating the size of the central moments.
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Here, we build on our previous paper [11] on the O’Connell-Yor polymer, a semi-discrete 1 4 1 dimensional polymer
model introduced in [13], to obtain bounds of nearly optimal order for all the central moments of the free energy in the
stationary version of each of the four models mentioned above. Our main result, Theorem 1, states that for each k > 1, the
kth central moment of the free energy in a system of size O(N?) is bounded by O (N¥/3+€), where the implicit constant
depends on €.

The proof in [11] proceeded by deriving a pair of inequalities which appear related to the physicists’ KPZ scaling
relations and which enable an iterative proof of the bound for the order of fluctuations of the free energy by successive
improvements starting from the trivial O (N'/?) bound. A crucial idea was the repeated application of Gaussian integration
by parts to relate cross-terms involving the “boundary Brownian motion” component of the free energy and the free energy
itself to quenched cumulants of the first vertical jump of the polymers paths. This tool is not available in the discrete
models we consider here. Nevertheless, we develop a substitute for it by introducing a sequence of polynomials which
play a role analogous to that of Hermite polynomials for the O’Connell-Yor polymer, and allow us to derive formulas
for the cumulants of the partition function in terms of quenched cumulants of the time of the first jump. Here, the Mellin
transform framework introduced in [7] plays a central role. See Section 4.4.

1.1. The polymer model

To each edge e of the Zi lattice we assign a positive random weight. The superscripts 1 and 2 are used to denote horizontal
and vertical edge weights, respectively. For z € N2, let YZ1 and YZ2 denote the horizontal and vertical incoming edge
weights, see Figure 1. We assume that the collection of pairs {(Yzl, Y, z,z)}zeN2 is independent and identically distributed
with common distribution (Y, ¥2), but do not insist that Y. Zl is independent of Y, z2 {(Y, Zl , Yzz) }.enz are the bulk weights. For
x € N x {0}, let R}C denote the horizontal incoming edge weight, and for y € {0} x N, let R§ denote the vertical incoming
edge weight. We take the collections {R}C JxeNx {0y and {R?}ye{olxN to be independent and identically distributed, with
common distributions R' and R?. We refer to these as the horizontal and vertical boundary weights, respectively. We
further assume that the horizontal boundary weights, the vertical boundary weights, and the bulk weights are independent
of each other. This assignment of edge weights is illustrated in Figure 1. We call

w={R},R;. (Y. Y?):x eNx {0}, y € {0} x N,z e N?} 1)

the polymer environment. We use P and [E to denote the probability measure and corresponding expectation of the polymer
environment.

The weight of a path is given by the product of the weights along its edges. For (m,n) € Zﬁ_ \ {(0,0)} we define a
probability measure on all up-right paths from (0, 0) to (m, n). See Figure 2 for an example of an up-right path. Let T, ,

denote the collection of all such paths. We identify paths x, = (xq, X1, - . . , X+ ) either with their sequence of vertices or
with their sequence of edges (ey, ..., eém+n), Where e; = {x;_1, x;}, as convenient. Define the quenched polymer measure
on Iy,

l m-+n

Qm,n(xo) = 1_[ We; »
Zon |

i—1

Yl

RG Y?

1
Ri,O

Fig. 1. Assignment of edge weights.
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Fig. 2. An up-right path from (0, 0) to (5, 5).

where w, is the weight associated to the edge e and

m—+n

Zyp = Z Ha)ei

xe€Mpp i=1

is the associated partition function. At the origin, define Zg ¢ := 1. Taking the expectation [E of the quenched measure
with respect to the edge weights gives the annealed measure on I1,, ,,

Py n(xe) :ZE[Qm,n(xo)]- (2)

The annealed expectation will be denoted by E,, ,,.
We specify the edge weight distributions for the four stationary polymer models. The notation X ~ Ga(w, §) is used
to denote that a random variable is gamma(c, 8) distributed, i.e. has density

1

o a—1_—Bx
—F(oz)'B x* e

supported on (0, 0c0), where I'(x) = fooo x®"le=*dx is the gamma function. X ~ Be(¢, 8) is used to say that X is
beta(a, ) distributed, i.e. has density

['(a+B)
F(e)l(B)

supported on (0, 1). We then use X ~ Ga_l((x,,B) and X ~ Be_l(oc,,B) to denote that X! ~ Ga(w, B) and X'~
Be(«, B), respectively. We also use X ~ (Be~ N, B) — 1) to denote that X + 1 ~ Be Ya, B).

Each of the four models we consider is obtained by choosing the distribution of the boundary and bulk weights
according to one of the four following specifications:

x(x—l(l _ x)ﬂ—l ,

e [nverse-gamma (IG): This is also known as the log-gamma model. Assume 1 > 6 > 0, 8 > 0 and

R'~Ga'(u—-6,8, R*~Ga'@,p),

(r',¥?)=(X,X) where X ~Ga ' (1, B). ¥
e Gamma (G): This is also known as the strict-weak model. Assume 6, i, § > 0 and

R' ~Ga(u+6, ), R*>~Be ' (0, n),

(r',¥?) =(X,1) where X ~ Ga(u, B). @
e Beta (B): Assume 6, u, f > 0 and

R' ~Be(u +6, B), R>~Be '8, ), -

(Yl, Y2) =(X,1—X) where X ~Be(u, ).
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o Inverse-beta (IB): Assume u >0 >0, 8 > 0 and

R'~Be l(u—0,p), R*~(Be "0, +1—6)—1),
(6)
(¥ ¥*)=(X,X —1) where X ~Be ' (u, B).

Note that each of these four choices in fact generates a family of models by choosing different values of the parameters
i, 0, B. The name of each model refers to the distribution of the bulk weights. We call these models the four basic
beta-gamma models.

1.2. Main result

Having defined the models we will consider, we are now ready to state our main result. Given a path x, € I1,, ,, define
the exit points of the path from the horizontal and vertical axes by

1= max{i 1 (1,0) ex.} and 1 := max{j 1 (0, ) ex.}. @)

Theorem 1. Assume that the polymer environment has edge weight distributions R', R*, (Y',Y?) as in one of (3)
through (6), and let (m,n) = (my, n/\/)?\,":1 be a sequence such that

my — N Varllog R]| <y N*? and  |ny — N Var[log R']| <y N*/° ®)
for some fixed y > 0. Then for every € > 0 and p > 0, there exists a constant C = C (€, p) > 0 such that for any N € N,
E[[10g Zm1"] < CN37F€  and ©)
Enn[(t)?] < CN3P forboth j=1,2. (10)
Note that by [7, Theorem 1.2], we have
E[[og Zn 4I*] = ¢N3
in the regime considered in Theorem 1. By Jensen’s inequality this implies
Elllog Znal’| = ¢ N5,

so that the bound we obtain is indeed near-optimal. We have not quantified the dependence of the constants on € and p. In
particular, the estimates in the Theorem are obtained by an iterative process, where the number of iterations depends on €.
With our current method, the implicit constants grow without bounds as the number of iterations increases. It would be of
great interest to prove the Theorem with € = 0, but it is not clear to us whether this can be easily achieved by extending
our current methods. We leave these questions to further work.

We also obtain exact formulas for the cumulants of the free energy, see Corollary 4.8.

1.3. Outline of the paper

In Section 2, after establishing some basic notation, we recall the Mellin transform framework introduced in [7], where it
was noticed that the four basic beta-gamma models can be treated simultaneously.

In Section 3, we recall the “down-right” property shared by the four basic beta-gamma models. This is a consequence
of the stronger Burke property, and implies in particular that the free energy can be written as the sum of two i.i.d.
sums of order O(N) see (13). Understanding the fluctuations of the free energy becomes equivalent to understanding
the correlation between these two sums, or equivalently the correlation between one of them and the free energy. This is
manifested in the expansion for the cumulants of the free energy appearing in Lemma 3.1.

In Section 4, we develop a formula of “integration by parts” type which expresses certain correlations appearing in
the expansion for the cumulant in terms of derivatives of expectations of moments of the free energy with respect to the
parameter in the boundary weights. See Lemma 4.1. We use this to obtain formulas relating the the cumulants of the free
energy to expectations of productions of quenched cumulants of ¢, the first jump in the system. See Corollary 4.8.

In Section 5, we prove our main result. The key idea here is that the formulas obtained in Section 4 allow one to
get improved estimates (compared to the trivial O (N 1/2y pound) for the moments of the free energy given estimates for
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the annealed moments of 7. See Lemma 5.7. Conversely, an inequality due essentially to Seppéldinen [14] relates the
moments of 71 to moments of the centered free energy. Iterating through these two inequalities a finite number of times,
we can obtain bounds that are arbitrarily close to order N'!/3.

2. Preliminaries and notation
2.1. Notation

Welet N={1,2,...},Z+ =1{0, 1, ...}, while R denotes the real numbers.
Let [x] denote the greatest integer less than or equal to x. Let v and A denote maximum and minimum, respectively:

a Vv b =max{a, b},
a Ab=min{a, b}.

Given a real valued function f, let supp(f) = {x : f(x) # 0} denote the support of the function f (note that we do not
insist on taking the closure of this set).
Given a random variable X with finite expectation, we let

X =X —E[X].
The symbol ® is used to denote (independent) product distribution.

2.2. The Mellin transform framework

Here we introduce a framework, developed in [7], which allows us to treat the four basic beta-gamma models simultane-
ously.
Given a function f : (0, o0) — [0, 00), write M  for its Mellin transform

Mgy (a) = /Ooox"lf(x)dx

for any a € R such that the integral converges. For more information about the Mellin transform and its relation to other
classical integral transforms see [16], especially Sections 1.5, 1.29 and 7.7; note however that we use only elementary
properties of the transform in this work. Define

D(My) = interior({a eR:0<Mys(a) < oo})

Definition 2.1. Given a function f : (0, 00) — [0, 0o) such that D(M ;) is non-empty, we define a family of densities on
(0, 00) parametrized by a € D(M¢):

prax) =M@ 'x*" f(x). (11)
We write X ~ m r(a) to denote that the random variable X has density py,,.
Remark 2. If f: (0, 00) — [0, 0o) is such that D(M ) is non-empty, then My is C* throughout D(M ). Furthermore,
if X ~my(a), then
(1) log X has finite exponential moments. That is, since D(M r) is open, there exists some € > 0 such that

_Mf(a+e)+Mf(a—e) -

EfeeX] <E[X] +E[X ] My (a)
s

(2) Forall k e N,

ak

S M@ = My (a)E[(log X)F].

(3) The kth cumulant of log X, which we denote by « (log X) following the notation introduced in (16), equals w,{ (a),
where

7 3k+1
Yy (a) == WlogM‘f(a) forkeZy.
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Table 1
Density factors and distribution for the four basic beta-gamma
polymer models with parameters a and b

f) m ()
e bx Ga(a, b)

e b/x Ga~l(=a,b)

(1 =) o1 Be(a, b)

(Lt T Be~!(~a,b)
()P Be™!(—a,b+a)—1

Table 2
Functions and parameters to fit the four basic beta-gamma models into the Mellin framework

Model ) ) (a1, a3, a3)

G Bl o Blx © — 11 —6, —10) 6.
G e Bx (a-br=ta, (+6,-6, 1) 0 € (0, 00)
B (lfx)ﬂ_lﬁﬂ.{0<x<1} (1—%)M_lﬂ{x>l) (n+6,-6, 1 0 € (0, 00)
B a-hHe-ta, g (F) bt 0 —pn.—0,—) 6 € (0, )

2.3. The four basic beta-gamma models are Mellin-type

The random variables appearing in each of the four basic beta-gamma models have densities of the form (11), for various
choices of f, which we specify here. In Table 1, we assume b >0 and a € D(My).

To express the distribution of the polymer environment in each of the four models given in (3) through (6) within the
above framework, we let

(R', R*. X) ~m i (a) ®m p2(az) @ m p1(a3), (12)
where the functions f L f 2 and parameters a, j = 1,2, 3 are given in Table 2. Recall that in each of the models, (Y 1 Y2)
are given in terms of X. For Table 2 we assume u, 8 > 0.

When the polymer environment is as in (12) with parameters (a1, a2), we use P@142) E(@1,62) Var(@:92)  Coy@1-a2)

in place of P, E, Var, Cov respectively.

Remark 3. For each fixed value of the bulk parameter a3, we obtain a family of models with boundary parameters a;
and ay satisfying a; + az = as.

3. The down-right property

Write o1 = (1,0), a2 = (0, 1). For k = 1, 2 define ratios of partition functions

R =

. for all x such that x — oy € Zi.

X —Q

Note that these extend the definitions of R.lO and R& j since for example Z; o = ]_[f{=1 R,l’o. We say that m = {m }rez 1S

i
a down-right path in Z%_ if my € Z%_ and w41 — 7y € {a1, —ap} for each k € Z. To each edge along a down-right path we
associate the random variable

R)Tk if {mg_1, ¢} is horizontal,

Ny ) i= I

R,zrkfl if {7y _1, ) is vertical.

The following definition is a weaker form of the Burke property, see [14, Theorem 3.3].
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Definition 3.1. Say the polymer model has the down-right property if for all down-right paths &= = {7} }xcz, the random
variables

A) ={Am_ ) keZ)
are independent and each R}Tk and Rjok appearing in the collection are respectively distributed as R! and R2.
Proposition 3.1. Each of the four basic beta-gamma models, (3) through (6), possesses the down-right property.
See Proposition 2.3 of [7].
3.1. Consequences of the down-right property

The free energy has two useful expressions.
logZy,=W+N=S+FE (13)

where
n n m m
W, = Zlog R(z)’j, E,:= Zlog R,Zn)j, Ny = Zlog Rilgn, Sm = Zlog Rl-l’o. 14)
j=1 j=1 i=1 i=1

Notice that W, =log Zp , and S,, =log Z,, o. If the model possesses the down-right property (see Definition 3.1), then
Wu, En, Ni, Sy are each sums of i.i.d. random variables. The subscripts n and m on W,,, E,, Ny, S;, indicate the length
of the sums.

Recall that if the random variables X1, ..., X; have finite exponential moments, then their joint cumulant is defined
by

ok ey
kX1, ..., Xp) = mlogE[ezﬁ':léfo]

. (15)
§i=0

Alternatively, the joint camulant can be written as a combination of products of expectations of the underlying random
variables:

k(X1 X =) (In] = )= HE[HX,-] (16)

neP Bem i€B

where P ranges over partitions T of {1, ..., k} and |A| stands for the size of the set A. In the case where X1 =X, =--- =
Xy = X, the joint cumulant reduces to the k-th camulant of X which we denote by « (X). The identity (16) is classical
and indeed is often used as the definition of joint cumulants. For the reader’s convenience, we check its equivalence with
the definition (15) in Appendix A.

Lemma 3.1. Assume the polymer environment is such that |log R'|, |log R?|, |log Y|, and |1og Y?| all have finite expo-
nential moments. Let Ny, E,, Sy, and Wy, be as in (14), Then, for any positive integer k,

k—1

k »
1k (108 Zp ) = Kk (Ep) — (=D i (S) — Z (]> (=¥ k(10g Zm.ps .-, 108 Zimns S -+ Sm)  and (17)
= J times k—j times
k-1
= 1k _ k\ kg
(108 Zin) =kt (N) = =DcW) = 3, () (D08 Z - 108 Zny, W . W). (18)
/=t J times k—j times

Moreover, if the polymer model also possesses the down-right property, then
ki(Ep) =k (Wy) = nk(R')  and
ik (Nim) = ik (Sn) = mic (R?).
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Proof. By Lemma C.1, log Z,, », Ny, Sw, En, W, all have finite exponential moments, so their cumulants and joint
cumulants exist. By (13), E,, =log Z,, , — S,. Since the joint cumulant is multi-linear,

k

k .
ki (Ep) = Z (]) (_])k JK(lome,nv cee JOme,n, S s Sm)-

J=0

j times k—j times

The j = k term in the summand is ¢ (log Z,, ,) and the j = 0 term is (= DRk (S). Rearranging yields equation (17). To
obtain equation (18), apply the same argument with (N,,, W,,) in place of (E,, S,;,). For the last part of the Lemma use
the fact that kx (X +Y) =« (X) + k¢ (Y) if X and Y are independent. O

Remark 4. Each of the four basic beta-gamma models satisfy the moment conditions of Lemma 3.1.

4. Formulas for the central moments

In the next two sections, we give an exact formula for the terms appearing in the summands on the right-hand side of (17).
The same arguments can be used to obtain analogous estimates for (18), but as will be apparent in Section 5 the estimates
in (17) will be sufficient to obtain Theorem 1.

4.1. Integration by parts type formula

Referring to the notation in Section 2.2, fix an integer » > 1 and let f : (0, 00) — [0,00) fork =1, ...,r and a, ag, a; be
real numbers such that ag < a < aj and [ag, a1] C ﬂ,rczl D(M ). Consider a collection of independent random variables
{Xi},_; where Xy ~my (a) for all 1 <k <r, and let E? correspond to the expectation over these random variables.
Finally, define

-
T := Zlong.
k=1

We introduce a sequence {p, (¢, a; r)},>o of n-th degree polynomials in ¢ defined recursively by

polt,a;r)=1,
ad (19)
pu(t,a;r) = —p,, 1(t,a;r) + pp_1(t,a; r)(t—IE”[ ]) forn > 1.

Note that the dependence of p, (-, ;) on r is polynomial, a fact we use explicitly later in our argument (see Proposi-
tion 5.1).

The following lemma extends Lemma B.2 from [7].

Lemmad4.1. A:R" — R be a measurable function such that E*[A(X1, ..., X,)2] < oo forall a € [agy, ar]. Then

S [AX1,.... X)) ]| =E[AX1, ..., X)pu(T,a;1)]. (20)

Proof. The joint density of (log X1, log X, ..., log X;) is given by

aZk 1%k "

gx1, ..., xp) = fk x"
' l_[k lek(a) l_[
Thus the density of T =) _, log X is
at
ha(t) = AE) fa(e™) .. frle ™) dxr, . 2y @1

]_[lrczl My (a) Jrr-1

Therefore, the joint density of (log X1, log X, ..., log X,) given that T =t is given by

801, XI5y xe=) _ [T file™)
ha (1) Jrrt fr(e) fa(eX ™) L fr(er =ty dxy

) (22)
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which has no a-dependence. Recursion (19) and %ha (t) = hy(t)(t — E[T]) inductively imply
n

da”

hao(t) =ho@®)pn(t,a;r) forallneZ,. 23)

By (22) and (23),

n

E‘[A(X1,....Xp)] = EfAX1, ..., X)) | T =t]ha(1)dt

R

al’l
= | E*AX1,.... X)) | T =t|—hy()dt
/}; [AGK1 o, X0 | T =] a0

8’1
da” da”
=/ ENAX1, ..., Xp) | T =t]ha(t) pa(t,a; r)dt

R
:E”(A(Xl, L X pa (T, a; r)).

The interchanging of the n-th derivative and the integral will be justified by the bound:

n

0
——h,(t)|dt < o0. 24)
an

[ Bl )17 =] sup

a€lap,ai]

To obtain this bound first notice that recursion (19) implies that p, (¢, a) are degree n polynomials in ¢ with coefficients
that are smooth in a. Thus, by (23), there exist constants 0 < C,, < oo independent of ¢ such that

n

e <Cu(L+11))" sup ha(0). (25)

a€lag,a1]

sup
a€lagp,a1]

ha(t)

Once we show that there is a constant C depending only on ag and a; such that

sup  hy(t) < hgy(t) +Chy (t) foralls € R, (26)

a€lap,ai]

(25) will give the bound (24) since

./H;E[|A({Xk}2=1)| |7 = ] (14 111) "ha; (0 de = ES T A((X Yo | (1 +171)"]

L

<B4 [(A(Xe)i_,) P ES (1 +1T1) ™ ]2,

This is finite since E4[A({X k}2=1)2] < oo by assumption, and 7T is a sum of independent random variables with finite
exponential moments. All that is left to do is verify the bound (26). To accomplish this, notice that equation (21) implies

9 Jogha(t) =1 — BY[T]. 27)
da

Since E4[T] = > }_, wofk (a), a — E4[T] is an increasing function (recall that %1//({" (a) = 1//1fk (a) = Var[X¢] > 0).
Therefore, for all t < E“[T], the function a — h,(t) is non-increasing on [ag, a1] which gives

sup  hg(t) <hg (t) forallr <E®[T].

a€lag,ay]

On the other hand, if ¢ > E“[T], then
9
o log(ha(t) exp (a(E“'[T]— E®[T]))) =t —E*[T]1+ E“[T] —E®[T]> 0 (28)
a

for all a € [ag, a1]. Thus, for all r > E%[T],

a> hq(t)exp (a(E[T] — E[T]))
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is increasing on the interval [ag, a1]. Therefore

sup  ha(t) < Czhg () forallt > E™[T]

a€lap,ai]

where C = exp ((a; — ag)(E“[T] — E“[T])). Combining (27) and (28) gives the desired result. U

Lemma 4.2. Assume the polymer environment satisfies Ri] o~ my(a) for alli>1.Letk>2and 1 < j <k. Forr >1,

let
,
S, = Z Rl-l’o.
i=1
Then,
k(logZmpn,...,108Zmn, Sry....Sr) =xl0gZmpn, ..., 108 Zp n, Srv..., Sr)
—_—— ——
J times k—j times J times k—j times
= > (inl = =D T E[A0g Zu) BT proji.tgt (e @i )] + 19 (@) (29)
neP Ben
where ‘P ranges over partitions T of {1, ..., k} such that no block B € 7t is contained in {j + 1, ..., k}, and py (s, a) are

polynomials recursively defined by (19) in the case f; = f forall j.

Proof. Introduce the function
g(s,asr):= eas—rlogM_/(a)‘

Note that

%g(s, a;r)= (s —ryd (@) g(s, as 1),

SO

0 0
7 (g(s,a:r)pr—1(s.a;r)) =g(s,a; r) oo Pk-1(s,air) +g(s,a;r) p-i (s, a; M(s = rid @)
=g(s,a;r)pr(s,a;r).

Rearranging, this gives

1 0
pr(s.air) = ma—a(g(s, a;r)pi-1(s.a;r))
L e mii(srai)
=———(g(s,a;r)pi—i(s,a;r)).
g(s,a;r) dal & Pr=t

Letting [ = k, we have

ok .
Wg(s,a,r)

s,a;r)=
Pi( ) eG.ar)

By Taylor expansion around a for A sufficiently small, we have

X sk ak

g(S,a-F)»;r):kZOHM

g(s,a;r),
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which yields the generating function for the polynomials pi (s, a; r):

gls,a+xrr) 5o My(a) ’_ O Ak
goair) (Mf(a+k)) Zkﬂ’k““” (30)

Using this, we have a formula for joint cumulants, as follows. Recall

K(A,...,A, S, ....8) = L IOgE[e(Sl+~.+$j)Ae(Sj+1+~-+Sk)Sr]
—_—— " 3&---0& =0

j times k—j times

Inserting the generating function (30), we have

o1 tES, (Mf(a +&jir1+- ~-§k)>r i &1+ + 80 (S, a; r
My (a) s 1!

Taking expectations, then logarithms, we have

o0 ) ... I
logE[e(Ej+1+~»-+§k)Sr] — log]E|:e(El+-..+§j)A Z M[H(sﬁ a: r):|

!
P I
—rlogMy(a)+rlogMys(a+§jp1+ -+ &).

Setting A =log Z,,, , and taking derivates with respect to the &;’s, then evaluating them at zero gives (29).
The only part of the statement that still requires comment is the assertion that partitions P with a block contained in
{j+1,..., k} make a zero contribution. This is because

E[pn(Sr.a:r)] =
for n > 1, as follows from (20) with A = 1. U
4.2. Coupling of polymer environments
In order to compare polymer environments with different parameters, we use a coupling to express the boundary weights
as functions of i.i.d. uniform(0, 1) random variables.

Recall the notation from Section 2.2. Suppose f : (0, o0) — [0, 00) is a smooth function on its support, supp(f) is
open, and D (M 7) is non-empty. Define Ff: D(My) x (0,00) — [0, 1] by

Ff(a,x) =

1 o
a dy.
Mf(a)/o Yy f(y)dy

For fixeda € D(My), x — F/(a, x) is the cdf of a random variable with X ~ m ¢ (a). Note that Ff(a,)isa bijection

between supp(f) and (0, 1). For a € D(My), let Hf(a, -) be the inverse of Ff (a, -) defined on (0, 1). By the implicit
function theorem, H/ : D(M 1) % (0,1) — supp(f) is a smooth function in both of its variables satisfying

9 X X X
a—long(a,x)=Lf(a,Hf(a,x)), (31)
a
where

Lf(a X) =

~ f o ] W@ =ty o ay.

Another expression for L/ shows that it is a strictly positive function:

Lf(a, X)=

“f( ) Cov(log X, 1ix<x}) > 0, (32)
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because the right side of (32) is the negative of the correlation between an increasing and a decreasing function of X.
Since f is smooth, L/ is smooth as a function on D(M ) x supp(f). Note that if 7 is a uniform(0, 1) distributed random
variable, then H/ (a, ) ~ m g (a) for every a € D(M ). This gives us a useful coupling as follows.

Fix m,n € N and an environment w on the square with lower-left corner (0, 0) and upper-right corner (m, n). Assume
the random variables attached to the southern boundary Rl.l’0 all have m ¢ (a) distributions. Fix 1 <r <m and let {n;};_,
be i.i.d. uniform(0, 1) distributed random variables which are also independent of the original environment . Now create
a new environment @ by replacing Rl.l! o in the original environment along the southern boundary by

Rl o(b):=H’ (b, ;)

only fori =1, ...,r. When b = a the new environment is equal in distribution to the old one:

~d

w=w, b=a
Write

m-+n t(x)Ar m-+n
. % ~ 51
Zmn(b) := Z%,n = Z 1_[ W(x;—1,x) = Z 1_[ Ri,O l_[ W(x;—1,%)»
x.€lly , i=1 x.€llpy, i=1 i=t;(x)Ar+1

where #1(x.) :=max{i > 0:x; = (i, 0)}, i.e. the exit time from the southern boundary. By equation (31),

ab

) Rly=R!\L'(a, R} ). (33)
=a

Therefore

1 (x.)Ar
lome,n(b)zEfjw|: oS (a,RilyO)i|, (34)

b=a i=1

where E m.nLF (x.)] is defined to be the expectation of the function F of up-right paths x. under the quenched probability
measure

1 m+n 1 t(x)Ar m-+n
Qf;,n(x') = | | &‘)(xi—l,xi) = | | Ril,O(b) | | WO(xj_1,x;) (35)
Znn(b) Znn(b) .
i=1 i=1 i=t;(x)Ar+1

We will use E and P to denote annealed expectation and probability for the measure in (35).
By (33) and (34),

P ~ t(x)AF ~ ~ 11 (x)Ar ~
% b log Qﬁz,n ()C) = Z Lf(a’ Ril,O) - E;ﬂn,n|: Z Lf(a’ Ril,O):|' (36)
=a

i=1 i=1
4.3. Derivatives with respect to boundary parameters

We now use equation (36) to provide a recursion which will help determine % lp=a 108 Z,,, 1 (D).

Definition 4.1. Suppose G(a, x) : D(My) x supp(f) — Risa C! function. The action of the operator 9onGis given
by

3G (a, x) := %(a,x)—i—xbf(a,x)%(a,x). (37)
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Lemma 4.3. Let G(a,x) : D(My) x supp(f) —> Rbea ck function. Then the function 3G D(My) x supp(f) — Riis
C*=1 and satisfies the two equations:

0G(a, R y(@) = (G (b, Rio(®))),

8b b=a
9 11 (x)Ar ~ 11 (x)Ar ~ _
3|, Ef;n[ 2 G (b, R},o)] En|: 2}: 8G(Q’Ri1,0):| (38)
1= 1=

~ X.)AF t1(x)Ar _
+COV;{n, ( Z a Rlo(a) Z Lf(a,Ril’O(a))),

i=l
where Cov ., Stands for the covariance under E¢ -

Proof. By equation (33), we have

G G ~
ap|,_ O Rio®) =5 0(a Rig@) + 37| Rigy-(a. Riy).
=a
_ tH(x)Ar _ t(x)Ar ~ ~
E;;’n[ > G(a,Ril)O):|= > ( > G(a,Ril,O)) FAMER
i=1 x.€llypn i=1
Therefore,

9 . 1 (x.)Ar _ 3
a7 Eran,n|: Z G(a’ Ril,O)j| = Z %
b=a

ab
i=1 x.€llypn

_ Z (“%Nﬂc(a R! ))Q“ (x.) (39)
- da s 4,0 m,n\>"

1 (x.)Ar
e (( Z G(“v@,o)) Qﬁm(x.)>

i=1

x.€ypn \ i=I
t(x)Ar P
+ ) ( > G(a.R} )) a5, 0 L (x). (40)
x.€pmn \ i=1

By the first part of the lemma, the right-hand side of (39) equals E [Zt‘(x AT (0G)(a, ﬁil,o)]' Using equation (36),
(40) equals

t1(x)Ar 11 (x)Ar 11 (x)Ar ~
> ( > G(a»Ril,o)>< > L (a,R},o)—Efn,n[ > L (a,R},O)D ()

x.€py \ i=1 i=1 i=1

. tH(x)Ar _ t(x)Ar _
=E,“,,,n[ G(a,Rl{O)>< Z L' (a, R,{O)ﬂ
i=1 i=1

11 (x)Ar 1 (x)Ar
- Em[ G(a, R?,o)}Effz,n[ > La Rio)}

i=1 i=1

11 (x)Ar 1 (x)Ar

= COan’n < G(a, R,'l’())a Z Lf(a’ R1'1,0)> :
i=1 i=1 -
1 l
Letting &' (X1, ..., X)) denote the quenched joint cumulant of k random variables with respect to Em ,.» repeated

application of (38) and the chain rule give:
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Lemma 4.4. For g, ..., g8k € C®°(D(My) x supp(f)),
HnAr nAr HAr
5t (Lo B 3l R S )
[1/\r~ B tl/\r~ . l]Ar~ .
= Z K (Z 3% g (a, Ril’o), Z 882g2(a, Rilyo), e, Z a‘skgk(a, Rl-l’o))

S14-+8k=1 i=1 i=1 i=1
8;€{0,1}

tAr HAr HAr nAr i
+ ki g (Z gi(a, R}p), Z g(a, Rly), ... Z gk(a, Rly), Z L/ (a, Ril,0)>'
i=1 i=1 i=1 i=1

Proof. Write X;(a) := Z” i gi(a, Rl ol@) for I =1, ..., k. We will perturb the parameter in the environment and the
parameters in the arguments of the cumulant separately. To this end, define

F(a,h) =& (X1(a), X2(a), ..., Xk (@)).

Using equation (33) and multi-linearity of the joint cumulant gives

3 . . By
EF(a,h): Z &30 X1 (a), 32 Xa(a), ..., 3% Xk (a)). (41)

S1++8=1
§i>0

Now define Y (h) := 3"i'""\ L/ (h, H/ (h, 1;)). Then

. [ezlkzl &X; (a)] — E’l;m [ele &X; (a)m]

where the centering is respect to Ef:ln Thus

D pamy = Lrog B[ zfls,xm]‘
o 951 9y Oh §1="-=§=0
= # lOg Eh [eZ;;] Slxl(ll)-i‘&qum
m,n
081 ... 08kt bti—ts1—0

1 Ar HAr HAr
:Iz]]:+] (Zgl( Zgz ng a, R Y(h)). (42)
i=1
Combining (41) and (42) gives

O p o _(OF . OF
£ (ava)_<£(av )+E(av ))

h=a

yielding the desired result. |
Equation (34) and a repeated application of the previous lemma now give

Corollary 4.5. Let k > 1. There are non-negative constants C,, i indexed by 1 < j <k and j-tuples (= Ly,....45)
with £; > 0 and leisj £; =k — j such that

k

a k HAr HAr
S 1ogzm,,,(b)=§ E:Ckﬂx <§ 9L (a. R} ) § 3% LY (a, R} ) )
b=a i—1 7
J=1 ¢
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Here 3" is the operator defined in (37), iterated ¢ times. The constants satisfy

k
ZZCM’Z <kl
j=1 i

Note that Cy i (0,...,0) = 1, so that the the j = k-th term in the sum is the k-th quenched cumulant of Z:‘:/\]r L' (a, Iél.l,o).

Proof. For k =1, we have

ab

b=a

HAr
log Zy,n(b) = kY (Z L' (a, Rll’0)>. (43)
= i=1

This has the required form
1 AF I AF
i (Z 3L (a.Rp)..... Y YL/ (a, Ri1’0)> (44)
i=1 i=1

with j =1 and (= (0). Using Lemma 4.4, differentiating any term of the form (44) produces j + 1 terms of the same
form where one of the ¢; or j are increased by one. Thus, differentiating (43) k — 1 times, we obtain a sum of at most k!
terms, all of the form (44). O

4.4. Application of integration by parts

We now use the results obtained thus far to provide exact expressions for the cumulants of the free energy log Z,, ,, (see
Corollary 4.8). ~
We now impose the following assumption on f to have control of the moments of 3L/

Hypothesis 1. Assume f has non-empty, open support supp( f), non-empty D(M ), f is smooth on its support, and for
every k € Z, there exist Cy, € C(D(My)), continuous functions on D(M r), such that

|05L7 (a, x)| < Ck(@) (1 + [logx[*T")  for all (a,x) € D(Mf) x supp(f).
The following theorem says that all functions appearing in the four models (3), (4), (5), (6) satisfy this hypothesis.

Theorem 5. Let f be one of the functions appearing in Table 1, meaning f corresponds to a gamma, inverse-gamma,
beta, inverse-beta, or beta-prime distribution. Then f satisfies Hypothesis 1.

The proof of Theorem 3 is relegated to the Appendix.

Lemma 4.6. Assume f satisfies Hypothesis 1. Let [ag, a1] C D(M ), n ~ uniform(0, 1), and k € N. Then the random
variable

sup |5ka(a, Hf(a, r;))|

a€lap,ay]

has finite moments of all orders.

Proof. Put Y :=sup,ci4).a,] |A8Jka(a, H/ (a, n))|. By Hypothesis 1, there exists a constant C > 0 such that

k+1

) (45)

k+1
).

27 (a. 5 (@.)| < C(1+ [log B @, m)|

k+1
< C(1+[log H' (ag, m)|""" + [log H (a1, n)| (46)
The last inequality follows from the monotonicity a — H Fa, x) (by equations (32) and (31)) and holds for all a €
[ao, a1]. Since H/ (aj,n) ~ms(a;) for j =0, 1, and ap, a; € D(M ), both log H/ (ap, n) and log H/ (a1, n) have finite

exponential moments. Thus Y has finite moments of all orders. (]
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Now write P, E for the probability measure and expectation corresponding to the environment @, as defined in Sec-
tion 4.2, and P, E for probability measure and expectation corresponding to the environment w. Write

Go(r) :=log Zy.n(a) — [lomen(a)] and
k
oy (r) :=

W lOg Zm’n(b) for k e N.
b=a

Similarly, define

oo(r) :=log Z,,., — Ellog Z,, »1,

k HAr tAr
o=y > Ck’jgz,KjQ<Zae‘Lfa Rl Za%fa R! > keN, SO

j=1L1++Lj=k—j i=1
;>0
where KkQ (X1, ..., Xx) denotes the joint-cumulant of the random variable X1, ..., X3 with respect to the quenched mea-

sure Oy and C; ;0 are the constants appearing in Corollary 4.5. By Corollary 4.5, ok(r) = of (r). Recall that our
environment @ has only changed the southern boundary random variables between the origin and the point (r,0), so
log Z,, ,,(b) only depends on a through Rl,lyo, r<i<m.

Lemma 4.7. If f satisfies Hypothesis 1 and S, =Y ;_, log Ril,o’ then for any j, k > 0,

A
Cttlj=k

£;>0

E[(og Zn) pr(Sr air)] = ) []‘[ o, (r)} (48)

Proof. Write g(a) := [ [log Z,, ,]. Then the left-hand side of equation (48) is equal to

E[(log Zn» — 8®)) pi(Sr, a; 1)][,_,-

Fix b € D(My) and let F be the sigma-algebra generated by the random variables R1 01 er’o. Then there exists a
measurable function function A : R” — R such that A(R1 01 r,O) =E[(logZy n — g(b))j | F] almost surely. By
Lemma A.1 from [7], A € L>(P). Since S, € F, Lemma 4.1 gives

E[(log Zm,» — g(b)) Pe(Sr a; )| =E*[A(R] g, ..., R.o) pk(Sr.a;r)] (49)
ak a 1 1
= a_E [A(Ri g+ Ry p)]
ok ‘
= 5w El(log Zun.n — g®)’]. (50)

where 4 emphasizes that we are only taking expectations over {Rilﬁo}le. Now fix ag and a; such that a € [ag, a;] C
D(My). Using Corollary 4.5, Lemma 4.6, and t; < m, we see that

] <o

k

k
—(10g Zyy n(a) — g(b))

IE[ sup
a€lap,ay]
Thus

k

_ ¥ — s =5
(50) = aak]E[(lome,n(a) g®)’]=E [3 3

Koo b
= Z E71|Z]V]E l_laaei (logzm,n(a)_g(b)) .

Z|+~~+€j=k i=1
;=0

(108 Zy n(a) — (b))’ ]
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Therefore

Ko s
(50)[p=a = Z '—K’E l_[Ug[(r)
;!

1!
L+ +lj=k 1 Li=1
5;20

k! MJ .
Ze +'~Z+:€~—k WE ilj!af;(") .
l Z;ZOJ L ] D

Corollary 4.8. When r = m, and k is even,

k—1
k .
ki (log Zimn) = ki(En) — k1 (Spm) — Z (1) (_l)jk(log Zinns--es log Zins Sms -5 Sm) and

j=1 J times k—j times

= n«y (log R?) — mxy (log R")
k—1
+ Y (inl = Hu=pi " (;‘) (=17 [ [ E[A0gZmn) " pi; 5 (S @z m)],
neP j=1 Bemn

whereajp =|BN{l,...,j},bjp=I|BN{j+1,...,k}| =|B| —a; . Moreover,

L
L+ +Lj=k 1

;>0

S k! ]
B[ (0g Zn)! pi(Smasm)] = Y ,—Z,E[]"[ o, (n)}.
) J* Li=1

Note that in the case k = 2, the formula in the previous corollary coincides with the variance representation in Sep-
pédldinen [14, Theorem 3.7].

5. Estimates for the central moments

Lemma 5.1. Ler 0 <r and put S, =Y ;_, g(a, Ri o) where g(a, R; ) has finite moments of all orders. Recall the no-
tation (2) for the annealed expectation with respect to the polymer environment. Then, for all k € 2N there exist finite
constants Cy = Ci(a) > 0 which are locally bounded in a, such that

Emn[ (S = Suar)*] < Ch(Emn[(th —t1 AP +1)  forall (m,n) e N

Here the centering is with respect to the annealed measure Ey, .

Proof.
Enn[ Sy = Siiar)] = Emn [Z L=y (St — Sw)k] (51)
I>r
+ (=D Pyn(tt <) Emnl Sty — Syarlt. (52)

We now treat (51) and (52) separately.

(51)= E[Z(Sz = Siar) Qmon(t1 = l)]

[>r

< E[Z(Sz - SzAr)kﬂ{Sl_%>1_,}}

[>r

+ E[Z(z — ) Qua(ti = z)]

I>r
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oo
= E[Z(E)k]lgp”} by reindexing
I=1
+ Emu[(t1 —t1 APYF].

The last inequality follows from stationarity. Since S is an i.i.d. sum of mean zero random variables which have finite
moments of all orders,

E[(5)*1 5] < B[] B(1Si] > 1)?

5, 4k
<Ck12E[(l> ] <7k

which is summable over /.
For equation (52), we repeat the proof in [14, Lemma 4.2]:

131
EnmnlSi, — Suarl = Emn[(t1 —t1 AT)|E[g(a, Rio)] + ]E[ Z gla, Ri,O):|

i=t+1

=CEnn[(ti =t AP)]+ D E[Qualti =k)S]
k=1

m
=C(Ena[(ti —ti AD]+ 1)+ ) Ellg_S]
k=1

< C(Emalti =1 AT]+1). (53)
Taking the k-th powers and using Jensen’s inequality completes the proof. ]

Given a random variable X and p € [1, 00), we write

'w\~

XI5 :=E[IXI7]7,

1
”X”PvEm.n = Emvn[|X|p] g

for the p-th norm with respect to the regular expectation [E and the annealed expectation E,, ,. When m, n is understood
we write E = E,;; ;.

Lemma 5.2. For every even integer k > 2 there exists a constant Cy such that whenever {X i}f.‘: | are random variables
with finite annealed moments, then

k

||KkQ(X1, Xk)”pE < Ck l_[ X ll pk £
i=1

where the centering on the right-hand side is with respect to the annealed measure E.

Proof. E,, ,[X;] are constants and therefore

K]{Q(X]’ ""Xk):KICQ(X_l""’X_k)’
‘EQ[I_“Y‘[H <l_[EQ IX; |P|5’| l_[ |X |Pk E
ieB ieB eB

Using Holder’s generalized inequality again,

[]‘[EQ X 17*] } lf[E[EQ [1X:17])*.

Taking the p-th root and plugging this into (16) yields the desired result with C = (k — 112k, U
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The following allows us to control moments of oy (r) in terms of annealed moments of the exit time #;.

Lemma 5.3. For any k € 2N, p € [1, 00), there exist positive constants C(k, p) such that the following two conditions
hold for all r, M € N:

e, 5= k(14 i A7, ). 54

M
Joxm) — ok )], = Clk, (1 + @), ) IRE (55)

Proof. For ¢, m € N define

m
Xe(m):=) 3L’ (a. R},).

i=1

Taking L, norms of (47), gives

k
”“k(r)”p,E = Z Z Ck,j,/Z“’(jQ(Xll(tl AT), o Xey (i AT)) ||p,E’ (56)
j=141+Lj=k—]j
£;>0

and

o (m) — ox(r) ||,,E

k
=D > Gl (X, X D) = kP (X (i AT, X AD)] g 57
J=le+tj=k—j
;>0

Lemma 5.2, Lemma 5.1, equation (56), and Jensen’s inequality give (54). By (57) and a telescoping argument, to obtain
(55) it suffices to bound ||/<]Q(Y1, ., Yl p,E where

Xi(ti AT) forl1 <i <y,
Yi=1X,(t1)) — Xs(ty Ar) fori=s,
Xi(t1) fors <i<j
and s € {1,..., j} is fixed. By Lemma 5.1 and Jensen’s inequality, for i # s,
1Yillpje < Y ill pi,E < Capi(1+ 11l pr.E)- (58)

By Jensen’s inequality, the Cauchy—Schwarz inequality, Lemma 5.1, and Markov’s inequality,

||7s||pj,E = ||7s||pj,IE = ”Xs(tl) — X5t AT) ”pk,]E

< [ Xs @) = Xs @ AN Loy | g e + E[[ X5 (D) = Xo (1 AP L1501

< || X5 @) — X, (8 /\r)]l{t1>r}||pk’]E +E[|Xs (1) — X5ty AP)|Liy 0]
+ |E[Xs(tl) = Xs(rr A r)]|Pm,n(tl >7r)

< 2| Xs(t0) = Xs (AT | g 15 2k, + [E[ X (10) = X (01 AT)]| P (11 > 1)

= C2ka(1 + ”(t1 —h /\r)”zpk’E)Pm,n(tl > ")2’+L

)M |2 pk.

< Copi(1+ [t =11 /\r)HZpk,E) 7]

r

In the third to last inequality we again used a slight modification of [14, Lemma 4.2] as in (53). Another application of
Jensen’s inequality along with (58) gives (55). (|
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For the following lemma, recall the notation P@1.42) and E@1-92) defined in Section 2.3.
Lemma 5.4. Assume the polymer environment is as in (12) and the sequence (m,n) = (my, n N)j’vo: | satisfies
f2 f] 2
lm — Ny (a)| V|n— Ny (a))| <yN3

where y is some positive constant. Then there exist finite positive constants C1, C, C3, 8, 81, b (uniformly bounded in
(a1, a2) such that for all N € N the following two bounds hold simultaneously for j =1, 2: for all C; N3 <u<$4N,

2 Nk - .
P[0, (1 2 1) = e | < C2<7(E(a"a2)[(log Zin )]+ E@ D23 (log Zm,n>k])>
u
where ai(\) :=a; + A, ax(A) =ay — A, A1 = bwu, and Ay = —bﬁ", while foru > 8N,

P[0, (15 = u) = e 1] <2e7C.

Proof. Follow the proof of Proposition 4.3 in [7] verbatim up to the displayed inequality

2
4.8)in [7] < P[log Zmn(a1(hj), a2(nj)) —10g Zy n(ay, az) > C’”%:I,

where (4.8) refers to the corresponding equation in [7].
Now rather than bounding by the second moment, bound by the k-th moment to get

N \F-
4.8)in[7] < (m) E[(10g Zu (a1 (1)), a2(0))) — 108 Zyn (a1, a2))"]

k
< C:;Z (E(al,az)[(m)k]+E(al(lj),az(lj))[(mf]).

The proof of the second part is just as in Proposition 4.3 of [7]. (]

Corollary 5.5. Let k > 2. Suppose there exist 8, €y > 0 such that [a) — €o, a1 + €] X [az — €y, a2 + €] C D(My,) x
D(My,) and the following holds for every N € N and every A € [—€p, €]:

E@®-@0)[(og Z,, ~ Y] < C N (Dk+8k (59)

where a1 (\) =aj — A, and ay(\) = ap + A. Then, for all € > 0 there exists a positive constant C' = C'(¢, k, a1, a) such
that the following bound holds for every N € N and every % € [-3, 2]

4
E@MaW[)K] < ' NOKRYE forboth j =1,2.
Here E“-%) denotes the annealed expectations with respect to the measure on paths in the environment (12).

Proof. We apply Lemma 5.4 and use the same notation as in that lemma for constants. Fix Ag € [_Teo, %0] and put
(ai,az) = (a; (o), az(rg)) € D(Mfl) X D(Mfz). Note that a; + a» = a; + a» = a3 (see (12)). So by Lemma 5.4 and
(59) there exist positive constants No = No(eg) € N, C1 = C1(€g), 6 = §(€g) such that for all N > Ny,

SN
E@®[)*] < (c1N3)* + (2k)(eN)€f

, uk=1=€ plaa) ¢ > yydu 4 C'(8, 81, C3, No)
C|AN3

2\2k ok [ 1
< (CIN3)™ + 2K)(BN) CCoN 3+ / ,u " du
C|N3

< C(e, k, eg) N k+ok+e), O
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Lemma 5.6. Assume the polymer environment is distributed as in (12) and the sequence (m,n) = (my,n N)j’v":l satisfies

m — Ny @)| v |n— Ny @)| < yN3

where y is some positive constant. Further, suppose there exist positive constants 8, €, {Ck},fi | such that [ay — €, a1 +
€o] X [ar — €9, a2 + €p] C D(Mf1) X D(Mfz) and the following hold for every k, N € N and every A € [—¢€y, €0]:

B W-@20)[ (fog Z, K] < CuNGH, (60)

Then for all € > 0, M > 0, there exist positive constants {Cj; = Cj(ai, az, €, 8, M)}?Ql:1 (locally bounded in a1, az)
such that for all N € N we have the following:

|E[(og Zn.n)! pi(Sm,ar; m)] —E[(og Zn)! pi(Siz). ar; 1)) ]| < C;uN~M,
where S, ="' log R}, and T = NGH++O,

Proof. By (48), forall0 <r <m,

E[(og Zna) pe(Sroatin] = Y
Uittt =k
;>0

" J
L [[on®
i=1

where og(r) =log Z, ,,. It will therefore suffice to compare oy, (m) with oy, (). Specifically, for fixed £1, ..., £;, such
that }°7/_, ¢; = k, we wish to estimate

CJ J
E|[[ow ) —][Tou (r)}.
Li=1 i=1

By a telescoping argument it suffices to bound

E|og,m) [Jowm [] G(F)} - E[% o) [Toam ] U(r)}

iel iel iel ielh

wherea € {1,2, ..., j}issuchthat ¢, #£0, I ={1,...,a— 1}, Lh={a+1,...,j},and Z{Zl {; = k. By the generalized
Holder inequality this is bounded by

loe,(m) = o0, ) [ Tloe )y, [ Tlow Ol 50 (61)

iel iely

Let Ip={1 <i <j:¢;=0}. By Lemma 5.3, for any r, M € N,

mv - :
o) Ot g Zo ) TT (0126 = D)1+ [

i¢ly

(61) < C (e, 2)(1+ | ()" (62)

2(,>1),E)~

Using the assumption (60), by Corollary 5.5, for any € > 0 there exists a constant C (¢, p) > 1 (uniformly bounded in
(ai, ap) such that

108 Zmallp < C(p, NG and
og Zy nll p. P
2,8 €
J@)f], p < CE pNGTFDEE
This implies the existence of positive constants C’ = C’(k, j, M) such that for all M € N and all N € N,

(62) < C'NG+Dtat] CNGEDMAg —M N GADI] 1—[ NG+ Db+
i¢ly
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Choosing
r=lt]>N3tate _q,
we obtain the bound
C'NG+HOG=D+G+k+2e-Me

Now fix Mo = My(e, 8, j, k) large enough such that such that
! S)(j—1 248 k+2e — Mpe <—K
§+ G-+ §+§ +2e — Mpe < —K. O
Before proceeding to Lemma 5.7, we note the following property of the polynomials p, (T, a; r) introduced in (19):

Proposition 5.1. For each n,

pultar) =3 i@t =ryo@)r’,

j=0
where cj(a) are independent of r and 0 < aj, b;j < n are integers with
4

n
Yby=1 (63)

2
In particular, if T =Y ;_, log X where Xy ~ m ¢(a), then we have for integers b, k > 0
E[|py(T, a; )[*] < Cpar®®’2, (64)

Proof. The result is clearly true for po(T, a; r). Next, we note that if a;, b; satisfy (63), then

0 a; b aj b
52 (1= 9@+ (1= ro@) - (1 = ripo ()

=—a;y1(a)(r — rlﬁ()(a))a"'flrb-’#rl + (1 - rwo(a))“f“rb./,

Noting that
aj—1 aj+1 n—+1
Db l=— b=
the claim follows by induction from the definition (19). O

Lemma 5.7. With the same assumptions as in Lemma 5.6, for all k € N there exist positive constants Cy = Ci(ay, az)
(locally bounded) such that for all even k > 2.

E[(0g Zmn)*] < CANG+DX forall N €N. (65)

Proof. The proof is by induction on k. For k = 2, (65) holds with § = 0. Assuming the estimate for even exponents less
than k, we use the first expression in Corollary 4.8 to express the cumulant ki (log Z,, ,,) as a sum of terms of the form

l_[ E[(108 Zin.n))""" py; 5 (Sm.ar: m)], (66)
Bem
where Tt is a partition of {1, ..., k} into |%t| blocks B, and a; g +bj p = |B]|.

Using equation (48) and Lemma 5.6 with K > 2k, we have, for t = n?/313/2+¢,

[ [ E[(0g Zn.n)*% pi; s (Sm» ar; m)]

Bemn

= l_[ E[(108 Zm.n)""® p; 5 (Siey- a1: L)) ] + O(n*k).

Bemn
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Taking absolute values and applying Holder’s inequality,

|E[(10g Zm,n)aj’B Pbj g (S[rj , A, I_TJ)] |
biB

. 4j.B ’
< E[(@0g Zn )] E[|po; 5 (Sieysars 1r))[F] 7

a;

N Cn((l/3)+5/4+€/2)bj.8E[(m)k]'/T'B’

where a’TB + % = 1. The last inequality follows from equation (64) in Proposition 5.1. Taking the product over B € T,

we have, up to a constant factor, the bound:

————
n((l/3)+8/4+€/2)bj]E[(10gZm,n)k] % , (67)

where

aj = Zaj,B and bj = ij,g,
B B

$0 2L + 2L =1.Note thatfor 1 < j <k —1,wehavea; <k — 1. ing Young’s inequality xy < —x” + = y7 to ,
4 4% — 1. Note that for 1 k— 1, we have a; <k — 1. Applying Young’s inequality xy < 1x? + 134 0 (67)
we find that for n > 0, any term of the form (66) is bounded by

NE[(0g Zun)*] + Cpn V/DTI/FEIDE L 0 (n=F).

Combining this with Corollary 4.8, we have

ik (10g Zyn,n) = COME[(0g Zynn) ] + Ck)C (n VIHHH/DE 4 0 (nF). (68)
Writing

ki (log Zn) = E[(log Zm,n)k] + Z Co 1_[ E[(log Zm,n)ai]a (69)

la|=k  i=1
0<a; <k

where the sum is over multi-indices & = (a1, ..., ax), )_; & = k. If some ; = k — 1, then the product must equal zero.
Therefore, by the induction assumption, all terms in the sum on the right of (69) are of order n((1/3+8/3* Choosing 7
sufficiently small in (68) and absorbing € /2 into §/4, we obtain the result. (]

5.1. Finishing the argument
Combining Corollary 5.5 and Lemma 5.7 we obtain the following:
Lemma 5.8. Assume the polymer environment is distributed as in (12) and the sequence (m,n) = (my,ny)%_, satisfies
r? ! 2
Im =Ny (@)|V|n—Nyj (a1)| <yN3

where y is some positive constant. Further, suppose there exist positive constants 8, €y, C (k) for k € {2,4, ...} such that
a1 — €9, a1 + €o] x [ap — €9, ax + €p] C D(Mfl) X D(Mfz) and the following hold for any even k and any A € [—€p, €0]:

E@0-@0)[ (fog Z,, "] < CNGHOk,
Then there exist constants C' (k) > 0 for k € {2,4, ...} such that for any even k and any » € [-5, F]:

E(al(l),uz(l))[(m)k] < C/(k)N(%J"%)k_

Theorem 1 will follow from repeated application of Lemma 5.8 once we prove the following:
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Proposition 5.2. Assume the polymer environment is distributed as in (12) and the sequence (m,n) = (my,n N);’VO:l
satisfies

m — Ny (@)| v |n = Nyl @] <y N3 (70)

where y is some positive constant. Then there exists positive constants €y and C(k) for k € {2,4, ...} such that [a] —
€0, a1 +€o] X [ar —€p,ar +€p] C D(Mfl) X D(Mfz) and the following hold for any even k and any X\ € [—¢q, €9]:

E@ 0-@0)[ (Tog Z,, )*] < CUNGFek, (71)

Proof. Since (aj,ap) € D(Mfl) X D(Mfz), there exists a positive constant €g such that [a; — €9, a1 + €9] X [a2 —

€0, a2 + €0l C D(M 1) x D(M z2). With notation as in Section 3.1, if we define A :=log Z, , then A = Sm + E,,. Thus,
for even k, ‘ ‘

E[A*] < 271 (E[(S)*] + E[(E*]). (72)

By Proposition 3.1, all four models described by (12) have the down-right property. So by the discussion in Section 3.1,
Sn and E, are both sums of i.i.d. random variables whose common distributions continuously depends on a; and a;
respectively. Moreover, by Remark 2, all random inside of the summations have finite exponential moments. Therefore,
for every k € {2, 4, ...} there exists a positive constant Cy = Ci (a1, a2), which is continuous in (ay, az), such that

E[(g)k] < Ckmk/2 forallm > 1
and
E[(E_,,)k] < Cn*’? foralln > 1.
Using equations (72) and (70) now yields the desired result. ([l

Proof of Theorem 1. The four basic beta-gamma models (3)—(6) can all be described by equation (12). So let € > 0 and
(ar,a2) € D(My1) x D(M p2). Fix even integers k, M such that p <k and

By Jensen’s inequality, it suffices to show the bounds (9) and (10) hold with p replaced by k. Now apply Proposition 5.2
followed by M consecutive applications of Lemma 5.8 to obtain the bound (9). Finally, apply Corollary 5.5 to both #; and
1> to obtain the bound (10). O

Appendix A: Combinatorial formula for camulants
Here we derive the formula (16) for the joint cumulants. This identity is classical and appears on Wikipedia under Cumu-

lants [17], but we could not locate a suitable proof to cite.
We will prove the following by induction. Denote

VA ::E[ezr;lg[x"],
1 n
El]:= —R[eXi=1&Xi ],
[1:=—E[e ]
Note that for k <n
Kk (X1, ..o, Xi) = Oy -+ - 0g log Zlgy=..—g,—0-

We will show by induction that

o idoez= 3 (-0 TTE[[Tx) (73)

neP(l,....k) Bem ieB
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Proof. Note that the result holds for k = 1. Indeed, this case
0g log Z = E[X1].

Assume the result for k < n — 1. We prove the result for k + 1. Differentiating (73), we obtain for each m € P(1,...,k)
appearing in the sum (73):

O [ 1 E|:1_[ X,-] =Y askHE[]_[ Xj} I E[HX,}.
Bemn ieB B'ern jeB’ B+#B’ i€B
For the derivative, we have

1 n X
o E|:1_[ Xj:| = gy §E|:e2t=l §iX; 1_[ Xj:|

jeB’ jeB’
=E[Xk+1 ]_[ Xj] —E[Xk+1]E|:l_[ Xj}.
jeB’ jeB’

Thus, we have

Oey. HE[HX’]Z ZE[Xk-H 1_[ XJ} H E[HX,]

Bemn ieB B'en jeB’ B#B’ ieB
-> E[Xk+1]E[l_[ Xj] I E[l—[ X,}
B'en JjEB' B#B’ ieB
=Y E|:Xk+1 I x,} [ E[]_[x,]
B'en JjeB’ B#B’ ieB
— I EXen] | | E[]‘[ X} (74)
Ben ieB

The first term corresponds to adding a factor Xy to a single B block of the partition 1 and the second term corresponds
to adding a 1-term block {k 4+ 1} to . Summing (74) over &t € P(1, ..., k), we obtain

Y (IM—I)!(—])'”“HE[HXI}

neP,....k) Ben i€EB
= > (m—=1=pmE-tye E[Xk+1 I1 X(i] I1 E[l_[ Xl}
neP(l,....k) B'en JEB' B#B’ ieB
- Y m(=DMEXeq] HE[]‘[ X,}
neP(,....k) Bem ieB
= > (’R-1)=nH HE[I_[X,]
neP(1,...k+1) Bem ieB

To verify the final step, note that any partition of {1, ..., k 4+ 1} which contains {k + 1} as a single element block induces

a partition 7w of {1, ..., k} from the remaining blocks with |rt| = |%t| — 1; otherwise, if {k 4 1} does not appear as block in
T, the partition can be obtained from some € P(1, ..., k) by adding k + 1 to one of the || blocks without changing the
number of blocks. O

Appendix B: Proof of Theorem 5

The next lemma says that it suffices to verify Hypothesis 1 for f(x) = e~ bx, fx)=(1- x)b_ljl{o<x<1}, and f(x) =
(lxﬂ)b where b > 0.
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For ACRwrite —A={—a:acAyand A~ ={a~' :a € A} assuming that 0 ¢ A.

Lemma B.1. If the function f satisfies Hypothesis 1, then so does the function g(x) := f()]?) for x € (0, 00), with the
same constants Cj(a).

Proof. Recall the notation in Sections 2.2 and 4.2. Clearly supp(g) = supp(f)~! and D(M ) =—D(M;). As in the
proof of [7, Lemma A.1], one can verify that:

Fé(a,x)=1—F' (—a, %) for (a, x) € D(Mj) x supp(g),
LéGa,x)=L" <—a, 1) for (a, x) € D(My) x supp(g),
X

Hé(a, p) = for (a, p) € D(M,) x (0, 1). (75)

Hf(_a’ 1 - P)
Combining the last two equalities gives
L&(a, H®(a, p)) = LY (—=a, HY (=a, 1 — p)) for (a, p) € D(M,) x (0, 1). (76)

Recall also the definition of the derivative 3 in (37). We write 9 r and 5g to denote the dependence on the underlying
function. Recall that

~ ok
8§Lg(a, Hé(a, p)) = WLg(a, Hé(a, p)) for all (a, p) € D(My) x supp(g).
Applying % to equation (76) gives
ok A f
—L%(a, H%(a, p)) = (=D — (L' (b, H (b, 1 —
i@ He @, p)) = (=D = (L/( ( »)) o
=(=D*4L (—a. H' (—a.1 - p)).
SO

g LE(a, H(a, p)) = (=05 L/ (—a, H/ (—a, 1 = p)) forall (a, p) € D(My) x (0, 1).

Making the substitution x = H8(a, p) and using equation (75), we get
L% (a, x)=(—DkokLl [ - 1) ¢ 11 (a,x) € D(M,) x (g)
o LE(a, x) = b a,x orall (a,x) € ¢) X supp(g).

Taking absolute values and using the fact that | log x| = | log %| completes the proof. ([l

Write C*°(A) for the set of smooth functions defined on a set A. For a fixed f with non-empty D(M y) and which is
smooth on its open support, define the linear transformations 7 and S on C*°(D (M) x supp(f)) by

1

Th)(a,x):= T

| s,
oh
Sh)(a,x):= a—a(a,x) + h(a, x)logx
for h € C*°(D(My) x supp(f)) and (a, x) € D(M ) x supp(f). Notice that when h(a, x) = w(')f(a) —logx, T(h) = L.

Notice that 9 in (37) is also a linear transformation on C® (D(M ) x supp(f)). The following lemma gives a useful
recursion for 9¥L/:
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Lemma B.2. Assume f : (0, 00) — [0, 00) has non-empty D(My), open supp(f), and satisfies f € C*(supp(f)). If
he C°°(D(Mf) x supp(f)), then for (a,x) € D(My) x supp(f), and

f/(x)
PG,
fx)

Moreover, if there exists an integer k > 1 and a constant C = C(ag, a1) > 0 such that

(3T (h))(a,x) =T o S(h)(a, x) — |:<a + )Lf(a,x) +long|T(h)(a,x) +h(a,x)L! (a, x).

oh
_(avx)
a

sup
a€lagp,a]

< C(1+[logx|¥) forallx R, (77)

then
/0 ha )y f(dy=0 = /0 S (@, )y~ £ () dy =0.

Proof. A computation yields

87(;31) (a,x)=—logx -T(h)(a,x)+ T o S(h)(a, x),
oT (h) _ a f'(x) h(a, x)
?(a,x) = (—— BT )T(h)(a,x) + —

which gives the first part. For the second part, by Remark 2 in Section 2.2, |log X| has finite exponential moments. We
can therefore exchange the derivative with the integral in the expression

0 * a—1
o= [ e o, .

Fora € D(My) and x > 0, recursively define

hi(a,x):= w()f(a) —logx and
hy(a,x):=S"h,—1)(a,x) forn>2.

(78)

Then A, (a, x) is an n-th degree polynomial in logx with coefficients that are smooth in a. Thus, there exist constants
C,>0forn=1,2,... such that

oh
—(a, x)
a

sup
a€lagp,a]

< Cp(1+|logx|") forallx > 0.

By the second part of Lemma B.2,
o0
/ hn(a,x)y“_lf(y) dy=0 foralln e Nanda € (aop, ay). (79)
0

The functions h, will serve as a basis generating all functions obtainable from L/ through repeated application of the
operation 9. To proceed we define some algebraic structures.

Given a subset ' C C*™(D(My) x supp(f)), define A(F) C C*(D(My) x supp(f)) to be the algebra generated by
F over the ring C*°(D(My)). More specifically, g € A(F) & there exist ¢q,...,c, € C¥(D(My)) and g1, ..., 8 €
C>®(D(My) x supp(f)) such that

gla.x)=> ci(a)gi(a,x) forall (a,x) e D(Mys) x supp(f).

i=1
Now let

J'(x)
f(x)

r(x):=x (80)
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for x € supp(f) and put
F:={logx, T (hy)(a,x),r(x)T (hy)(a,x) :n € N}.
Define the degree function deg: F — Z4 by
deg(logx) =1 and deg(T (h,)) =deg(rT(h,))=n forneN.
Extend the degree function to A(F) by defining
deg(c) :=0, deg(g - h) :=deg(g) +deg(h), and deg(g+h):= max(deg(g), deg(h))

for c € C*°(D(My)), and non-zero f, g € C*°(D(My) x supp(f)). Note that this turns deg into an algebra homomor-
phism from A(F) into Z with the (4, max) algebra. For n € N, let A, := {g € A(F) : deg(g) < n}. Note that A, is
linear.

Lemma B.3. Suppose supp( f) is non-empty and open, D(M y) is non-empty, f is smooth on its support, and the follow-
ing two statements hold for everyn € N:

(1) 3r - T(hy) € Apt1, and
(2) there exists some C,, € C(D(M y)) such that

(LV |[r@))| T (ha)(a, x)| < Cu(a)(1 + [logx|")  forall (a,x) € D(My) x supp(f).
Then f satisfies Hypothesis 1.

Proof. We first claim that

The operator 9 maps A, — A4 foralln e N. 81)
To see this, notice that 9 satisfies a product rule:

Ig-h)=(0g) h+g-@h),

and it maps C*°(D(My)) — C*(D(My)). Thus, to show (81), it suffices to show 5(logx) € Ay and for all n € N,
(T (hn)) and 3(r - T (hy)) arein A,1.
Clearly, d(logx) = Lf =T(h) € F has degree 1 by definition, so itisin A;. By Lemma B.2,

(T (hp)) =T (hng1) — [(a — r () LT +1ogx]T (hy) + hy - L € Aypy (82)

since T(hn_H) € Apy1, T (hy) € Ay, and r- L' Lf ,logx € Aj. Additionally, using r - T (hy,+1) € Ap+1 andr-T'(hy,) € A,
we see that r - B(T(h )) € A+ as well. By assumption, 8(r) T (h,) € Ap+1, so the product rule implies

3(r - T(hy)) € Ap1,

which completes (81).
Now define

B:= {g € A(F) : there exists ¢ € C(D(Mf)) for which |g(a, x)| < c(a)(l + |10gx|deg(g))}.
B is a sub-algebra of A(F), which clearly contains log x. By assumption 2. in the statement of the Lemma,
F CB, (83)
which implies B = A(F). Now L/ € A; and (81) implies (3)"L/ € A4 C B which completes the proof. O
We now prove Theorem 5.

Proof of Theorem 5. By Lemma B.1, it suffices to consider only the functions f(x) = e % fx)y=0- x)b’1 Lio<x<1}s
and f(x) = (1%)” for b > 0. We check that the assumptions of Lemma B.3 are satisfied in these three cases.
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First note that since hy(a, x) is an n-th degree polynomial in logx with coefficients that are smooth in a, for every
n € N there exists some C, € C(D(My)) such that

|hn(a, x)| < Ca(@)(1+ |logx|") forall (a,x) € D(My) x supp(f). (84)

Moreover, by (79),
X o0
/O hu(a, )y f(y)dy = / ha(a, y)y*~ ' f(y)dy forall x > 0. (85)
X

Case I: f(x) = e P*. Here supp(f) = (0,00) = D(My), f is clearly smooth on (0, 00), and r (x) = —bx. Notice that
dr=—bxL/ =r.Lf

lies in Ay by definition. So clearly the first assumption of Lemma B.3 holds. We now check the second assumption of
Lemma B.3 is satisfied. When 0 < x < 1, using (84) and a > 0,

ebx px o eb5<(a) x o
|T(hj)(a,x)|§x—a/0 |hn(a. y)|y* e ’dyixija/o (1+ logyl/)y*~"dy
<Cj@)(1+ [logx|/).

When x > 1, using (84), (85), followed by the substitution y — % — 1, and finally an application of integration by
parts yields

ebxa.(a) 00 ) 1
Ty, 0| = 1 / (1+ [ogyl)y*~1e? dy
X

o0 .
= Gj(a)/ (1+ [log(y + 1) +logx|')y* e dy
0

_ Cja j j 1
== (1+1log2| + |logx|/) 4+ O =

Cj(a)
bx

=< (1+ [logx|V),
where we increased C j (@) in the last step if necessary. Combining these two bounds yields the desired result, completing
the proof for Case 1.

Case 2: f(x) =(1 — x)b_ljl{0<x<1}. Here supp(f) = (0,1), D(My) = (0,00), f is clearly smooth on (0, 1), and
rx)=—(b-— I)I’CTX. To see that the first assumption in Lemma B.3 holds, notice that

~ X . r )
br=—b-1 er (14— \ir
r=--baT et = ( +l—b)

Thus 3r - T(h;) = (r-L') - T(hj)+ 555 (- L) - (r - T(h;)) € Ajy1 since r- L/ € Ay, and - T'(h;) € A; by definition.
We now check the second assumption of Lemma B.3 is satisfied. By (84), we have the bounds

Ci(@ (1 +|logyl)y*" if0<y<i,

. a—1
[hja. y)y f(y)|§{5,-(a)(1—y)”‘l ify<y<l

Since a > 0, for 0 < x < %
29Ci(a) [~ o ~ .
T(hj)(a.x)| < x—’fo (1+logyl’)y*"dy < C;(@)(1 + | logx|). (86)
Similarly, using equation (85), for % <x<l,

T ) )] < (Z“Cj(a)

l ~
ﬁ)b_l/ 11—y <Cj@(1-x) .
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where we increased C;(a) if necessary. Thus, forall 0 <x < 1, [r(x)| < |b — 1|ﬁ implies

T ()@, )|V [r)T (k) (a, x| < Cja)(1+ |logx|).
This completes the proof for case 2.

Case 3: f(x) = (1%)}’. Here supp(f) = (0, 00), D(My) = (=b,0), f is clearly smooth on (0, 00), and r(x) = bp%x'
To see the first assumption of Lemma B.3 is satisfied, notice that

dr=—b—r 1F=—r. (1-2)L.
(1+x)2 b

Thus 3r - T'(hj) = —(r - LY) - T(hj)+ L(r - LY) - (r - T(hj)) € Aj41 since r - L/ € Ay, and r - T'(h;) € A by definition.
We now check the second assumption of Lemma B.3. By (84), we have the bounds

Cj@ (1 +|logyl)yst=1 ifo<y <1,

hi(a, a—1 <17
|hj(a, y)y f(y)|_{Cj(a)y“_l if1 <y<oo.

Sincea+b>0,forO<x <1,

b, X
T (hj)(a.x)| < 2C,@

== | (L+1logyl)y** 7 dy < Cj(@) (1 + logxl/). (88)

0

Similarly, using equation (85), for 1 <x < oo,
20C; o0 .
|T(hj)a,0)| < ﬂ/ ¥~ ldy < €j(a) (89)
X X

where we increased C j(a) if necessary. Thus, for all 0 < x < oo, |r(x)| < |b| implies
|T(hj)a,x)| v [r&)T (hj)(a,x)| < Cja)(1+|logx]/).

This completes the proof for case 3. (]

Appendix C: Finite exponential moments for the free energy

Lemma C.1. Assume the polymer environment is such that |log R'|, |log R?|, |log Y, and |log Y2| all have finite
exponential moments. Then,

|log Z,, »| has finite exponential moments for all (m, n) € Z-2i-'

Proof. Since logZypo =0, logZi o= Zle Rl.lﬁo, and log Zo x = Z’]‘-:] R(z)’ It log Z, has finite exponential moments for
any x € Z%r \ N2. When x € N2, the recursion (19) implies that

(log Yx1 + log Zx—a.) A (10g sz + log Zx_a2) <logZ, —log2 < (log YX1 + log Zx—a.) \Y (10g sz + log Zx_a2).
Thus
|log Z, —log2| < |log Yxl +log Zy_q, | \% |log sz + log Zx,a2|.

Since |log Y| and |log Y X2| have finite exponential moments, and inductive argument finishes the proof. (]
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