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Abstract. In this paper, we consider four integrable models of directed polymers for which the free energy is known to exhibit KPZ
fluctuations. A common framework for the analysis of these models was introduced in (ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018)
509–547).

We derive estimates for the central moments of the partition function, of any order, on the near-optimal scale N1/3+ε , using the
iterative method we applied to the semi-discrete polymer in (Noack and Sosoe (2020)). Among the innovations exploiting the integrable
structure, we develop formulas for correlations between functions of the free energy and the boundary weights that replace the Gaussian
integration by parts appearing in our previous paper (Noack and Sosoe (2020)).

Résumé. Dans cet article, nous considérons quatre modèles intégrables de polymères dirigés pour lesquels on sait démontrer que
l’énergie libre a des fluctuations de type KPZ. Un cadre d’analyse commun pour ces modèles est présenté dans (ALEA Lat. Am. J.
Probab. Math. Stat. 15 (2018) 509–547).

Nous obtenons des estimées pour les moments centraux de la fonction de partition, d’ordre quelconque, à l’échelle quasi-optimale

N
1
3 +ε , à l’aide d’une méthode itérative déjà appliquée au polymère semi-discret dans (Noack and Sosoe (2020)). Parmi les nouveautés

qui tirent profit de la structur structure intégrable, nous développons des formules pour les corrélations entre des fonctions de l’énergie
libre et les poids au bord. Ces formulent remplacent l’intégration par partie gaussienne qui apparait dans notre précédent travail (Noack
and Sosoe (2020)).
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1. Introduction

In this paper, we consider four models for 1 + 1 dimensional integrable polymers in random environment, and study
the higher moments of the centered free energy: the log-gamma polymer, introduced by Seppäläinen [14]; the strict-
weak polymer, which was simultaneously introduced and analyzed by Corwin–Seppäläinen–Shen [10] and O’Connell–
Ortmann [12]; the beta random walk of Barraquand and Corwin [5]; and the inverse beta model introduced by Thiery and
Le Doussal [15].

The models in question are distinguished because they each possess algebraic structure that has enabled the verification
of several predictions regarding their fluctuations. These include upper and lower bounds for the variance of the free
energy, of order O(N2/3) (see [14] for log-gamma and [9] for the three other models) as well as asymptotic Tracy–
Widom distribution (see [6] for the log-gamma polymer, the original papers [5,10,12] for the strict-weak polymer and beta
random walk models, as well a formal argument for the inverse beta model in [15]). Results of this type are characteristic
of the KPZ universality class [8], and are expected to hold in a more general setting where the integrable structure is not
available, but proving this is out of reach using current methods.

We note that the techniques used to prove asymptotic Tracy–Widom distribution by relating the free energy to a
Fredholm determinant are markedly different from those that have been used to obtain variance bounds starting with the
work of Seppäläinen [14]. The ideas in that work have their origins in earlier work of Seppäläinen and co-authors on
fluctuations of one-dimensional interacting particle systems [1–4]. Despite their power, the Bethe ansatz methods used to
obtain the asymptotic distribution are not easily adapted to estimating the size of the central moments.
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Here, we build on our previous paper [11] on the O’Connell–Yor polymer, a semi-discrete 1 + 1 dimensional polymer
model introduced in [13], to obtain bounds of nearly optimal order for all the central moments of the free energy in the
stationary version of each of the four models mentioned above. Our main result, Theorem 1, states that for each k ≥ 1, the
kth central moment of the free energy in a system of size O(N2) is bounded by O(Nk/3+ε), where the implicit constant
depends on ε.

The proof in [11] proceeded by deriving a pair of inequalities which appear related to the physicists’ KPZ scaling
relations and which enable an iterative proof of the bound for the order of fluctuations of the free energy by successive
improvements starting from the trivial O(N1/2) bound. A crucial idea was the repeated application of Gaussian integration
by parts to relate cross-terms involving the “boundary Brownian motion” component of the free energy and the free energy
itself to quenched cumulants of the first vertical jump of the polymers paths. This tool is not available in the discrete
models we consider here. Nevertheless, we develop a substitute for it by introducing a sequence of polynomials which
play a role analogous to that of Hermite polynomials for the O’Connell–Yor polymer, and allow us to derive formulas
for the cumulants of the partition function in terms of quenched cumulants of the time of the first jump. Here, the Mellin
transform framework introduced in [7] plays a central role. See Section 4.4.

1.1. The polymer model

To each edge e of the Z2
+ lattice we assign a positive random weight. The superscripts 1 and 2 are used to denote horizontal

and vertical edge weights, respectively. For z ∈ N2, let Y 1
z and Y 2

z denote the horizontal and vertical incoming edge
weights, see Figure 1. We assume that the collection of pairs {(Y 1

z , Y 2
z )}z∈N2 is independent and identically distributed

with common distribution (Y 1, Y 2), but do not insist that Y 1
z is independent of Y 2

z . {(Y 1
z , Y 2

z )}z∈N2 are the bulk weights. For
x ∈ N × {0}, let R1

x denote the horizontal incoming edge weight, and for y ∈ {0} × N, let R2
y denote the vertical incoming

edge weight. We take the collections {R1
x}x∈N×{0} and {R2

y}y∈{0}×N to be independent and identically distributed, with
common distributions R1 and R2. We refer to these as the horizontal and vertical boundary weights, respectively. We
further assume that the horizontal boundary weights, the vertical boundary weights, and the bulk weights are independent
of each other. This assignment of edge weights is illustrated in Figure 1. We call

ω =
{
R1

x,R
2
y,

(
Y 1

z , Y 2
z

)
: x ∈ N × {0}, y ∈ {0} × N, z ∈ N2} (1)

the polymer environment. We use P and E to denote the probability measure and corresponding expectation of the polymer
environment.

The weight of a path is given by the product of the weights along its edges. For (m,n) ∈ Z2
+ \ {(0,0)} we define a

probability measure on all up-right paths from (0,0) to (m,n). See Figure 2 for an example of an up-right path. Let #m,n

denote the collection of all such paths. We identify paths x• = (x0, x1, . . . , xm+n) either with their sequence of vertices or
with their sequence of edges (e1, . . . , em+n), where ei = {xi−1, xi}, as convenient. Define the quenched polymer measure
on #m,n,

Qm,n(x•) := 1
Zm,n

m+n∏

i=1

ωei ,

Fig. 1. Assignment of edge weights.
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Fig. 2. An up-right path from (0,0) to (5,5).

where ωe is the weight associated to the edge e and

Zm,n :=
∑

x•∈#m,n

m+n∏

i=1

ωei

is the associated partition function. At the origin, define Z0,0 := 1. Taking the expectation E of the quenched measure
with respect to the edge weights gives the annealed measure on #m,n,

Pm,n(x•) := E
[
Qm,n(x•)

]
. (2)

The annealed expectation will be denoted by Em,n.
We specify the edge weight distributions for the four stationary polymer models. The notation X ∼ Ga(α,β) is used

to denote that a random variable is gamma(α,β) distributed, i.e. has density

1
&(α)

βαxα−1e−βx

supported on (0,∞), where &(α) =
∫ ∞

0 xα−1e−x dx is the gamma function. X ∼ Be(α,β) is used to say that X is
beta(α,β) distributed, i.e. has density

&(α + β)

&(α)&(β)
xα−1(1 − x)β−1,

supported on (0,1). We then use X ∼ Ga−1(α,β) and X ∼ Be−1(α,β) to denote that X−1 ∼ Ga(α,β) and X−1 ∼
Be(α,β), respectively. We also use X ∼ (Be−1(α,β) − 1) to denote that X + 1 ∼ Be−1(α,β).

Each of the four models we consider is obtained by choosing the distribution of the boundary and bulk weights
according to one of the four following specifications:

• Inverse-gamma (IG): This is also known as the log-gamma model. Assume µ > θ > 0, β > 0 and

R1 ∼ Ga−1(µ − θ,β), R2 ∼ Ga−1(θ,β),
(
Y 1, Y 2) = (X,X) where X ∼ Ga−1(µ,β).

(3)

• Gamma (G): This is also known as the strict-weak model. Assume θ,µ,β > 0 and

R1 ∼ Ga(µ + θ,β), R2 ∼ Be−1(θ,µ),
(
Y 1, Y 2) = (X,1) where X ∼ Ga(µ,β).

(4)

• Beta (B): Assume θ,µ,β > 0 and

R1 ∼ Be(µ + θ,β), R2 ∼ Be−1(θ,µ),
(
Y 1, Y 2) = (X,1 − X) where X ∼ Be(µ,β).

(5)



Concentration for integrable directed polymer models 37

• Inverse-beta (IB): Assume µ > θ > 0, β > 0 and

R1 ∼ Be−1(µ − θ,β), R2 ∼
(
Be−1(θ,β + µ − θ) − 1

)
,

(
Y 1, Y 2) = (X,X − 1) where X ∼ Be−1(µ,β).

(6)

Note that each of these four choices in fact generates a family of models by choosing different values of the parameters
µ, θ , β . The name of each model refers to the distribution of the bulk weights. We call these models the four basic
beta-gamma models.

1.2. Main result

Having defined the models we will consider, we are now ready to state our main result. Given a path x• ∈ #m,n, define
the exit points of the path from the horizontal and vertical axes by

t1 := max
{
i : (i,0) ∈ x•

}
and t2 := max

{
j : (0, j) ∈ x•

}
. (7)

Theorem 1. Assume that the polymer environment has edge weight distributions R1,R2, (Y 1, Y 2) as in one of (3)
through (6), and let (m,n) = (mN,nN)∞N=1 be a sequence such that

∣∣mN − N Var
[
logR2]∣∣ ≤ γN2/3 and

∣∣nN − N Var
[
logR1]∣∣ ≤ γN2/3 (8)

for some fixed γ > 0. Then for every ε > 0 and p > 0, there exists a constant C = C(ε,p) > 0 such that for any N ∈ N,

E
[
|logZm,n|p

]
≤ CN

1
3 p+ε and (9)

Em,n

[
(tj )

p
]
≤ CN

2
3 p+ε for both j = 1,2. (10)

Note that by [7, Theorem 1.2], we have

E
[
|logZm,n|2

]
≥ cN

2
3

in the regime considered in Theorem 1. By Jensen’s inequality this implies

E[|logZm,n|p| ≥ cpN
p
3 ,

so that the bound we obtain is indeed near-optimal. We have not quantified the dependence of the constants on ε and p. In
particular, the estimates in the Theorem are obtained by an iterative process, where the number of iterations depends on ε.
With our current method, the implicit constants grow without bounds as the number of iterations increases. It would be of
great interest to prove the Theorem with ε = 0, but it is not clear to us whether this can be easily achieved by extending
our current methods. We leave these questions to further work.

We also obtain exact formulas for the cumulants of the free energy, see Corollary 4.8.

1.3. Outline of the paper

In Section 2, after establishing some basic notation, we recall the Mellin transform framework introduced in [7], where it
was noticed that the four basic beta-gamma models can be treated simultaneously.

In Section 3, we recall the “down-right” property shared by the four basic beta-gamma models. This is a consequence
of the stronger Burke property, and implies in particular that the free energy can be written as the sum of two i.i.d.
sums of order O(N) see (13). Understanding the fluctuations of the free energy becomes equivalent to understanding
the correlation between these two sums, or equivalently the correlation between one of them and the free energy. This is
manifested in the expansion for the cumulants of the free energy appearing in Lemma 3.1.

In Section 4, we develop a formula of “integration by parts” type which expresses certain correlations appearing in
the expansion for the cumulant in terms of derivatives of expectations of moments of the free energy with respect to the
parameter in the boundary weights. See Lemma 4.1. We use this to obtain formulas relating the the cumulants of the free
energy to expectations of productions of quenched cumulants of t1, the first jump in the system. See Corollary 4.8.

In Section 5, we prove our main result. The key idea here is that the formulas obtained in Section 4 allow one to
get improved estimates (compared to the trivial O(N1/2) bound) for the moments of the free energy given estimates for
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the annealed moments of t1. See Lemma 5.7. Conversely, an inequality due essentially to Seppäläinen [14] relates the
moments of t1 to moments of the centered free energy. Iterating through these two inequalities a finite number of times,
we can obtain bounds that are arbitrarily close to order N1/3.

2. Preliminaries and notation

2.1. Notation

We let N = {1,2, . . .}, Z+ = {0,1, . . .}, while R denotes the real numbers.
Let (x) denote the greatest integer less than or equal to x. Let ∨ and ∧ denote maximum and minimum, respectively:

a ∨ b = max{a, b},
a ∧ b = min{a, b}.

Given a real valued function f , let supp(f ) = {x : f (x) ,= 0} denote the support of the function f (note that we do not
insist on taking the closure of this set).

Given a random variable X with finite expectation, we let

X = X − E[X].
The symbol ⊗ is used to denote (independent) product distribution.

2.2. The Mellin transform framework

Here we introduce a framework, developed in [7], which allows us to treat the four basic beta-gamma models simultane-
ously.

Given a function f : (0,∞) → [0,∞), write Mf for its Mellin transform

Mf (a) :=
∫ ∞

0
xa−1f (x)dx

for any a ∈ R such that the integral converges. For more information about the Mellin transform and its relation to other
classical integral transforms see [16], especially Sections 1.5, 1.29 and 7.7; note however that we use only elementary
properties of the transform in this work. Define

D(Mf ) := interior
({

a ∈ R : 0 < Mf (a) < ∞
})

.

Definition 2.1. Given a function f : (0,∞) → [0,∞) such that D(Mf ) is non-empty, we define a family of densities on
(0,∞) parametrized by a ∈ D(Mf ):

ρf,a(x) := Mf (a)−1xa−1f (x). (11)

We write X ∼ mf (a) to denote that the random variable X has density ρf,a .

Remark 2. If f : (0,∞) → [0,∞) is such that D(Mf ) is non-empty, then Mf is C∞ throughout D(Mf ). Furthermore,
if X ∼ mf (a), then

(1) logX has finite exponential moments. That is, since D(Mf ) is open, there exists some ε > 0 such that

E
[
eε| logX|] ≤ E

[
Xε

]
+ E

[
X−ε

]
= Mf (a + ε) + Mf (a − ε)

Mf (a)
< ∞.

(2) For all k ∈ N,

∂k

∂ak
Mf (a) = Mf (a)E

[
(logX)k

]
.

(3) The kth cumulant of logX, which we denote by κk(logX) following the notation introduced in (16), equals ψ
f
k (a),

where

ψ
f
k (a) := ∂k+1

∂ak+1 logMf (a) for k ∈ Z+.
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Table 1
Density factors and distribution for the four basic beta-gamma
polymer models with parameters a and b

f (x) mf (a)

e−bx Ga(a, b)

e−b/x Ga−1(−a, b)

(1 − x)b−11{0<x<1} Be(a, b)

(1 − 1
x )b−11{x>1} Be−1(−a, b)

( x
x+1 )b Be−1(−a, b + a) − 1

Table 2
Functions and parameters to fit the four basic beta-gamma models into the Mellin framework

Model f 1(x) f 2(x) (a1, a2, a3)

IG e−β/x e−β/x (θ − µ,−θ,−µ) θ ∈ (0,µ)

G e−βx (1 − 1
x )µ−11{x>1} (µ + θ,−θ,µ) θ ∈ (0,∞)

B (1 − x)β−11{0<x<1} (1 − 1
x )µ−11{x>1} (µ + θ,−θ,µ) θ ∈ (0,∞)

IB (1 − 1
x )β−11{x>1} ( x

x+1 )(β+µ) (θ − µ,−θ,−µ) θ ∈ (0,µ)

2.3. The four basic beta-gamma models are Mellin-type

The random variables appearing in each of the four basic beta-gamma models have densities of the form (11), for various
choices of f , which we specify here. In Table 1, we assume b > 0 and a ∈ D(Mf ).

To express the distribution of the polymer environment in each of the four models given in (3) through (6) within the
above framework, we let

(
R1,R2,X

)
∼ mf 1(a1) ⊗ mf 2(a2) ⊗ mf 1(a3), (12)

where the functions f 1, f 2 and parameters aj , j = 1,2,3 are given in Table 2. Recall that in each of the models, (Y 1, Y 2)

are given in terms of X. For Table 2 we assume µ,β > 0.
When the polymer environment is as in (12) with parameters (a1, a2), we use P(a1,a2), E(a1,a2), Var(a1,a2), Cov(a1,a2)

in place of P, E, Var, Cov respectively.

Remark 3. For each fixed value of the bulk parameter a3, we obtain a family of models with boundary parameters a1
and a2 satisfying a1 + a2 = a3.

3. The down-right property

Write α1 = (1,0), α2 = (0,1). For k = 1,2 define ratios of partition functions

Rk
x := Zx

Zx−αk

for all x such that x − αk ∈ Z2
+.

Note that these extend the definitions of R1
i,0 and R2

0,j , since for example Zi,0 = ∏i
k=1 R1

k,0. We say that π = {πk}k∈Z is
a down-right path in Z2

+ if πk ∈ Z2
+ and πk+1 − πk ∈ {α1,−α2} for each k ∈ Z. To each edge along a down-right path we

associate the random variable

.{πk−1,πk} :=
{

R1
πk

if {πk−1,πk} is horizontal,
R2

πk−1
if {πk−1,πk} is vertical.

The following definition is a weaker form of the Burke property, see [14, Theorem 3.3].
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Definition 3.1. Say the polymer model has the down-right property if for all down-right paths π = {πk}k∈Z, the random
variables

.(π) := {.{πk−1,πk} : k ∈ Z}

are independent and each R1
πk

and R2
πk

appearing in the collection are respectively distributed as R1 and R2.

Proposition 3.1. Each of the four basic beta-gamma models, (3) through (6), possesses the down-right property.

See Proposition 2.3 of [7].

3.1. Consequences of the down-right property

The free energy has two useful expressions.

logZm,n = W + N = S + E (13)

where

Wn :=
n∑

j=1

logR2
0,j , En :=

n∑

j=1

logR2
m,j , Nm :=

m∑

i=1

logR1
i,n, Sm :=

m∑

i=1

logR1
i,0. (14)

Notice that Wn = logZ0,n and Sm = logZm,0. If the model possesses the down-right property (see Definition 3.1), then
Wn, En, Nm, Sm are each sums of i.i.d. random variables. The subscripts n and m on Wn, En, Nm, Sm indicate the length
of the sums.

Recall that if the random variables X1, . . . ,Xk have finite exponential moments, then their joint cumulant is defined
by

κ(X1, . . . ,Xk) := ∂k

∂ξ1 . . . ∂ξk
log E

[
e
∑k

j=1 ξj Xj
]∣∣∣∣

ξi=0
. (15)

Alternatively, the joint cumulant can be written as a combination of products of expectations of the underlying random
variables:

κ(X1, . . . ,Xk) =
∑

π∈P

(
|π| − 1

)
!(−1)|π|−1

∏

B∈π
E

[∏

i∈B

Xi

]
(16)

where P ranges over partitions π of {1, . . . , k} and |A| stands for the size of the set A. In the case where X1 = X2 = · · · =
Xk = X, the joint cumulant reduces to the k-th cumulant of X which we denote by κk(X). The identity (16) is classical
and indeed is often used as the definition of joint cumulants. For the reader’s convenience, we check its equivalence with
the definition (15) in Appendix A.

Lemma 3.1. Assume the polymer environment is such that | logR1|, | logR2|, | logY 1|, and | logY 2| all have finite expo-
nential moments. Let Nm, En, Sm and Wn be as in (14), Then, for any positive integer k,

κk(logZm,n) = κk(En) − (−1)kκk(Sm) −
k−1∑

j=1

(
k

j

)
(−1)k−jκ(logZm,n, . . . , logZm,n︸ ︷︷ ︸

j times

, Sm, . . . , Sm︸ ︷︷ ︸
k−j times

) and (17)

κk(logZm,n) = κk(Nm) − (−1)kκk(Wn) −
k−1∑

j=1

(
k

j

)
(−1)k−jκ(logZm,n, . . . , logZm,n︸ ︷︷ ︸

j times

,Wn, . . . ,Wn︸ ︷︷ ︸
k−j times

). (18)

Moreover, if the polymer model also possesses the down-right property, then

κk(En) = κk(Wn) = nκk

(
R1) and

κk(Nm) = κk(Sm) = mκk

(
R2).
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Proof. By Lemma C.1, logZm,n, Nm, Sm, En, Wn all have finite exponential moments, so their cumulants and joint
cumulants exist. By (13), En = logZm,n − Sn. Since the joint cumulant is multi-linear,

κk(En) =
k∑

j=0

(
k

j

)
(−1)k−jκ(logZm,n, . . . , logZm,n︸ ︷︷ ︸

j times

, Sm, . . . , Sm︸ ︷︷ ︸
k−j times

).

The j = k term in the summand is κk(logZm,n) and the j = 0 term is (−1)kκk(Sm). Rearranging yields equation (17). To
obtain equation (18), apply the same argument with (Nm,Wn) in place of (En,Sm). For the last part of the Lemma use
the fact that κk(X + Y) = κk(X) + κk(Y ) if X and Y are independent. !

Remark 4. Each of the four basic beta-gamma models satisfy the moment conditions of Lemma 3.1.

4. Formulas for the central moments

In the next two sections, we give an exact formula for the terms appearing in the summands on the right-hand side of (17).
The same arguments can be used to obtain analogous estimates for (18), but as will be apparent in Section 5 the estimates
in (17) will be sufficient to obtain Theorem 1.

4.1. Integration by parts type formula

Referring to the notation in Section 2.2, fix an integer r ≥ 1 and let fk : (0,∞) → [0,∞) for k = 1, . . . , r and a, a0, a1 be
real numbers such that a0 < a < a1 and [a0, a1] ⊂ ⋂r

k=1 D(Mfk ). Consider a collection of independent random variables
{Xk}rk=1 where Xk ∼ mfk (a) for all 1 ≤ k ≤ r , and let Ea correspond to the expectation over these random variables.
Finally, define

T :=
r∑

k=1

logXk.

We introduce a sequence {pn(t, a; r)}n≥0 of n-th degree polynomials in t defined recursively by

p0(t, a; r) = 1,

pn(t, a; r) = ∂

∂a
pn−1(t, a; r) + pn−1(t, a; r)

(
t − Ea[T ]

)
for n ≥ 1.

(19)

Note that the dependence of pn(·, ·; r) on r is polynomial, a fact we use explicitly later in our argument (see Proposi-
tion 5.1).

The following lemma extends Lemma B.2 from [7].

Lemma 4.1. A : Rr → R be a measurable function such that Ea[A(X1, . . . ,Xr)
2] < ∞ for all a ∈ [a0, a1]. Then

∂n

∂an
Ea

[
A(X1, . . . ,Xr)

]
= Ea

[
A(X1, . . . ,Xr)pn(T , a; r)

]
. (20)

Proof. The joint density of (logX1, logX2, . . . , logXr) is given by

g(x1, . . . , xr ) = ea
∑r

k=1 xk

∏r
k=1 Mfk(a)

r∏

k=1

fk

(
exk

)
.

Thus the density of T = ∑r
k=1 logXk is

ha(t) = eat

∏r
k=1 Mfk(a)

∫

Rr−1
f1

(
ex1

)
f2

(
ex2−x1

)
. . . fr

(
et−xr−1

)
dx1, . . . , xr−1. (21)

Therefore, the joint density of (logX1, logX2, . . . , logXr) given that T = t is given by

g(x1, . . . , xr )1{∑r
k=1 xk=t}

ha(t)
=

∏r
k=1 fk(e

xk )∫
Rr−1 f1(ex1)f2(ex2−x1) . . . fr (et−xr−1)dx1, . . . , xr−1

, (22)
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which has no a-dependence. Recursion (19) and ∂
∂a ha(t) = ha(t)(t − Ea[T ]) inductively imply

∂n

∂an
ha(t) = ha(t)pn(t, a; r) for all n ∈ Z+. (23)

By (22) and (23),

∂n

∂an
Ea

[
A(X1, . . . ,Xk)

]
= ∂n

∂an

∫

R
Ea

[
A(X1, . . . ,Xk) | T = t

]
ha(t)dt

=
∫

R
Ea

[
A(X1, . . . ,Xk) | T = t

] ∂n

∂an
ha(t)dt

=
∫

R
Ea

[
A(X1, . . . ,Xk) | T = t

]
ha(t)pn(t, a; r)dt

= Ea
(
A(X1, . . . ,Xk)pn(T , a; r)

)
.

The interchanging of the n-th derivative and the integral will be justified by the bound:

∫

R
E

[∣∣A
(
{Xk}rk=1

)∣∣ | T = t
]

sup
a∈[a0,a1]

∣∣∣∣
∂n

∂an
ha(t)

∣∣∣∣dt < ∞. (24)

To obtain this bound first notice that recursion (19) implies that pn(t, a) are degree n polynomials in t with coefficients
that are smooth in a. Thus, by (23), there exist constants 0 < Cn < ∞ independent of t such that

sup
a∈[a0,a1]

∣∣∣∣
∂n

∂an
ha(t)

∣∣∣∣ ≤ Cn

(
1 + |t |

)n sup
a∈[a0,a1]

ha(t). (25)

Once we show that there is a constant C depending only on a0 and a1 such that

sup
a∈[a0,a1]

ha(t) ≤ ha0(t) + Cha1(t) for all s ∈ R, (26)

(25) will give the bound (24) since
∫

R
E

[∣∣A
(
{Xk}rk=1

)∣∣ | T = t
](

1 + |t |
)n

haj (t)dt = Eaj
[∣∣A

(
{Xk}rk=1

)∣∣(1 + |T |
)n]

≤ Eaj
[(

A
(
{Xk}rk=1

))2] 1
2 Eaj

[(
1 + |T |

)2n] 1
2 .

This is finite since Eaj [A({Xk}rk=1)
2] < ∞ by assumption, and T is a sum of independent random variables with finite

exponential moments. All that is left to do is verify the bound (26). To accomplish this, notice that equation (21) implies

∂

∂a
logha(t) = t − Ea[T ]. (27)

Since Ea[T ] = ∑r
k=1 ψ

fk

0 (a), a 0→ Ea[T ] is an increasing function (recall that d
da ψ

fk

0 (a) = ψ
fk

1 (a) = Var[Xk] > 0).
Therefore, for all t ≤ Ea0 [T ], the function a 0→ ha(t) is non-increasing on [a0, a1] which gives

sup
a∈[a0,a1]

ha(t) ≤ ha0(t) for all t ≤ Ea0 [T ].

On the other hand, if t > Ea0 [T ], then

∂

∂a
log

(
ha(t) exp

(
a
(
Ea1 [T ] − Ea0 [T ]

)))
= t − Ea[T ] + Ea1 [T ] − Ea0[T ] > 0 (28)

for all a ∈ [a0, a1]. Thus, for all t > Ea0[T ],

a 0→ ha(t) exp
(
a
(
Ea1 [T ] − Ea0 [T ]

))
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is increasing on the interval [a0, a1]. Therefore

sup
a∈[a0,a1]

ha(t) ≤ C3ha1(t) for all t > Ea0 [T ]

where C = exp ((a1 − a0)(Ea1 [T ] − Ea0 [T ])). Combining (27) and (28) gives the desired result. !

Lemma 4.2. Assume the polymer environment satisfies R1
i,0 ∼ mf (a) for all i ≥ 1. Let k ≥ 2 and 1 ≤ j ≤ k. For r ≥ 1,

let

Sr :=
r∑

i=1

R1
i,0.

Then,

κ(logZm,n, . . . , logZm,n︸ ︷︷ ︸
j times

, Sr , . . . , Sr︸ ︷︷ ︸
k−j times

) = κ(logZm,n, . . . , logZm,n︸ ︷︷ ︸
j times

, Sr , . . . , Sr︸ ︷︷ ︸
k−j times

)

=
∑

π∈P

(
|π| − 1

)
!(−1)|π|−1

∏

B∈π
E

[
(logZm,n)

|B∩{1,...,j}|p|B∩{j+1,...,k}|(Sr , a; r)
]
+ rψ

f
k−j (a) (29)

where P ranges over partitions π of {1, . . . , k} such that no block B ∈ π is contained in {j + 1, . . . , k}, and pk(s, a) are
polynomials recursively defined by (19) in the case fj = f for all j .

Proof. Introduce the function

g(s, a; r) := eas−r logMf (a).

Note that

∂

∂a
g(s, a; r) =

(
s − rψ

f
0 (a)

)
g(s, a; r),

so

∂

∂a

(
g(s, a; r)pk−1(s, a; r)

)
= g(s, a; r) ∂

∂a
pk−1(s, a; r) + g(s, a; r)pk−1(s, a; r)

(
s − rψ

f
0 (a)

)

= g(s, a; r)pk(s, a; r).

Rearranging, this gives

pk(s, a; r) = 1
g(s, a; r)

∂

∂a

(
g(s, a; r)pk−1(s, a; r)

)

= · · ·

= 1
g(s, a; r)

∂ l

∂al

(
g(s, a; r)pk−l (s, a; r)

)
.

Letting l = k, we have

pk(s, a; r) =
∂k

∂ak g(s, a; r)
g(s, a; r) .

By Taylor expansion around a for λ sufficiently small, we have

g(s, a + λ; r) =
∞∑

k=0

λk

k!
∂k

∂ak
g(s, a; r),
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which yields the generating function for the polynomials pk(s, a; r):

g(s, a + λ; r)
g(s, a; r) = eλs

(
Mf (a)

Mf (a + λ)

)r

=
∞∑

k=0

λk

k! pk(s, a; r). (30)

Using this, we have a formula for joint cumulants, as follows. Recall

κ(A, . . . ,A︸ ︷︷ ︸
j times

, Sr , . . . , Sr︸ ︷︷ ︸
k−j times

) = ∂

∂ξ1 · · ·∂ξk
logE

[
e(ξ1+···+ξj )Ae(ξj+1+···+ξk)Sr

]∣∣∣∣
ξi=0

.

Inserting the generating function (30), we have

e(ξj+1+···+ξk)Sr =
(

Mf (a + ξj+1 + · · · ξk)

Mf (a)

)r ∞∑

l=0

(ξj+1 + · · · + ξk)
lpl(Sr , a; r)

l! .

Taking expectations, then logarithms, we have

log E
[
e(ξj+1+···+ξk)Sr

]
= logE

[

e(ξ1+···+ξj )A
∞∑

l=0

(ξj+1 + · · · + ξk)
l

l! pl(Sr , a; r)
]

− r logMf (a) + r logMf (a + ξj+1 + · · · + ξk).

Setting A = logZm,n and taking derivates with respect to the ξi ’s, then evaluating them at zero gives (29).
The only part of the statement that still requires comment is the assertion that partitions P with a block contained in

{j + 1, . . . , k} make a zero contribution. This is because

E
[
pn(Sr , a; r)

]
= 0

for n ≥ 1, as follows from (20) with A ≡ 1. !

4.2. Coupling of polymer environments

In order to compare polymer environments with different parameters, we use a coupling to express the boundary weights
as functions of i.i.d. uniform(0,1) random variables.

Recall the notation from Section 2.2. Suppose f : (0,∞) → [0,∞) is a smooth function on its support, supp(f ) is
open, and D(Mf ) is non-empty. Define Ff : D(Mf ) × (0,∞) → [0,1] by

Ff (a, x) := 1
Mf (a)

∫ x

0
ya−1f (y)dy.

For fixed a ∈ D(Mf ), x 0→ Ff (a, x) is the cdf of a random variable with X ∼ mf (a). Note that Ff (a, ·) is a bijection
between supp(f ) and (0,1). For a ∈ D(Mf ), let Hf (a, ·) be the inverse of Ff (a, ·) defined on (0,1). By the implicit
function theorem, Hf : D(Mf ) × (0,1) → supp(f ) is a smooth function in both of its variables satisfying

∂

∂a
logHf (a, x) = Lf

(
a,Hf (a, x)

)
, (31)

where

Lf (a, x) := 1
xaf (x)

∫ x

0
ya−1(ψf

0 (a) − logy
)
f (y)dy.

Another expression for Lf shows that it is a strictly positive function:

Lf (a, x) = −1
xaf (x)

Cov(logX,1{X≤x}) > 0, (32)
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because the right side of (32) is the negative of the correlation between an increasing and a decreasing function of X.
Since f is smooth, Lf is smooth as a function on D(Mf )× supp(f ). Note that if η is a uniform(0,1) distributed random
variable, then Hf (a,η) ∼ mf (a) for every a ∈ D(Mf ). This gives us a useful coupling as follows.

Fix m,n ∈ N and an environment ω on the square with lower-left corner (0,0) and upper-right corner (m,n). Assume
the random variables attached to the southern boundary R1

i,0 all have mf (a) distributions. Fix 1 ≤ r ≤ m and let {ηi}ri=1
be i.i.d. uniform(0,1) distributed random variables which are also independent of the original environment ω. Now create
a new environment ω̃ by replacing R1

i,0 in the original environment along the southern boundary by

R̃1
i,0(b) := Hf (b,ηi )

only for i = 1, . . . , r . When b = a the new environment is equal in distribution to the old one:

ω̃
d= ω, b = a.

Write

Zm,n(b) := Zω̃
m,n =

∑

x·∈#m,n

m+n∏

i=1

ω̃(xi−1,xi ) =
∑

x·∈#m,n

t1(x·)∧r∏

i=1

R̃1
i,0

m+n∏

i=t1(x·)∧r+1

ω(xi−1,xi ),

where t1(x·) := max{i ≥ 0 : xi = (i,0)}, i.e. the exit time from the southern boundary. By equation (31),

∂

∂b

∣∣∣∣
b=a

R̃1
i,0 = R̃1

i,0L
f
(
a, R̃1

i,0
)
. (33)

Therefore

∂

∂b

∣∣∣∣
b=a

logZm,n(b) = Ẽa
m,n

[
t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
]

, (34)

where Ẽa
m,n[F(x·)] is defined to be the expectation of the function F of up-right paths x· under the quenched probability

measure

Q̃b
m,n(x·) := 1

Zm,n(b)

m+n∏

i=1

ω̃(xi−1,xi ) = 1
Zm,n(b)

t1(x·)∧r∏

i=1

R̃1
i,0(b)

m+n∏

i=t1(x·)∧r+1

ω(xi−1,xi ). (35)

We will use Ẽ and P̃ to denote annealed expectation and probability for the measure in (35).
By (33) and (34),

∂

∂b

∣∣∣∣
b=a

log Q̃b
m,n(x·) =

t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
− Ẽa

m,n

[
t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
]

. (36)

4.3. Derivatives with respect to boundary parameters

We now use equation (36) to provide a recursion which will help determine ∂k

∂bk |b=a logZm,n(b).

Definition 4.1. Suppose G(a,x) : D(Mf ) × supp(f ) → R is a C1 function. The action of the operator ∂̃ on G is given
by

∂̃G(a,x) := ∂G

∂a
(a, x) + xLf (a, x)

∂G

∂x
(a, x). (37)
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Lemma 4.3. Let G(a,x) : D(Mf ) × supp(f ) → R be a Ck function. Then the function ∂̃G : D(Mf ) × supp(f ) → R is
Ck−1 and satisfies the two equations:

∂̃G
(
a, R̃1

i,0(a)
)
= ∂

∂b

∣∣∣∣
b=a

(
G

(
b, R̃1

i,0(b)
))

,

∂

∂b

∣∣∣∣
b=a

Ẽb
m,n

[
t1(x·)∧r∑

i=1

G
(
b, R̃1

i,0
)
]

= Ẽa
m,n

[
t1(x·)∧r∑

i=1

∂̃G
(
a, R̃1

i,0
)
]

+ C̃ova
m,n

(
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0(a)
)
,

t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0(a)
)
)

,

(38)

where C̃ova
m,n stands for the covariance under Ẽa

m,n.

Proof. By equation (33), we have

∂

∂b

∣∣∣∣
b=a

G
(
b, R̃1

i,0(b)
)
= ∂G

∂a

(
a, R̃1

i,0(a)
)
+ ∂

∂b

∣∣∣∣
b=a

R̃1
i,0

∂G

∂x

(
a, R̃1

i,0
)
,

Ẽa
m,n

[
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
]

=
∑

x·∈#m,n

(
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
)

Q̃a
m,n(x·).

Therefore,

∂

∂b

∣∣∣∣
b=a

Ẽa
m,n

[
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
]

=
∑

x·∈#m,n

∂

∂b

∣∣∣∣
b=a

((
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
)

Q̃a
m,n(x·)

)

=
∑

x·∈#m,n

(
t1(x·)∧r∑

i=1

∂

∂a
G

(
a, R̃1

i,0
)
)

Q̃a
m,n(x·) (39)

+
∑

x·∈#m,n

(
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
)

∂

∂b

∣∣∣∣
b=a

Q̃a
m,n(x·). (40)

By the first part of the lemma, the right-hand side of (39) equals Ẽa
m,n[

∑t1(x·)∧r
i=1 (∂̃G)(a, R̃1

i,0)]. Using equation (36),
(40) equals

∑

x·∈#m,n

(
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
)(

t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
− Ẽa

m,n

[
t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
])

Q̃a
m,n(x·)

= Ẽa
m,n

[(
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
)(

t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
)]

− Ẽa
m,n

[
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
]

Ẽa
m,n

[
t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
]

= C̃ova
m,n

(
t1(x·)∧r∑

i=1

G
(
a, R̃1

i,0
)
,

t1(x·)∧r∑

i=1

Lf
(
a, R̃1

i,0
)
)

.
!

Letting κ̃a
k (X1, . . . ,Xk) denote the quenched joint cumulant of k random variables with respect to Ẽa

m,n, repeated
application of (38) and the chain rule give:
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Lemma 4.4. For g1, . . . , gk ∈ C∞(D(Mf ) × supp(f )),

∂

∂a
κ̃a
k

(
t1∧r∑

i=1

g1
(
a, R̃1

i,0
)
,

t1∧r∑

i=1

g2
(
a, R̃1

i,0
)
, . . . ,

t1∧r∑

i=1

gk

(
a, R̃1

i,0
)
)

=
∑

δ1+···+δk=1
δi∈{0,1}

κ̃a
k

(
t1∧r∑

i=1

∂̃δ1g1
(
a, R̃1

i,0
)
,

t1∧r∑

i=1

∂̃δ2g2
(
a, R̃1

i,0
)
, . . . ,

t1∧r∑

i=1

∂̃δk gk

(
a, R̃1

i,0
)
)

+ κ̃a
k+1

(
t1∧r∑

i=1

g1
(
a, R̃1

i,0
)
,

t1∧r∑

i=1

g2
(
a, R̃1

i,0
)
, . . . ,

t1∧r∑

i=1

gk

(
a, R̃1

i,0
)
,

t1∧r∑

i=1

Lf
(
a, R̃1

i,0
)
)

.

Proof. Write Xl(a) := ∑t1∧r
i=1 gl(a, R̃1

i,0(a)) for l = 1, . . . , k. We will perturb the parameter in the environment and the
parameters in the arguments of the cumulant separately. To this end, define

F(a,h) := κ̃h
k

(
X1(a),X2(a), . . . ,Xk(a)

)
.

Using equation (33) and multi-linearity of the joint cumulant gives

∂

∂a
F(a,h) =

∑

δ1+···+δk=1
δi≥0

κ̃h
k

(
∂̃δ1X1(a), ∂̃δ2X2(a), . . . , ∂̃δkXk(a)

)
. (41)

Now define Y(h) := ∑t1∧r
i=1 Lf (h,Hf (h,ηi )). Then

∂

∂h
Ẽh

m,n

[
e
∑k

l=1 ξlXl(a)
]
= Ẽh

m,n

[
e
∑k

l=1 ξlXl(a)Y (h)
]

where the centering is respect to Ẽh
m,n. Thus

∂

∂h
F(a,h) = ∂

∂ξ1 . . . ∂ξk

∂

∂h
log Ẽh

m,n

[
e
∑k

l=1 ξlXl(a)
]∣∣∣∣

ξ1=···=ξk=0

= ∂

∂ξ1 . . . ∂ξk+1
log Ẽh

m,n

[
e
∑k

l=1 ξlXl(a)+ξk+1Y(h)
]∣∣∣∣

ξ1=···=ξk=ξk+1=0

= κ̃h
k+1

(
t1∧r∑

i=1

g1
(
a, R̃1

i,0
)
,

t1∧r∑

i=1

g2
(
a, R̃1

i,0
)
, . . . ,

t1∧r∑

i=1

gk

(
a, R̃1

i,0
)
, Y (h)

)

. (42)

Combining (41) and (42) gives

∂

∂a
F(a, a) =

(
∂F

∂a
(a,h) + ∂F

∂b
(a,h)

)∣∣∣∣
h=a

yielding the desired result. !

Equation (34) and a repeated application of the previous lemma now give

Corollary 4.5. Let k ≥ 1. There are non-negative constants Ck,j,33 indexed by 1 ≤ j ≤ k and j -tuples 33 = (31, . . . ,3j )

with 3i ≥ 0 and
∑

1≤i≤j 3i = k − j such that

∂k

∂bk

∣∣∣∣
b=a

logZm,n(b) =
k∑

j=1

∑

33
Ck,j,33κ̃

a
j

(
t1∧r∑

i=1

∂̃31Lf
(
a, R̃1

i,0
)
, . . . ,

t1∧r∑

i=1

∂̃3j Lf
(
a, R̃1

i,0
)
)

.
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Here ∂̃3 is the operator defined in (37), iterated 3 times. The constants satisfy

k∑

j=1

∑

33
Ck,j,33 ≤ k!.

Note that Ck,k,(0,...,0) = 1, so that the the j = k-th term in the sum is the k-th quenched cumulant of
∑t1∧r

i=1 Lf (a, R̃1
i,0).

Proof. For k = 1, we have

∂

∂b

∣∣∣∣
b=a

logZm,n(b) = κ̃a
1

(
t1∧r∑

i=1

Lf
(
a, R̃1

i,0
)
)

. (43)

This has the required form

κ̃a
j

(
t1∧r∑

i=1

∂̃31Lf
(
a, R̃1

i,0
)
, . . . ,

t1∧r∑

i=1

∂̃3j Lf
(
a, R̃1

i,0
)
)

(44)

with j = 1 and 33 = (0). Using Lemma 4.4, differentiating any term of the form (44) produces j + 1 terms of the same
form where one of the 3i or j are increased by one. Thus, differentiating (43) k − 1 times, we obtain a sum of at most k!
terms, all of the form (44). !

4.4. Application of integration by parts

We now use the results obtained thus far to provide exact expressions for the cumulants of the free energy logZm,n (see
Corollary 4.8).

We now impose the following assumption on f to have control of the moments of ∂̃kLf .

Hypothesis 1. Assume f has non-empty, open support supp(f ), non-empty D(Mf ), f is smooth on its support, and for
every k ∈ Z+, there exist Ck ∈ C(D(Mf )), continuous functions on D(Mf ), such that

∣∣∂̃kLf (a, x)
∣∣ ≤ Ck(a)

(
1 + | logx|k+1) for all (a, x) ∈ D(Mf ) × supp(f ).

The following theorem says that all functions appearing in the four models (3), (4), (5), (6) satisfy this hypothesis.

Theorem 5. Let f be one of the functions appearing in Table 1, meaning f corresponds to a gamma, inverse-gamma,
beta, inverse-beta, or beta-prime distribution. Then f satisfies Hypothesis 1.

The proof of Theorem 5 is relegated to the Appendix.

Lemma 4.6. Assume f satisfies Hypothesis 1. Let [a0, a1] ⊂ D(Mf ), η ∼ uniform(0,1), and k ∈ N. Then the random
variable

sup
a∈[a0,a1]

∣∣̃∂kLf
(
a,Hf (a,η)

)∣∣

has finite moments of all orders.

Proof. Put Y := supa∈[a0,a1] |̃∂kLf (a,Hf (a,η))|. By Hypothesis 1, there exists a constant C > 0 such that

∣∣̃∂kLf
(
a,Hf (a,η)

)∣∣ ≤ C
(
1 +

∣∣logHf (a,η)
)∣∣k+1

) (45)

≤ C
(
1 +

∣∣logHf (a0,η)
)∣∣k+1 +

∣∣logHf (a1,η))
∣∣k+1

). (46)

The last inequality follows from the monotonicity a 0→ Hf (a, x) (by equations (32) and (31)) and holds for all a ∈
[a0, a1]. Since Hf (aj ,η) ∼ mf (aj ) for j = 0,1, and a0, a1 ∈ D(Mf ), both logHf (a0,η) and logHf (a1,η) have finite
exponential moments. Thus Y has finite moments of all orders. !
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Now write P̃, Ẽ for the probability measure and expectation corresponding to the environment ω̃, as defined in Sec-
tion 4.2, and P, E for probability measure and expectation corresponding to the environment ω. Write

σ̃0(r) := logZm,n(a) − Ẽ
[
logZm,n(a)

]
and

σ̃k(r) := ∂k

∂bk

∣∣∣∣
b=a

logZm,n(b) for k ∈ N.

Similarly, define

σ0(r) := logZm,n − E[logZm,n],

σk(r) :=
k∑

j=1

∑

31+···+3j =k−j
3i≥0

Ck,j,33,κ
Q
j

(
t1∧r∑

i=1

∂̃31Lf
(
a,R1

i,0
)
, . . . ,

t1∧r∑

i=1

∂̃3j Lf
(
a,R1

i,0
)
)

, k ∈ N, (47)

where κ
Q
k (X1, . . . ,Xk) denotes the joint-cumulant of the random variable X1, . . . ,Xk with respect to the quenched mea-

sure Qm,n and Ck,j,33 are the constants appearing in Corollary 4.5. By Corollary 4.5, σk(r)
d= σ̃ a

k (r). Recall that our
environment ω̃ has only changed the southern boundary random variables between the origin and the point (r,0), so
logZm,n(b) only depends on a through R1

i,0, r < i ≤ m.

Lemma 4.7. If f satisfies Hypothesis 1 and Sr = ∑r
i=1 logR1

i,0, then for any j, k ≥ 0,

E
[
(logZm,n)

jpk(Sr , a; r)
]
=

∑

31+···+3j =k
3i≥0

k!
31! · · ·3j !

E
[

j∏

i=1

σ3i (r)

]

. (48)

Proof. Write g(a) := Ẽa[logZm,n]. Then the left-hand side of equation (48) is equal to

E
[(

logZm,n − g(b)
)j

pk(Sr , a; r)
]∣∣

b=a
.

Fix b ∈ D(Mf ) and let F be the sigma-algebra generated by the random variables R1
1,0, . . . ,R

1
r,0. Then there exists a

measurable function function A : Rr → R such that A(R1
1,0, . . . ,R

1
r,0) = E[(logZm,n − g(b))j | F] almost surely. By

Lemma A.1 from [7], A ∈ L2(P). Since Sr ∈ F , Lemma 4.1 gives

E
[(

logZm,n − g(b)
)j

pk(Sr , a; r)
]
= Ea

[
A

(
R1

1,0, . . . ,R
1
r,0

)
pk(Sr , a; r)

]
(49)

= ∂k

∂ak
Ea

[
A

(
R1

1,0, . . . ,R
1
r,0

)]

= ∂k

∂ak
E

[(
logZm,n − g(b)

)j ]
, (50)

where Ea emphasizes that we are only taking expectations over {R1
i,0}ri=1. Now fix a0 and a1 such that a ∈ [a0, a1] ⊂

D(Mf ). Using Corollary 4.5, Lemma 4.6, and t1 ≤ m, we see that

Ẽ
[

sup
a∈[a0,a1]

∣∣∣∣
∂k

∂ak

(
logZm,n(a) − g(b)

)j
∣∣∣∣

]
< ∞.

Thus

(50) = ∂k

∂ak
Ẽ

[(
logZm,n(a) − g(b)

)j ] = Ẽ
[

∂k

∂ak

(
logZm,n(a) − g(b)

)j
]

=
∑

31+···+3j =k
3i≥0

k!
31! · · ·3j !

Ẽ
[

j∏

i=1

∂3i

∂a3i

(
logZm,n(a) − g(b)

)
]

.
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Therefore

(50)|b=a =
∑

31+···+3j =k
3i≥0

k!
31! · · ·3j !

Ẽ
[

j∏

i=1

σ̃3i (r)

]

=
∑

31+···+3j =k
3i≥0

k!
31! · · ·3j !

E
[

j∏

i=1

σ3i (r)

]

.

!

Corollary 4.8. When r = m, and k is even,

κk(logZm,n) = κk(En) − κk(Sm) −
k−1∑

j=1

(
k

j

)
(−1)jκ(logZm,n, . . . , logZm,n︸ ︷︷ ︸

j times

, Sm, . . . , Sm︸ ︷︷ ︸
k−j times

) and

= nκk

(
logR2) − mκk

(
logR1)

+
∑

π∈P

(
|π| − 1

)
!(−1)|π|

k−1∑

j=1

(
k

j

)
(−1)j

∏

B∈π
E

[
(logZm,n)

aj,B pbj,B (Sm,a;m)
]
,

where aj,B = |B ∩ {1, . . . , j}|, bj,B = |B ∩ {j + 1, . . . , k}| = |B| − aj,B . Moreover,

E
[
(logZm,n)

jpk(Sm,a;m))
]
=

∑

31+···+3j =k
3i≥0

k!
31! · · ·3j !

E
[

j∏

i=1

σ3i (t1)

]

.

Note that in the case k = 2, the formula in the previous corollary coincides with the variance representation in Sep-
päläinen [14, Theorem 3.7].

5. Estimates for the central moments

Lemma 5.1. Let 0 ≤ r and put Sn = ∑n
i=1 g(a,Ri,0) where g(a,Ri,0) has finite moments of all orders. Recall the no-

tation (2) for the annealed expectation with respect to the polymer environment. Then, for all k ∈ 2N there exist finite
constants Ck = Ck(a) > 0 which are locally bounded in a, such that

Em,n

[
(St1 − St1∧r )

k
]
≤ Ck

(
Em,n

[
(t1 − t1 ∧ r)k

]
+ 1

)
for all (m,n) ∈ N2.

Here the centering is with respect to the annealed measure Em,n.

Proof.

Em,n

[
(St1 − St1∧r )

k
]
= Em,n

[∑

l>r

1{t1=l}(Sl − Sl∧r )
k

]
(51)

+ (−1)kPm,n(t1 ≤ r)Em,n[St1 − St1∧r ]k. (52)

We now treat (51) and (52) separately.

(51) = E
[∑

l>r

(Sl − Sl∧r )
kQm,n(t1 = l)

]

≤ E
[∑

l>r

(Sl − Sl∧r )
k1{Sl−Sl∧r>l−r}

]

+ E
[∑

l>r

(l − r)kQm,n(t1 = l)

]
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≤ E
[ ∞∑

l=1

(Sl)
k1{Sl>l}

]

by reindexing

+ Em,n

[
(t1 − t1 ∧ r)k

]
.

The last inequality follows from stationarity. Since Sl is an i.i.d. sum of mean zero random variables which have finite
moments of all orders,

E
[
(Sl)

k1{Sl>l}
]
≤ E

[
(Sl)

2k
] 1

2 P
(
|Sl | > l

) 1
2

≤ Ckl
k
2 E

[(
Sl

l

)4k] 1
2

≤ Ckl
−k

which is summable over l.
For equation (52), we repeat the proof in [14, Lemma 4.2]:

Em,n[St1 − St1∧r ] = Em,n

[
(t1 − t1 ∧ r)

]
E

[
g(a,Ri,0)

]
+ E

[
t1∑

i=τ+1

g(a,Ri,0)

]

= CEm,n

[
(t1 − t1 ∧ r)

]
+

m∑

k=1

E
[
Qm,n(t1 = k)Sk

]

= C
(
Em,n

[
(t1 − t1 ∧ r)

]
+ 1

)
+

m∑

k=1

E[1{Sk≥k}Sk]

≤ C
(
Em,n[t1 − t1 ∧ r] + 1

)
. (53)

Taking the k-th powers and using Jensen’s inequality completes the proof. !

Given a random variable X and p ∈ [1,∞), we write

‖X‖p,E := E
[
|X|p

] 1
p ,

‖X‖p,Em,n := Em,n

[
|X|p

] 1
p

for the p-th norm with respect to the regular expectation E and the annealed expectation Em,n. When m, n is understood
we write E = Em,n.

Lemma 5.2. For every even integer k ≥ 2 there exists a constant Ck such that whenever {Xi}ki=1 are random variables
with finite annealed moments, then

∥∥κ
Q
k (X1, . . . ,Xk)

∥∥
p,E ≤ Ck

k∏

i=1

‖Xi‖pk,E

where the centering on the right-hand side is with respect to the annealed measure E.

Proof. Em,n[Xi] are constants and therefore

κ
Q
k (X1, . . . ,Xk) = κ

Q
k (X1, . . . ,Xk),

∣∣∣∣E
Q

[∏

i∈B

|Xi |
]∣∣∣∣

p

≤
∏

i∈B

EQ
[
|Xi |p|B|] 1

|B| ≤
∏

i∈B

EQ
[
|Xi |pk

] 1
k .

Using Hölder’s generalized inequality again,

E
[

k∏

i=1

EQ
[
|Xi |pk

] 1
k

]

≤
k∏

i=1

(
E[EQ

[
|Xi |pk

]) 1
k .

Taking the p-th root and plugging this into (16) yields the desired result with Ck = (k − 1)!2k . !
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The following allows us to control moments of σk(r) in terms of annealed moments of the exit time t1.

Lemma 5.3. For any k ∈ 2N, p ∈ [1,∞), there exist positive constants C(k,p) such that the following two conditions
hold for all r,M ∈ N:

∥∥σk(r)
∥∥

p,E ≤ C(k,p)
(
1 +

∥∥(t1 ∧ r)k
∥∥

p,E

)
, (54)

∥∥σk(m) − σk(r)
∥∥

p,E ≤ C(k,p)
(
1 +

∥∥(t1)
k
∥∥

2p,E

)‖(t1)M‖2pk,E

rM
. (55)

Proof. For 3,m ∈ N define

X3(m) :=
m∑

i=1

∂̃3Lf
(
a,R1

i,0
)
.

Taking Lp norms of (47), gives

∥∥σk(r)
∥∥

p,E ≤
k∑

j=1

∑

31+···3j =k−j
3i≥0

Ck,j,33
∥∥κ

Q
j

(
X31(t1 ∧ r), . . . ,X3j (t1 ∧ r)

)∥∥
p,E, (56)

and
∥∥σk(m) − σk(r)

∥∥
p,E

≤
k∑

j=1

∑

31+···3j =k−j
3i≥0

Ck,j,33
∥∥κ

Q
j

(
X31(t1), . . . ,X3j (t1)

)
− κ

Q
j

(
X31(t1 ∧ r), . . . ,X3j (t1 ∧ r)

)∥∥
p,E. (57)

Lemma 5.2, Lemma 5.1, equation (56), and Jensen’s inequality give (54). By (57) and a telescoping argument, to obtain
(55) it suffices to bound ‖κQ

j (Y1, . . . , Yj )‖p,E where

Yi =






Xi(t1 ∧ r) for 1 ≤ i < s,

Xs(t1) − Xs(t1 ∧ r) for i = s,

Xi(t1) for s < i ≤ j

and s ∈ {1, . . . , j} is fixed. By Lemma 5.1 and Jensen’s inequality, for i ,= s,

‖Y i‖pj,E ≤ ‖Y i‖pk,E ≤ C2p,k

(
1 + ‖t1‖pk,E

)
. (58)

By Jensen’s inequality, the Cauchy–Schwarz inequality, Lemma 5.1, and Markov’s inequality,

‖Y s‖pj,E ≤ ‖Y s‖pj,E =
∥∥Xs(t1) − Xs(t1 ∧ r)

∥∥
pk,E

≤
∥∥Xs(t1) − Xs(t1 ∧ r)1{t1>r}

∥∥
pk,E + E

[∣∣Xs(t1) − Xs(t1 ∧ r)
∣∣1{t1>r}

]

≤
∥∥Xs(t1) − Xs(t1 ∧ r)1{t1>r}

∥∥
pk,E + E

[∣∣Xs(t1) − Xs(t1 ∧ r)
∣∣1{t1>r}

]

+
∣∣E

[
Xs(t1) − Xs(t1 ∧ r)

]∣∣Pm,n(t1 > r)

≤ 2
∥∥Xs(t1) − Xs(t1 ∧ r)

∥∥
2pk,E‖1{t1>r}‖2pk,E +

∣∣E
[
Xs(t1) − Xs(t1 ∧ r)

]∣∣Pm,n(t1 > r)

≤ C2p,k

(
1 +

∥∥(t1 − t1 ∧ r)
∥∥

2pk,E

)
Pm,n(t1 > r)

1
2pk

≤ C2p,k

(
1 +

∥∥(t1 − t1 ∧ r)
∥∥

2pk,E

)‖(t1)M‖2pk,E

rM
.

In the third to last inequality we again used a slight modification of [14, Lemma 4.2] as in (53). Another application of
Jensen’s inequality along with (58) gives (55). !
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For the following lemma, recall the notation P(a1,a2) and E(a1,a2) defined in Section 2.3.

Lemma 5.4. Assume the polymer environment is as in (12) and the sequence (m,n) = (mN,nN)∞N=1 satisfies

∣∣m − Nψ
f 2

1 (a2)
∣∣ ∨

∣∣n − Nψ
f 1

1 (a1)
∣∣ ≤ γN

2
3

where γ is some positive constant. Then there exist finite positive constants C1, C2, C3, δ, δ1, b (uniformly bounded in
(a1, a2) such that for all N ∈ N the following two bounds hold simultaneously for j = 1,2: for all C1N

2
3 ≤ u ≤ δN ,

P(a1,a2)
[
Qm,n(tj ≥ u) ≥ e− δu2

N
]
≤ C2

(
Nk

u2k

(
E(a1,a2)

[
(logZm,n)

k
]
+ E(a1(λj ),a2(λj ))

[
(logZm,n)

k
]))

where a1(λ) := a1 + λ, a2(λ) = a2 − λ, λ1 = bu
N , and λ2 = − bu

N , while for u ≥ δN ,

P(a1,a2)
[
Qm,n(tj ≥ u) ≥ e−δ1u

]
≤ 2e−C3 .

Proof. Follow the proof of Proposition 4.3 in [7] verbatim up to the displayed inequality

(4.8) in [7] ≤ P̃
[

logZm,n

(
a1(λj ), a2(λj )

)
− logZm,n(a1, a2) ≥ C′′′ u

2

N

]
,

where (4.8) refers to the corresponding equation in [7].
Now rather than bounding by the second moment, bound by the k-th moment to get

(4.8) in [7] ≤
(

N

C′′′u2

)k

Ẽ
[(

logZm,n

(
a1(λj ), a2(λj )

)
− logZm,n(a1, a2)

)k]

≤ C2N
k

u2k

(
E(a1,a2)

[
(logZm,n)

k
]
+ E(a1(λj ),a2(λj ))

[
(logZm,n)

k
])

.

The proof of the second part is just as in Proposition 4.3 of [7]. !

Corollary 5.5. Let k ≥ 2. Suppose there exist δ, ε0 > 0 such that [a1 − ε0, a1 + ε0] × [a2 − ε0, a2 + ε0] ⊂ D(Mf1) ×
D(Mf2) and the following holds for every N ∈ N and every λ ∈ [−ε0, ε0]:

E(a1(λ),a2(λ))
[
(logZmN,nN )k

]
≤ CN( 1

3 )k+δk (59)

where a1(λ) = a1 − λ, and a2(λ) = a2 + λ. Then, for all ε > 0 there exists a positive constant C′ = C′(ε, k, a1, a2) such
that the following bound holds for every N ∈ N and every λ ∈ [− ε0

2 , ε0
2 ]:

E(a1(λ),a2(λ))
[
(tj )

2k
]
≤ C′N( 4

3 )k+δk+ε for both j = 1,2.

Here E(a1,a2) denotes the annealed expectations with respect to the measure on paths in the environment (12).

Proof. We apply Lemma 5.4 and use the same notation as in that lemma for constants. Fix λ0 ∈ [−ε0
2 , ε0

2 ] and put
(ã1, ã2) = (a1(λ0), a2(λ0)) ∈ D(Mf 1) × D(Mf 2). Note that ã1 + ã2 = a1 + a2 = a3 (see (12)). So by Lemma 5.4 and
(59) there exist positive constants N0 = N0(ε0) ∈ N, C1 = C1(ε0), δ = δ(ε0) such that for all N ≥ N0,

E(ã1,ã2)
[
(tj )

2k
]
≤

(
C1N

2
3
)2k + (2k)(εN)ε

∫ δN

C1∧N
2
3
u2k−1−εP (ã1,ã2)(tj ≥ u)du + C′(δ, δ1,C3,N0)

≤
(
C1N

2
3
)2k + (2k)(δN)εCC2N

( 4
3 )k+δk

∫ δN

C1N
2
3
u−1−ε du

≤ C(ε, k, ε0)N
( 4

3 k+δk+ε). !
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Lemma 5.6. Assume the polymer environment is distributed as in (12) and the sequence (m,n) = (mN,nN)∞N=1 satisfies

∣∣m − Nψ
f 2

1 (a2)
∣∣ ∨

∣∣n − Nψ
f 1

1 (a1)
∣∣ ≤ γN

2
3

where γ is some positive constant. Further, suppose there exist positive constants δ, ε0, {Ck}∞k=1 such that [a1 − ε0, a1 +
ε0] × [a2 − ε0, a2 + ε0] ⊂ D(Mf 1) × D(Mf 2) and the following hold for every k,N ∈ N and every λ ∈ [−ε0, ε0]:

E(a1(λ),a2(λ))
[
(logZm,n)

k
]
≤ CkN

( 1
3 +δ)k. (60)

Then for all ε > 0, M > 0, there exist positive constants {Cj,l = Cj,l(a1, a2, ε, δ,M)}∞j,l=1 (locally bounded in a1, a2)
such that for all N ∈ N we have the following:

∣∣E
[
(logZm,n)

jpl(Sm,a1;m)
]
− E

[
(logZm,n)

jpl

(
S(τ), a1; (τ)

)]∣∣ ≤ Cj,lN
−M,

where Sr = ∑r
i=1 logR1

i,0, and τ = N( 2
3 + δ

2 +ε).

Proof. By (48), for all 0 ≤ r ≤ m,

E
[
(logZm,n)

jpk(Sr , a1; r)
]
=

∑

31+···+3j =k
3i≥0

k!
l1! . . . lj !

E
[

j∏

i=1

σ3i (r)

]

where σ0(r) = logZm,n. It will therefore suffice to compare σ3i (m) with σ3i (r). Specifically, for fixed 31, . . . ,3j , such
that

∑j
i=1 3i = k, we wish to estimate

E
[

j∏

i=1

σ3i (m) −
j∏

i=1

σ3i (r)

]

.

By a telescoping argument it suffices to bound

E
[
σ3a (m)

∏

i∈I1

σ3i (m)
∏

i∈I2

σ (r)

]
− E

[
σ3a (r)

∏

i∈I1

σ3i (m)
∏

i∈I2

σ (r)

]

where a ∈ {1,2, . . . , j} is such that 3a ,= 0, I1 = {1, . . . , a − 1}, I2 = {a + 1, . . . , j}, and
∑j

i=1 3i = k. By the generalized
Hölder inequality this is bounded by

∥∥σ3a (m) − σ3a (r)
∥∥

2,E
∏

i∈I1

∥∥σ3i (m)
∥∥

2(j−1),E
∏

i∈I2

∥∥σ3i (r)
∥∥

2(j−1),E. (61)

Let I0 = {1 ≤ i ≤ j : 3i = 0}. By Lemma 5.3, for any r,M ∈ N,

(61) ≤ C(3a,2)
(
1 +

∥∥(t1)
3a

∥∥
4,E

)‖(t1)M‖43a,E

rM
‖logZm,n‖|I0|

2(j−1),E
∏

i /∈I0

C
(
3i ,2(j − 1)

)(
1 +

∥∥t
3i
1

∥∥
2(j−1),E

)
. (62)

Using the assumption (60), by Corollary 5.5, for any ε > 0 there exists a constant C(ε,p) ≥ 1 (uniformly bounded in
(a1, a2) such that

‖logZm,n‖p,E ≤ C(p, ε)N( 1
3 +δ) and

∥∥(t1)
3
∥∥

p,E
≤ C(3,p, ε)N

( 2
3 + δ

2 )3+ ε
p .

This implies the existence of positive constants C′ = C′(k, j,M) such that for all M ∈ N and all N ∈ N,

(62) ≤ C ′N( 2
3 + δ

2 )3a+ ε
4 · N( 2

3 + δ
2 )M+ ε

43a r−M · N( 1
3 +δ)|I0| ·

∏

i /∈I0

N
( 2

3 + δ
2 )3i+ ε

2(j−1) .
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Choosing

r = (τ) ≥ N
2
3 + δ

2 +ε − 1,

we obtain the bound

C′N( 1
3 +δ)(j−1)+( 2

3 + δ
2 )k+2ε−Mε .

Now fix M0 = M0(ε, δ, j, k) large enough such that such that
(

1
3

+ δ

)
(j − 1) +

(
2
3

+ δ

2

)
k + 2ε − M0ε ≤ −K. !

Before proceeding to Lemma 5.7, we note the following property of the polynomials pn(T , a; r) introduced in (19):

Proposition 5.1. For each n,

pn(t, a; r) =
n∑

j=0

cj (a)
(
t − rψ0(a)

)aj rbj ,

where cj (a) are independent of r and 0 ≤ aj , bj ≤ n are integers with

aj

2
+ bj = n

2
. (63)

In particular, if T = ∑r
k=1 logXk where Xk ∼ mf (a), then we have for integers b, k ≥ 0

E
[∣∣pb(T , a; r)

∣∣k] ≤ Cb,kr
kb/2. (64)

Proof. The result is clearly true for p0(T , a; r). Next, we note that if aj , bj satisfy (63), then

∂

∂a

(
t − rψ0(a)

)aj rbj +
(
t − rψ0(a)

)aj rbj ·
(
t − rψ0(r)

)

= −ajψ1(a)
(
t − rψ0(a)

)aj −1
rbj +1 +

(
t − rψ0(a)

)aj +1
rbj .

Noting that

aj − 1
2

+ bj + 1 = aj + 1
2

+ bj = n + 1
2

,

the claim follows by induction from the definition (19). !

Lemma 5.7. With the same assumptions as in Lemma 5.6, for all k ∈ N there exist positive constants Ck = Ck(a1, a2)
(locally bounded) such that for all even k ≥ 2.

E
[
(logZm,n)

k
]
≤ CkN

( 1
3 + δ

3 )k for all N ∈ N. (65)

Proof. The proof is by induction on k. For k = 2, (65) holds with δ = 0. Assuming the estimate for even exponents less
than k, we use the first expression in Corollary 4.8 to express the cumulant κk(logZm,n) as a sum of terms of the form

∏

B∈π
E

[
(logZm,n)

aj,B pbj,B (Sm,a1;m)
]
, (66)

where π is a partition of {1, . . . , k} into |π| blocks B , and aj,B + bj,B = |B|.
Using equation (48) and Lemma 5.6 with K > 2k, we have, for τ = n2/3+δ/2+ε ,

∏

B∈π
E

[
(logZm,n)

aj,B pbj,B (Sm,a1;m)
]

=
∏

B∈π
E

[
(logZm,n)

aj,B pbj,B

(
S(τ), a1; (τ)

)]
+ O

(
n−k

)
.
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Taking absolute values and applying Hölder’s inequality,
∣∣E

[
(logZm,n)

aj,B pbj,B

(
S(τ), a1; (τ)

)]∣∣

≤ E
[
(logZm,n)

k
] aj,B

k E
[∣∣pbj,B

(
S(τ), a1; (τ)

)∣∣k′] bj,B

k′

≤ Cn((1/3)+δ/4+ε/2)bj,B E
[
(logZm,n)

k
] aj,B

k ,

where aj,B

k + 1
k′ = 1. The last inequality follows from equation (64) in Proposition 5.1. Taking the product over B ∈ π,

we have, up to a constant factor, the bound:

n((1/3)+δ/4+ε/2)bj E
[
(logZm,n)

k
] aj

k , (67)

where

aj :=
∑

B

aj,B and bj :=
∑

B

bj,B,

so aj

k + bj

k = 1. Note that for 1 ≤ j ≤ k − 1, we have aj ≤ k − 1. Applying Young’s inequality xy ≤ 1
pxp + 1

q yq to (67),
we find that for η > 0, any term of the form (66) is bounded by

ηE
[
(logZm,n)

k
]
+ C(η)n((1/3)+δ/4+ε/2)k + O

(
n−k

)
.

Combining this with Corollary 4.8, we have

κk(logZm,n) = C(k)ηE
[
(logZm,n)

k
]
+ C(k)C(η)n((1/3)+δ/4+ε/2)k + O

(
n−k

)
. (68)

Writing

κk(logZm,n) = E
[
(logZm,n)

k
]
+

∑

|α|=k
0≤αi<k

cα

|α|∏

i=1

E
[
(logZm,n)

αi
]
, (69)

where the sum is over multi-indices α = (α1, . . . ,αk),
∑

i αi = k. If some αi = k − 1, then the product must equal zero.
Therefore, by the induction assumption, all terms in the sum on the right of (69) are of order n((1/3)+δ/3)k . Choosing η

sufficiently small in (68) and absorbing ε/2 into δ/4, we obtain the result. !

5.1. Finishing the argument

Combining Corollary 5.5 and Lemma 5.7 we obtain the following:

Lemma 5.8. Assume the polymer environment is distributed as in (12) and the sequence (m,n) = (mN,nN)∞N=1 satisfies

∣∣m − Nψ
f 2

1 (a2)
∣∣ ∨

∣∣n − Nψ
f 1

1 (a1)
∣∣ ≤ γN

2
3

where γ is some positive constant. Further, suppose there exist positive constants δ, ε0, C(k) for k ∈ {2,4, . . .} such that
[a1 − ε0, a1 + ε0]× [a2 − ε0, a2 + ε0] ⊂ D(Mf 1)×D(Mf 2) and the following hold for any even k and any λ ∈ [−ε0, ε0]:

E(a1(λ),a2(λ))
[
(logZm,n)

k
]
≤ C(k)N( 1

3 +δ)k.

Then there exist constants C′(k) > 0 for k ∈ {2,4, . . . } such that for any even k and any λ ∈ [− ε0
2 , ε0

2 ]:

E(a1(λ),a2(λ))
[
(logZm,n)

k
]
≤ C′(k)N( 1

3 + δ
3 )k.

Theorem 1 will follow from repeated application of Lemma 5.8 once we prove the following:
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Proposition 5.2. Assume the polymer environment is distributed as in (12) and the sequence (m,n) = (mN,nN)∞N=1
satisfies

∣∣m − Nψ
f 2

1 (a2)
∣∣ ∨

∣∣n − Nψ
f 1

1 (a1)
∣∣ ≤ γN

2
3 (70)

where γ is some positive constant. Then there exists positive constants ε0 and C(k) for k ∈ {2,4, . . . } such that [a1 −
ε0, a1 + ε0] × [a2 − ε0, a2 + ε0] ⊂ D(Mf 1) × D(Mf 2) and the following hold for any even k and any λ ∈ [−ε0, ε0]:

E(a1(λ),a2(λ))
[
(logZm,n)

k
]
≤ C(k)N( 1

3 + 1
6 )k. (71)

Proof. Since (a1, a2) ∈ D(Mf 1) × D(Mf 2), there exists a positive constant ε0 such that [a1 − ε0, a1 + ε0] × [a2 −
ε0, a2 + ε0] ⊂ D(Mf 1) × D(Mf 2). With notation as in Section 3.1, if we define A := logZm,n, then A = Sm + En. Thus,
for even k,

E
[
Ak

]
≤ 2k−1(E

[
(Sm)k

]
+ E

[
(En)

k
])

. (72)

By Proposition 3.1, all four models described by (12) have the down-right property. So by the discussion in Section 3.1,
Sm and En are both sums of i.i.d. random variables whose common distributions continuously depends on a1 and a2
respectively. Moreover, by Remark 2, all random inside of the summations have finite exponential moments. Therefore,
for every k ∈ {2,4, . . . } there exists a positive constant Ck = Ck(a1, a2), which is continuous in (a1, a2), such that

E
[
(Sm)k

]
≤ Ckm

k/2 for all m ≥ 1

and

E
[
(En)

k
]
≤ Ckn

k/2 for all n ≥ 1.

Using equations (72) and (70) now yields the desired result. !

Proof of Theorem 1. The four basic beta-gamma models (3)–(6) can all be described by equation (12). So let ε > 0 and
(a1, a2) ∈ D(Mf 1) × D(Mf 2). Fix even integers k, M such that p ≤ k and

(1/6)

3M
≤ ε.

By Jensen’s inequality, it suffices to show the bounds (9) and (10) hold with p replaced by k. Now apply Proposition 5.2
followed by M consecutive applications of Lemma 5.8 to obtain the bound (9). Finally, apply Corollary 5.5 to both t1 and
t2 to obtain the bound (10). !

Appendix A: Combinatorial formula for cumulants

Here we derive the formula (16) for the joint cumulants. This identity is classical and appears on Wikipedia under Cumu-
lants [17], but we could not locate a suitable proof to cite.

We will prove the following by induction. Denote

Z := E
[
e
∑n

i=1 ξiXi
]
,

E[·] := 1
Z

E
[
e
∑n

i=1 ξiXi ·
]
.

Note that for k ≤ n

κk(X1, . . . ,Xk) = ∂ξ1 · · ·∂ξk logZ|ξ1=···=ξn=0.

We will show by induction that

∂ξ1 · · ·∂ξk logZ =
∑

π∈P(1,...,k)

(
|π| − 1

)
!(−1)|π|−1

∏

B∈π
E

[∏

i∈B

Xi

]
. (73)
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Proof. Note that the result holds for k = 1. Indeed, this case

∂ξ1 logZ = E[X1].

Assume the result for k ≤ n − 1. We prove the result for k + 1. Differentiating (73), we obtain for each π ∈ P(1, . . . , k)
appearing in the sum (73):

∂ξk+1

∏

B∈π
E

[∏

i∈B

Xi

]
=

∑

B ′∈π
∂ξk+1E

[ ∏

j∈B ′
Xj

] ∏

B ,=B ′
E

[∏

i∈B

Xi

]
.

For the derivative, we have

∂ξk+1E

[ ∏

j∈B ′
Xj

]
= ∂ξk+1

1
Z

E
[
e
∑n

i=1 ξiXj
∏

j∈B ′
Xj

]

= E

[
Xk+1

∏

j∈B ′
Xj

]
− E[Xk+1]E

[ ∏

j∈B ′
Xj

]
.

Thus, we have

∂ξk+1

∏

B∈π
E

[∏

i∈B

Xi

]
=

∑

B ′∈π
E

[
Xk+1

∏

j∈B ′
Xj

] ∏

B ,=B ′
E

[∏

i∈B

Xi

]

−
∑

B ′∈π
E[Xk+1]E

[ ∏

j∈B ′
Xj

] ∏

B ,=B ′
E

[∏

i∈B

Xi

]

=
∑

B ′∈π
E

[
Xk+1

∏

j∈B ′
Xj

] ∏

B ,=B ′
E

[∏

i∈B

Xi

]

− |π|E[Xk+1]
∏

B∈π
E

[∏

i∈B

Xi

]
. (74)

The first term corresponds to adding a factor Xk+1 to a single B block of the partition π and the second term corresponds
to adding a 1-term block {k + 1} to π. Summing (74) over π ∈ P(1, . . . , k), we obtain

∂ξk+1

∑

π∈P(1,...,k)

(
|π| − 1

)
!(−1)|π|−1

∏

B∈π
E

[∏

i∈B

Xi

]

=
∑

π∈P(1,...,k)

(
|π| − 1

)
!(−1)|π|−1

∑

B ′∈π
E

[
Xk+1

∏

j∈B ′
Xj

] ∏

B ,=B ′
E

[∏

i∈B

Xi

]

−
∑

π∈P(1,...,k)

|π|!(−1)|π|E[Xk+1]
∏

B∈π
E

[∏

i∈B

Xi

]

=
∑

π̃∈P(1,...,k+1)

(
|π̃| − 1

)
!(−1)|π̃|−1

∏

B∈π̃

E

[∏

i∈B

Xi

]
.

To verify the final step, note that any partition of {1, . . . , k + 1} which contains {k + 1} as a single element block induces
a partition π of {1, . . . , k} from the remaining blocks with |π| = |π̃| − 1; otherwise, if {k + 1} does not appear as block in
π̃, the partition can be obtained from some π ∈ P(1, . . . , k) by adding k + 1 to one of the |π| blocks without changing the
number of blocks. !

Appendix B: Proof of Theorem 5

The next lemma says that it suffices to verify Hypothesis 1 for f (x) = e−bx , f (x) = (1 − x)b−11{0<x<1}, and f (x) =
( x

1+x )b where b > 0.
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For A ⊂ R write −A = {−a : a ∈ A} and A−1 = {a−1 : a ∈ A} assuming that 0 /∈ A.

Lemma B.1. If the function f satisfies Hypothesis 1, then so does the function g(x) := f ( 1
x ) for x ∈ (0,∞), with the

same constants Cj (a).

Proof. Recall the notation in Sections 2.2 and 4.2. Clearly supp(g) = supp(f )−1 and D(Mf ) = −D(Mg). As in the
proof of [7, Lemma A.1], one can verify that:

Fg(a, x) = 1 − Ff

(
−a,

1
x

)
for (a, x) ∈ D(Mg) × supp(g),

Lg(a, x) = Lf

(
−a,

1
x

)
for (a, x) ∈ D(Mg) × supp(g),

Hg(a,p) = 1
Hf (−a,1 − p)

for (a,p) ∈ D(Mg) × (0,1). (75)

Combining the last two equalities gives

Lg
(
a,Hg(a,p)

)
= Lf

(
−a,Hf (−a,1 − p)

)
for (a,p) ∈ D(Mg) × (0,1). (76)

Recall also the definition of the derivative ∂̃ in (37). We write ∂̃f and ∂̃g to denote the dependence on the underlying
function. Recall that

∂̃k
gLg

(
a,Hg(a,p)

)
= ∂k

∂ak
Lg

(
a,Hg(a,p)

)
for all (a,p) ∈ D(Mg) × supp(g).

Applying ∂k

∂ak to equation (76) gives

∂k

∂ak
Lg

(
a,Hg(a,p)

)
= (−1)k

∂k

∂bk

(
Lf

(
b,Hf (b,1 − p)

))∣∣∣∣
b=−a

= (−1)k ∂̃k
f Lf

(
−a,Hf (−a,1 − p)

)
,

so

∂̃k
gLg

(
a,Hg(a,p)

)
= (−1)k ∂̃k

f Lf
(
−a,Hf (−a,1 − p)

)
for all (a,p) ∈ D(Mg) × (0,1).

Making the substitution x = Hg(a,p) and using equation (75), we get

∂̃k
gLg(a, x) = (−1)k ∂̃k

f Lf

(
−a,

1
x

)
for all (a, x) ∈ D(Mg) × supp(g).

Taking absolute values and using the fact that | logx| = | log 1
x | completes the proof. !

Write C∞(A) for the set of smooth functions defined on a set A. For a fixed f with non-empty D(Mf ) and which is
smooth on its open support, define the linear transformations T and S on C∞(D(Mf ) × supp(f )) by

T (h)(a, x) := 1
xaf (x)

∫ x

0
h(a, y)ya−1f (y)dy,

S(h)(a, x) := ∂h

∂a
(a, x) + h(a, x) logx

for h ∈ C∞(D(Mf )× supp(f )) and (a, x) ∈ D(Mf )× supp(f ). Notice that when h(a, x) = ψ
f
0 (a)− logx, T (h) = Lf .

Notice that ∂̃ in (37) is also a linear transformation on C∞(D(Mf ) × supp(f )). The following lemma gives a useful
recursion for ∂̃kLf :
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Lemma B.2. Assume f : (0,∞) → [0,∞) has non-empty D(Mf ), open supp(f ), and satisfies f ∈ C∞(supp(f )). If
h ∈ C∞(D(Mf ) × supp(f )), then for (a, x) ∈ D(Mf ) × supp(f ), and

(
∂̃T (h)

)
(a, x) = T ◦ S(h)(a, x) −

[(
a + x

f ′(x)

f (x)

)
Lf (a, x) + logx

]
T (h)(a, x) + h(a, x)Lf (a, x).

Moreover, if there exists an integer k ≥ 1 and a constant C = C(a0, a1) > 0 such that

sup
a∈[a0,a1]

∣∣∣∣
∂h

∂a
(a, x)

∣∣∣∣ ≤ C
(
1 + | logx|k

)
for all x ∈ R, (77)

then
∫ ∞

0
h(a, y)ya−1f (y)dy ≡ 0 ⇒

∫ ∞

0
S(h)(a, y)ya−1f (y)dy ≡ 0.

Proof. A computation yields

∂T (h)

∂a
(a, x) = − logx · T (h)(a, x) + T ◦ S(h)(a, x),

∂T (h)

∂x
(a, x) =

(
−a

x
− f ′(x)

f (x)

)
T (h)(a, x) + h(a, x)

x
,

which gives the first part. For the second part, by Remark 2 in Section 2.2, | logX| has finite exponential moments. We
can therefore exchange the derivative with the integral in the expression

∂

∂a

∫ ∞

0
h(a, y)ya−1f (y)dy. !

For a ∈ D(Mf ) and x > 0, recursively define

h1(a, x) := ψ
f
0 (a) − logx and

hn(a, x) := S(hn−1)(a, x) for n ≥ 2.
(78)

Then hn(a, x) is an n-th degree polynomial in logx with coefficients that are smooth in a. Thus, there exist constants
Cn > 0 for n = 1,2, . . . such that

sup
a∈[a0,a1]

∣∣∣∣
∂hn

∂a
(a, x)

∣∣∣∣ ≤ Cn

(
1 + | logx|n

)
for all x > 0.

By the second part of Lemma B.2,
∫ ∞

0
hn(a, x)ya−1f (y)dy = 0 for all n ∈ N and a ∈ (a0, a1). (79)

The functions hn will serve as a basis generating all functions obtainable from Lf through repeated application of the
operation ∂̃ . To proceed we define some algebraic structures.

Given a subset F ⊂ C∞(D(Mf ) × supp(f )), define A(F ) ⊂ C∞(D(Mf ) × supp(f )) to be the algebra generated by
F over the ring C∞(D(Mf )). More specifically, g ∈ A(F ) ⇔ there exist c1, . . . , cn ∈ C∞(D(Mf )) and g1, . . . , gn ∈
C∞(D(Mf ) × supp(f )) such that

g(a, x) =
n∑

i=1

ci(a)gi(a, x) for all (a, x) ∈ D(Mf ) × supp(f ).

Now let

r(x) := x
f ′(x)

f (x)
(80)
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for x ∈ supp(f ) and put

F :=
{
logx,T (hn)(a, x), r(x)T (hn)(a, x) : n ∈ N

}
.

Define the degree function deg : F → Z+ by

deg(logx) = 1 and deg
(
T (hn)

)
= deg

(
rT (hn)

)
= n for n ∈ N.

Extend the degree function to A(F ) by defining

deg(c) := 0, deg(g · h) := deg(g) + deg(h), and deg(g + h) := max
(
deg(g),deg(h)

)

for c ∈ C∞(D(Mf )), and non-zero f,g ∈ C∞(D(Mf ) × supp(f )). Note that this turns deg into an algebra homomor-
phism from A(F ) into Z+ with the (+,max) algebra. For n ∈ N, let An := {g ∈ A(F ) : deg(g) ≤ n}. Note that An is
linear.

Lemma B.3. Suppose supp(f ) is non-empty and open, D(Mf ) is non-empty, f is smooth on its support, and the follow-
ing two statements hold for every n ∈ N :

(1) ∂̃r · T (hn) ∈ An+1, and
(2) there exists some Cn ∈ C(D(Mf )) such that

(
1 ∨

∣∣r(x)
∣∣)∣∣T (hn)(a, x)

∣∣ ≤ Cn(a)
(
1 + | logx|n

)
for all (a, x) ∈ D(Mf ) × supp(f ).

Then f satisfies Hypothesis 1.

Proof. We first claim that

The operator ∂̃ maps An → An+1 for all n ∈ N. (81)

To see this, notice that ∂̃ satisfies a product rule:

∂̃(g · h) = (∂̃g) · h + g · (∂̃h),

and it maps C∞(D(Mf )) → C∞(D(Mf )). Thus, to show (81), it suffices to show ∂̃(logx) ∈ A1 and for all n ∈ N,
∂̃(T (hn)) and ∂̃(r · T (hn)) are in An+1.

Clearly, ∂̃(logx) = Lf = T (h1) ∈ F has degree 1 by definition, so it is in A1. By Lemma B.2,

∂̃
(
T (hn)

)
= T (hn+1) −

[(
a − r(x)

)
Lf + logx

]
T (hn) + hn · Lf ∈ An+1 (82)

since T (hn+1) ∈ An+1, T (hn) ∈ An, and r ·Lf ,Lf , logx ∈ A1. Additionally, using r ·T (hn+1) ∈ An+1 and r ·T (hn) ∈ An

we see that r · ∂̃(T (hn)) ∈ An+1 as well. By assumption, ∂̃(r) · T (hn) ∈ An+1, so the product rule implies

∂̃
(
r · T (hn)

)
∈ An+1,

which completes (81).
Now define

B :=
{
g ∈ A(F ) : there exists c ∈ C

(
D(Mf )

)
for which

∣∣g(a, x)
∣∣ ≤ c(a)

(
1 + | logx|deg(g)

)}
.

B is a sub-algebra of A(F ), which clearly contains logx. By assumption 2. in the statement of the Lemma,

F ⊂ B, (83)

which implies B = A(F ). Now Lf ∈ A1 and (81) implies (̃∂)nLf ∈ An+1 ⊂ B which completes the proof. !

We now prove Theorem 5.

Proof of Theorem 5. By Lemma B.1, it suffices to consider only the functions f (x) = e−bx , f (x) = (1−x)b−11{0<x<1},
and f (x) = ( x

1+x )b for b > 0. We check that the assumptions of Lemma B.3 are satisfied in these three cases.
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First note that since hn(a, x) is an n-th degree polynomial in logx with coefficients that are smooth in a, for every
n ∈ N there exists some C̃n ∈ C(D(Mf )) such that

∣∣hn(a, x)
∣∣ ≤ C̃n(a)

(
1 + | logx|n

)
for all (a, x) ∈ D(Mf ) × supp(f ). (84)

Moreover, by (79),
∫ x

0
hn(a, y)ya−1f (y)dy =

∫ ∞

x
hn(a, y)ya−1f (y)dy for all x ≥ 0. (85)

Case 1: f (x) = e−bx . Here supp(f ) = (0,∞) = D(Mf ), f is clearly smooth on (0,∞), and r(x) = −bx. Notice that

∂̃r = −bxLf = r · Lf

lies in A1 by definition. So clearly the first assumption of Lemma B.3 holds. We now check the second assumption of
Lemma B.3 is satisfied. When 0 < x ≤ 1, using (84) and a > 0,

∣∣T (hj )(a, x)
∣∣ ≤ ebx

xa

∫ x

0

∣∣hn(a, y)
∣∣ya−1e−y dy ≤ ebC̃j (a)

xa

∫ x

0

(
1 + | logy|j

)
ya−1 dy

≤ Cj(a)
(
1 + | logx|j

)
.

When x > 1, using (84), (85), followed by the substitution y 0→ y
x − 1, and finally an application of integration by

parts yields

∣∣T (hj )(a, x)
∣∣ ≤ ebxC̃j (a)

xa

∫ ∞

x

(
1 + | logy|j

)
ya−1e−by dy

= C̃j (a)

∫ ∞

0

(
1 +

∣∣log(y + 1) + logx
∣∣j )ya−1e−bxy dy

= C̃j (a)

bx

(
1 + | log 2|j + | logx|j

)
+ O

(
1
x2

)

≤ C̃j (a)

bx

(
1 + | logx|j

)
,

where we increased C̃j (a) in the last step if necessary. Combining these two bounds yields the desired result, completing
the proof for Case 1.

Case 2: f (x) = (1 − x)b−11{0<x<1}. Here supp(f ) = (0,1), D(Mf ) = (0,∞), f is clearly smooth on (0,1), and
r(x) = −(b − 1) x

1−x . To see that the first assumption in Lemma B.3 holds, notice that

∂̃r = −(b − 1)
x

(1 − x)2 Lf = r ·
(

1 + r

1 − b

)
Lf .

Thus ∂̃r ·T (hj ) = (r ·Lf ) ·T (hj )+ 1
b−1 (r ·Lf ) · (r ·T (hj )) ∈ Aj+1 since r ·Lf ∈ A1, and r ·T (hj ) ∈ Aj by definition.

We now check the second assumption of Lemma B.3 is satisfied. By (84), we have the bounds

∣∣hj (a, y)ya−1f (y)
∣∣ ≤

{
C̃j (a)(1 + | logy|j )ya−1 if 0 < y < 1

2 ,

C̃j (a)(1 − y)b−1 if 1
2 ≤ y < 1.

Since a > 0, for 0 < x < 1
2 ,

∣∣T (hj )(a, x)
∣∣ ≤ 2aCj (a)

xa

∫ x

0

(
1 + | logy|j

)
ya−1 dy ≤ C̃j (a)

(
1 + | logx|j

)
. (86)

Similarly, using equation (85), for 1
2 ≤ x < 1,

∣∣T (hj )(a, x)
∣∣ ≤ 2aC̃j (a)

(1 − x)b−1

∫ 1

x
(1 − y)b−1 dy ≤ C̃j (a)(1 − x) (87)
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where we increased C̃j (a) if necessary. Thus, for all 0 < x < 1, |r(x)| ≤ |b − 1| 1
1−x implies

∣∣T (hj )(a, x)
∣∣ ∨

∣∣r(x)T (hj )(a, x)
∣∣ ≤ Cj (a)

(
1 + | logx|j

)
.

This completes the proof for case 2.
Case 3: f (x) = ( x

1+x )b . Here supp(f ) = (0,∞), D(Mf ) = (−b,0), f is clearly smooth on (0,∞), and r(x) = b 1
1+x .

To see the first assumption of Lemma B.3 is satisfied, notice that

∂̃r = −b
x

(1 + x)2 Lf = −r ·
(

1 − r

b

)
Lf .

Thus ∂̃r · T (hj ) = −(r · Lf ) · T (hj ) + 1
b (r · Lf ) · (r · T (hj )) ∈ Aj+1 since r · Lf ∈ A1, and r · T (hj ) ∈ Aj by definition.

We now check the second assumption of Lemma B.3. By (84), we have the bounds

∣∣hj (a, y)ya−1f (y)
∣∣ ≤

{
C̃j (a)(1 + | logy|j )ya+b−1 if 0 < y < 1,

C̃j (a)ya−1 if 1 ≤ y < ∞.

Since a + b > 0, for 0 < x < 1,

∣∣T (hj )(a, x)
∣∣ ≤ 2bCj (a)

xa+b

∫ x

0

(
1 + | logy|j

)
ya+b−1 dy ≤ C̃j (a)

(
1 + | logx|j

)
. (88)

Similarly, using equation (85), for 1 ≤ x < ∞,

∣∣T (hj )(a, x)
∣∣ ≤ 2bC̃j (a)

xa

∫ ∞

x
ya−1 dy ≤ C̃j (a) (89)

where we increased C̃j (a) if necessary. Thus, for all 0 < x < ∞, |r(x)| ≤ |b| implies

∣∣T (hj )(a, x)
∣∣ ∨

∣∣r(x)T (hj )(a, x)
∣∣ ≤ Cj (a)

(
1 + | logx|j

)
.

This completes the proof for case 3. !

Appendix C: Finite exponential moments for the free energy

Lemma C.1. Assume the polymer environment is such that | logR1|, | logR2|, | logY 1|, and | logY 2| all have finite
exponential moments. Then,

| logZm,n| has finite exponential moments for all (m,n) ∈ Z2
+.

Proof. Since logZ0,0 = 0, logZk,0 = ∑k
i=1 R1

i,0, and logZ0,k = ∑k
j=1 R2

0,j , logZx has finite exponential moments for
any x ∈ Z2

+ \ N2. When x ∈ N2, the recursion (19) implies that

(
logY 1

x + logZx−α1

)
∧

(
logY 2

x + logZx−α2

)
≤ logZx − log 2 ≤

(
logY 1

x + logZx−α1

)
∨

(
logY 2

x + logZx−α2

)
.

Thus

| logZx − log 2| ≤
∣∣logY 1

x + logZx−α1

∣∣ ∨
∣∣logY 2

x + logZx−α2

∣∣.

Since | logY 1
x | and | logY 2

x | have finite exponential moments, and inductive argument finishes the proof. !
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