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Abstract 

 This article describes UMA (Unified Model of Arithmetic), a theory of children’s 

arithmetic implemented as a computational model. UMA builds on FARRA (Braithwaite, Pyke, 

& Siegler, 2017), a model of children’s fraction arithmetic. Whereas FARRA—like all previous 

models of arithmetic—focused on arithmetic with only one type of number, UMA simulates 

arithmetic with whole numbers, fractions, and decimals. The model was trained on arithmetic 

problems from the first to sixth grade volumes of a math textbook series; its performance on tests 

administered at the end of each grade was compared to the performance of children in prior 

empirical research. In whole number arithmetic (Study 1), fraction arithmetic (Study 2), and 

decimal arithmetic (Study 3), UMA displayed types of errors, effects of problem features on 

error rates, and individual differences in strategy use that resembled those documented in 

previous studies of children. Further, UMA generated correlations between individual 

differences in basic and advanced arithmetic skills similar to those observed in longitudinal 

studies of arithmetic development (Study 4). The results support UMA’s main theoretical 

assumptions regarding arithmetic development: (1) most errors reflect small deviations from 

standard procedures via two mechanisms, overgeneralization and omission; (2) between-problem 

variations in error rates reflect effects of intrinsic difficulty and differential amounts of practice; 

and (3) individual differences in strategy use reflect underlying variation in parameters 

governing learning and decision making. 

 

Keywords: Numeric development; Arithmetic; Strategy choice; Cognitive model; Individual 

differences 
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A Unified Model of Arithmetic with Whole Numbers, Fractions, and Decimals 

 Arithmetic—combining numbers using addition, subtraction, multiplication, and 

division—is among the most critical math skills that children learn. It is a foundation for more 

advanced skills. Algebra, which is viewed as a gatekeeper for success in secondary and higher 

education, would be impossible to learn without knowledge of arithmetic. Indeed, algebra errors 

often reflect poor understanding of arithmetic (Booth et al., 2014; Herscovics & Linchevski, 

1994; Linchevski & Livneh, 1999). Arithmetic also has practical value outside of formal 

education. In a nationally representative sample of over 2000 working adults in the US, 86% 

reported using addition and/or subtraction, and 78% reported using multiplication and/or 

division, in their jobs (Handel, 2016). 

 Children’s acquisition of arithmetic is protracted and complex. Usually beginning before 

school entry, children learn to add and subtract whole numbers using varied strategies, including 

counting and fact retrieval. These skills continue to develop in early primary education, during 

which children also learn symbolic algorithms for calculating with multidigit whole numbers and 

single-digit multiplication and division. In fourth to sixth grade, children are taught algorithms 

for decimal arithmetic, which are based on multidigit whole number algorithms but involve new 

procedures for dealing with decimal points. Over the same period, children are also taught 

fraction arithmetic algorithms, which are entirely different from those used for decimal 

arithmetic despite the conceptual similarity between fractions and decimals. Children also learn 

multi-digit multiplication and division during this period. The variety of methods used for 

arithmetic with different types of numbers suggests that arithmetic is not one skill, but many. 

 Reflecting this complexity, existing cognitive process models of arithmetic focus on 

arithmetic with only one type of number, such as single-digit whole numbers (Aubin et al., 2017; 
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Campbell & Graham, 1985; Shrager & Siegler, 1998; Verguts & Fias, 2005), multidigit whole 

numbers (J. S. Brown & VanLehn, 1980), decimals (Hiebert & Wearne, 1985), or fractions 

(Braithwaite et al., 2017). The difficulty of modeling even one type of arithmetic may have 

discouraged efforts to account for multiple types of arithmetic within a single model. However, 

the limited scope of existing models leaves unclear whether their theoretical assumptions can 

account for arithmetic performance outside the domains for which the models were designed, as 

well as rendering impossible tests of whether the models explain relations that exist at the level 

of individual differences among arithmetic skills with different types of numbers. 

 To address these challenges, we created UMA (Unified Model of Arithmetic). UMA is a 

theory of children’s arithmetic, implemented as a computational model. UMA builds on FARRA 

(Fraction Arithmetic Reflects Rules and Associations), a model of children’s fraction arithmetic 

(Braithwaite et al., 2017). Unlike FARRA, UMA accounts for arithmetic phenomena involving 

different types of numbers, including whole numbers, fractions, and decimals, as well as 

relations among individual differences in these different arithmetic skills.  

 Below, we describe UMA’s theoretical assumptions, organizing our description around 

three fundamental questions about arithmetic development: (1) Where do incorrect answers 

come from? (2) Why are errors more common on some problems than others? (3) What causes 

individual differences in strategy use? Next, we explain how these assumptions were 

implemented as a computational model. Then, four studies are presented that evaluate the model 

by comparing its performance to that of children. Studies 1, 2, and 3 evaluated the model on 

arithmetic with whole numbers, fractions, and decimals respectively. Study 4 investigated the 

model’s predictions regarding relations between basic and advanced arithmetic skills.  
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UMA’s Theoretical Assumptions 

Where Do Incorrect Answers Come From? 

 UMA is based on the assumption that most incorrect answers reflect relatively small 

deviations from standard correct procedures. This assumption is shared with many previous 

models, including models of whole number arithmetic (J. S. Brown & VanLehn, 1980), fraction 

arithmetic (Braithwaite et al., 2017), and decimal arithmetic (Hiebert & Wearne, 1985). The 

assumption implies that standard correct procedures are a good starting point for understanding 

incorrect performance. 

 Although many idiosyncratic deviations from correct procedures can and do occur, UMA 

posits that most errors result from two types of deviation: overgeneralization and omission. 

Overgeneralization refers to responses that are inappropriate for the problem at hand but would 

be appropriate for a different problem. Omission refers to omitting one or more parts of an 

otherwise correct procedure. Examples of overgeneralization are shown in Table 1; examples of 

omission are shown in Table 2. These and other specific arithmetic errors are discussed in more 

detail in Studies 1, 2, and 3. 

===== Table 1 ===== 

===== Table 2 ===== 

Why Are Errors More Common on Some Problems Than Others? 

 Children err more often on some problems than others. UMA proposes that two factors 

contribute to such variations in error rates: intrinsic difficulty and amount of practice. 

 Intrinsic difficulty refers to sources of difficulty that are inherent to the features of the 

problem and the methods available to learners for solving the problem. Analysis of these solution 

methods, and the cognitive processes involved in executing them can reveal sources of intrinsic 
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difficulty (see, e.g., Hiebert & Wearne, 1985). UMA assumes that procedures with more 

opportunities for error—via overgeneralization and/or omission—have higher intrinsic difficulty. 

For example, adding fractions is intrinsically harder with unequal than equal denominators (e.g., 

3/5+1/4 is harder than 3/5+1/5), because only the former requires conversion to a common 

denominator, which increases opportunities for error. 

 Difficulty due to amount of practice depends on the problems that students receive in 

classrooms, homework, textbooks, and other contexts. UMA assumes that learners associate 

correct procedures most strongly with types of problems that they encounter frequently, and 

therefore tend to err more often on types of problems that they encounter rarely. For the types of 

problems presented in formal education, analysis of textbooks and homework assignments can 

reveal which types of problems are rare and therefore more likely to elicit errors than their 

intrinsic difficulty alone would suggest. For example, in math textbooks, fraction multiplication 

problems rarely involve equal denominators (Braithwaite & Siegler, 2018); despite the fraction 

multiplication procedure being identical for operands with equal and unequal denominators, 

children err considerably more often when multiplying with equal than unequal denominators 

(e.g., they err more on 3/5×1/5 than 3/5×1/4; Siegler & Pyke, 2013). The same types of problems 

that are scarce in textbooks are also scarce in homework assignments by teachers, which likely 

reinforces the effects of frequency of different types of textbook problems (Tian et al., 2022). 

 Many cognitive models of arithmetic assume that problems differ in intrinsic difficulty 

(e.g., Campbell, 1995; Hiebert & Wearne, 1985; Rickard, 2005; Verguts & Fias, 2005; Widaman 

et al., 1989). In contrast, few models incorporate effects of amount of practice on difficulty (for 

exceptions, see Braithwaite et al., 2017 and Siegler, 1988). However, the assumption that 

children learn from distributional characteristics of the input they receive is consistent with 



A UNIFIED MODEL OF ARITHMETIC 

7 

 

research on learning and development in many other domains, such as research on statistical 

learning in language development (e.g., Perruchet & Pacton, 2006; Saffran et al., 1996). 

What Causes Individual Differences in Strategy Use? 

 Children differ not only with respect to how quickly or accurately they perform 

mathematical tasks, but also with respect to the strategies they use. In arithmetic, individual 

differences in strategy use have been observed with whole numbers (Rhodes et al., 2019; Siegler, 

1988a), fractions (Braithwaite et al., 2019), and decimals (Braithwaite et al., 2021). Such 

differences in strategy use often affect performance more than individual differences in fluency 

with particular strategies do. For example, a child who retrieves the answer to 9×8 from memory 

is likely to solve the problem more quickly than a child who uses repeated addition, regardless of 

how skilled the latter child is with repeated addition.  

 Variations in strategy use sometimes reflect children having different strategy repertoires. 

In early arithmetic development, children discover strategies at different times (e.g., Svenson & 

Sjöberg, 1983). Thus, at a given time, some strategies are known to some but not all children. 

However, in later arithmetic development, the strategies to which different children have been 

exposed are likely to be more uniform, due to the influence of formal math instruction. 

 UMA focuses on arithmetic development from the beginning of formal instruction (first 

grade) onward. The theory therefore assumes that different children have access to the same set 

of strategies. Whereas this simplifying assumption is shared with nearly all existing cognitive 

process models of arithmetic, UMA further assumes that children vary with respect to parameters 

governing learning and decision making, and that such variation generates distinct patterns of 

strategy use (see, e.g., Siegler, 1988a). UMA’s specific assumptions about these parameters are 

presented in our detailed description of the model in the next section; its predictions regarding 
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individual differences in strategy use are presented in Studies 1, 2, and 3. 

Limits of the Theory 

 UMA is a unified theory in the sense that it explains arithmetic phenomena with different 

types of numbers (whole numbers, fractions, and decimals) by appealing to a common set of 

theoretical assumptions and using the same mechanisms. However, the theory is limited in two 

ways. First, UMA deals only with symbolic arithmetic calculation. Other arithmetic tasks, such 

as estimation and solving story problems, are outside the theory’s purview. Second, UMA deals 

only with procedural knowledge, or knowledge of action sequences for solving problems. The 

theory does not account for how children represent and use conceptual knowledge (knowledge of 

mathematical categories, relations, and principles; Crooks & Alibali, 2014), such as the 

associative, commutative, and distributive properties of arithmetic. 

 There were two reasons for the above limitations. First, symbolic arithmetic calculation is 

a broader area than might be initially evident, especially when different types of numbers and 

arithmetic operations are considered. A unified theory of this area would constitute a substantial 

advance over prior theory and provide a foundation for future theorizing about other aspects of 

arithmetic. Second, despite the importance of conceptual knowledge, parsimony demands that 

assumptions about such knowledge be made only when needed to explain the phenomena under 

investigation. We hypothesized that explicit conceptual knowledge would not be needed to 

explain the phenomena that UMA was designed to explain—namely, the types of errors that 

children commit, the relative difficulties of different problems, and the strategy use patterns of 

different children. The model and simulations described in the following sections constitute a test 

of that hypothesis. 
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UMA’s Implementation as a Computational Model 

 To implement the theory, we constructed a computational model, UMA. UMA is a 

production system in the tradition of ACT-R (Anderson et al., 2004; Lebiere, 1999), although it 

is not an ACT-R model. This modeling approach was chosen because it offers a natural way to 

represent arithmetic procedures involving complex sequences of steps with hierarchical goal 

structures, a type of knowledge that is difficult to represent in some other modeling frameworks.  

 UMA’s architecture is shown in Figure 1. Procedure and answer memory correspond to 

procedural and declarative long-term memory in a recently proposed “standard model of the 

mind” (Laird et al., 2017). The workspace and central executive roughly correspond to parts of 

working memory in the standard model, except that the workspace represents not only internal 

but also external information storage (e.g., paper). We describe each component in detail below. 

===== Figure 1 ===== 

Procedure Memory 

Production Rules 

 UMA represents arithmetic procedures using production rules. A production rule consists 

of a condition, which specifies when the rule can be used, and an action, which specifies what to 

do if the rule is used. Every rule’s condition specifies the type of goal (e.g., solve a problem, 

convert fractions to a common denominator) that the rule is meant to achieve. Thus, the model’s 

current goal constrains which rules can be selected. 

 Most procedures are represented by multiple production rules. For example, the repeated 

addition procedure for multiplying whole numbers is represented by three rules: one that initiates 

the procedure, one that performs a single “step” of repeated addition (executing the procedure 

usually involves using this rule multiple times), and one that terminates the procedure. Some 



A UNIFIED MODEL OF ARITHMETIC 

10 

 

production rules create goals that are subsequently achieved by other rules. For example, the rule 

that implements the standard procedure for multiplying fractions creates goals to multiply the 

operands’ numerators and set the answer’s numerator equal to their product, and to multiply the 

operands’ denominators and set the answer’s denominator equal to that product. 

 UMA’s production rules implement arithmetic procedures that have been described in 

previous research or curricular materials such as math textbooks. Our goal was to include the 

most common and broadly applicable procedures, rather than all strategies that children use. For 

example, the model implements column addition but not a compensation strategy for addition 

(e.g., solving 38+45 by rounding 38 to 40, calculating 40+45, and subtracting 2 from the result), 

because the former procedure is more general and, we suspect, more widely used. This decision 

was based on the hypothesis that focusing on common procedures would allow UMA to generate 

outcomes resembling those of children.  

 UMA represents incorrect procedures as well as correct ones. Incorrect procedures are 

represented by mal-rules, which were generated by modifying correct rules via 

overgeneralization or omission. Both overgeneralization and omission involved deleting part of a 

correct rule. Overgeneralization involved deleting part of the rule’s condition side, resulting in a 

rule that could overextend the original procedure to situations in which that procedure was not 

appropriate. Omission involved removing part of the rule’s action side, resulting in a rule that 

would execute some but not all of the original correct procedure. 

 Studies 1, 2, and 3 provide further detail regarding UMA’s production rules, including 

correct rules and mal-rules for whole number, fraction, and decimal arithmetic.  

Feature-Rule Associations 

 Effects of learning by practicing procedures are represented by weights associating 
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problem features with production rules. Weights are initialized to zero and modified during 

practice, as described below. Features are properties of arithmetic problems that we assume are 

salient to nearly all children. These include the arithmetic operation (+, –, ×, ÷) and the type of 

operands: WW (two whole numbers); WF (a whole number and a fraction or mixed number); 

MF (a mixed number and a fraction or mixed number); FF (two fractions); WD (a whole number 

and a decimal); and DD (two decimals). In the case of problems with a fraction or mixed number 

operand, the set of salient features also includes whether the operands’ denominators are equal 

(ED) or unequal (UD). 

Answer Memory 

 UMA can solve some problems by retrieving answers from memory rather than by 

executing procedures. This capacity relies on answer memory: a set of weights associating 

specific problems (e.g., “3+2”) with answers (e.g., “5”). Weights are initialized to zero and 

modified during practice. Children retrieve answers from memory primarily for small whole 

number arithmetic problems, especially those involving addition or multiplication1. Thus, the 

problems represented in answer memory are the whole number addition and multiplication 

problems with operands from 1 to 10, and the answers included therein are the numbers from 1 

to 100. In principle, UMA could include common fraction and decimal arithmetic problems, such 

as 1/2+1/2, in its answer memory, but this capacity was not implemented in the present model, 

because few fraction and decimal arithmetic problems appear sufficiently often for answers to be 

memorized. 

 
1 Children retrieve answers for whole number subtraction and division problems considerably less often than for 

addition and multiplication, and it is not clear that memory retrieval ever becomes the dominant strategy for either 

subtraction or division (for subtraction, see Barrouillet et al., 2008; for division, see Robinson et al., 2006). 
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Workspace 

 UMA’s workspace stores information relating to the current problem-solving episode. 

This storage is temporary, like the contents of working memory. However, the workspace 

represents not only mental but also written storage, because writing is often required for 

arithmetic calculation. Thus, unlike working memory, the workspace has no capacity limit. 

 The primary contents of the workspace are chunks, which represent items such as 

individual operands, problems, and answers. When presented a problem, UMA adds a chunk 

representing the problem to its workspace. Production rules can add more chunks, such as sub-

problems (e.g., when solving “3/5+1/5,” UMA might create a chunk representing “3+1”), and 

modify existing chunks, such as by adding an answer to a problem (e.g., changing “3/5+1/5” into 

“3/5+1/5 = 4/5”). The workspace includes a retrieval buffer, which stores the answer most 

recently retrieved from answer memory (if any exists). 

 The workspace also includes two control structures, a goal stack and a problem stack. 

The current goal is the one on top of the goal stack; the current problem is the one on top of the 

problem stack. These are not necessarily identical, because solving a problem often requires 

achieving several smaller goals (e.g., solving “3/5+1/4” requires converting the operands to a 

common denominator, adding the numerators, and passing the common denominator to the 

answer). The current goal constrains which production rules can be selected, as mentioned 

above. The current problem affects the model’s probabilities of selecting different production 

rules and retrieving different answers, as described in the next section. 

Central Executive 

 UMA’s central executive simulates two cognitive processes: solving arithmetic problems 

and learning from practice. 



A UNIFIED MODEL OF ARITHMETIC 

13 

 

Solving Arithmetic Problems 

 Production Rule Loop. When presented a problem, UMA adds a chunk representing the 

problem to its workspace, adds a goal to solve the problem to its goal stack, and adds the 

problem to its problem stack. UMA then identifies all production rules whose conditions are 

compatible with the contents of its workspace, selects one of those rules, and fires it. Firing a 

rule modifies the workspace, possibly including the goal stack and problem stack, which usually 

changes which rules’ conditions are met. UMA continues iteratively selecting and firing rules 

until the problem has been solved. 

 If only one rule’s condition is compatible with UMA’s current workspace, UMA selects 

and fires that rule. If there are multiple candidates—such as a correct rule and one or more mal-

rules—UMA selects among them stochastically according to Equations 1 and 2: 

 𝐴(𝑟𝑗|𝑋) = ∑ 𝑤𝑖𝑗𝑥𝑖∈𝑋 ∑ 1𝑥𝑖∈𝑋⁄  (1) 

 𝑃(𝑟𝑗|𝑋) = 𝑒𝑔𝐴(𝑟𝑗|𝑋) ∑ 𝑒𝑔𝐴(𝑟𝑘|𝑋)
𝑘⁄  (2) 

Equation 1 indicates that the activation 𝐴(𝑟𝑗|𝑋) of rule 𝑟𝑗 in the context of problem 𝑋 equals the 

average of the feature-rule weights 𝑤𝑖𝑗 connecting the features 𝑥𝑖 of problem 𝑋 with 𝑟𝑗. Equation 

2 indicates the probability 𝑃(𝑟𝑗|𝑋) of selecting 𝑟𝑗 in the context of problem 𝑋 is given by a 

softmax function of the activations of 𝑟𝑗 and the other candidate rules 𝑟𝑘, a variant of a choice 

rule proposed by Luce (1959) that is widely used in cognitive modeling (e.g., Scheibehenne & 

Pachur, 2015).  

 The variable g (Equation 2) is a free parameter called “decision determinism.” If g is 0, 

all candidate rules have equal probability of being selected. Positive values of g make UMA 

prefer rules with higher activations, and this preference becomes stronger as g increases. Thus, g 

governs the degree to which rule activations affect choices among candidate rules. Equivalently, 
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because activations depend on past experience solving arithmetic problems (see “Learning from 

Practice” below), g governs the degree to which such past experience affects present decisions. 

 To implement the capacity to solve problems by retrieving answers from memory, UMA 

includes a production rule whose condition tests whether the retrieval buffer (see “Workspace” 

above) contains a number. If this condition is satisfied, the rule can be selected as described by 

Equations 1 and 2; if selected and fired, the rule’s action sets the current problem’s answer to the 

number in the retrieval buffer. Whether the retrieval buffer contains a number depends on the 

operation of UMA’s answer retrieval mechanism, described below. 

 Answer Retrieval. When UMA has a goal to solve a problem for which there is a 

corresponding entry in answer memory, UMA attempts to retrieve an answer. If an answer is 

retrieved, it is placed in the retrieval buffer, where UMA’s production rules can access it as 

described above. The following process determines whether an answer is retrieved. 

 First, UMA determines the activation of each answer in answer memory according to 

Equations 3 and 4: 

 𝐴(𝑎|𝑋) = ∑ 𝑣𝑌𝑎𝑆(𝑋, 𝑌)𝑌  (3) 

 𝑆(𝑋, 𝑌) = 𝑒−𝑐𝐷(𝑋,𝑌) (4) 

The activation of answer 𝑎 is the sum of weights 𝑣𝑌𝑎 associating the problems 𝑌 in answer 

memory with 𝑎, multiplied by the similarities of these problems to the current problem 𝑋. The 

similarity between problems 𝑋 and 𝑌 is an exponentially decreasing function of the distance 

𝐷(𝑋, 𝑌) between them (Kruschke, 1992; Nosofsky, 1986). The rate of decrease is governed by 

the “specificity” parameter c. 𝐷(𝑋, 𝑌) is the square of the number of differences between 𝑋 and 

𝑌. Three differences are possible (different operation, one operand different or both operands 
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different2), so 𝐷(𝑋, 𝑌) ranges from 0 to 9. 

 Retrieval succeeds when at least one answer’s activation exceeds a threshold. To enable 

retrieval to sometimes succeed and sometimes fail for the same problem, as in previous models 

of arithmetic fact retrieval (Shrager & Siegler, 1998; Siegler & Shrager, 1984), each time 

retrieval is attempted, the threshold is determined randomly from a normal distribution. The 

mean (rt_mu) and standard deviation (rt_sd) of this distribution are free parameters of the model. 

If multiple answers’ activations exceed the threshold, the probability of a given answer being 

selected follows a softmax function of the activations of that answer and all others whose 

activations exceed the threshold: 

 𝑃(𝑎) = 𝑒𝑔𝐴(𝑎) ∑ 𝑒𝑔𝐴(𝑏)
𝑏⁄  (5) 

Learning From Practice 

 When in learning mode, after solving a problem, UMA modifies its procedure memory 

and answer memory. For each feature of the problem and each production rule that was used 

while solving it, the corresponding feature-rule association is adjusted based on Equation 6.  

 ∆𝑤 = 1 − 𝑒𝑟𝑟 ∗ (0.5 + 𝑑) (6) 

If answer memory includes an association between the problem and the answer that was obtained 

for it, that association is adjusted based on Equation 7. 

 ∆𝑣 = 1 − 𝑒𝑟𝑟 ∗ (0.5 + 0.5 ∗ 𝑑) (7) 

In Equations 6 and 7, 𝑒𝑟𝑟 is an error signal indicating whether the model’s answer to the 

problem was correct (0) or incorrect (1), and 𝑑 is a free parameter termed “error discount,” 

whose value is constrained to [0, 1]. Thus, after correct answers, ∆𝑤 = ∆𝑣 = 1; after incorrect 

 
2 Operands are compared without regard to order. For example, “2+1” is considered to have no operands different 

from “1+2” and one operand different from “1+3.” 
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answers, ∆𝑤 ranges from -0.5 to 0.5 (Equation 6) and ∆𝑣 ranges 0 to 0.5 (Equation 7).   

 UMA often solves multiple problems during one problem-solving episode. For example, 

if presented “13/25+12/25,” UMA might generate the sub-problem “13+12,” leading in turn to 

sub-problems “1+1” and “3+2.” In such cases, for each problem that was solved during the 

episode, UMA adjusts associations of all features of the problem with the production rules used 

while solving it3, according to Equation 6. Similarly, for each problem that was solved such that 

answer memory includes an association between that problem and the answer that was obtained 

for it, UMA adjusts that association according to Equation 7. The error signal (𝑒𝑟𝑟) used for 

these adjustments is based on the final answer obtained for the main problem. 

How the Computational Model Implements UMA’s Theoretical Assumptions 

Where Do Incorrect Answers Come From? 

 All of UMA’s errors result from overgeneralization and/or omission. These mechanisms 

can generate errors directly, when mal-rules are selected and fired, and indirectly, when using 

mal-rules leads to reinforcement of incorrect answers in UMA’s answer memory, making those 

incorrect answers more likely to be retrieved from memory subsequently. UMA’s answer 

retrieval mechanism creates additional opportunities for overgeneralization, in that answers 

previously generated for one problem may later be retrieved for a different problem, especially if 

the two are similar (e.g., “3×4” and “3×5”). 

 Because UMA only generates errors by overgeneralization and omission, our hypothesis 

that these mechanisms can explain most of children’s errors can be tested by comparing UMA’s 

errors to those of children. UMA’s mal-rules were created manually, a fact that may seem to 

afford excessive modeler freedom. However, this freedom was constrained by the requirement 

 
3 “While solving it” means “while the problem was at the top of the problem stack in UMA’s workspace.” 
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that mal-rules be created only by overgeneralization or omission. Further, once created, the mal-

rules determine—without modeler input—the specific incorrect answers that UMA can generate 

for infinitely many particular problems. Also, UMA can combine multiple mal-rules, such as an 

overgeneralized strategy followed by an omission during execution, which can lead to 

unexpected outcomes. Such complexities limited the possibility of engineering specific 

outcomes, while avoiding undesired ones, via manual coding of mal-rules. Automatic generation 

of mal-rules is a goal for the future development of UMA. 

Why Are Errors More Common on Some Problems Than Others? 

 The assumption that problems vary in intrinsic difficulty is implemented via the range of 

mal-rules in the model. The model can only commit errors on problems for which applicable 

mal-rules exist, and the larger the number of applicable mal-rules, the more likely the model is to 

commit an error. Further, incorrect answers that are initially generated via mal-rules may be 

subsequently retrieved from memory, so problems that elicit more errors when solved using 

procedures will also tend to elicit more errors when answers are retrieved from memory. 

 The assumption that practice experience affects problem difficulty is implemented via 

UMA’s rule selection and answer retrieval mechanisms (Equations 2 and 5) operating through 

activations (Equations 1 and 3) that are derived from practice experience (Equations 6 and 7). 

These mechanisms imply that UMA is more likely to select correct procedures on types of 

problems, and to retrieve correct answers for specific problems, that it has practiced frequently in 

the past. Conversely, UMA is more likely to err on problems that it has encountered rarely. 

What Causes Individual Differences in Strategy Use? 

 UMA assumes that individual differences in strategy use reflect differences in parameters 

governing learning and decision making. This assumption is implemented and tested by varying 
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UMA’s free parameters and investigating whether this variation yields strategy use patterns 

consistent with empirical data. In the present study, we focus on effects of varying decision 

determinism (g), error discount (d), and mean retrieval threshold (rt_mu), as well as a simulation 

parameter called “initial counting experience” (ice), which is described in Study 1. These 

parameters were chosen because prior research suggested that they correspond to meaningful 

dimensions of individual differences among children (Braithwaite et al., 2019; Siegler, 1988a). 

Future research will explore whether the same is true of UMA’s other free parameters (c and 

rt_sd), which were not varied in the present simulations.  

Simulation Method 

 We evaluated UMA by using it to simulate arithmetic learning and performance from 

first to sixth grade. First, we created a cohort of simulated students. Then, we trained each 

simulated student on a learning set consisting of arithmetic problems from the first to sixth grade 

volumes of a math textbook series. Each simulated student’s arithmetic performance was 

assessed after it completed the learning problems for each grade. 

 This section provides a general overview of the simulations. Details specific to whole 

number arithmetic, fraction arithmetic, and decimal arithmetic are presented as Studies 1, 2, and 

3, respectively. Relations among different arithmetic skills are analyzed in Study 4. Simulation 

code, output, and analysis scripts are available at https://github.com/baixiwei/UMA_PR02.git.  

Simulated Cohort 

 Our simulated cohort consisted of 1,000 instances of UMA, one for each combination of 

10 values for decision determinism (g: {.01, .02, .03, .04, .05, .06, .07, .08, .09, .10}), 5 values 

for error discount (d: {0.1, 0.3, 0.5, 0.7, 0.9}), 4 values for mean retrieval threshold (rt_mu: {3, 

4, 5, 6}), and 5 values for initial counting experience (ice: {0, 25, 50, 75, 100}). These varying 

https://github.com/baixiwei/UMA_PR02.git
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parameter values were intended to simulate individual differences among children. Fixed values 

were used for UMA's other free parameters: specificity (c: 5) and standard deviation of the 

retrieval threshold (rt_sd: 1).  

 The above parameter values were selected because they yielded reasonable results in 

initial tests; the values were not based on theory or prior research. Systematic parameter fitting 

was not conducted, due to the complexity of the outcomes that were used to evaluate the model. 

In cognitive modeling, it is common practice to use different model parameters to simulate 

different empirical datasets. In contrast, we used the same parameters for UMA throughout 

Studies 1-4, which afforded a particularly stringent test of the model. 

Learning Set 

 The learning set was created by extracting arithmetic problems from the first to sixth 

grade student textbooks of GO MATH! (Dixon et al., 2015, 2018). This textbook series was 

chosen because it was used in the schools attended by participants in a prior empirical study 

(Braithwaite et al., 2021) whose data were used to evaluate UMA’s performance in decimal 

arithmetic (Study 3), and because its problem distributions closely resembled those in the two 

other textbook series analyzed by Braithwaite et al. (2017). The distribution of fraction and 

decimal arithmetic problems in math homework assigned by teachers has been found to be 

similar to the distribution in math textbooks (Tian et al., 2022). Thus, we considered these 

textbook problems to be a reasonable proxy for children’s arithmetic practice experience. 

 The learning set consisted of arithmetic problems with two operands, which could be 

whole numbers, fractions, mixed numbers, or decimals. Such problems were included if they 

were in symbolic form (not story problems), were not solved or partially solved in the textbook, 

and requested an exact (not estimated) answer in open-response (not multiple choice) format. All 
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problems meeting these criteria were included except for division problems involving whole 

numbers or decimals, which were excluded because the current version of UMA does not 

implement long division.  Fraction division problems were included because for fractions, unlike 

whole numbers and decimals, the standard division procedure is quite similar to, and easily 

confused with, the procedures for other arithmetic operations.  

 The resulting learning set included 3,222 arithmetic problems. The types of problems 

included in the set, and the number of problems of each type, are shown in Table 3. Problems 

appeared in the learning set in the same order as in the textbook. 

===== Table 3 ===== 

Assessment 

 End-of-year assessments were created to assess UMA’s learning after each grade. Whole 

number addition problems were included in every grade’s assessment. Whole number 

multiplication problems were included in the assessments starting from grade 3, which was the 

earliest grade in which whole number multiplication problems appeared in the learning set. 

Fraction and decimal arithmetic problems were included in the assessment for grade 6, which 

was the earliest grade included in the empirical data to which we compared our simulation 

results for fraction and decimal arithmetic. Further details regarding the assessment problems are 

provided in Studies 1, 2, and 3. 

Simulation Procedure 

 Each simulated student first solved the problems from the grade 1 textbook in learning 

mode, meaning that after solving each problem, the model adjusted its procedure and answer 

memories according to Equation 6. After solving the grade 1 textbook problems, the simulated 

students completed the grade 1 assessment with learning mode off, meaning that the model did 
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not modify its memory during the test. Then, the simulated students followed the same procedure 

to complete the learning problems and assessment for each subsequent grade. 

 Except where otherwise noted, UMA was prevented from using a given procedure until 

the first problem on which the procedure was appropriate appeared in the learning set. For 

example, the model could not access the invert-and-multiply procedure for fractions until it 

encountered the first fraction division problem. This prevented the model from displaying 

unrealistic behaviors such as using the invert-and-multiply procedure to solve fraction addition 

problems before that procedure would have been taught in school. 

Evaluation of Simulations 

 We evaluated UMA by comparing its performance to that of children with respect to 

types of errors, variables that influenced problem difficulty, and individual differences in 

strategy use. Overall accuracy was also analyzed to ensure that generating the aforementioned 

phenomena did not depend on producing unrealistically high or low accuracy.  

Study 1: Whole Number Arithmetic 

 UMA’s predecessor FARRA (Braithwaite et al., 2017) was a theory of children’s fraction 

arithmetic, whereas UMA also encompasses whole number arithmetic. Whole number arithmetic 

differs from fraction arithmetic, in that high frequency repetition of problems with operands 

between 1 and 9 makes retrieval of answers from memory a common solution strategy in whole 

number arithmetic, which it is not in fraction arithmetic. For children in the first few grades, 

counting and repeated addition are also common strategies with whole number arithmetic, which 

they are not for fraction arithmetic. Therefore, it was far from obvious that a model developed to 

simulate fraction arithmetic would also effectively simulate whole number arithmetic. 

 Our evaluation of UMA in this context focuses on addition and multiplication with 
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single-digit whole numbers. The rationale for this focus is that there is extensive empirical 

research on the types of errors that children commit, and on factors that influence their error 

rates, for whole number addition and multiplication. In contrast, there is much less research on 

these topics for whole number subtraction and division.  

 Below, we briefly review key phenomena in children’s whole number addition and 

multiplication. Then, we assess whether these phenomena are generated by UMA. 

Types of Errors 

 Children’s errors on singledigit whole number addition problems are usually close to the 

correct answer. For example, children are much more likely to claim 2+1 = 4 than 2+1 = 9 

(Ashcraft & Fierman, 1982; Muthukrishnan et al., 2019; Siegler & Shrager, 1984). When 

multiplying single-digit whole numbers, the most common errors are “operand errors”—answers 

that would be correct for a problem differing by one operand, such as 6×9 = 48 (Buwalda et al., 

2016; Campbell & Graham, 1985; Siegler, 1988b). Operand errors are usually close to correct 

answers in the multiplication table; for example, 6×9 = 48 is more likely than 6×9 = 30. 

Influences on Problem Difficulty 

 Children have greater difficulty with problems involving larger operands, a phenomenon 

known as the “problem size effect” (Zbrodoff & Logan, 2005). This effect has been observed for 

both addition (Ashcraft & Guillaume, 2009; Moore & Ashcraft, 2015) and multiplication 

(Hofman et al., 2018; Mabbott & Bisanz, 2003; van der Ven et al., 2015). Although many factors 

affect problem difficulty, we focus on problem size, because that effect is large and well 

documented. 

Individual Differences in Strategy Use 

 Among school age children, the most common strategy for adding and multiplying 
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single-digit whole numbers is retrieval from memory. When unable to retrieve the answer, 

children use backup strategies such as adding by counting (e.g., solving 5+3 by counting “6, 7, 

8”; Siegler, 1987; Svenson & Sjöberg, 1983) and multiplying by repeated addition (e.g., solving 

5×3 by saying “5, 10, 15”; Mabbott & Bisanz, 2003; Siegler, 1988b). Use of retrieval increases 

over development (Ashcraft & Fierman, 1982; Cooney et al., 1988; Koshmider & Ashcraft, 

1991; Lemaire & Siegler, 1995; Mabbott & Bisanz, 2003; Siegler, 1987; Svenson & Sjöberg, 

1983). 

 Our analyses of UMA’s behavior focused on two aspects of individual differences.  First, 

some individuals shift from backup strategies to memory retrieval more quickly than others 

(Geary et al., 2004; Hofman et al., 2018; Lemaire & Siegler, 1995; Rhodes et al., 2019). Second, 

although many students display either high accuracy and high reliance on retrieval or low 

accuracy and low reliance on retrieval, some students display high accuracy but low reliance on 

retrieval; Siegler (1988a) dubbed these three types “good students,” “not-so-good students,” and 

“perfectionists.” 

How UMA Simulates Whole Number Arithmetic 

 UMA can add and multiply single-digit whole numbers using retrieval from memory, 

mathematical principles, or backup strategies. Retrieval occurs as described in the Introduction. 

Principles include the facts that for any number n, 0+n = n+0 = n, n×0 = 0×n = 0, and n×1 = 1×n 

= n. Backup strategies include adding by counting and multiplying by repeated addition. 

 At the beginning of each simulation run, weights in answer memory are initialized to 

zero, which prevents any answer from achieving sufficient activation to be retrieved. Thus, when 

presented a problem that cannot be solved by a principle, UMA must use a backup strategy. 

Generating answers via backup strategies increases these answers’ weights in answer memory, 
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eventually making retrieval possible. 

 UMA uses two backup strategies: adding by counting and multiplying by repeated 

addition. Both rely on an accumulation procedure, which involves repeatedly increasing a 

running total, while also incrementing a counter, until the counter reaches a target. To solve 5+3 

by counting, UMA would set the total to 5 and the counter to 0, then repeatedly increment the 

total and the counter until the counter reached 3. (Preschoolers often add by counting from one, 

but by first grade, the point at which the simulation starts, children more often add by counting 

on from the larger addend (Siegler, 1987.)) To solve 5×3 by repeated addition, UMA would set 

the total to 5 and the counter to 1, then repeatedly add 5 to the total and increment the counter 

until the counter reached 3. Practice with addition by counting yields some transfer to 

multiplication by repeated addition, because both use the production rules that represent the 

accumulation procedure. 

 UMA’s implementation of accumulation includes two mal-rules created via omission. 

One increments the counter without adding to the total; the other adds to the total without 

incrementing the counter. These mal-rules enable UMA to simulate errors involving counting or 

adding too few or too many times, such as 5+3 = 7 or 9, or 5×3 = 10 or 20.  

 UMA generates retrieval errors in two ways that were previously described by Lebiere 

(1999). First, incorrect answers generated by the above mal-rules leave traces in answer memory, 

enabling these answers subsequently to be retrieved. Second, answers that were previously 

generated for one problem can later be retrieved for a different problem—a form of 

overgeneralization. 

 To reflect the fact that most children begin first grade with some counting skill, at the 

start of each simulation, we increased the weights associating the correct accumulation rule (i.e., 



A UNIFIED MODEL OF ARITHMETIC 

25 

 

the one that increments the counter and the total) with the problem features representing “two 

whole numbers” and “addition.” The amount of this increase was a free parameter called “initial 

counting experience” (ice), which assumed the values {0, 25, 50, 75, 100} equally often. This 

variation was intended to reflect individual differences in children’s early counting skill, which 

have been found to predict differences in arithmetic development (Bartelet et al., 2014; Moore & 

Ashcraft, 2015). 

Assessment Problems 

 Following the precedent of other models of small whole number arithmetic (Campbell, 

1995; Shrager & Siegler, 1998; Verguts & Fias, 2005), the problems used to assess UMA’s 

whole number arithmetic were those that cannot be solved by principles—that is, the 81 addition 

problems with operands from 1-9 and the 64 multiplication problems with operands from 2-9. 

Simulation Results 

Accuracy 

 Accuracy increased with grade for both whole number addition (grade 1: 92.5%, grade 6: 

98.3%) and multiplication (grade 3: 89.8%, grade 6: 94.2%; Figure 2A). This increase mainly 

reflected increased use of retrieval (Figure 2B), which was associated with higher accuracy than 

using accumulation (i.e., counting or repeated addition). Increased use of retrieval, in turn, 

reflected effects of practice, in that the more times UMA solved a problem, the more likely that 

an answer for that problem would reach the retrieval threshold on subsequent trials. 

===== Figure 2 ===== 

Types of Errors  

 Across grades, UMA erred on 2.9% of whole number addition problems. These errors 

mainly reflected overcounting, undercounting, or retrieval of incorrect answers previously 
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generated in these ways. Because UMA is less likely to overcount or undercount many times 

than to do so few times, the model’s incorrect answers—like those of children—were usually 

close to the correct answer (Figure 3A). Incorrect answers that were within 1, 2, and 3 of the 

correct answer were 57.4%, 79.5%, and 88.7%, respectively, of total incorrect answers. 

 UMA erred on 7.3% of multiplication problems across grades. As with children, most 

errors (59.0%) were operand errors—answers that would be correct for a problem differing by 

one operand. For example, the five most common errors generated by UMA for 6×9 were (in 

order) 45, 36, 72, 63, and 48. For comparison, the five most common errors on this problem 

among 5- to 13-year-olds in Buwalda et al. (2016) were (in order) 45, 56, 63, 36, and 53. All of 

UMA’s top 5 errors appeared in children’s data and vice versa. 

 UMA generates operand errors in multiplication by adding too many or too few times 

when doing repeated addition or by retrieving answers previously generated in these ways. 

Because UMA is more likely to make few than many mistakes when repeatedly adding, its 

operand errors—like children’s—tended to be close to the correct answer (Figure 3B). Among 

these errors, the operand for which UMA’s answer would have been correct was within 1, 2, and 

3 of the actual operand on 54.4%, 78.6%, and 88.4% of trials, respectively. 

Influences on Problem Difficulty 

 To assess whether UMA generated problem size effects, accuracy was calculated for each 

problem across grades and simulated students. Then, separately for addition and multiplication, 

these accuracies were regressed on the sum of each problem’s operands, a measure of problem 

size (Ashcraft & Fierman, 1982). Both regressions found that accuracies were lower for 

problems with larger operand sums, B = -.004, t(79) = 9.7, p < .001 for addition and B = -.006, 
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t(62) = 8.2, p < .001 for multiplication4. Thus, UMA displayed problem size effects for both 

operations. 

 Problem size effects in UMA mainly reflect variation in intrinsic difficulty, in that 

problems with larger operands present more opportunities for errors when solved using backup 

strategies. For example, solving 3+1 by counting from the smaller addend requires only one 

correct count and therefore presents only one chance to count incorrectly, whereas calculating 

3+2 by such counting requires two counts (“4, 5”) and therefore presents two chances to err. 

Repeatedly adding larger numbers to solve multiplication problems is also more error-prone than 

repeatedly adding smaller numbers (Siegler, 1988b). 

Individual Differences in Strategy Use 

 Like children, our simulated students shifted from backup strategies to retrieval at 

different rates. Consistent with UMA’s theoretical assumptions, these differences were related to 

differences in UMA’s parameter values (Figure 4). For both addition and multiplication, the shift 

to retrieval occurred more quickly when decision determinism was high (Figure 4A), when mean 

retrieval threshold was low (Figure 4C), and when initial counting experience was high (Figure 

4D). Error discount (Figure 4B) had little effect on the shift to retrieval, except that high error 

discount slightly slowed the shift to retrieval in later grades for multiplication. 

===== Figure 4 ===== 

 The reason why low mean retrieval thresholds increase retrieval frequency is obvious, but 

the reasons why high decision determinism and high initial counting experience do so are a little 

more complex. Both of these parameter values tend to strengthen UMA’s preference for the 

 
4 Analogous effects of operand sum were found in linear mixed models with operand sum, grade, and their 

interaction as fixed effects and problem as a random effect.  
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production rules that correctly implement the accumulation procedure5. This, in turn, causes 

UMA to generate correct answers more frequently when using that procedure, which increases 

the strength of correct answers in memory. Thus, correct answers reach the memory retrieval 

threshold earlier, enabling a faster shift from counting to retrieval. 

 Next, to test whether UMA generated individual difference patterns like those observed 

by Siegler (1988a), we classified our simulated students into four groups based on whether they 

were above or below average with respect to accuracy and use of retrieval on the whole number 

addition assessment in first grade, the same grade as Siegler’s (1988a) participants. As shown in 

Table 4, the three groups that were analogous to Siegler’s (1988a) types together included 99% 

of simulated students, with each including at least 12% of simulated students. Simulated students 

who were above average on both dimensions (Siegler’s “good students”) had moderate to high 

decision determinism, low retrieval thresholds, and high initial counting experience; those who 

were below average on both dimensions (Siegler’s “not-so-good students”) showed the opposite 

tendencies. Simulated students with above average accuracy but below average use of retrieval 

(Siegler’s “perfectionists”) displayed moderate to high decision determinism accompanied by 

high retrieval thresholds and low initial counting experience. High retrieval thresholds are 

consistent with Siegler’s (1988a) interpretation of this type of students as “perfectionists,” but 

low initial counting experience suggests an alternate cause for the same behavior pattern. 

Discussion 

 UMA generated a number of phenomena that have been observed in children’s addition 

and multiplication of single-digit whole numbers. The model showed (1) increasing accuracy 

 
5 High decision determinism causes UMA more strongly to prefer production rules that have yielded correct answers 

in the past. High initial counting experience increases the initial activation of the production rules referred to here, 

making those rules more likely to be used and thereby reinforced. 
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with grade and mathematical experience, (2) increasing reliance on retrieval with grade and 

mathematical experience, (3) most incorrect answers for addition problems being close to the 

correct answer, (4) most incorrect answers for multiplication problems being correct answers for 

a problem differing by one operand, (5) problem size effects for addition and multiplication, (6) 

individuals shifting from backup strategies to retrieval at differing rates, and (7) individual 

differences in accuracy and strategy use analogous to those previously observed among children. 

Thus, although UMA’s theoretical assumptions were originally devised to explain children’s 

fraction arithmetic, they also enabled the model to simulate children’s performance and 

development in whole number arithmetic. 

 Simulating whole number arithmetic in UMA involved adding a new architectural 

component that was not included in UMA’s predecessor FARRA: answer memory. This new 

component reflects an observation and a theoretical assumption. The observation is that 

individual single-digit whole number problems are encountered sufficiently often to allow strong 

associations between problems and specific answers (Siegler, 1988b; Siegler & Shrager, 1984). 

The theoretical assumption is that answer retrieval, which is simulated by UMA’s answer 

memory, involves different cognitive mechanisms from strategy choice, which is simulated by 

procedure memory, as in FARRA. One difference between answer memory and procedure 

memory is that answer memory can only retrieve answers whose activations reach a threshold, 

which prevents implausible answers such as 1+1 = 80 from being retrieved. Procedure memory 

includes no such threshold. 

Study 2: Fraction Arithmetic 

 UMA extends FARRA, whose ability to simulate children’s fraction arithmetic was 

demonstrated by Braithwaite et al. (2017, 2019). It was important to test whether UMA could 
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replicate these previous results for at least two reasons. First, unlike FARRA, UMA generates 

whole number arithmetic errors, which could affect the model’s fraction arithmetic performance. 

Second, testing UMA on fraction arithmetic within a simulation that also included whole number 

and decimal arithmetic would reveal whether the same values of UMA’s free parameters could 

yield realistic performance in all three domains. 

 As with whole number arithmetic, we first review key phenomena in children’s fraction 

arithmetic performance, all of which were previously generated by FARRA. Then, we test 

whether UMA also generates these phenomena. 

Types of Errors 

 Most of children’s fraction arithmetic errors involve using inappropriate strategies; a 

substantial minority involve incorrect execution of appropriate strategies (G. Brown & Quinn, 

2006; Byrnes & Wasik, 1991; Gabriel et al., 2013; Hecht, 1998; Newton et al., 2014; Siegler et 

al., 2011; Siegler & Pyke, 2013). Examples of common strategy errors are shown in Table 1; 

examples of common execution errors are shown in Table 2. 

Influences on Problem Difficulty 

 Children are less accurate when dividing fractions than when adding, subtracting, or 

multiplying them (Siegler et al., 2011; Siegler & Pyke, 2013). When adding or subtracting, 

children are more accurate on problems involving equal than unequal denominators, whereas the 

reverse is true for multiplying fractions (Gabriel et al., 2013; Siegler et al., 2011; Siegler & Pyke, 

2013). 

Individual Differences in Strategy Use 

 UMA’s predecessor, FARRA, predicted that children would display several qualitatively 

distinct patterns of strategy use in fraction arithmetic (Braithwaite et al., 2019). These individual 
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difference patterns were: (1) “Correct Strategies,” in which a correct strategy is used on most or 

all problems; (2) “Addition/Subtraction Perseveration,” in which a strategy that would be correct 

for addition and subtraction is used on most or all problems; (3) “Multiplication Perseveration,” 

in which a strategy that would be correct for multiplication is used on most or all problems; and 

(4) “Variable Strategies,” in which multiple strategies are used for each arithmetic operation, 

with no one of them dominant. The predicted patterns all emerged in children’s data from Siegler 

and Pyke (2013), and jointly accounted for 90% of children (Braithwaite et al., 2019). 

How UMA Simulates Fraction Arithmetic 

 UMA’s production rules for fraction arithmetic are essentially identical to FARRA’s. We 

describe them briefly here and refer readers to Braithwaite et al. (2017) for further detail. 

 UMA implements three correct strategies for fraction arithmetic. The fraction 

addition/subtraction strategy involves converting the operands to a common denominator if 

necessary, then performing the specified operation on the numerators and passing the common 

denominator into the answer. The fraction multiplication strategy involves performing the given 

operation separately on the operands’ numerators and denominators. The fraction division 

strategy involves inverting the second operand, changing the operation to multiplication, then 

performing the operation separately on the operands’ numerators and denominators. 

 UMA includes two versions of each of the above strategies, the correct version and an 

overgeneralized version. The correct version can only be used on problems involving the 

appropriate arithmetic operation, whereas the overgeneralized version can be used on problems 

involving any arithmetic operation. These overgeneralized strategies enable UMA to generate 

common strategy errors. For example, UMA generates 3/5+1/4 = 4/9 via the overgeneralized 

version of the multiplication strategy (perform the operation separately on the numerators and 
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the denominators), and it generates 4/5×3/5 = 12/5 via the overgeneralized version of the 

addition/subtraction strategy (perform the operation on the numerator and pass through the 

denominator to the answer). 

 Errors such as 3/5+1/4 = 4/9 could result from overgeneralization of the procedure for 

multiplying fractions, but such errors could also result from overgeneralization of whole number 

knowledge, in that such errors could reflect thinking of a fraction as two independent whole 

numbers. Consistent with the latter possibility, students often commit such errors before being 

taught fraction multiplication (Byrnes & Wasik, 1991), a phenomenon sometimes described as 

“whole number bias” (Ni & Zhou, 2005). To reflect this fact, the strategy of operating separately 

on the numerators and denominators was made available to UMA starting from the first 

presentation of any fraction problem, rather than from the first fraction multiplication item. 

 UMA also includes several execution rules, which represent the individual steps required 

to carry out strategies. These execution rules include several mal-rules created by omission of 

steps in a correct rule; the mal-rules led UMA to commit execution errors like those of children. 

For example, UMA includes a correct rule that achieves the goal of converting the operands to a 

common denominator by multiplying each operand’s numerator and denominator by the other 

operand’s denominator; a corresponding mal-rule omits conversion of the numerators, leading to 

errors such as 3/5+1/4 = 3/20+1/20 = 4/20. Similarly, the rules for executing the invert-and-

multiply procedure for fraction division include a mal-rule that omits the “invert” part of the 

strategy, leading to errors such as 3/5÷1/4 = 3/5×1/4 = 3/20.  

Assessment Problems 

 Fraction arithmetic learning was assessed using 16 problems, four for each arithmetic 

operation. The problems for each operation involved the same pairs of operands, two with equal 
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denominators (ED: 3/5 __ 1/5, 4/5 __ 3/5) and two with unequal denominators (UD: 3/5 __ 1/4, 

2/3 __ 3/5). These problems were presented to sixth and eighth graders in Siegler and Pyke 

(2013) and were used previously to assess FARRA (Braithwaite et al., 2017, 2019).  

Simulation Results 

Accuracy 

 To evaluate UMA, we compared its performance after completing the learning set to that 

of children in Siegler and Pyke (2013). Overall, UMA answered 52.6% of test problems 

correctly, close to the 51.6% answered correctly by children. 

Types of Errors 

 UMA generated children’s most common incorrect response for every problem and also 

many of children’s less common incorrect responses. Examples are shown in Table 5. On 72.2% 

of trials that children answered incorrectly, their answers were among those generated by UMA. 

Because UMA’s errors are all generated by overgeneralization and/or omission, the findings 

demonstrate that at least 72.2% of children’s errors can be generated by these mechanisms. On 

77.5% of trials that UMA solved incorrectly, its answers were also advanced by children.  

===== Table 5 ===== 

 We also evaluated how well the frequencies of different errors in UMA’s data 

corresponded to their frequencies in children’s data. For each incorrect answer that was advanced 

by children, UMA, or both, we determined the answer’s frequencies in children’s and UMA’s 

data. Then, we calculated the correlations between these frequencies across all incorrect answers, 

across incorrect answers that were generated by children, and across incorrect answers that were 

generated by both children and UMA. These correlations were r = .83, .85, and .82 respectively, 

all ps < .001. Thus, the frequencies of different errors in UMA’s data corresponded well to their 
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frequencies in children’s data. 

Influences on Problem Difficulty 

 As shown in Figure 5, UMA, like children, was more accurate on fraction addition and 

subtraction problems with equal than unequal denominators (70.7% vs. 55.3%), despite the 

learning set containing more of the latter problems (Table 3). Unequal denominator addition and 

subtraction problems are intrinsically harder for UMA, and presumably for children, because 

such problems require conversion of the operands to a common denominator, thus presenting an 

opportunity for error that does not occur with equal denominator addition and subtraction. 

===== Figure 5 ===== 

 Also like children, UMA was more accurate on fraction multiplication problems with 

unequal than equal denominators (66.0% vs. 54.7%). Unlike problems involving addition and 

subtraction of fractions, denominator equality has no obvious relation to intrinsic difficulty of 

fraction multiplication problems. With UMA, and presumably with children, this difference in 

accuracy reflects practice experience. Like many math textbooks (Braithwaite & Siegler, 2018), 

UMA’s learning set contained far more unequal than equal denominator multiplication problems 

(Table 3); this discrepancy caused UMA to associate the correct procedure more strongly with 

unequal denominator fraction multiplication problems. 

 Finally, both children and UMA were less accurate with fraction division than with 

fraction addition, subtraction, and multiplication. This lower accuracy largely reflects the small 

number of division problems in the learning set (Table 3), which is typical of math textbooks in 

the US (Braithwaite et al., 2017; Son & Senk, 2010). Low accuracy on division problems likely 

also reflects division being presented last among the four arithmetic operations, enabling 

strategies learned for other operations to interfere with learning of the correct division strategy. 
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Despite equal denominator division problems being rare in the learning set, UMA—like 

children—was more accurate on equal than unequal denominator division problems (29.0% vs. 

19.6%). This result was previously observed in Braithwaite et al. (2017) and reflects the test set 

including one equal denominator division problem, 3/5÷1/5, that could be solved correctly by 

overgeneralizing the multiplication strategy of operating separately on the numerators and 

denominators (i.e., 3/5÷1/5 = (3÷1)/(5÷5) = 3/1). That problem was solved correctly far more 

often than the other equal denominator division problem in the test set (4/5÷3/5) by both children 

(35.8% vs. 20.0%) and UMA (41.6% vs. 16.3%). 

Individual Differences in Strategy Use 

 Children and simulated students were classified as in Braithwaite et al. (2019). First, each 

solution was coded according to whether it displayed a strategy that would be appropriate for 

addition and subtraction, multiplication, division, or none of these operations. Children’s 

solutions were coded based on their written work; UMA’s solutions were coded based on which 

strategy the model used to solve each problem. Then, children and simulated students were 

classified based on their strategy use. Individuals were classified as displaying (1) “Correct 

Strategies” if they used an appropriate strategy on at least 75% of problems, (2) 

“Addition/Subtraction Perseveration” if they used a strategy appropriate for addition or 

subtraction on at least 75% of problems (e.g., all 8 addition and subtraction problems and half of 

the 8 multiplication and division problems), (3) “Multiplication Perseveration” if they used a 

strategy appropriate for multiplication on at least 10 of the 16 problems (e.g., all 4 multiplication 

problems and half of the remaining 12 problems), and (4) “Variable Strategies” if, for at least 

three arithmetic operations, the individual used more than one strategy across the four problems 

involving that operation.  
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 Percentages of children and simulated students classified into each group are shown in 

Table 6. As with children, all four patterns appeared in the simulation data; they jointly 

accounted for nearly all simulated students. Table 6 also shows average values of UMA’s 

parameters among simulated students classified into each pattern. The Variable Strategies pattern 

was associated with low decision determinism (as would be expected), and the other three 

patterns with high decision determinism. Error discount was high in the Correct Strategies group, 

moderate in the Addition/Subtraction Perseveration group, and low in the Multiplication 

Perseveration group. Mean retrieval threshold and initial counting experience were similar in all 

groups. 

===== Table 6 ===== 

Discussion 

 Although UMA’s fraction arithmetic components are essentially the same as FARRA’s, 

UMA—unlike FARRA—commits whole number arithmetic errors. For example, UMA erred on 

1.7% of addition problems and 7.2% of multiplication problems on the whole number arithmetic 

assessment in fourth grade, the grade in which fraction arithmetic problems were first presented 

to UMA. The presence of whole number arithmetic errors could have affected UMA’s learning 

of fraction arithmetic procedures, leading to results differing from those previously obtained with 

FARRA. Nevertheless, UMA, like FARRA, generated similar errors with similar frequencies, 

similar effects of problem features on accuracy, and the same patterns of strategy use as those 

observed among children. 

 The Variable Strategies pattern was more common in the simulation than among children 

(Table 6). A closer match could have been obtained by fitting UMA’s parameters to children’s 

data. Indeed, Braithwaite et al. (2019) found a closer match to children’s data in simulations 
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conducted using FARRA with different parameter values from those used in the present study. 

However, in the present study, we did not adjust UMA’s parameters to fit children’s fraction 

data, because the simulation results were also to be compared to decimal arithmetic data from a 

different study and to the whole number data. It was not expected that simulations based on one 

set of parameters would quantitatively match data from different samples of children in all 

respects. However, the simulations should produce the qualitative phenomena that have been 

observed in each domain. Studies 1 and 2 demonstrated this to be the case for whole number and 

fraction arithmetic; Study 3 evaluated whether it was also the case for decimal arithmetic. 

Study 3: Decimal Arithmetic 

 UMA’s decimal arithmetic component represents its largest advance over prior models of 

arithmetic. Only one model of children’s decimal arithmetic has been proposed (Hiebert & 

Wearne, 1985). Like UMA, that model predicted specific errors and influences on problem 

difficulty, but UMA went further by simulating learning and problem solving, generating 

predictions about individual differences, and incorporating decimal arithmetic into a unified 

model that also includes whole number and fraction arithmetic. 

 Fraction and decimal arithmetic involve different procedures but present learners with 

similar challenges, such as the challenge of knowing not only how, but also when, to use each 

procedure (Lortie-Forgues et al., 2015). Braithwaite, Sprague, and Siegler (2021) therefore 

hypothesized that children’s decimal arithmetic would display phenomena analogous to those 

observed in fraction arithmetic. This hypothesis was tested in an empirical study of sixth and 

eighth graders’ decimal addition and multiplication. We summarize their findings and related 

findings below, then evaluate UMA’s ability to simulate and explain the findings. 
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Types of Errors  

 Braithwaite et al. (2021) predicted that as in fraction arithmetic, most decimal arithmetic 

errors involve overgeneralization of strategies. As predicted, 72% of children’s addition errors 

involved using strategies that would have been correct for multiplication, and 69% of their 

multiplication errors involved using strategies that would have been correct for addition. 

Examples of common strategy errors are shown in Table 1. Similar errors were observed in 

previous studies (Hiebert & Wearne, 1985; Tian et al., 2021), although these studies did not 

quantify the prevalence of strategy overgeneralization errors. Execution errors, including 

algorithmic errors such as the one shown in Table 2, as well as errors in retrieval of single-digit 

whole number arithmetic facts, accounted for a minority of children’s errors. 

Influences on Problem Difficulty 

 As with fraction arithmetic, accuracies on different types of decimal arithmetic problems 

parallel their frequencies in textbooks. Addition problems in textbooks often involve two 

decimal operands (DD) and rarely involve a whole number and a decimal operand (WD); in 

contrast, decimal multiplication problems involve WD more often than DD operand pairs (Tian 

et al., 2021). Paralleling the textbook frequencies, in Braithwaite et al. (2021) and Tian et al. 

(2021), children were more accurate on DD than WD addition problems, but the reverse was true 

for multiplication problems. However, despite textbooks containing more decimal multiplication 

than addition problems, children were more accurate on decimal addition than decimal 

multiplication problems (Braithwaite et al., 2021).  

Individual Differences in Strategy Use 

 Braithwaite et al. (2021) reasoned that because decimal arithmetic presents opportunities 

for strategy overgeneralization analogous to those in fraction arithmetic, strategy use patterns in 
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decimal arithmetic should be analogous to those observed in fraction arithmetic—consistent use 

of correct strategies, using a single strategy (one suitable either for addition and subtraction or 

for multiplication) on most or all problems, and variable use of multiple strategies. As predicted, 

each of these individual difference patterns emerged in children’s data; the four patterns jointly 

described the performance of 97% of children (Braithwaite et al., 2021). 

How UMA Simulates Decimal Arithmetic 

 UMA’s production rules for decimal arithmetic begin with standard column arithmetic 

procedures. In the correct procedure for adding or subtracting6 decimals, UMA arranges the 

operands vertically, so that their decimal points align. Then, it adds or subtracts the digits in each 

column and places the decimal point in the answer at the same location as in the aligned 

operands. In the correct procedure for multiplying decimals, UMA arranges the operands 

vertically, so that their rightmost digits align. Then, it multiplies each digit of the second operand 

by the first operand, adds the results, and places the decimal point in the answer so that the 

answer has as many decimal digits as the sum of the numbers of decimal digits in the operands.  

 As with fraction arithmetic, UMA includes mal-rules that represent overgeneralizations 

of each correct decimal arithmetic strategy. Thus, when adding or subtracting decimals, UMA 

can align the operands at their rightmost digits as specified by the multiplication strategy, 

yielding errors such as 0.826+0.12 = 0.838 (Table 1, second to last row) and 0.826+0.12 = 

0.00838 (if the model also places the decimal point in the answer as specified by the 

multiplication strategy). Conversely, when multiplying decimals, UMA can align the operands 

and place the decimal point in the answer as specified by the addition/subtraction strategy, 

yielding errors such as 2.4×1.2 = 28.8 (Table 1, last row). 

 
6 Decimal subtraction was included in the learning set, though not in the test set. Many of the same production rules 

are used for decimal addition and subtraction, so practice with one operation affects performance on the other. 
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 UMA also includes two mal-rules that omit parts of correct rules. One of these relates to 

placement of partial products when multiplying multidigit whole numbers or decimals (e.g., in 

24×12, the partial products are 24×2 = 48 and 24×1 = 24). In the correct procedure, each partial 

product after the first is shifted one column left of the previous partial product (Table 1, last 

row). The mal-rule in question omits this shift, yielding errors such as 2.4×1.2 = 0.72 (Table 2, 

last row). The other mal-rule involves placement of the decimal point in the answer when 

multiplying decimals. The correct procedure involves adding the numbers of decimal digits in 

the operands to determine the location of the decimal point in the product. The mal-rule in 

question omits this step, instead placing the decimal point by default immediately to the right of 

the leftmost digit of the answer, yielding errors such as 0.41×0.31 = 1.271 (rather than .1271).  

Test Problems 

 UMA’s test set was the 12 decimal arithmetic problems presented to children in 

Braithwaite et al. (2021): six addition problems (24.45+0.34, 12.3+5.6, 2.46+4.1, 0.826+0.12, 

5.61+23, 0.415+52) and six multiplication problems (0.41×0.31, 2.4×1.2, 2.3×0.13, 0.31×2.1, 

31×3.2, 14×0.21). 

Simulation Results 

Accuracy 

 UMA correctly answered 73.8% of test problems, close to the 64.3% answered correctly 

by children in Braithwaite et al. (2021). 

Types of Errors 

 UMA generated children’s most common error for every problem in the test set, and it 

generated many of children’s less frequent errors as well. Examples are shown in Table 7. 

Consistent with Braithwaite et al.’s (2021) empirical findings, UMA’s most common errors 
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involved strategy overgeneralization. For example, UMA generated 0.826+0.12 = 0.838 or 

0.00838 (Table 7, second row) using the overgeneralized version of the multiplication strategy, 

and it generated 2.4×1.2 = 28.8 using the overgeneralized version of the addition/subtraction 

strategy (Table 7, fourth row). 

===== Table 7 ===== 

 Children’s answers were among those generated by UMA on 60.9% of trials that children 

answered incorrectly. This percentage is therefore a lower bound on the proportion of children’s 

errors that can be generated by overgeneralization and omission. UMA’s answers were among 

those generated by children on 82.2% of trials that UMA solved incorrectly.  As for fraction 

arithmetic, for each incorrect answer that appeared in either children’s or UMA’s data, we 

determined the answer’s frequencies in both datasets. Then, we calculated correlations between 

these frequencies across all incorrect answers, incorrect answers that were generated by children, 

and incorrect answers that were generated by both children and UMA. These correlations were r 

= .88, .90, and .89 respectively, all ps < .001. Thus, as with fractions, relative frequencies of 

decimal arithmetic errors committed by children and UMA were closely related. 

Influences on Problem Difficulty 

 Children’s and UMA’s accuracies on different types of decimal arithmetic problems are 

shown in Figure 6.  

===== Figure 6 ===== 

 Like children, UMA was more accurate on addition problems whose operands were two 

decimals (DD) rather than a whole number and a decimal (WD; 87.6% vs. 73.7%). Also like 

children, UMA was more accurate on multiplication problems with WD than DD operands 

(79.0% vs. 57.4%). These accuracy patterns paralleled the distributions of different types of 
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decimal arithmetic problems in the learning set, which contained more DD than WD addition 

problems and more WD than DD multiplication problems (Table 3). 

 Despite the input including more decimal multiplication than decimal addition problems 

(Table 3), UMA, like children, was more accurate on decimal addition than decimal 

multiplication (83.0% vs. 64.6%). Decimal multiplication is intrinsically harder than decimal 

addition, because there are more opportunities for error when multiplying than when adding 

decimals. Both operations present the opportunity to err by overgeneralizing the procedure that is 

appropriate for the other operation, but multiplication presents additional opportunities for error 

that have no analogues with addition. These potential multiplication errors include failing to shift 

partial products leftward and failing to add the numbers of decimal digits in the operands to 

determine the placement of the decimal point in the product. 

Individual Differences in Strategy Use 

 In Braithwaite et al. (2021), children’s solutions to decimal arithmetic problems were 

coded as consistent with an addition strategy, a multiplication strategy, both (e.g., if the operands 

were aligned as in the addition strategy but the decimal point was placed as in the multiplication 

strategy), or neither. Then, children’s patterns of strategy use were categorized into the same four 

types as with fraction arithmetic in Study 2. Children were categorized as displaying (1) “Correct 

Strategies” if they used an appropriate strategy on ≥75% of the problems, (2) 

“Addition/Subtraction Perseveration” if they used a strategy appropriate for addition and 

subtraction on at least 75% of problems (e.g., all addition problems and half of the multiplication 

problems), (3) “Multiplication Perseveration” if they used a strategy appropriate for 

multiplication on at least 75% of problems (e.g., all multiplication problems and half of the 

addition problems), or (4) “Variable Strategies” if they used both an addition/subtraction strategy 
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and a multiplication strategy at least once on both addition and multiplication problems. 

 UMA’s solutions were classified as employing an addition/subtraction strategy or a 

multiplication strategy based on which production rule was used. Simulated students’ patterns of 

strategy use were then categorized into the four patterns described above, using the same criteria 

as for children. As shown in Table 8, UMA generated all four strategy use patterns, and these 

patterns jointly accounted for all simulated students. As with children, the “Correct Strategies” 

pattern was most common and “Multiplication Perseveration” the least common in UMA’s data. 

===== Table 8 ===== 

 Also shown in Table 8 are the average values of UMA’s parameters within each group of 

simulated students. As with fraction arithmetic, decision determinism and error discount varied 

substantially among groups, whereas mean retrieval threshold and initial counting experience did 

not. Also as with fraction arithmetic, decision determinism was lower in the Variable Strategies 

group than in all other groups, and error discount was relatively high in the Correct Strategies 

group and low in the Addition/Subtraction Perseveration group. In contrast to fraction arithmetic, 

in decimal arithmetic, the Multiplication Perseveration group was characterized by low (rather 

than high) decision determinism and by moderate (rather than low) error discount. 

Discussion 

 UMA simulated three aspects of children’s decimal arithmetic performance: the most 

frequent types of errors, effects of problem features on error rates, and individual differences in 

strategy use. Braithwaite et al. (2021) predicted that in each of these respects, children would 

display phenomena that had previously been observed in fraction arithmetic, reflecting a 

hypothesis that fraction and decimal arithmetic involve similar learning mechanisms. Braithwaite 

et al.’s (2021) empirical findings provided initial evidence for that hypothesis. The present 
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simulations provide further evidence for it by showing that a single computational model can 

generate these phenomena in both fraction and decimal arithmetic. 

 In particular, the present findings—together with those of Studies 1 and 2—demonstrate 

the power of overgeneralization and omission, UMA’s error-generating mechanisms, to explain a 

wide range of children’s errors. UMA’s production rules for decimal arithmetic contained only 

four mal-rules—two created by overgeneralization to represent selection of inappropriate 

strategies and two created by omission to represent incorrect execution of strategies. These mal-

rules enabled UMA to generate most of children’s incorrect answers, including their most 

common incorrect answer for every problem in the test set. 

 The findings also provide insight regarding possible origins of individual differences in 

strategy use in fraction and decimal arithmetic. In both cases, varying UMA’s parameters, 

especially decision determinism and error discount, caused the model to generate four patterns of 

strategy use that also appeared in children’s data. The Correct Strategies pattern was associated 

with moderate or high values of these parameters, suggesting that successful learning of fraction 

and decimal arithmetic requires consistency (represented by decision determinism) and avoiding 

perseveration on a single strategy, if doing so generates errors (represented by error discount). 

Learners who do not meet the first criterion (i.e., those with low decision determinism, which 

causes strategy choices to be relatively random) may instead exhibit the Variable Strategies 

pattern. Those who do not meet the second criterion (i.e., low error discount) may perseverate on 

whichever strategy is learned first—typically, the addition/subtraction strategy, resulting in 

Addition/Subtraction Perseveration. The parameters associated with Multiplication Perseveration 

were somewhat different in fraction and decimal arithmetic, but this pattern was relatively 

uncommon in both domains in both children’s and UMA’s data. 



A UNIFIED MODEL OF ARITHMETIC 

45 

 

Study 4: Relations Among Basic and Advanced Arithmetic Skills 

 Longitudinal studies of children have consistently found predictive relations between 

early individual differences in basic arithmetic skills and later differences in more advanced 

arithmetic skills. For example, single-digit addition and subtraction fluency in second and third 

grades predict single-digit multiplication in third and fourth grades (Jordan et al., 2003; Xu et al., 

2021). Similarly, single-digit whole number addition fluency in third grade predicts fraction 

addition and subtraction in fourth grade (Jordan et al., 2013) and fraction arithmetic with all four 

operations in sixth grade (Hansen et al., 2017). 

 The above studies also found that controlling for individual differences in domain-

general competencies and mathematical knowledge other than arithmetic reduces, but does not 

eliminate, the predictive relations between basic and more advanced arithmetic skills. For 

example, in Jordan et al. (2013), third grade whole number addition correlated r = .305 with 

fourth grade fraction arithmetic, implying that without control variables, the former explained 

9% of variance in the latter. However, when fourth grade fraction arithmetic was regressed on 

language, nonverbal reasoning, attention, working memory, reading fluency, and whole number 

line estimation, adding third grade whole number addition as a predictor only increased the 

variance explained by the model by 1%. 

 UMA implies at least two sources of covariation between basic and advanced arithmetic 

skills. First, advanced skills depend on basic ones. For example, fraction division via the invert-

and-multiply procedure requires whole number multiplication, and whole number multiplication 

initially involves the repeated addition procedure, which depends on whole number addition. 

Thus, the model’s proficiency with basic arithmetic skills should have a causal effect on its 

learning and performance of more advanced skills. Second, as observed in Studies 1 to 3, 
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variations in UMA’s free parameters affect the model’s performance with all arithmetic skills. 

For example, low decision determinism generates poor performance in whole number, fraction, 

and decimal arithmetic. Thus, consistency in the model’s parameters across these domains 

produces covariation between basic and advanced skills, beyond the covariation produced by 

causal effects of basic skills on advanced ones. 

 This analysis suggested two predictions. First, as with children, UMA’s early accuracy 

with basic arithmetic skills should predict later accuracy with more advanced skills. Second, as 

predictive relations among children are reduced, but not eliminated, by controlling for 

differences in domain-general competencies and mathematical knowledge other than arithmetic, 

the analogous predictive relations with UMA should be reduced, but not eliminated, by 

controlling for differences in the model’s free parameters. Confirming these predictions would 

suggest that UMA is viable not only as a model of individual arithmetic skills, but also as a 

model of relations among the skills. We report tests of these predictions below. 

Analyses 

 The above predictions were tested by a series of linear regressions, each of which 

assessed the relation between a predictor that was considered to represent a basic arithmetic skill 

measured in one grade and an outcome that was considered to represent a more advanced 

arithmetic skill measured in a later grade. The predictor-outcome pairs for which such analyses 

were conducted were as follows: whole number addition-whole number multiplication, whole 

number addition-fraction arithmetic (all four operations), whole number addition-decimal 

arithmetic (addition and multiplication), whole number multiplication-fraction arithmetic, and 

whole number multiplication-decimal arithmetic. The two whole number arithmetic measures 

were based on assessments from the grades in which the largest individual differences in 
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accuracy appeared, namely, grade 1 for addition and grade 3 for multiplication. The measures of 

fraction and decimal arithmetic came from the grade 6 data. 

 Simulated students’ mean accuracies were calculated for each predictor and outcome. 

Then, for each predictor-outcome pair, two linear regressions were conducted with the predictor 

as an independent variable and the outcome as the dependent variable. The first regression 

included no control variables. The second included linear and quadratic effects of each of 

UMA’s free parameters—decision determinism, error discount, mean retrieval threshold, and 

initial counting experience—as control variables. Quadratic effects were included to assess 

potential nonlinear effects of these parameters on outcomes.  

Results 

 Table 9 shows the effect of each arithmetic predictor on each arithmetic outcome in each 

regression (effects of UMA’s parameters are reported in the Online Supplemental Materials). 

===== Table 9 ===== 

 As predicted, when no control variables were included, individual differences among 

simulated students on each arithmetic predictor were related to differences on each arithmetic 

outcome. Also as predicted, relations between predictors and outcomes were reduced, but not 

eliminated, by controlling for UMA’s free parameters. Grade 1 addition explained 79% of 

variance in grade 3 multiplication when no controls were included, but controlling for UMA’s 

free parameters reduced the variance uniquely explained by grade 1 addition to 26%. In the other 

regressions, the arithmetic predictors explained from 28% to 37% of variance in arithmetic 

outcomes; controlling for UMA’s free parameters reduced the variance uniquely explained by 

the arithmetic predictors to between 4% and 7%. 
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Discussion 

 UMA generated positive relations between individual differences in basic and advanced 

arithmetic skills that were similar to analogous relations in longitudinal studies of children. To 

our knowledge, UMA is the only cognitive process model of arithmetic that has done so. These 

findings suggest that cognitive mechanisms like those implemented by UMA could account, at 

least in part, for the empirically observed relations. 

 In UMA, covariation between basic and advanced arithmetic skills partially reflects 

causal effects of basic skills, including effects on performance and on learning. Effects on 

performance occur when basic arithmetic errors committed while solving advanced arithmetic 

problems result in incorrect answers. For example, UMA might solve 3/5×1/4 using the 

appropriate strategy of multiplying the numerators and denominators but incorrectly retrieve 5×4 

= 25, yielding 3/5×1/4 = 3/25. Effects on learning occur when such errors occur during practice 

of advanced skills, thus causing the strategies chosen for the advanced skills—even if correct—

to receive less positive reinforcement than they would have received following correct answers. 

 Controlling for variation in UMA’s free parameters greatly reduced the variance in 

advanced skills that was uniquely explained by basic skills. This suggests that consistent 

individual parametric variation was a major cause of covariation between basic and advanced 

skills. This result is analogous7 to recent empirical findings suggesting that when considering 

individual differences in children’s mathematical development, trait effects—that is, influences 

on individuals’ development that are stable over time—are substantially larger than state 

effects—that is, effects of knowledge at one time point on knowledge at a later time point 

(Bailey et al., 2014; Bailey, Duncan, et al., 2017).  

 
7 This analogy is not exact, because UMA’s parameter values need not, in principle, be stable within individuals, 

although they were so in the present simulations. 
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 All regressions left unexplained a substantial portion (17% to 82%) of the variance in 

UMA’s advanced arithmetic performance. Some of this unexplained variance could reflect 

effects of UMA’s parameters (e.g., interactions) that were not included in the regressions. 

However, randomness is intrinsic to the model due to its stochastic decision rules, which imply 

that perfectly predicting future performance is impossible even with perfect knowledge of the 

model’s present state. We suspect the same is true of children.  

General Discussion 

 UMA proved able to account for numerous findings regarding performance, learning, and 

individual differences in children’s whole number, fraction, and decimal arithmetic. The model 

produced these effects using common mechanisms and common parameter values for all three 

types of arithmetic. Below, we discuss the present findings with respect to the three aspects of 

arithmetic learning and performance that UMA was designed to explain: origins of errors, 

sources of relative difficulty of different problems, and causes of individual differences in 

strategy use. Then, we discuss two aspects of arithmetic that are not included in the current 

theory: conceptual knowledge and representational format. 

Origins of Errors 

 What causes children’s arithmetic errors? To say that errors result from not knowing how 

to solve problems begs the question of why children make the particular errors that they do. 

Random guessing cannot explain why a child might claim that 1+1 = 3 or that 4×5 = 16 but is 

unlikely to claim that 1+1 = 16 or 4×5 = 3. Such regularities might be explained by assuming 

that children filter guesses based on plausibility of the answer’s magnitude, but that assumption 

cannot account for the high frequency of implausible answers that are observed in fraction and 

decimal arithmetic, such as 3/5–1/4 = 2/1 or 0.415+52 = 0.467. Another possibility is that 
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children invent idiosyncratic strategies to solve problems for which they do not know a standard 

procedure. However, most errors are not idiosyncratic, but rather are concentrated on a few 

alternatives. 

 To explain the above phenomena, UMA proposes that children have access to a small set 

of correct procedures and that most errors reflect small deviations from these procedures via 

overgeneralization and/or omission. Braithwaite et al. (2017) showed that these two mechanisms 

can generate most of children’s errors in fraction arithmetic. The present simulations replicated 

those findings (Study 2) and extended them in two major ways. Study 1 showed that omission 

can generate many common errors in single-digit whole number addition and multiplication—

either directly, via iterating too many or too few times when adding by counting or multiplying 

by repeated addition; or indirectly, by retrieving incorrect answers previously generated in the 

aforementioned ways. Study 3 showed that overgeneralization and omission also can generate 

most of children’s errors in decimal arithmetic. Thus, overgeneralization and omission provide a 

unifying explanation for many errors in whole number, fraction, and decimal arithmetic. 

 The generality of this explanation is limited by the fact that the present simulations did 

not include addition and multiplication of multidigit whole numbers, or subtraction and division 

of whole numbers and decimals. We hypothesize that the aforementioned mechanisms can also 

explain most errors in these areas. For example, failing to borrow when subtracting multidigit 

whole numbers (Brown & VanLehn, 1980) and failing to write 0 in the quotient when 

performing long division (Voigt, 1938) both are examples of omission. Future research should 

test whether overgeneralization and omission enable UMA to generate most of children’s errors 

in these other types of arithmetic. 

 Our approach to explaining errors does not assume that they necessarily reflect incorrect 
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beliefs about concepts, commonly termed “misconceptions” (e.g., Booth et al., 2014). The 

findings demonstrate that many phenomena relating to errors—including which errors occur, 

how the frequencies of errors vary among problems, and how consistently individuals display 

certain errors—can be explained without referring to specific incorrect beliefs. Postulating 

misconceptions may be necessary to explain other phenomena, such as how overgeneralizations 

and omissions are generated, how questions about concepts are answered, and how knowledge is 

transferred to novel situations. The present findings do not imply that misconceptions do not 

exist or are not important, but the findings do challenge the assumption that errors—even 

consistent ones—are necessarily evidence of misconceptions. 

 The current theory does not specify the determinants of which specific 

overgeneralizations and omissions occur. This limitation could be addressed by specifying 

constraints on error generation, which could enable mal-rules to be added to the model 

automatically rather than manually. One possible constraint is that children avoid errors that 

violate the internal logic of procedures. For example, the procedure for adding fractions with 

unequal denominators specifies equalizing the operands’ denominators by converting the 

operands into fractions with a common denominator. Children might omit conversion of the 

numerators but be unlikely to omit conversion of the denominators because doing so would 

preclude equalizing the denominators. The proposal that, even when they err, children respect the 

internal logic of procedures is analogous to several earlier proposals regarding how children 

acquire procedural knowledge in math (J. S. Brown & VanLehn, 1980; Ohlsson & Rees, 1991) 

such as “goal sketches” (Shrager & Siegler, 1998). 

Sources of Difficulty 

 UMA assumes that the difficulty of an arithmetic problem for children depends on both 
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the intrinsic difficulty of the problem and the amount of practice children have received with it 

and similar problems in the past. Are both of these factors necessary to explain the full range of 

variations in problem difficulty that have been observed? 

 This question is challenging because intrinsic difficulty and practice frequency are often 

confounded, as the following examples illustrate. (1a) Single-digit whole number problems with 

large operands are intrinsically harder than those with small operands to solve by counting or 

repeated addition, as argued in Study 1, and (1b) some textbook analyses (e.g., Ashcraft & 

Christy, 1995) have found fewer “large” than “small” single-digit whole number problems in 

textbooks. Similarly, (2a) the standard procedure for dividing fractions is intrinsically harder 

than the one for multiplying fractions—because the former includes all steps of the latter but also 

requires inverting the second operand, which creates additional opportunities for error—and (2b) 

US math textbooks contain fewer fraction division than multiplication problems (Son & Senk, 

2010). Moreover, (3a) Hiebert and Wearne (1985) argued that the standard procedure for 

decimal addition with WD operands is intrinsically harder than the one for adding DD 

operands—because the former includes all steps of the latter but also involves appending a 

decimal point to the whole number operand before aligning the operands vertically—and (3b) 

US math textbooks contain fewer decimal addition problems with WD than DD operands (Tian 

et al., 2021). 

 However, other cases avoid such confounds, thus revealing clear effects of both intrinsic 

difficulty and practice frequency on error rates. (1) The fact that children err more often on ED 

than UD fraction multiplication problems (Siegler et al., 2011; Siegler & Pyke, 2013) cannot be 

explained in terms of intrinsic difficulty because the standard fraction multiplication procedure is 

identical for both. As described in Study 2, UMA explains the difference in accuracies on ED 



A UNIFIED MODEL OF ARITHMETIC 

53 

 

and UD multiplication problems by appealing to practice frequency—specifically, the low 

frequency of ED fraction multiplication problems in US math textbooks. (2) US students’ lower 

accuracy when multiplying than when adding decimals (Braithwaite et al., 2021; Hiebert & 

Wearne, 1985; Tian et al., 2021) is challenging to explain based on practice frequency, because 

US math textbooks contain more decimal multiplication than decimal addition problems (Tian et 

al., 2021). As shown in Study 3 of the present work, differences in intrinsic difficulty—

specifically, the larger number of opportunities for error when executing the procedure for 

decimal multiplication than for addition—result in UMA generating this phenomenon. Thus, 

both intrinsic difficulty and practice frequency appear necessary to explain observed variation in 

error rates on different types of arithmetic problems. 

 What makes one problem intrinsically harder than another? UMA assumes that the 

intrinsic difficulty of a problem depends on the range of errors afforded by the procedures 

available to learners for solving the problem. Conceptual difficulty plays no role in this 

definition and is not represented in the model. Of course, some arithmetic problems are 

conceptually more difficult than others. For example, division of fractions appears harder to 

conceptualize than other arithmetic operations with fractions (Ma, 1999), and multiplication of 

decimals is more difficult to understand than addition of decimals (Liu & Braithwaite, 2022). 

However, the present results suggest that such conceptual considerations are not necessary to 

explain many between-problem variations in error rates.  

 Compared to the concept of intrinsic difficulty, effects of practice frequency may seem 

more straightforward. However, in UMA, effects of practice frequency are mediated by problem 

representations. More specifically, effects of practice on the probabilities of retrieving answers 

from answer memory are mediated by the function that determines similarities among different 
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problems, and effects of practice on the probabilities of selecting procedures in procedure 

memory are mediated by the set of problem features that are represented. A limitation of the 

present model is that both the similarity function and the set of problem features were 

determined by the modeler and were not systematically compared to alternatives. Overcoming 

this limitation will require further empirical research to determine which features of arithmetic 

problems children encode and how these features are integrated to determine perceived relations 

among different problems.  

Causes of Individual Differences in Strategy Use 

 Children display large individual differences in the strategies they use to solve arithmetic 

problems. Coarse measures of performance, such as accuracy and solution times, can conceal 

diversity in strategy use (Siegler, 1987). For example, among those who are highly accurate at 

single-digit addition, some children (“good students”) rely mainly on memory retrieval, whereas 

others (“perfectionists”) frequently rely on backup strategies (Siegler, 1988a). Similarly, in both 

fraction and decimal arithmetic, some children who often err do so by consistently using a single 

strategy for most or all problems, whereas others do so by using multiple strategies for each type 

of problem (Braithwaite et al., 2019, 2021). 

 Systematically varying UMA’s free parameters enabled the model to generate all of the 

strategy use patterns mentioned above. This result is consistent with the theoretical assumption 

that individual differences in strategy use reflect variations in the parameters governing learning 

and decision making. However, the result also begs the question of what UMA’s free parameters 

represent. Possible interpretations of each parameter are discussed below. 

 One parameter, decision determinism, was associated with differences in strategy use for 

all three types of arithmetic that were simulated. Decision determinism governs the degree to 
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which decisions are determined by activations in memory, similar to how threshold parameters 

govern the degree to which decisions are determined by evidence in drift diffusion models (e.g., 

Ratcliff et al., 2016). This parameter could correspond to how deliberately or reflectively 

children make decisions during problem solving. However, the current model, in which decision 

determinism is multiplied by memory activations in the model’s decision rules (Equations 2 and 

5), is nearly mathematically equivalent to an alternative formulation in which decision 

determinism is applied during learning, as a multiplier to the adjustments of connection weights 

in memory that occur after receiving feedback (Equations 6 and 7). In this alternative 

interpretation, decision determinism would be more appropriately named “learning rate” and 

could be used to model variation in how much different children learn from the same experience. 

Further research is needed to investigate whether individual differences in children’s arithmetic 

strategy use are best explained in terms of variations in decision making, learning rate, or both. 

  Two parameters, mean retrieval threshold and initial counting experience, were 

associated with strategy use differences mainly for whole number arithmetic. Both parameters 

played a role in generating the strategy patterns observed by Siegler (1988a). Specifically, the 

“good student” and “not-so-good student” patterns differed with respect to initial counting 

experience but not in their mean retrieval threshold, whereas the “perfectionist” and “not-so-

good student” patterns differed with respect to mean retrieval threshold but not initial counting 

experience (Table 4). The interpretation of the initial counting experience parameter is 

straightforward. The retrieval threshold parameter reflects an assumption, shared with early 

theories of arithmetic (e.g., Siegler & Shrager, 1984) and recent general models of memory (e.g., 

Zhou et al., 2021), that memory retrieval involves a gated process such that only answers whose 

activation exceeds a threshold can be retrieved. Siegler (1988a) characterized individual 
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differences in the threshold value in attitudinal terms, that is, “perfectionism.” Alternatively, 

such variations could reflect differences in domain-general processes involved in retrieval from 

long-term memory. 

 Finally, one parameter, error discount, was associated with differences in strategy use 

mainly for arithmetic with fractions and decimals. This parameter reflects a theoretical 

assumption that children differ with respect to how they process corrective feedback. 

Specifically, UMA assumes that some children learn to avoid procedures that generate negative 

feedback, as reflected by high error discount, whereas other children persist in using such 

procedures despite receiving such feedback, as reflected by low error discount. Such differences 

in learning could reflect differences in conceptual understanding, in that corrective feedback may 

have a greater impact on children who are able to understand why a solution is incorrect. 

Alternatively, different responses to corrective feedback might reflect attitudinal differences; for 

example, persisting in using an incorrect procedure after receiving corrective feedback could 

reflect learned helplessness (Dweck & Goetz, 2018), which might be especially likely to occur 

with difficult topics such as fraction and decimal arithmetic. 

Conceptual Knowledge 

 UMA represents an effort to explain as many phenomena as possible in children’s 

arithmetic without reference to conceptual knowledge. Although this approach was productive, 

several important phenomena were not addressed in UMA. These include the use of conceptual 

knowledge by some (though not all) children to solve whole number arithmetic problems via 

shortcuts (Rasmussen et al., 2003; Robinson et al., 2017; Robinson & Dubé, 2009; Siegler & 

Araya, 2005; Siegler & Stern, 1998), estimate answers to whole number arithmetic problems 

(Lemaire & Lecacheur, 2002), and interpret and solve word problems. They also include the fact 
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that arithmetic calculation skill is correlated with conceptual knowledge (Bailey, Hansen, et al., 

2017; Booth & Siegler, 2008; Fuchs et al., 2010; Hansen et al., 2015; Linsen et al., 2015; Lortie-

Forgues & Siegler, 2017; Rittle-Johnson & Koedinger, 2009) and sometimes improved by 

conceptual interventions (Booth & Siegler, 2008; Dyson et al., 2018; Fuchs et al., 2013, 2014; 

Rittle-Johnson & Koedinger, 2009; Siegler & Ramani, 2009). 

 Precise theoretical explanations of the above phenomena have proven elusive. To our 

knowledge, the only cognitive process model to have simulated any of them is SCADS* (Siegler 

& Araya, 2005), which simulated children’s discovery of a shortcut for solving arithmetic 

problems of the form a+b−b, namely answering  “a” without calculation. Because this strategy 

depends on the principle that addition and subtraction are inverse operations, SCADS* simulated 

use of a conceptual shortcut in arithmetic, a phenomenon of type (1) above. However, the model 

had no explicit knowledge of the principle underlying the shortcut. 

 Part of the challenge involved in developing such models may be that empirical research 

regarding conceptual knowledge has yielded few insights about the processes involved in using 

the knowledge. A better understanding of such processes could lead to better understanding of 

the roles played by conceptual knowledge in children’s arithmetic. 

 Theories of decision making suggest a framework for investigating these issues. Evans 

(2019) postulated that decision making involves fast, autonomous Type 1 processes, which are 

associated with intuition; slower, deliberate Type 2 processes, which are associated with 

deliberation; and Type 3 processes, which determine whether to accept directly the output of 

Type 1 processes or, instead, to recruit Type 2 processes to evaluate and possibly modify that 

output (see also Ackerman & Thompson, 2017; Evans & Stanovich, 2013; Kahneman, 2011; 

Thompson et al., 2011). Similarly, human arithmetic may involve more or less automatic 
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processes such as procedure execution and fact retrieval, analogous to Type 1 processes; 

deliberate reasoning based on conceptual knowledge, analogous to Type 2 processes; and 

metacognitive processes that control and mediate between the first two types of processes, 

analogous to Type 3 processes (see Crowley et al., 1997 for a similar proposal, though one that 

did not distinguish between the latter two types of processes). 

 From the perspective of this framework, UMA models only processes of the first type, 

whereas use of conceptual knowledge is likely also to involve processes of the latter two types. 

Consistent with this perspective, Braithwaite and Sprague (2021) recently found that adults’ use 

of conceptual knowledge during fraction and decimal arithmetic calculation was correlated with 

overt displays of metacognitive processes, such as expressions of doubt. Use of conceptual 

knowledge was rare during calculation, but was much more common in contexts that called for 

reasoning, such as when participants were asked to explain their procedures. 

 The above framework suggests that modeling how children use conceptual knowledge in 

arithmetic, and how conceptual knowledge interacts with procedural knowledge, may require 

precise models of conceptual reasoning and metacognitive control processes in this context. 

Research in psychology has yielded formal models of both reasoning (e.g., Khemlani et al., 

2018; Oaksford & Chater, 2020) and metacognition (e.g., Jang et al., 2012) but these models 

have not been employed to simulate mathematics learning. Similarly, research in math education 

has yielded extensive empirical findings regarding reasoning (e.g., Attridge & Inglis, 2013; 

Lithner, 2000; Nunes et al., 2007; Simon, 1996) and metacognition (e.g., Garofalo & Lester, 

1985; Mevarech & Kramarski, 2003; Schoenfeld, 1992; Veenman & van Cleef, 2019) in 

mathematical contexts, but these findings have not been included in formal models. Integrating 

these two lines of research may be a productive approach towards a formal theory of the use of 
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conceptual knowledge in arithmetic, and other mathematical domains as well. 

Representational Format 

 Solving arithmetic problems often involves generating intermediate information, which 

children might store in various formats including working memory, fingers (when counting or 

repeatedly adding), or paper (when using symbolic calculation algorithms). UMA’s workspace 

represents all of these formats and does not distinguish among them. We adopted this abstraction 

because of our focus on children’s strategies and errors, which we expected could be explained 

without modeling effects of information storage format. However, other important phenomena 

that were not central to the present research may depend critically on this issue. One example is 

solution times, which likely depend not only on the strategies children use, but also on how 

information is stored—for example, counting mentally versus on fingers or on paper. Another 

example is the consistent relation that exists between individual differences in arithmetic and 

working memory (e.g., Peng et al., 2016). Extending UMA to model explicitly how information 

is stored and how storage format affects performance could increase the range of phenomena 

explained by the theory. 

Conclusion 

 To the extent that UMA constitutes a successful model of arithmetic, its success rests on 

several aspects of its methodology that may be productive for cognitive modeling more 

generally. First, UMA models not only accuracies but also specific errors; this approach 

constrains theorizing regarding the processes that generate both correct and incorrect 

performance. Second, UMA simulates learning using realistic rather than artificial input; doing 

so encourages the modeler to take seriously the role of input in explaining the outcomes of 

learning processes. Third, UMA generates predictions regarding not only aggregate performance 
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but also individual differences; besides providing additional criteria for assessing the model, 

these predictions increase its relevance for educational practice. Finally, rather than modeling a 

single skill, UMA models a group of related skills, as advocated by Newell (1973); doing so not 

only constrains the modeling of the individual skills by requiring their integration within a 

unified framework, but also enables modeling relations among different skills. Future 

development of UMA, and of alternatives to it, should strive to encompass an even broader range 

of competencies, especially by explaining the role of conceptual knowledge and use of different 

representational formats. 
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Tables and Figures 

Table 1. Overgeneralization Errors in Whole Number, Fraction, and Decimal Arithmetic. 

Error Error Produced By ... Doing so Would be 

Appropriate for ... 

 Whole Number Arithmetic  

3 + 3 = 9 Retrieving “9” from memory 3 × 3 

2 × 3 = 5 Retrieving “5” from memory 2 + 3 

 Fraction Arithmetic  

3

5
+

1

4
=

4

9
 

Performing operation separately on 

numerators and denominators 

3

5
×

1

4
 

4

5
×

3

5
=

12

5
 

Passing common denominator of operands 

into answer 

4

5
+

3

5
 

 Decimal Arithmetic  

0.826 

+0.12 

0.838 

Writing operands so their rightmost digits 

are aligned before calculating 
0.826 × 0.12 

2.4 

× 1.2 

4.8 

24.0 

28.8 

Bringing decimal point down from 

operands into answer 
2.4 + 1.2 
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Table 2. Omission Errors in Whole Number, Fraction, and Decimal Arithmetic. 

Error Description of Procedure From Which a 

Part Was Omitted  

Description of 

Omission 

 Whole Number Arithmetic  

3 + 3 = ? 

“Four, five. The answer 

is five.” 

Count from first addend. On each step, 

increment [total] and [steps done]. Stop 

when [steps done] equals second addend. 

Incremented [steps 

done] once without 

incrementing [total]. 

2 × 3 = ? 

“Two, four, six, eight. 

The answer is eight.” 

Do repeated addition. On each step, add 

first operand to [total] and increment 

[steps done]. Stop when [steps done] 

equals second operand. 

Incremented [total] 

once without 

incrementing [steps 

done]. 

 Fraction Arithmetic  

3

5
+

1

4
=

3

20
+

1

20
=

4

20
 

Multiply numerator and denominator of 

each operand by denominator of other 

operand 

Failed to multiply 

numerators of operands 

3

5
÷

1

4
=

3

5
×

1

4
=

3

20
 

Invert second operand, change division to 

multiplication, and perform operation 

separately on numerators and 

denominators 

Failed to invert second 

operand 

 Decimal Arithmetic  

2.4 

× 1.2 

48 

24 

0.72 

When beginning to write a new partial 

product (e.g., 24), shift one column to the 

left 

Failed to shift second 

partial product (i.e., 24) 

one column to the left 
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Table 3. Frequencies of Different Problem Types in the Learning Set. 

 Arithmetic Operation 

Operands Addition Subtraction Multiplication Division 

Two whole numbers     

    Both ≤10 605 223 286 -- 

    At least one >10 458 591 347 -- 

At least one fraction/mixed number     

    Equal denominators (ED) 32 50 6 6 

    Unequal denominators (UD) 57 73 145 36 

At least one decimal     

    Two decimals (DD) 65 53 78 -- 

    One whole, one decimal (WD) 1 3 107 -- 
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Table 4. Classification of Simulated Students Based on Accuracy and Use of Retrieval on the 

First Grade Whole Number Addition Assessment. 

Accuracy 

≥ or < 

Average 

Use of Retrieval 

≥ or <  

Average  

Analogous 

Pattern in 

Siegler (1988a) 

% of 

Simulated 

Students 

(N=1000) 

Mean 

(SD) of 

g 

Mean 

(SD) of 

rt_mu 

Mean 

(SD) of 

ice 

≥ average ≥ average Good students 67 0.065 

(0.024) 

4.4 

(1.1) 

61 

(31) 

< average < average Not-so-good 

students 

20 0.023 

(0.019) 

4.4 

(1.1) 

28 

(34) 

≥ average < average Perfectionists 12 0.054 

(0.025) 

5.5 

(0.8) 

27 

(32) 

< average ≥ average None 1 0.020 

(0.009) 

3.0 

(0.0) 

50 

(27) 

Note. g denotes decision determinism, rt_mu denotes mean retrieval threshold, and ice denotes 

initial counting experience. 
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Table 5. Children’s Most Common Responses on Four Fraction Arithmetic Problems, and 

Frequencies of These Responses in UMA’s Data. 

  Percent of Responses 

Problem Answer Children (N=120) UMA (N=1000) 

2/3+3/5 19/15 51 52 

 5/8 23 26 

 5/15 or 1/3 8 6 

3/5–1/4 7/20 54 60 

 2 or 2/1 20 26 

 2/20 or 1/10 5 5 

 6/15 or 2/5 4 0 

4/5×3/5 12/25 40 54 

 12/5 37 25 

 15/20 or 3/4 4 7 

 20/15 or 4/3 3 8 

3/5÷1/5 3/5 38 38 

 3, 3/1, or 15/5 36 43 

 5/15 or 1/3 6 5 

 1/5 5 0 

Note. Children’s data are from Siegler and Pyke (2013). Answers generated by at least 3% of 

children are shown. Correct answers are bolded. 

 

 

  



A UNIFIED MODEL OF ARITHMETIC 

81 

 

Table 6. Percentages of Children in Siegler and Pyke (2013) and Simulated Students Classified 

as Displaying Each Pattern of Fraction Arithmetic Strategy Use, and Mean Values of UMA’s 

Parameters Within Each Pattern. 

 Children (N=120) UMA (N=1000) 

Pattern % % Mean 

(SD) of g 

Mean 

(SD) of d 

Correct Strategies 31 15 0.070 

(0.025) 

0.69 

(0.22) 

Addition/Subtraction Perseveration 25 12 0.081 

(0.018) 

0.42 

(0.26) 

Multiplication Perseveration 12 8 0.079 

(0.019) 

0.18 

(0.13) 

Variable Strategies 22 61 0.042 

(0.024) 

0.50 

(0.28) 

None 10 4 0.071 

(0.023) 

0.57 

(0.25) 

Note. g denotes decision determinism, and d denotes error discount. 
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Table 7. Children’s Most Common Responses on Six Decimal Arithmetic Problems, and 

Frequencies of These Responses in UMA’s Data. 

  Percent of Responses 

Problem Answer Children (N=92) UMA (N=1000) 

12.3+5.6 17.9 93 89 

0.826+0.12 0.946 70 86 

 0.838 12 5 

 0.00838 4 6 

0.415+52 52.415 61 76 

 0.467 28 24 

 0.935 5 0 

2.4×1.2 2.88 63 58 

 28.8 14 31 

 7.2 8 4 

 2.8 5 0 

0.32×2.1 0.672 42 59 

 6.72 18 28 

 67.2 5 2 

 0.96 5 2 

 0.32 3 0 

31×3.2 99.2 61 78 

 9.92 10 7 

 15.5 5 2 

 992 4 4 

Note. Children’s data are from Braithwaite et al. (2021). Answers generated by at least 3% of 

children are shown. Correct answers are bolded. 
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Table 8. Percentages of Children in Braithwaite et al. (2021) and Simulated Students Classified 

as Displaying Each Pattern of Fraction Arithmetic Strategy Use, and Mean Values of UMA’s 

Parameters Within Each Pattern. 

 Children (N=92) UMA (N=1000) 

Pattern % % Mean 

(SD) of g 

Mean 

(SD) of d 

Correct Strategies  47 69 0.058 

(0.028) 

0.55 

(0.27) 

Addition/Subtraction Perseveration 25 13 0.071 

(0.026) 

0.29 

(0.24) 

Multiplication Perseveration 4 1 0.032 

(0.024) 

0.54 

(0.28) 

Variable Strategies 21 16 0.030 

(0.020) 

0.45 

(0.28) 

None 3 0 -- -- 

Note. g denotes decision determinism, and d denotes error discount. 
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Table 9. Results of Regressing UMA Accuracies on Advanced Arithmetic Skills on Basic Arithmetic Skills Without Control Variables 

and With Controls for UMA’s Free Parameters. 

  Without Control Variables With Controls for UMA’s Free Parameters 

Predictor Outcome B β p R2 B β p R2 ΔR2 

Grade 1 Addition Grade 3 Multiplication 1.4 0.89 <.001 79% 1.2 0.78 <.001 83% 26% 

Grade 1 Addition Grade 6 Fraction Arithmetic 0.6 0.53 <.001 28% 0.3 0.30 <.001 46% 4% 

Grade 1 Addition Grade 6 Decimal Arithmetic 0.7 0.57 <.001 32% 0.4 0.36 <.001 52% 5% 

Grade 3 Multiplication Grade 6 Fraction Arithmetic 0.4 0.58 <.001 33% 0.3 0.40 <.001 49% 7% 

Grade 3 Multiplication Grade 6 Decimal Arithmetic 0.5 0.61 <.001 37% 0.3 0.39 <.001 53% 7% 

 

Note. Details regarding analyses are presented in the text. Each predictor and outcome denotes percent correct on the indicated 

assessment. B and β denote nonstandardized and standardized effects of the predictors in column 1 on the outcomes in column 2, p 

denotes the p values for these effects, and R2 denotes percent variance in the outcome explained by the model. For the models with 

controls for UMA’s free parameters, ΔR2 denotes increase in percent variance explained by each model relative to a model that 

includes only the control variables and not the predictor in column 1—in other words, percent variance uniquely explained by the 

predictor. 
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Figure 1. Diagram of UMA. 

 

Note. White boxes indicate components of UMA’s architecture, grey boxes with solid borders 

indicate input to the model, and the grey box with dashed border indicates model output. 
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Figure 2. UMA’s Performance on Whole Number Addition and Multiplication by Grade. 

 

Note. (A) Percent correct; (B) Percent retrieval of answers from answer memory. Error bars 

indicate standard errors. 
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Figure 3. Distributions of UMA’s Errors in Whole Number Addition and Multiplication. 

 

Note. (A) shows addition errors. (B) shows multiplication errors that were classified as operand 

errors (see text for explanation). “Operand difference” denotes the difference between the 

operand for which UMA’s answer would have been correct and the actual operand. For example, 

if UMA claimed 3×4 = 6, operand difference would be -2 because 3×2 = 6 and 2–4 = -2. 
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Figure 4. UMA’s Use of Retrieval on Single-digit Whole Number Addition and Multiplication 

Problems by Grade and Parameter Value. 

 

Note. Solid and dashed lines represent addition and multiplication, respectively. Panels (A), (B), 

(C), and (D) show results for varying values of decision determinism (g), error discount (d), 

mean retrieval threshold (rt_mu), and initial counting experience (ice), respectively. Error bars 

indicate standard errors. 
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Figure 5. Fraction Arithmetic Accuracies by Arithmetic Operation and Operand Pair Type. 

 

Note. (A) Children from Siegler and Pyke (2013). (B) UMA’s performance on the sixth grade 

test. Add, Sub, Mul, and Div denote addition, subtraction, multiplication, and division. ED and 

UD denote “equal denominators” and “unequal denominators.” Error bars indicate standard 

errors. 
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Figure 6. Decimal Arithmetic Accuracies by Arithmetic Operation and Operand Pair Type. 

 

Note. (A) Children from Braithwaite et al. (2021). (B) UMA’s performance on the sixth grade 

test. Add and Mul denote addition and multiplication. DD and WD denote “two decimal 

operands” and “one whole number and one decimal operand.” Error bars indicate standard 

errors. 

 

 


