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Abstract

We present an improved method for calculating the parallel and perpendicular velocity correlation functions
directly from peculiar velocity surveys using weighted maximum-likelihood estimators. A central feature of the
new method is the use of a position-dependent weighting scheme that reduces the influence of nearby galaxies,
which are typically overrepresented relative to more distant galaxies in most surveys. We demonstrate that
correlation functions calculated in this way are less susceptible to biases due to our particular location in the
universe, and thus are more easily comparable to linear theory and between surveys. Our results suggest that the
parallel velocity correlation function is a promising cosmological probe, given that it provides a better
approximation of a Gaussian distribution than other velocity correlation functions and that its bias is more easily
minimized by weighting. Though the position-weighted parallel velocity correlation function increases the
statistical uncertainty, it decreases the cosmic variance and is expected to provide more stable and tighter
cosmological parameter constraints than other correlation methods in conjunction with more precise velocity
surveys in the future.

Unified Astronomy Thesaurus concepts: Cosmology (343)

1. Introduction

Studies of density perturbations provide information used to
analyze the large-scale structure of the universe. However, density
perturbation studies based on galaxy redshift distributions are
limited by the bias due to peculiar velocities, also known as
redshift space distortion (RSD). Many studies have shown the
effects of peculiar velocities in RSD studies (e.g., Kaiser 1987;
Melott et al. 1998; Scoccimarro 2004; Thomas et al. 2004; Taruya
et al. 2010; Reid & White 2011; Seljak & McDonald 2011; Song
et al. 2013; Taruya et al. 2013; Zhang et al. 2013; Zheng et al.
2013; Senatore & Zaldarriaga 2014; Okumura et al. 2015;
Uhlemann & Kopp 2015; Bianchi et al. 2016; Vlah et al. 2016;
Hand et al. 2017; Bel et al. 2019).

Peculiar velocity is a powerful tracer of mass distribution
(e.g., Watkins et al. 2009; Feldman et al. 2010; Davis et al.
2011; Macaulay et al. 2011; Nusser et al. 2011; Macaulay et al.
2012; Turnbull et al. 2012; Johnson et al. 2014; Nusser 2014;
Springob et al. 2014; Scrimgeour et al. 2016). However,
current peculiar velocity measurements are still based on radial
distances, which limit the precision of peculiar velocity
surveys. A different method of measuring peculiar velocity
can be performed using the kinematic Sunyaev–Zeldovich
effect (e.g., Sunyaev & Zeldovich 1980; Dolag et al. 2005;
Kashlinsky et al. 2008; Hand et al. 2012; Dolag et al. 2016;
Planck Collaboration et al. 2016, 2020). However, due to signal
weakness, it is a very difficult measurement. Therefore,
ensemble statistics of peculiar velocities are more practical
for current studies (e.g., Kaiser 1988; Ferreira et al. 1999;
Juszkiewicz et al. 2000; Feldman et al. 2003; Watkins &
Feldman 2007; Watkins et al. 2009; Feldman et al. 2010;
Davis et al. 2011; Abate & Feldman 2012; Agarwal
et al. 2012; Hand et al. 2012; Hellwing 2014; Nusser 2014;
Kumar et al. 2015; Hoffman et al. 2016; Nusser 2016;

Planck Collaboration et al. 2016; Scrimgeour et al. 2016,
2016; Seiler & Parkinson 2016; Hellwing et al. 2017).
Velocity correlation function analysis provides another tool to

investigate the peculiar velocity field. The most widely used
velocity correlation estimator was introduced by Gorski (1988)
and further formulated by Gorski et al. (1989). It has provided
interesting results constraining cosmological parameters (e.g.,
Jaffe & Kaiser 1995; Zaroubi et al. 1997; Borgani et al. 2000;
Juszkiewicz et al. 2000; Abate & Erdoǧdu 2009; Nusser & Davis
2011; Okumura et al. 2014; Hellwing et al. 2017; Howlett et al.
2017; Wang et al. 2018; Dupuy et al. 2019).
The velocity correlation function can be expressed as two

independent functions, one for velocity components along the
separation vector of a pair of galaxies and one for components
perpendicular to this vector. The Gorski (1988) correlation
estimator results in a complicated combination of these two
functions, with the precise mixture given by selection functions
that depend on the distribution of the survey objects as well as
on the separation distance. This estimator has the decided
disadvantage of not being comparable between studies that use
different survey objects. Furthermore, at the time that it was
introduced it was seen as being more stable than other methods
given the small size of the available data sets. Given the
availability of much larger peculiar velocity catalogs today, it is
an opportune time to explore other methods of estimating
velocity correlations. In addition, Wang et al. (2018) found that
the cosmic variance of the correlation function using the Gorski
estimator is large and non-Gaussian-distributed, and Hellwing
et al. (2017) showed that it is susceptible to biases due to our
special location near a large overdensity—the Virgo Cluster.
These problems make the Gorski (1988) peculiar velocity
correlation estimator less than ideal as a probe of the large-scale
structure.
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In this paper, we use an alternative method, introduced by
Kaiser (1989) and Groth et al. (1989), that estimates the parallel
and perpendicular correlation functions directly in a way that is
independent of the survey distribution. This method further
allows for the weighting of individual velocity measurements
to account for the uneven sampling of the volume by peculiar
velocity surveys. This is caused by two effects. First, the
density of observed galaxies in a survey typically decreases
with distance, so that the inner portions of the survey volume
are more densely sampled than the outer portions. Second,
peculiar velocity measurement uncertainties grow rapidly with
distance, so that the measured velocities of nearby objects are
much more accurate than those at greater distance. Both of
these effects result in nearby galaxies carrying an outsized
weight in most velocity analyses, leading to results that
predominantly reflect the velocity field in a much smaller
effective volume than expected from the scale of the survey.
While Groth et al. (1989) used weighting to reduce the effect of
random errors, we introduce a novel weighting scheme that
reduces cosmic variance and bias by increasing the effective
volume probed by a survey.

The paper is organized as follows: In Section 2, we derive
the weighted estimators for the parallel and perpendicular
correlation functions. In Section 3, we discuss the Cosmic-
flows-3 (CF3) catalog we analyze. In Section 4, we introduce
the N-body simulations and methods used for generating mock
catalogs. In Section 5, we show results for our method on both
randomly centered mock catalogs and those centered in
environments similar to that of the Milky Way for several
different weighting schemes. We also apply our methods to
obtain estimates of the parallel and perpendicular correlation
functions in the local universe using data from the CF3 catalog.
In Section 6, we discuss the parameter-constraining result using
the weighted estimators. Section 7 concludes this paper.

2. The Peculiar Velocity Correlation Estimator

The general form of the two-point velocity correlation
tensor is

Y = á + ñr r r rv v , 1ij i j0 0( ) ( ) ( ) ( )

where i and j designate the Cartesian components of the
velocity and the average is over points separated by the vector
r. Making the usual assumption that the velocity field is a
statistically isotropic and homogeneous random field, we can
write the correlation tensor in terms of two functions that
depend only on the magnitude of the separation vector r= |r|,

dY = Y + Y -^r r r r r r r 2ij i j ij i j( ) ( ) ˆ ˆ ( )( ˆ ˆ ) ( )

where r̂ is a unit vector in the direction of the separation vector.
These two functions have simple physical interpretations: ΨP(r)
is the (parallel) correlation of the velocity components along
the separation vector and Ψ⊥(r) gives the (perpendicular)
correlation of the components of the velocity perpendicular to
the separation vector.

Our goal is to estimate ΨP(r) and Ψ⊥(r) from the correlations
in the radial component of the peculiar velocity, u, which is the
only component that can be measured. Given a pair of galaxies
at positions r1 and r2, we can write the correlation of their radial

peculiar velocities as
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This expression can be written in terms of θ1 and θ2, the
angles the separation vector r makes with the position vectors
r1 and r2, respectively. Specifically,

q q=r r r r cos cos , 41 2 1 2(ˆ · ˆ)(ˆ · ˆ) ( ) ( ) ( )

and

q q
q q q q

= -
= +

r r cos
cos cos sin sin . 5

1 2 2 1

1 2 1 2

ˆ · ˆ ( )
( ) ( ( ) ( ) ( )

Using these results, we can put Equation (3) into the simple
form

q q q qá ñ = Y + Ŷu u r f r g, , , 61 2 1 2 1 2( ) ( ) ( ) ( ) ( )

where q q=f cos cos1 2( ) ( ) and q q=g sin sin1 2( ) ( ).
Following Kaiser (1989) and Groth et al. (1989), we use a

weighted least-squares method to estimate ΨP(r) and Ψ⊥(r)
from a catalog of peculiar velocities um. We minimize the
function
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with respect to ΨP(r) and Ψ⊥(r), where the sum is over pairs of
galaxies whose separations fall within a specified bin and wi,j is
a weight assigned to each galaxy pair. The minimization can be
done analytically, resulting in the estimates

Y =
å å - å å

å å - å
r
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, 8
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where the sums are over galaxy pairs whose separations lie in a
bin centered on r.
An alternative approach to studying peculiar velocity correla-

tions is to use the ψ1 and ψ2 statistics introduced by Gorski et al.
(1989) and utilized in several subsequent studies (e.g., Borgani
et al. 2000; Hellwing et al. 2017; Wang et al. 2018). While these
statistics in principle carry the same information as ΨP and Ψ⊥, in
practice they depend on the particular distribution of objects in a
survey, making them not comparable between surveys. While in
the past there was some motivation to focus on ψ1 as being
particularly stable when applied to the small data sets available at
the time, there is now sufficient data to estimate ΨP and Ψ⊥
directly. It is possible to calculate ΨP and Ψ⊥ from ψ1 and ψ2

given the positions of the survey objects (see, e.g., Wang et al.
2018); however, this process can be shown to be mathematically
equivalent to the calculations shown in Equations (8) and (9).
It is not obvious how to best choose weights to use in

Equations (7), (8), and (9). Kaiser (1989) used the simplest
choice, w= 1, while Groth et al. (1989) chose weights with an
eye toward reducing the effects of measurement errors.
However, previous work (Wang et al. 2018) has shown that,
for the surveys we are working with, statistical errors are small
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compared to the effects of cosmic variance, since we estimate
the correlation function in a volume that is smaller than the
scale of homogeneity. In general, the number density of
galaxies nearby is higher than the number density of galaxies in
the distant volume; this problem is exacerbated by the large
measurement uncertainty of distant galaxies. This concentra-
tion of galaxies at small distances puts greater emphasis on the
nearby volume, so that the effective volume reflected in the
correlation functions can be significantly smaller than that of
the survey. This effect increases the cosmic variance and may
also lead to bias. Here we will weight the pairs in order to better
balance the survey, so that it has a larger effective volume and
hence smaller cosmic variance and bias but may lead to larger
statistical errors.

Our approach will be to weight pairs of galaxies by the factor
=w r r p

1 2( ) , where r1 and r2 are the distances to the galaxies
and p is a positive power. This scheme gives less weight to
pairs of nearby galaxies, which are overrepresented in the
sample, and greater weight to pairs of more distant galaxies,
which are underrepresented. Correlation functions calculated
using this weighting should thus sample the volume of the
survey more evenly, and hence reflect a larger effective
volume. However, in giving greater weight to galaxies that are
far away, and hence have larger peculiar velocity uncertainties,
our weighting scheme will necessarily increase statistical
errors. We will explore several different choices for the power
p in order to determine which value provides the best overall
statistic for the data we are working with.

When analyzing data from simulations, we have access to all
three components of the peculiar velocity. In this case we can
calculate ΨP and Ψ⊥ directly by taking a weighted average of
the products of velocity components parallel and perpendicular
to the separation vector for each pair, namely

å åY = v r v rr w w 101 2
3D

pairs pairs

( ) ( · )( · ) ( )

and

å åY = -^ v v v r v rw w
1

2
, 111 2 1 2

3D

pairs pairs

[( · ) ( · )( · )] ( )

where r= r2− r1.
In linear theory, ΨP and Ψ⊥ can be related directly to the

power spectrum of density fluctuations P(k) (Eisenstein &
Hu 1998) through the relations

ò
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where = Wf m
0.55 (Linder 2005), H0 is the Hubble constant, jn(x)

denotes the spherical Bessel functions, and σ8 is the amplitude
of density fluctuations on a scale of 8 h−1 Mpc. In the
equations, σ8 is the value from the simulation we use (see
Section 4) and σ(8) is calculated following the method in
Eisenstein & Hu (1998, Equation A7).

3. Data

The CF3 peculiar velocity compilation (Tully et al. 2016)
includes two catalogs: the galaxy catalog and the group catalog.
The CF3 galaxy catalog contains 17,669 galaxies, including all

the 8135 galaxy distances in Cosmicflows-2 (Tully et al. 2013),
which is a compilation of Type Ia supernovae (Tonry et al. 2003),
Tully–Fisher (TF) spiral galaxy clusters (Giovanelli et al. 1998;
Dale et al. 1999), Streaming Motions of Abell Clusters (SMAC)
from FP survey (Hudson et al. 1999, 2004), FP early-type far
galaxy clusters (Colless et al. 2001), TF clusters (Willick 1999),
the SFI++ catalog (Masters et al. 2006; Springob et al.
2007, 2009), the SFI++ group catalog (Springob et al. 2009),
an early-type nearby galaxy survey (da Costa et al. 2000; Bernardi
et al. 2002; Wegner et al. 2003), and a surface brightness
fluctuation survey (Tonry et al. 2001), together with 2257
distances derived from the correlation between galaxy rotation and
luminosity with photometry at 3.6 μm obtained with the Spitzer
Space Telescope and 8885 distances based on the FP sample
derived from the Six-degree Field Galaxy Survey (Springob et al.
2014). The CF3 group catalog contains 11,878 groups and
galaxies, where galaxies in known groups have had their distance
moduli and redshifts averaged, resulting in a single velocity and
position for the group as a whole. Due to this averaging, the
peculiar velocities of the groups have reduced uncertainties as
compared to the individual galaxies. However, Dupuy et al.
(2019) suggest that using grouped data to constrain the growth
rate might lead to incoherent results. In the following analyses, we
will use the CF3 galaxy catalog.
The peculiar velocities of CF3 are calculated through the

unbiased peculiar velocity estimator introduced by Watkins &
Feldman (2015):

=v cz
cz

H r
log . 14

0

⎜ ⎟
⎛
⎝

⎞
⎠

( )

The redshift (cz) and distance (r) are provided by the CF3
survey; however, the choice of the value of the Hubble constant
will affect the peculiar velocity and therefore the velocity
correlation result. Wang et al. (2018) discussed the effect of the
Hubble constant on the Gorski (1988) correlation functions. For
this study we will set the Hubble constant equal to 75 km s−1

Mpc−1 for the peculiar velocities of the CF3 survey; Tully et al.
(2016) have shown that this is the value that minimizes the
magnitude of radial flows.
Due to large uncertainties in distance measurements, previous

studies of the velocity correlation functions (e.g., Gorski 1988;
Borgani et al. 2000; Wang et al. 2018) have used redshifts to
determine the positions of objects and hence the separations
between them. Distances given by cz/Ho differ from the actual
distances by an “error” of the peculiar velocity divided by the
Hubble constant, which can be much smaller than the measure-
ment uncertainty for measured distances. In Wang et al. (2018) we
found that using the estimated distances to estimate the galaxy pair
separation leads to unreliable ψ1 and ψ2 results. Considering the
relations among ψ1, ψ2, ΨP, and Ψ⊥, redshift is also the optimal
choice for the ΨP and Ψ⊥ separations. Therefore, even though
using redshift as the separation may lead to redshift distortion
effects, it is still more reliable than distance estimation, whose large
uncertainty causes biases. In this paper we will also use redshifts to
determine the positions of the objects in our catalog, using distance
estimates only in our calculation of peculiar velocities.

4. Mock Catalogs

The mock catalogs we use in this paper were generated from
the halo catalogs of the Outer Rim Simulation (Habib et al.
2016; Heitmann et al. 2019a, 2019b), which was carried out
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from the Mira-Titan Universe Simulations. The Outer Rim
Simulation is a dark-matter-only simulation with cosmological
parameters similar to the Wilkinson Microwave Anisotropy
Probe 7 (Larson et al. 2011) cosmology, which are shown in
Table 1.

The simulation contains halos with a large range of masses
that covers galaxies, groups, and clusters. We used halos in the
mass range [1011, 1013] Me located in the inner (1.5 h−1 Gpc)3

volume of the Outer Rim Simulation box as galaxies to
generate mock catalogs that mimic the CF3 galaxy survey.
Figure 1 shows the redshift distribution of the CF3 galaxy
catalog and an example of the mock catalogs.

We found that choosing mock catalog galaxies to match the
CF3 selection function based on redshifts or distances has no
significant impact on the correlation function. As discussed
above, we chose the redshift selection function in generating
mock catalogs since, given the large uncertainty in distance
estimates, redshift provides a more accurate distance.

We generated two kinds of mock catalogs for the error
analysis of the correlation function: catalogs for cosmic
variance and catalogs for statistical errors. The cosmic variance
mocks (Mc

i ) are centered at randomly distributed positions
without any peculiar velocity measurement uncertainties, where
Mc

i represents the cosmic variance mock located at the ith
center. The cosmic variance was calculated by taking the
standard deviations of the velocity correlation functions of the
cosmic variance mocks (s = M M MSTD , , ,c c

1
c
2

c
100{ } ). We

used two types of cosmic variance mock catalogs differing in
how their halo center points were chosen. The first type, which
we call random mocks, is centered on randomly chosen halos
inside the inner (1.5 h−1 Gpc)3 region of the simulation. The
second type, called Local Group (LG) mocks, is centered on a
Milky Way–like halo ( =  ´ -M h M13.5 6.5 1011 1[ ] ) with
a Virgo-like cluster at a distance similar to that of the Virgo
Cluster from the Milky Way. The LG selection criterion is
based on that introduced by Hellwing et al. (2017). These
catalogs are useful for exploring the observational conse-
quences of our nontypical location in the universe, a region
whose dominant characteristic is the neighboring Virgo-like
cluster ( =  ´ -M h M1.2 0.6 1015 1[ ] ) at a distance of
12± 4 h−1 Mpc.

For each type of observer, we generated 100 mock catalogs.
With the mock catalog centers selected randomly, it would
be hard to avoid overlapping between them. However, the
overlapping is not significant in such a large volume. For
the random observers, only 7.6% of the pairs of mock centers
are closer than 300 h−1 Mpc to each other. For the LG
observers, 7% of them are closer than 200 h−1 Mpc and 15% of

them are closer than 300 h−1 Mpc. Considering the maximum
depth of the CF3 galaxy survey is about 170 h−1 Mpc
(Figure 1) and the galaxy separations of interest for this study
are smaller than 100 h−1 Mpc, the overlapping is negligible.
We also generated mock catalogs that mimic the angular

distribution of the CF3 objects, which is significantly anisotropic.
However, we found that the anisotropy of the CF3 angular
distribution does not have a significant effect on the correlation
functions, as shown in Figure 2.
The statistical error mock catalogs (Mi

sj ) were generated by
perturbing the distances (and hence the peculiar velocities) of the
objects in a cosmic variance mock catalog with the average CF3
distance measurement uncertainty (20%), where Mi

sj represents the
jth perturbed statistical error mock catalog at the ith center. The
statistical error of the ith cosmic variance mock catalog was
calculated by taking standard deviations over 100 versions of the
statistical error mock catalogs (s = M M MSTD , , ,i i i i

s s s s1 2 100
{ } ),

while the statistical error of the velocity correlation function
was calculated by taking the average of the statistical errors

Table 1
The Cosmological Parameters of the Outer Rim Simulation

Matter density, Ωm 0.2648
Cosmological constant density, ΩΛ 0.7352
Baryon density, Ωb 0.0448
Hubble parameter, h (100 km s−1 Mpc−1) 0.71
Amplitude of matter density fluctuations, σ8 0.8
Primordial scalar spectral index, ns 0.963
Box size (h−1 Gpc) 3.0
Number of particles 10, 2403

Particle mass, mp (10
9 h−1 Me) 1.85

Softening, fc (h
−1 kpc) 3

Figure 1. The redshift distribution of the full CF3 galaxy catalog (red
histogram). The black-lined histogram shows an example of the mock catalogs.

Figure 2. ΨP and Ψ⊥ results of mock catalogs with (green) and without (blue)
the anisotropy of the CF3 angular distribution. The error bars show the total
error of the correlations.

4

The Astrophysical Journal, 918:49 (11pp), 2021 September 10 Wang et al.



over 10 randomly selected cosmic variance mock catalogs
(s s= ÎiAVE , 1, 100i

s s 10{ } [ ]).

5. Results

Figure 3 shows ΨP and Ψ⊥ and their cosmic variance (upper)
and statistical errors (lower) using randomly centered mock
catalogs with uniform weighting. In the figure, the cosmic
variance, which is larger than the statistical errors (especially
for closer pairs), dominates the error budget. This is consistent
with the Wang et al. (2018) results, which showed that the
cosmic variance is the dominant source of error in the Gorski
correlation functions, which use uniform weighting. Wang
et al. (2018) also showed that the error distribution of the
function ψ1 is significantly non-Gaussian. Below we will
examine the question of the distribution of the correlation
functions in more detail.

Figure 4 shows the cosmic variance distribution of ΨP and
Ψ⊥ calculated from our estimators using uniform weighting,
and ψ1 and ψ2 calculated using the Gorski (1988) formalism,
for 100 randomly centered mock catalogs. We show the
distributions for a particular bin (40–45 h−1 Mpc) as an
example. In the figure, we see that ΨP and ψ2 have roughly
Gaussian distributions, while the distributions of Ψ⊥ and ψ1 are
noticeably skewed, with significant non-Gaussian tails; these
distributions generally become more non-Gaussian in larger-
separation bins. The similarity between ΨP and ψ2 is not
surprising, since ψ2 was calculated from the projections of the
radial velocities onto the separation vectors. The other Gorski
correlation function, ψ1, was estimated from the unprojected
radial velocity, making it a combination of ΨP and Ψ⊥. The
cosmic variance of ΨP is roughly Gaussian except for scales
smaller than 10 h−1 Mpc, where the uncertainty of the
correlation function is large. Considering the large uncertainty
and possibly non-Gaussian cosmic variance in small-separation
bins, we recommend that small-scale correlations ( 10 h−1

Mpc) not be used in parameter constraints. Quantities with non-
Gaussian distributions are difficult to interpret, suggesting that
studies of the velocity correlation function should focus on ΨP.
We will return to this issue in Section 7.

Figure 5 shows the ΨP and Ψ⊥ estimators (Equations (8) and
(9)) and 3D velocity fields (Equations (10) and (11)) calculated
using randomly centered mock catalogs. The simulation results
agree well with linear predictions for both ΨP and Ψ⊥.
Although the estimators use only line-of-sight peculiar
velocities, they also agree well with the full 3D results, lending
credence to their efficacy and stability. It should be noted again
that there is the potential of redshift distortion effects between
the mock catalog results and the linear theory prediction, since
the correlation function was calculated with redshift separations
while the linear prediction was calculated from distance
separations. However, our results indicate that these effects
are not significant.
Hellwing et al. (2017) discussed the effect of observer

location on velocity statistics. They compared both the Gorski

Figure 3. The parallel and perpendicular correlation functions of randomly
centered mock catalogs with uniform weighting. ΨP and Ψ⊥ are in units of
(100 km s−1)2. The blue solid lines show the average values for 100 mock
catalogs. The upper blue error bars show the cosmic variance. The lower red
error bars indicate the statistical error.

Figure 4. The distribution of ΨP, Ψ⊥, ψ1, and ψ2 in 40–45 h−1 Mpc bins of
100 randomly centered mock catalogs using uniform weighting, in units of
(100 km s−1)2. The vertical blue dotted line is the mean of the mock catalogs.

Figure 5. The parallel and perpendicular correlation functions of 100 randomly
centered mock catalogs in units of (100 km s−1)2. The red dashed–dotted lines
show the linear predictions (LP). The green solid lines indicate the average of
the mock catalog results calculated using the estimators discussed in the text
(S). The black dashed lines indicate the average of the mock catalog results for
the full 3D velocity fields (S3D). The error bars show the cosmic variance of the
mock catalogs.
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velocity correlation function estimators and the pairwise
velocity statistic calculated for mock catalogs with random
halo centers and for those centered on locations that mimicked
the LG. They found that the correlation functions calculated
from the LG-like catalogs exhibited significant bias relative to
linear theory. To study the effects of observer location on the
parallel and perpendicular correlation functions, in Figure 6 we
show the results of using LG-centered mock catalogs. We see
that ΨP and Ψ⊥ for the LG-centered mocks with uniform
weighting are also biased. As we discuss below, this bias can
be greatly reduced through the use of weighting.

Figure 6 shows the parallel and perpendicular correlation
results of using LG-centered mock catalogs with uniform
weighting (w= 1). We see that the restriction to LG-like
locations introduces significant systematic bias into our results
relative to linear theory. This bias takes two distinct forms.
First, we see that both our estimators, which use only radial
velocities, do not accurately recover the 3D correlation
function. Second, we see that, especially for the perpendicular
correlation function, the average correlations calculated from
the 3D velocities also do not accurately reflect linear theory.
Both of these biases arise most likely because the volumes
around the LG-centered mocks are not typical, but rather
exhibit particular flow patterns that are significantly different
from the averages taken over random volumes.

Figure 7 shows a comparison between random and LG-
centered mocks. The error bars of the simulation results show
the total error (s s s= +t c

2
s
2 , where σt is the total error, σc is

the cosmic variance, and σs is the statistical error) of the
correlation functions. We see that the variance of the LG-
centered mock catalogs is significantly larger than that of the
randomly centered mock catalogs, particularly for the perpend-
icular correlation function (Ψ⊥).

The fact that the bias in the estimated correlation functions
with uniform weights in LG-centered mocks has the same order
of magnitude as the correlation functions themselves suggests
that correlation functions calculated using CF3 with uniform
weights, which include those calculated using the Gorski
method, should not be used in comparisons with linear theory.

As discussed above, weighting can be used to increase the
effective volume of the survey. Our approach will be to weight
galaxy pairs by =w r r p

1 2( ) , where r1 and r2 are the distances
of the two galaxies and p is a non-negative power. In the
LG-centered mocks, this weighting reduces emphasis on the

relatively small volume near the center of the survey, which for
the LG-centered mocks is atypical. We will see that the use of
weighting can effectively reduce the bias found in the LG-
centered mocks.
Figure 8 shows the results based on weights =w r r p

1 2( )
with p= 0.5, 1, and 2 (p= 0 gives uniform weights). The use
of weighting has reduced the bias to an insignificant level.
However, the total error becomes larger while the effective
volume of the surveys increases.
Figure 9 shows the cosmic variance and the statistical errors of

the weighted correlation functions with p = 0.5 ( =w r r1 2
1 2( ) ),

p= 1 (w= r1r2), and p= 2 ( =w r r1 2
2( ) ). The cosmic variance

generally decreases with weighting as expected; however, the
statistical errors increase and dominate when using weights with
larger p. In addition, both our result and the result from Hellwing
et al. (2017) show that the cosmic variance of LG observers is
larger than that of random observers. Hellwing et al.’s (2017)
explanation is that different observers see different radial velocity
components for the same galaxies.
Considering the decreasing trend of the cosmic variance with

the weight power, we suggest that the large cosmic variance of
LG observers may also be caused by an imbalanced (nearby-
galaxy-dominated) distribution of galaxies. When the galaxy
distribution is imbalanced, the galaxy distribution around a big
attractor (e.g., the Virgo Cluster) may lead to various biases
and large cosmic variance. Table 2 shows the cosmic variance
and statistical errors of ΨP with different weighting schemes;
even as cosmic variance decreases, we see the total error
increase. Considering the trade-offs, p= 1 (w= r1r2) seems to
be the best value to use for the CF3 survey. However, the
optimal value of p may vary for different surveys due to the
specific object distributions and uncertainties.
Now that we have determined that p= 1 provides the optimal

weighting for our analysis, we apply our methods to the actual
CF3 galaxy catalog. In Figure 10, we show the parallel and
perpendicular correlation functions for the CF3 galaxy catalog,
using the p= 1 (w= r1r2) weighting scheme, together with the
results (with the estimated total uncertainties, including the cosmic

Figure 6. Same as Figure 5 but using LG-centered mock catalogs. Figure 7. Parallel and perpendicular correlation results of 100 randomly
centered and 100 LG-centered mocks in units of (100 km s−1)2 using uniform
weighting (w = 1). All mock catalogs have had galaxy distances perturbed by
random measurement errors. The red dashed–dotted lines show the linear
predictions. The green solid lines indicate the average results for the randomly
centered mocks. The black dashed lines show the average results for the LG-
centered mocks. The error bars show the total error of the correlation function,
which includes both cosmic variance and statistical error.
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variance and measurement errors) of both the randomly centered
and LG-centered mock catalogs with the same weighting. We see
that both ΨP and Ψ⊥ have the expected behavior: decreasing
amplitude with increasing separation. Also as expected from linear
theory, Ψ⊥ decreases more slowly and has larger amplitude than
ΨP at large separation. Considering the magnitudes of the total
uncertainties, both ΨP and Ψ⊥ are consistent (within two standard
deviations) with the results from the mock catalogs, and thus
consistent with the standard cosmological model.

6. Parameter Constraints

In Wang et al. (2018), we showed that the correlation
function ψ1 has a long, non-Gaussian tail in its cosmic variance
distribution, making it unsuitable for placing constraints on
cosmological parameters. As we discussed in Section 5, the
cosmic variance of ψP exhibits a better approximation of a

Figure 8. Same as Figure 7 but using the position-weighted method with weights p = 0.5 (left panel), p = 1 (middle panel), and p = 2 (right panel).

Figure 9. The parallel and perpendicular correlation functions with weights p = 0.5 (left panel), p = 1 (middle panel), and p = 2 (right panel). ΨP and Ψ⊥ are in units
of (100 km s−1)2. The blue solid lines show averages over 100 mock catalogs. The upper blue error bars show the cosmic variance. The lower red error bars indicate
the statistical errors.

Table 2
The Errors of ΨP with Random Observers Using Various Weighting Schemes

Weight p (15–20) (35–40) (55–60)

σc 2.45 1.88 1.59
1 0 σs 0.95 0.66 0.66

σt 2.63 1.99 1.72

σc 1.78 1.48 1.29
r r1 2 0.5 σs 2.58 1.45 1.13

σt 3.13 2.07 1.71

σc 1.59 1.37 1.14
r1r2 1 σs 5.37 2.54 1.79

σt 5.6 2.89 2.12

σc 1.59 1.47 1.27
r r1 2

2( ) 2 σs 11.39 5.04 3.36
σt 11.5 5.25 3.59

Note. The σt, σc, and σs indicate the total error, cosmic variance, and statistical
error of the correlation function in units of (100 km s−1)2, respectively. The
numbers in brackets show the separation range of the three selected bins (in
units of h−1 Mpc).

Figure 10. The blue dotted lines indicate the parallel and perpendicular
correlation estimates in units of (100 km s−1)2 calculated from the CF3 galaxy
catalog using the weighting scheme w = r1r2 (p = 1). The red dashed–dotted
lines show the linear prediction. The green solid lines indicate the average
results from the randomly centered mock catalogs with the same weighting.
The black dashed lines show the average results from the LG-centered mocks,
also with the same weighting. The error bars show the total uncertainty,
including the cosmic variance and measurement errors.
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Gaussian distribution than ψ1. This suggests that ψP may be a
more useful measurement of peculiar velocity correlations. In
this section, we test the performance of uniformly weighted and
position-weighted ψP with both random and LG observers with
respect to putting constraints on cosmological parameters.

As can be seen in Figure 9, the statistical errors increase with
weighting even as the cosmic variance decreases. To gauge the
effects of statistical errors and cosmic variance separately and
together, we implemented three methods for cosmological
parameter estimation. To look at the effects of cosmic variance
alone, we used mock catalogs drawn from different regions of
the simulation box with no measurement errors in their
velocities (as described above) with the χ2 given by

åc y y y y= - --r r C r r , 15
i j

C
i i ij

C
j jc

2

,

L 1 L[ ( ) ( )] [ ( ) ( )] ( )   

where

å= Y - Y Y - Y
=

C
N

1
. 16ij

l

N

l
i

C
i

l
j

C
j

mock 1
, , , ,

mock

( )( ) ( )   

cc
2 (Equation (15)) is the cosmic variance (C) covariance

matrix, Nmock= 100 is the number of mock catalogs, y l
i
, is the

correlation value of the ith separation bin of the lth mock catalog,
y C
i
, is the average value of the Nmock catalogs in the ith

separation bin, yC
 is the average value of ψP over the Nmock mock

catalogs, and yL
 is the linear prediction.

To look at the effects of measurement errors alone, we used
100 versions of one mock catalog perturbed with artificial
measurement errors with the χ2 function:

åc y y e

y y

= -

´ -

-r r

r r , 17

i j
i i ij

j j

s
2

,

S L 1

S L

[ ( ) ( )]

[ ( ) ( )] ( )

 

 

where

åe = Y - Y Y - Y
=N

1
. 18ij

p

N

p
i

A
i

p
j

A
j

pert 1
, , , ,

pert

( )( ) ( )   

cs
2 (Equation (17)) uses the covariance matrix that contains the

information of statistical errors, where ε is the covariance matrix
of statistical errors, Npert is the number of perturbed catalogs of a
selected mock catalog whose value is closest to the average value
of the 100 mock catalogs, y A

i
, is the parallel correlation of the

selected mock catalog in the ith separation bin, y p
i
, is the

correlation value of the ith separation bin of the pth perturbed
catalog of the selected mock catalog, and yS

 is the average value
over the Npert perturbed catalogs of the selected mock catalog.

Finally, to look at the effects of cosmic variance and
statistical errors together, we used 100 mock catalogs drawn
from different parts of the simulation box, each perturbed with
measurement errors. The χ2 for these catalogs is given by

åc y y y y= - --r r T r r , 19
i j

T
i i ij

T
j jt

2

,

L 1 L[ ( ) ( )] [ ( ) ( )] ( )   

where

å= Y - Y Y - Y
=

T
N

1
. 20ij

n

N

n
i

T
i

n
j

T
j

mp 1
, , , ,

mp

( )( ) ( )   

ct
2 (Equation (17)) includes the effect of both the cosmic

variance and the statistical errors, where T is the covariance

matrix of the total error; Nmp is the number of perturbed mock
catalogs, which means perturbing each of the 100 mock
catalogs one time randomly according to the distance
uncertainties to get 100 perturbed mock catalogs; y n

i
, is the

correlation value of the ith separation bin of the nth perturbed
mock catalog; y T

i
, is the average value of the Nmp perturbed

mock catalogs in the ith separation bin; and yT
 is the average

value over the Nmp perturbed mock catalogs.
Figure 11 shows the cosmological parameter constraints for

Ωm and σ8 using ΨP in separation scales of [1000, 6000] km s−1

with bin widths equal to 500 km s−1, which are used
consistently in the following parameter constraints. In our
tests, we find the results based on ΨP are much more stable than
those based on ψ1 for implementing different truncations (see
also Wang et al. 2018).
For the cc

2
fitting method, all of the four correlation weights,

p= 0 (w= 1), p= 0.5 ( =w r r1 2
1 2( ) ), p= 1 (w= r1r2), and

p= 2 ( =w r r1 2
2( ) ), agree with the simulation value within 1σ

for both the random and LG observers. However, the results of
the uniformly weighted ΨP with the LG observers are not as
consistent as the results of the random observers. The position-
weighted method improves the parameter constraints for the
LG observers significantly, since the position weighting
scheme reduces the bias. The position weighting scheme also
provides tighter and more stable constraints than the uniformly
weighted ΨP. In addition, the position-weighted ΨP provides
tighter constraints on the expected value (simulation value) for
both the random and LG observers. Comparing the results of
the three position-weighted ΨP, we find p= 1 provides the best
results.
In the cs

2 plots, the result of the uniformly weighted ΨP
biases the simulation value for both the random and LG
observers. However, the position-weighted correlation function
agrees with the simulation value within 1σ for both types of
observers, except p= 2 for the LG observers. Similar to the
results of the cc

2 method, the uniformly weighted ΨP provides
biased parameter constraints for the LG observers, which are
greatly improved by the position weighting scheme. However,
unlike that in cc

2, the position-weighted ΨP has laxer
constraining contours than the uniformly weighted ΨP. This
is due to the larger statistical errors caused by the larger
position weighting power.
To study the effect of the size of the statistical uncertainty on

the ct
2 constraining method, we implemented different distance

uncertainty percentages (distance uncertainties equal to 5%,
10%, 15%, and 20% of the distance) as shown in Figure 12. In
the figure, the position-weighted correlations show significant
improvements in the LG observers for all of the four
uncertainty percentages. However, the ct

2 constraining contour
becomes large when the distance perturbation is larger than
10%. Therefore a CF3-like survey with 20% distance errors
will probably not be able to put meaningful constraints on the
cosmological parameters.
Much larger peculiar velocity surveys should be available in

the not-too-distant future. Having more survey objects will
improve constraints in two main ways. First, since the
correlation function is essentially an average, having more
survey objects will reduce statistical errors in the usual way.
However, having more survey objects, particularly at large
distances, will also allow us to reduce cosmic variance by using
a more aggressive weighting scheme and therefore increasing
the effective volume that the survey probes. In other words, if
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the statistical errors start small, then we can afford to have them
increase more in our effort to reduce cosmic variance. Without
weighting, increasing the number of survey objects without

substantially increasing survey depth will have less effect, since
statistical errors are currently dominated by cosmic variance.
As the size of peculiar velocity surveys increases, our method

Figure 11. Ωm and σ8 constraints using simulation data with bins equal to 500 km s−1 within separation scales of [1000, 6000] km s−1. The minimum χ2 value has
been subtracted from each cell. The contours indicate the 68% likelihood of the χ2 values. The triangle marker indicates the value from the Outer Rim Simulation. cc

2

shows the result of the covariance matrix with cosmic variance, cs
2 indicates the result of the covariance matrix with statistical errors, and ct

2 includes the information
of both the cosmic variance and the statistical errors. R and L indicate the random and LG observers, respectively.

Figure 12. Ωm and σ8 constraints of ct
2 with different distance perturbation values. The minimum ct

2 value has been subtracted from each cell. The contours indicate
the 68% likelihood values. The triangle marker indicates the value from the Outer Rim Simulation. R and LG indicate the random and LG observers, respectively.
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should allow us to use peculiar velocity correlations to place
significant constraints on the cosmological parameters.

The ct
2 is the appropriate one to use for real data, as it

accounts for both cosmic variance and measurement errors. In
Figure 13 we show the constraining result obtained by applying
our method to the CF3 galaxy survey. In our calculations, we
used the covariance matrix calculated from mock catalogs of
LG observers with 20% distance uncertainties; this covariance
matrix should be the best match to the cosmic variance and
measurement uncertainties of the real data. In the figure, the
observation constraining results agree with Planck (Planck
Collaboration et al. 2014) within 1σ, except for p= 0.5.
However, as expected the constraining contour is wide and flat
and thus does not constrain the values significantly. In order to
put tighter constraints on the cosmological parameters
we require larger and/or more precise peculiar velocity
surveys.

We also tested fσ8 constraints for the CF3 galaxy survey and
found no improvements. Furthermore, the fσ8 statistic is an
approximation that may lead to loss of information. In Figure 7,
the bias caused by LG observers is mainly represented in the
shape of the correlation function rather than of its magnitude.
The shape of the linear-predicted correlation function is
determined by the integral of the power spectrum
(Equation (12)), which requires the value of Ωm. Constraining
fσ8 requires a fixed Ωm value for the power spectrum, which
leads to a fixed shape of the correlation function. This would
defeat our purpose of reducing the bias caused by LG
observers, since the bias is mainly represented by the shape
of the correlation function.

7. Conclusion

Previous studies of velocity correlations have mostly focused
on ψ1, a correlation function introduced by Gorski (Gorski 1988).

This function has several disadvantages. First, it is dependent on
the distribution of objects being analyzed and hence is not
comparable between surveys. Second, it is a complicated mixture
of physically meaningful correlation functions that quantify the
correlations of velocity components parallel and perpendicular to
the separation vector between pairs of galaxies. Third, as shown
by Wang et al. (2018), the distribution of cosmic variance in ψ1 is
significantly non-Gaussian, complicating its use as a cosmological
probe. Finally, as noted by Hellwing et al. (2017), and as we have
shown here, our special location near the Virgo Cluster can bias
correlation functions calculated using typical catalogs, whose
density of objects decreases rapidly with distance.
In this paper we have presented an alternative method, an

extension of a method introduced by Kaiser (1989) and Groth
et al. (1989), that can stably estimate the parallel and
perpendicular correlation functions directly from currently
available peculiar velocity data. We have shown that the non-
Gaussian distribution of the cosmic variance in ψ1 is mostly
due to its containing Ψ⊥; the parallel correlation function ΨP

has a more Gaussian distribution and therefore should be much
more useful as a cosmological statistic.
We have shown that parallel and perpendicular correlation

functions calculated with uniform weights are biased in LG-
centered mock catalogs, especially for small separations. The
LG mock catalog results also show less agreement between the
results of using estimators (ΨP and Ψ⊥) and the results of using
the full 3D velocity fields (Y3D

 and Y^
3D). Ψ⊥ shows more bias,

which explains the different behaviors shown by ψ1 and ψ2

when LG-centered mock catalogs were used in Hellwing et al.
(2017).
Our results, together with those of Hellwing et al. (2017),

suggest that velocity correlation functions calculated from
peculiar velocity data dominated by nearby galaxies will be
biased due to our location near the Virgo Cluster. We have
presented a novel way to reduce this bias by including position
weights in our analysis. These weights reduce the emphasis on
nearby galaxies, which are overrepresented in most catalogs.
The weighted correlation functions probe a larger effective
volume and thus give better agreement with linear theory. In
particular, we have shown that the bias due to our location near
the Virgo Cluster is reduced when weights are used. However,
we find that there is a trade-off between decreasing cosmic
variance and increasing measurement uncertainties. The
optimal power to use will depend on the particular character-
istics of the survey being analyzed.
We find that the position-weighted ΨP is a better cosmolo-

gical probe than the previously used ψ1 in that it has more
Gaussian-distributed errors. While currently available peculiar
velocity data is sufficient for calculating ΨP in the local
universe, it does not allow us to put significant constraints on
cosmological parameters. However, with larger and/or more
accurate peculiar velocity surveys on the horizon, we expect
velocity correlations to become an important cosmological
probe.

H.A.F. and R.W. were partially supported by National
Science Foundation grant AST-1907404. An award of comp-
uter time was provided by the INCITE program. R.W. and S.P.
acknowledge support from the Murdock Charitable Trust
College Research Program.

Figure 13. Ωm and σ8 constraints obtained from the CF3 galaxy survey using
ct
2 with the covariance matrix calculated using mock LG catalogs. The

contours indicate the 68% likelihood values. The square marker indicates the
best value from Planck (Planck Collaboration et al. 2014).

10

The Astrophysical Journal, 918:49 (11pp), 2021 September 10 Wang et al.



ORCID iDs

Yuyu Wang https://orcid.org/0000-0002-0245-8547
Richard Watkins https://orcid.org/0000-0001-7444-3216

References

Abate, A., & Erdoǧdu, P. 2009, MNRAS, 400, 1541
Abate, A., & Feldman, H. A. 2012, MNRAS, 419, 3482
Agarwal, S., Feldman, H. A., & Watkins, R. 2012, MNRAS, 424, 2667
Bel, J., Pezzotta, A., Carbone, C., Sefusatti, E., & Guzzo, L. 2019, A&A,

622, A109
Bernardi, M., Alonso, M. V., da Costa, L. N., et al. 2002, AJ, 123, 2990
Bianchi, D., Percival, W. J., & Bel, J. 2016, MNRAS, 463, 3783
Borgani, S., da Costa, L. N., Zehavi, I., et al. 2000, AJ, 119, 102
Colless, M., Saglia, R. P., Burstein, D., et al. 2001, MNRAS, 321, 277
da Costa, L. N., Bernardi, M., Alonso, M. V., et al. 2000, AJ, 120, 95
Dale, D. A., Giovanelli, R., Haynes, M. P., Campusano, L. E., & Hardy, E.

1999, AJ, 118, 1489
Davis, M., Nusser, A., Masters, K. L., et al. 2011, MNRAS, 413, 2906
Dolag, K., Hansen, F. K., Roncarelli, M., & Moscardini, L. 2005, MNRAS,

363, 29
Dolag, K., Komatsu, E., & Sunyaev, R. 2016, MNRAS, 463, 1797
Dupuy, A., Courtois, H. M., & Kubik, B. 2019, MNRAS, 486, 440
Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605
Feldman, H., Juszkiewicz, R., Ferreira, P., et al. 2003, ApJL, 596, L131
Feldman, H. A., Watkins, R., & Hudson, M. J. 2010, MNRAS, 407, 2328
Ferreira, P. G., Juszkiewicz, R., Feldman, H. A., Davis, M., & Jaffe, A. H.

1999, ApJL, 515, L1
Giovanelli, R., Haynes, M. P., Salzer, J. J., et al. 1998, AJ, 116, 2632
Gorski, K. 1988, ApJL, 332, L7
Gorski, K. M., Davis, M., Strauss, M. A., White, S. D. M., & Yahil, A. 1989,

ApJ, 344, 1
Groth, E. J., Juszkiewicz, R., & Ostriker, J. P. 1989, ApJ, 346, 558
Habib, S., Pope, A., Finkel, H., et al. 2016, NewA, 42, 49
Hand, N., Addison, G. E., Aubourg, E., et al. 2012, PhRvL, 109, 041101
Hand, N., Seljak, U., Beutler, F., & Vlah, Z. 2017, JCAP, 10, 009
Heitmann, K., Finkel, H., Pope, A., et al. 2019a, ApJS, 245, 16
Heitmann, K., Uram, T. D., Finkel, H., et al. 2019b, ApJS, 244, 17
Hellwing, W. A. 2014, arXiv:1412.8738
Hellwing, W. A., Nusser, A., Feix, M., & Bilicki, M. 2017, MNRAS, 467, 2787
Hoffman, Y., Nusser, A., Courtois, H. M., & Tully, R. B. 2016, MNRAS,

461, 4176
Howlett, C., Staveley-Smith, L., & Blake, C. 2017, MNRAS, 464, 2517
Hudson, M. J., Smith, R. J., Lucey, J. R., & Branchini, E. 2004, MNRAS,

352, 61
Hudson, M. J., Smith, R. J., Lucey, J. R., Schlegel, D. J., & Davies, R. L. 1999,

ApJL, 512, L79
Jaffe, A. H., & Kaiser, N. 1995, ApJ, 455, 26
Johnson, A., Blake, C., Koda, J., et al. 2014, MNRAS, 444, 3926
Juszkiewicz, R., Ferreira, P. G., Feldman, H. A., Jaffe, A. H., & Davis, M.

2000, Sci, 287, 109
Kaiser, N. 1987, MNRAS, 227, 1
Kaiser, N. 1988, MNRAS, 231, 149
Kaiser, N. 1989, in Large Scale Structure and Motions in the Universe,

Astrophysics and Space Science Library, Vol. 151, ed. M. Mezzetti (Berlin:
Springer), 197

Kashlinsky, A., Atrio-Barandela, F., Kocevski, D., & Ebeling, H. 2008, ApJL,
686, L49

Kumar, A., Wang, Y., Feldman, H. A., & Watkins, R. 2015, arXiv:1512.08800
Larson, D., Dunkley, J., Hinshaw, G., et al. 2011, ApJS, 192, 16
Linder, E. V. 2005, PhRvD, 72, 043529
Macaulay, E., Feldman, H., Ferreira, P. G., Hudson, M. J., & Watkins, R. 2011,

MNRAS, 414, 621
Macaulay, E., Feldman, H. A., Ferreira, P. G., et al. 2012, MNRAS, 425, 1709
Masters, K. L., Springob, C. M., Haynes, M. P., & Giovanelli, R. 2006, ApJ,

653, 861
Melott, A. L., Coles, P., Feldman, H. A., & Wilhite, B. 1998, ApJ, 496, L85
Nusser, A. 2014, ApJ, 795, 3
Nusser, A. 2016, MNRAS, 455, 178
Nusser, A., Branchini, E., & Davis, M. 2011, ApJ, 735, 77
Nusser, A., & Davis, M. 2011, ApJ, 736, 93
Okumura, T., Hand, N., Seljak, U., Vlah, Z., & Desjacques, V. 2015, PhRvD,

92, 103516
Okumura, T., Seljak, U., Vlah, Z., & Desjacques, V. 2014, JCAP, 5, 003
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A16
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A,

586, A140
Planck Collaboration, Aghanim, N., & Akrami, Y. 2020, A&A, 641, A6
Reid, B. A., & White, M. 2011, MNRAS, 417, 1913
Scoccimarro, R. 2004, PhRvD, 70, 083007
Scrimgeour, M. I., Davis, T. M., Blake, C., et al. 2016, MNRAS, 455, 386
Seiler, J., & Parkinson, D. 2016, MNRAS, 462, 75
Seljak, U., & McDonald, P. 2011, Journal of Cosmology and Astro-Particle

Physics, 11, 039
Senatore, L., & Zaldarriaga, M. 2014, arXiv:1409.1225
Song, Y.-S., Nishimichi, T., Taruya, A., & Kayo, I. 2013, PhRvD, 87, 123510
Springob, C. M., Magoulas, C., Colless, M., et al. 2014, MNRAS, 445, 2677
Springob, C. M., Masters, K. L., Haynes, M. P., Giovanelli, R., & Marinoni, C.

2007, ApJS, 172, 599
Springob, C. M., Masters, K. L., Haynes, M. P., Giovanelli, R., & Marinoni, C.

2009, ApJS, 182, 474
Sunyaev, R. A., & Zeldovich, I. B. 1980, MNRAS, 190, 413
Taruya, A., Nishimichi, T., & Bernardeau, F. 2013, PhRvD, 87, 083509
Taruya, A., Nishimichi, T., & Saito, S. 2010, PhRvD, 82, 063522
Thomas, B. C., Melott, A. L., Feldman, H. A., & Shandarin, S. F. 2004, ApJ,

601, 28
Tonry, J. L., Dressler, A., Blakeslee, J. P., et al. 2001, ApJ, 546, 681
Tonry, J. L., Schmidt, B. P., Barris, B., et al. 2003, ApJ, 594, 1
Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86
Tully, R. B., Courtois, H. M., & Sorce, J. G. 2016, AJ, 152, 50
Turnbull, S. J., Hudson, M. J., Feldman, H. A., et al. 2012, MNRAS, 420, 447
Uhlemann, C., & Kopp, M. 2015, PhRvD, 91, 084010
Vlah, Z., Castorina, E., & White, M. 2016, JCAP, 12, 007
Wang, Y., Rooney, C., Feldman, H. A., & Watkins, R. 2018, MNRAS,

480, 5332
Watkins, R., & Feldman, H. A. 2007, MNRAS, 379, 343
Watkins, R., & Feldman, H. A. 2015, MNRAS, 450, 1868
Watkins, R., Feldman, H. A., & Hudson, M. J. 2009, MNRAS, 392, 743
Wegner, G., Bernardi, M., Willmer, C. N. A., et al. 2003, AJ, 126, 2268
Willick, J. A. 1999, ApJ, 516, 47
Zaroubi, S., Zehavi, I., Dekel, A., Hoffman, Y., & Kolatt, T. 1997, ApJ,

486, 21
Zhang, P., Pan, J., & Zheng, Y. 2013, PhRvD, 87, 063526
Zheng, Y., Zhang, P., Jing, Y., Lin, W., & Pan, J. 2013, PhRvD, 88, 103510

11

The Astrophysical Journal, 918:49 (11pp), 2021 September 10 Wang et al.

https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0002-0245-8547
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://orcid.org/0000-0001-7444-3216
https://doi.org/10.1111/j.1365-2966.2009.15561.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.400.1541A/abstract
https://doi.org/10.1111/j.1365-2966.2011.19988.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3482A/abstract
https://doi.org/10.1111/j.1365-2966.2012.21345.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2667A/abstract
https://doi.org/10.1051/0004-6361/201834513
https://ui.adsabs.harvard.edu/abs/2019A&A...622A.109B/abstract
https://ui.adsabs.harvard.edu/abs/2019A&A...622A.109B/abstract
https://doi.org/10.1086/340463
https://ui.adsabs.harvard.edu/abs/2002AJ....123.2990B/abstract
https://doi.org/10.1093/mnras/stw2243
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463.3783B/abstract
https://doi.org/10.1086/301154
https://ui.adsabs.harvard.edu/abs/2000AJ....119..102B/abstract
https://doi.org/10.1046/j.1365-8711.2001.04044.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.321..277C/abstract
https://doi.org/10.1086/301449
https://ui.adsabs.harvard.edu/abs/2000AJ....120...95D/abstract
https://doi.org/10.1086/301048
https://ui.adsabs.harvard.edu/abs/1999AJ....118.1489D/abstract
https://doi.org/10.1111/j.1365-2966.2011.18362.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413.2906D/abstract
https://doi.org/10.1111/j.1365-2966.2005.09452.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.363...29D/abstract
https://ui.adsabs.harvard.edu/abs/2005MNRAS.363...29D/abstract
https://doi.org/10.1093/mnras/stw2035
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463.1797D/abstract
https://doi.org/10.1093/mnras/stz901
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486..440D/abstract
https://doi.org/10.1086/305424
https://ui.adsabs.harvard.edu/abs/1998ApJ...496..605E/abstract
https://doi.org/10.1086/379221
https://ui.adsabs.harvard.edu/abs/2003ApJ...596L.131F/abstract
https://doi.org/10.1111/j.1365-2966.2010.17052.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.407.2328F/abstract
https://doi.org/10.1086/311959
https://ui.adsabs.harvard.edu/abs/1999ApJ...515L...1F/abstract
https://doi.org/10.1086/300652
https://ui.adsabs.harvard.edu/abs/1998AJ....116.2632G/abstract
https://doi.org/10.1086/185255
https://ui.adsabs.harvard.edu/abs/1988ApJ...332L...7G/abstract
https://doi.org/10.1086/167771
https://ui.adsabs.harvard.edu/abs/1989ApJ...344....1G/abstract
https://doi.org/10.1086/168038
https://ui.adsabs.harvard.edu/abs/1989ApJ...346..558G/abstract
https://doi.org/10.1016/j.newast.2015.06.003
https://ui.adsabs.harvard.edu/abs/2016NewA...42...49H/abstract
https://doi.org/10.1103/PhysRevLett.109.041101
https://ui.adsabs.harvard.edu/abs/2012PhRvL.109d1101H/abstract
https://doi.org/10.1088/1475-7516/2017/10/009
https://ui.adsabs.harvard.edu/abs/2017JCAP...10..009H/abstract
https://doi.org/10.3847/1538-4365/ab4da1
https://ui.adsabs.harvard.edu/abs/2019ApJS..245...16H/abstract
https://doi.org/10.3847/1538-4365/ab3724
https://ui.adsabs.harvard.edu/abs/2019ApJS..244...17H/abstract
http://arxiv.org/abs/1412.8738
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.2787H/abstract
https://doi.org/10.1093/mnras/stw1603
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.4176H/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.4176H/abstract
https://doi.org/10.1093/mnras/stw2466
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.2517H/abstract
https://doi.org/10.1111/j.1365-2966.2004.07893.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.352...61H/abstract
https://ui.adsabs.harvard.edu/abs/2004MNRAS.352...61H/abstract
https://doi.org/10.1086/311883
https://ui.adsabs.harvard.edu/abs/1999ApJ...512L..79H/abstract
https://doi.org/10.1086/176551
https://ui.adsabs.harvard.edu/abs/1995ApJ...455...26J/abstract
https://doi.org/10.1093/mnras/stu1615
https://ui.adsabs.harvard.edu/abs/2014MNRAS.444.3926J/abstract
https://doi.org/10.1126/science.287.5450.109
https://ui.adsabs.harvard.edu/abs/2000Sci...287..109J/abstract
https://doi.org/10.1093/mnras/227.1.1
https://ui.adsabs.harvard.edu/abs/1987MNRAS.227....1K/abstract
https://doi.org/10.1093/mnras/231.2.149
https://ui.adsabs.harvard.edu/abs/1988MNRAS.231..149K/abstract
https://ui.adsabs.harvard.edu/abs/1989ASSL..151..197K/abstract
https://doi.org/10.1086/592947
https://ui.adsabs.harvard.edu/abs/2008ApJ...686L..49K/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...686L..49K/abstract
http://arxiv.org/abs/1512.08800
https://doi.org/10.1088/0067-0049/192/2/16
https://ui.adsabs.harvard.edu/abs/2011ApJS..192...16L/abstract
https://doi.org/10.1103/PhysRevD.72.043529
https://ui.adsabs.harvard.edu/abs/2005PhRvD..72d3529L/abstract
https://doi.org/10.1111/j.1365-2966.2011.18426.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.414..621M/abstract
https://doi.org/10.1111/j.1365-2966.2012.21629.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1709M/abstract
https://doi.org/10.1086/508924
https://ui.adsabs.harvard.edu/abs/2006ApJ...653..861M/abstract
https://ui.adsabs.harvard.edu/abs/2006ApJ...653..861M/abstract
https://doi.org/10.1086/311248
https://ui.adsabs.harvard.edu/abs/1998ApJ...496L..85M/abstract
https://doi.org/10.1088/0004-637X/795/1/3
https://ui.adsabs.harvard.edu/abs/2014ApJ...795....3N/abstract
https://doi.org/10.1093/mnras/stv2099
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455..178N/abstract
https://doi.org/10.1088/0004-637X/735/2/77
https://ui.adsabs.harvard.edu/abs/2011ApJ...735...77N/abstract
https://doi.org/10.1088/0004-637X/736/2/93
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...93N/abstract
https://doi.org/10.1103/PhysRevD.92.103516
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92j3516O/abstract
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92j3516O/abstract
https://doi.org/10.1088/1475-7516/2014/05/003
https://ui.adsabs.harvard.edu/abs/2014JCAP...05..003O/abstract
https://doi.org/10.1051/0004-6361/201321591
https://ui.adsabs.harvard.edu/abs/2014A&A...571A..16P/abstract
https://doi.org/10.1051/0004-6361/201526328
https://ui.adsabs.harvard.edu/abs/2016A&A...586A.140P/abstract
https://ui.adsabs.harvard.edu/abs/2016A&A...586A.140P/abstract
https://doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract
https://doi.org/10.1111/j.1365-2966.2011.19379.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.417.1913R/abstract
https://doi.org/10.1103/PhysRevD.70.083007
https://ui.adsabs.harvard.edu/abs/2004PhRvD..70h3007S/abstract
https://doi.org/10.1093/mnras/stv2146
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455..386S/abstract
https://doi.org/10.1093/mnras/stw1634
https://ui.adsabs.harvard.edu/abs/2016MNRAS.462...75S/abstract
https://doi.org/10.1088/1475-7516/2011/11/039
https://doi.org/10.1088/1475-7516/2011/11/039
https://ui.adsabs.harvard.edu/abs/2011JCAP...11..039S/abstract
https://arxiv.org/abs/1409.1225
https://doi.org/10.1103/PhysRevD.87.123510
https://ui.adsabs.harvard.edu/abs/2013PhRvD..87l3510S/abstract
https://doi.org/10.1093/mnras/stu1743
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445.2677S/abstract
https://doi.org/10.1086/519527
https://ui.adsabs.harvard.edu/abs/2007ApJS..172..599S/abstract
https://doi.org/10.1088/0067-0049/182/1/474
https://ui.adsabs.harvard.edu/abs/2009ApJS..182..474S/abstract
https://doi.org/10.1093/mnras/190.3.413
https://ui.adsabs.harvard.edu/abs/1980MNRAS.190..413S/abstract
https://doi.org/10.1103/PhysRevD.87.083509
https://ui.adsabs.harvard.edu/abs/2013PhRvD..87h3509T/abstract
https://doi.org/10.1103/PhysRevD.82.063522
https://ui.adsabs.harvard.edu/abs/2010PhRvD..82f3522T/abstract
https://doi.org/10.1086/380434
https://ui.adsabs.harvard.edu/abs/2004ApJ...601...28T/abstract
https://ui.adsabs.harvard.edu/abs/2004ApJ...601...28T/abstract
https://doi.org/10.1086/318301
https://ui.adsabs.harvard.edu/abs/2001ApJ...546..681T/abstract
https://doi.org/10.1086/376865
https://ui.adsabs.harvard.edu/abs/2003ApJ...594....1T/abstract
https://doi.org/10.1088/0004-6256/146/4/86
https://ui.adsabs.harvard.edu/abs/2013AJ....146...86T/abstract
https://doi.org/10.3847/0004-6256/152/2/50
https://ui.adsabs.harvard.edu/abs/2016AJ....152...50T/abstract
https://doi.org/10.1111/j.1365-2966.2011.20050.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420..447T/abstract
https://doi.org/10.1103/PhysRevD.91.084010
https://ui.adsabs.harvard.edu/abs/2015PhRvD..91h4010U/abstract
https://doi.org/10.1088/1475-7516/2016/12/007
https://ui.adsabs.harvard.edu/abs/2016JCAP...12..007V/abstract
https://doi.org/10.1093/mnras/sty2224
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.5332W/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.5332W/abstract
https://doi.org/10.1111/j.1365-2966.2007.11970.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.379..343W/abstract
https://doi.org/10.1093/mnras/stv651
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1868W/abstract
https://doi.org/10.1111/j.1365-2966.2008.14089.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.392..743W/abstract
https://doi.org/10.1086/378959
https://ui.adsabs.harvard.edu/abs/2003AJ....126.2268W/abstract
https://doi.org/10.1086/307108
https://ui.adsabs.harvard.edu/abs/1999ApJ...516...47W/abstract
https://doi.org/10.1086/304481
https://ui.adsabs.harvard.edu/abs/1997ApJ...486...21Z/abstract
https://ui.adsabs.harvard.edu/abs/1997ApJ...486...21Z/abstract
https://doi.org/10.1103/PhysRevD.87.063526
https://ui.adsabs.harvard.edu/abs/2013PhRvD..87f3526Z/abstract
https://doi.org/10.1103/PhysRevD.88.103510
https://ui.adsabs.harvard.edu/abs/2013PhRvD..88j3510Z/abstract

	1. Introduction
	2. The Peculiar Velocity Correlation Estimator
	3. Data
	4. Mock Catalogs
	5. Results
	6. Parameter Constraints
	7. Conclusion
	References



