
Semantic Web 0 (2022) 1–0 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Modular Ontology Modeling
Cogan Shimizu a Karl Hammar b Pascal Hitzler a

a Department of Computer Science, Kansas State University, USA
b Department of Computing, Jönköping University, Sweden

Editors: Sabrina Kirrane, Vienna University of Economics and Business, Austria; Axel-Cyrille Ngonga Ngomo, Paderborn University,
Germany

Solicited reviews: Christoph Lange, Fraunhofer Institute for Applied Information Technology FIT, Germany; Five Anonymous Reviewers

Abstract. Reusing ontologies for new purposes, or adapting them to new use-cases, is frequently difficult. In our experiences,
we have found this to be the case for several reasons: (i) differing representational granularity in ontologies and in use-cases, (ii)
lacking conceptual clarity in potentially reusable ontologies, (iii) lack and difficulty of adherence to good modeling principles,
and (iv) a lack of reuse emphasis and process support available in ontology engineering tooling. In order to address these
concerns, we have developed the Modular Ontology Modeling (MOMo) methodology, and its supporting tooling infrastructure,
CoModIDE (the Comprehensive Modular Ontology IDE – “commodity”). MOMo builds on the established eXtreme Design
methodology, and like it emphasizes modular development and design pattern reuse; but crucially adds the extensive use of
graphical schema diagrams, and tooling that support them, as vehicles for knowledge elicitation from experts. In this paper, we
present the MOMo workflow in detail, and describe several useful resources for executing it. In particular, we provide a thorough
and rigorous evaluation of CoModIDE in its role of supporting the MOMo methodology’s graphical modeling paradigm. We find
that CoModIDE significantly improves approachability of such a paradigm, and that it displays a high usability.

Keywords: Modular Ontology Modeling, Ontology Design Patterns, Knowledge Engineering

1. Introduction

Over the last two decades, ontologies have seen wide-
spread use for a variety of purposes. Some of them,
such as the Gene Ontology [1], have found significant
use by third parties. However, the majority of ontolo-
gies have seen hardly any re-use outside the use cases
for which they were originally designed [2, 3].

It behooves us to ask why this is the case, in partic-
ular, since the heavy re-use of ontologies was part of
the original conception for the Semantic Web field. In-
deed, many use cases have high topic overlap, so that
a re-use of ontologies on similar topics should, in prin-
ciple, lower development cost. However, according to
our experience, it is often much easier to develop a
new ontology from scratch, than it is to try to re-use
and adapt an existing ontology. We can observe that
this sentiment is likely shared by many others, as the

new development of an ontology so often seems to be
preferred over adapting an existing one.

We posit, based on our experience, that four of the
major issues preventing wide-spread re-use are (i) dif-
fering representational granularity, (ii) lack of concep-
tual clarity in many ontologies, (iii) lack and difficulty
of adherence to established good modeling principles,
and (iv) lack of re-use emphasis and process support
in available ontology engineering tooling. We explain
these aspects in more detail in the following. As a rem-
edy for these issues, we propose tool-supported modu-
larization, in a specific sense which we also explain in
detail.

Representational granularity refers to modeling choices
which determine the level of detail to be included in
the ontology, and thus in the data (knowledge) graph.
As an example, one model may simply refer to temper-

1570-0844/22/$35.00 © 2022 – IOS Press and the authors. All rights reserved

2 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

atures at specific space-time locations. Another model
may also record an uncertainty interval. A third model
may also record information about the measurement
instrument, while a fourth may furthermore record cal-
ibration data for said instrument. Another example
may be population figures for cities; the values are fre-
quently estimated through the use of statistical mod-
els. That is, depending on the data and which statistical
model was used, different figures would be calculated.

Note that a fine-grained ontology can be populated
with coarse-granularity data; the converse is not true.
If a use case requires fine-granularity data, a coarse-
grained ontology is essentially useless. On the other
hand, using a fine-grained ontology for a use case that
requires only coarse granularity data is unwieldy due
to (possibly massively) increased size of ontology and
data graph.

Even more problematically, is that two use cases may
differ in granularity in different ways in different parts
of the data, respectively, ontology. That is, the level of
abstraction is not uniform across the data. For exam-
ple, one use case may call for details on the statistical
models underlying population data, but not for mea-
surement instruments for temperatures, whereas an-
other use case may only need estimated population fig-
ures, but require calibration data for temperature mea-
surements. Essentially, this means that attempting to
re-use a traditional ontology may require modifying it
in very different ways in different parts of the ontol-
ogy. An additional complication is that ontologies are
traditionally presented as monolithic entities and it is
often hard to determine where exactly to apply such a
change in granularity.

Conceptual clarity is a rather elusive concept that cer-
tainly has a strong subjective component. By this, we
mean that an ontology should be designed and pre-
sented in such a way that it “makes sense” to do-
main experts, without too much difficulty. While pre-
sentation and documentation do play a major role, it is
equally important to have intuitive naming conventions
for ontological entities and, in particular, a structural
organization (i.e., a schema for a data graph) which is
meaningful for the domain expert.

We can briefly illustrate this using an example from the
OAEI1 Conference benchmark ontologies [4, 5]. One

1For more information on the Ontology Alignment Evaluation
Initiative, see http://oaei.ontologymatching.org/.

lists “author of paper” and “author of student paper”
as two distinct subclasses of “person.” This raises the
question: why is “author of student paper” not a sub-
class of “author of paper” (apart from subclassing both
as “person” which we will discuss in the next para-
graph). In another ontology in this collection, “author”
is a subclass of “user", and “author” itself has exactly
two subclasses: “author, who is not a reviewer” and
“co-author” – which is hardly intuitive.

By definition, an ontology with high conceptual clar-
ity will be much easier to re-use, simply because it
is much easier to understand the ontology in the first
place. Thus, a key quest for ontology research is to de-
velop ontology modeling methodologies which make
it easier to produce ontologies with high conceptual
clarity.

That following already established good modeling
principles makes an ontology easier to understand and
re-use, should go without saying. However, good mod-
eling principles are not simply a checklist that can eas-
ily be followed. Even simple cases, such as the recom-
mendation to not have perdurants and endurants2 to-
gether in subclass relationships (in the example above,
author should not be a subclass of person; rather, au-
thorship is a role of the person) are commonly not fol-
lowed in existing ontologies. At the current stage of re-
search, “good modeling” appears to largely be a func-
tion of modeling experience and more of an art, than
a science, which has not been condensed well enough
into tangible insights that can easily be written up in a
tutorial or textbook.

A further issue is that even in cases where the afore-
mentioned re-use challenges are manageable, imple-
menting and subsequently maintaining re-use in prac-
tice is problematic due to limited support for re-use in
available tooling. Once a reusable ontology resource
has been located, a suitable reuse method must first be
selected; e.g., cloning the entire design into the target
ontology/namespace, using owl:imports to include the
entire source ontology as-is, cloning individual defi-
nitions, locally subsuming or aligning to remote on-
tology entities, etc. The authors have previously con-
tributed methodological guidance supporting develop-
ers in selecting an appropriate reuse method based on

2These are ontological terms; a perdurant means “an entity that
only exists partially at any given point in time” and and endurant
means “an entity that can be observed as a complete concept, regard-
less of the point time.”

http://oaei.ontologymatching.org/

C. Shimizu, K. Hammar, P. Hitzler / 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the modeling context [6, 177–184]; but without com-
prehensive tooling support, carrying out such reuse
in practice (especially when several resources are re-
used) is still time-consuming and error-prone.

Furthermore, through ontology re-use, the ontologist
commits to a design and logic built by a third party.
As the resulting ontology evolves, keeping track of
the provenance of re-used ontological resources and
their locally instantiated representations may become
important, e.g., to resolve design conflicts resulting
from differing requirements, or to keep up-to-date with
the evolution of the re-used ontology. This is partic-
ularly important in case remote resources are reused
directly rather than through cloning into a local rep-
resentation (e.g., using owl:imports or through align-
ments to remote entities using subclass or equivalence
relations); in those cases remote changes could, un-
beknownst to the developer, cause their ontology to
become inconsistent. Such state-keeping is decidedly
non-trivial without appropriate tool support.

Processes and tools should be sought that make it pos-
sible to leverage modeling experience by seasoned ex-
perts, without actually requiring their direct involve-
ment. This was one of the original ideas behind ontol-
ogy re-use which, unfortunately, did not quite work out
that well, for reasons including those mentioned above.
Our modularization approach, however, together with
the systematic utilization of ontology design patterns,
and our accompanying tools, gives us a means to ad-
dress this issue.

The notion of module has taken on a variety of mean-
ings in the Semantic Web community [7–9]. For our
purposes, a module is a part of the ontology (i.e., a sub-
set of the ontology axioms) which captures a key no-
tion together with its key attributes. For example, an
event module may contain, other than an Event class,
also relations and classes designed for the representa-
tion of the event’s place, time, and participants. On the
other hand, a simple module for a cooking process may
encompass relations and classes for recording ingredi-
ents and their amounts, time and equipment required,
and so on. A module is thus as much a technical entity,
in the sense of a defined part of an ontology, as well
as a conceptual entity, in the sense that it should en-
compass different classes (and relationships between
them) which “naturally” (from the perspective of do-
main experts) belong together. Modules may overlap.
They may be nested. They provide an organization of
an ontology as an interconnected collection of mod-

ules, each of which resonates with the corresponding
part of domain conceptualization by the experts.

Note that modules, in this sense, indicate a depar-
ture from a more traditional perspective on ontologies,
where they are often viewed as enhanced taxonomies,
with a strong emphasis on the structure of the class
subsumption hierarchy. Modules can contain their own
taxonomy structure, guided by the design logic of the
module, that ideally integrates into usability-wise co-
herent taxonomy of the ontology as a whole; but the
latter is not a hard requirement. From our perspective,
the occurrence of subclass relationships within an on-
tology is not a key guiding principle for modeling or
ontology organization. As we will see, modules make
it possible to approach ontology modeling in a divide-
and-conquer fashion; first, by modeling one module at
a time, and then connecting them.3

Modules furthermore provide an easy way of avoid-
ing the hassle of dealing with ontologies that are large
and monolithic: understanding an ontology amounts
to understanding each of its modules, and then their
interconnections. This, at the same time, provides a
recipe for documentation which resonates with domain
experts’ conceptualizations (which were captured by
means of the modules), and thus makes the documen-
tation and ontology easier to understand. Additionally,
using modules facilitates modification, and thus adapt-
ing an ontology to a new purpose, as a module is much
more easily replaced by a new module with, for in-
stance, higher granularity, because the module inher-
ently identifies where changes should be localized.

The systematic use of ontology design patterns [12,
13] is another central aspect of our approach, as many
of their promises resonate with the issues that our ap-
proach is addressing [14]. An ontology design pattern
is a generic solution to a recurring ontology modeling
problem. To give an example, a “Trajectory” pattern
would be a partial ontology that can be used to record
“trajectories,” such as the route of a ship or piece of
cargo. If well-designed, this pattern may, with only mi-
nor and easy modifications, be suitable to be used as
a template for trajectory modules within many ontolo-
gies. It must be noted that patterns are not one-size-fits-
all solutions. For example, the Trajectory pattern from
[15], which we have found to be highly versatile, as-

3Other divide and conquer approaches have also recently been
proposed [10, 11], and while they seem to be compatible with ours,
exact relationships still need to be established.

4 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

sumes a discretized recording of a trajectory (as a time-
sequence of locations), however it would not account
for recording of a trajectory as, say, a set of equations.

In our approach, well-designed ontology design pat-
terns, provided as templates to the ontology model-
ers, make it easier to follow already established good
modeling principles, as the patterns themselves will al-
ready reflect them [16]. When a module is to be mod-
eled, within our process there will always be a check
whether some already existing ontology design pattern
is suitable to be adapted for the purpose. Modules, as
such, are often derived from patterns as templates.

The principles and key aspects laid out above are tied
together in a clearly defined modular ontology mod-
eling process which is laid out below, and which is
a refinement – with some changes of emphasis – of
the eXtreme Design methodology [17]. It is further-
more supported by a set of tools developed for sup-
port of this process, the CoModIDE plug-in to Protégé,
and which we will discuss in detail below. Also cen-
tral to our approach is that it is usually a collabora-
tive process with a (small) team that jointly has the re-
quired domain, data and ontology engineering exper-
tise, and that the actual modeling work utilizes schema
diagrams as the central artifact for modeling, discus-
sion, and documentation.

This paper is structured as follows. Section 2 describes
our related work – this covers precursor methods, the
eXtreme Design methodology, and overviews of con-
cepts fundamental to our approach. Section 3 describes
our modular ontology modeling process in detail. Sec-
tion 4 presents CoModIDE as a tool for supporting the
development of modular ontologies through a graph-
ical modeling paradigm, as well as a rigorous evalu-
ation of its effectiveness and usability. Section 5 de-
scribes additional, supporting infrastructure and other
resources for the MOMo process. Finally, in Section 6,
we conclude.

This paper significantly extends [18] and summarizes
several other workshop and conference papers: [19],
[20], and [21].

2. Related Work

2.1. Ontology Engineering Methods

The ideas underpinning the Modular Ontology Model-
ing methodology build on years of prior ontology engi-

neering research, covering organizational, process, and
technological concerns that impact the quality of an
ontology development process and its results.

The METHONTOLOGY methodology is presented
by Férnandez et al. in [22]. It is one of the earlier
attempts to develop a development method specifi-
cally for ontology engineering processes (prior meth-
ods often include ontology engineering as a sub-
discipline within knowledge management, conflating
the ontology-specific issues with other more general
types of issues). Férnandez et al. suggest, based largely
on the authors’ own experiences of ontology engineer-
ing, an ontology lifecycle consisting of six sequen-
tial work phases or stages: Specification, Conceptu-
alisation, Formalisation, Integration, Implementation,
and Maintenance. Supporting these stages are a set of
support activities: Planification, Acquiring knowledge,
Documenting, and Evaluating.

The On-To-Knowledge Methodology (OTKM) [23] is,
similarly to METHONTOLOGY, a methodology for
ontology engineering that covers the big steps, but
leaves out the detailed specifics. OTKM is framed as
covering both ontology engineering and a larger per-
spective on knowledge management and knowledge
processes, but it heavily emphasises the ontology de-
velopment activities and tasks (in [23] denoted the
Knowledge Meta Process). OTKM emphasises initial
collaboration between domain experts and ontology
engineers in the Kick-off phase. In the subsequent Re-
finement phase an ontology engineer formalises the
initial semi-formal model into a real ontology on their
own, without aid of a domain expert. In subsequent
Evaluation, both technical and user-focused aspects of
the knowledge based system in which the ontology is
used, are evaluated. Finally, the Application and Evo-
lution phase concerns the deployment of said knowl-
edge based system, and the organisational challenges
associated with maintenance responsibilities.

DILIGENT, by Pinto et al. [24], is an abbreviation for
Distributed, Loosely-Controlled and Evolving Engi-
neering of Ontologies, and is a method aimed at guid-
ing ontology engineering processes in a distributed
Semantic Web setting. The method emphasises de-
centralised work processes and ontology usage, do-
main expert involvement, and ontology evolution man-
agement. This distributed development process is for-
malised into five activities: build, local adaptation,
analysis, revision, and local update. The authors show
how Rhetorical Structure Theory [25] can be used as

C. Shimizu, K. Hammar, P. Hitzler / 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

a framework to constrain design discussions in a dis-
tributed ontology engineering setting, guiding the de-
sign process.

In all three of these well-established methods, the pro-
cess steps that are defined are rather coarse-grained.
They give guidance on overall activities that need to be
performed in constructing an ontology, but more fine-
grained guidance (e.g., how to solve common model-
ing problems, how to represent particular designs on
concept or axiom level, or how to work around limi-
tations in the representation language) is not included.
It is instead assumed that the reader is familiar with
such specifics of constructing an ontology. This lack of
guidance arguably is a contributor to the three issues
preventing re-use, discussed in Section 1.

2.2. Ontology Design Patterns

Ontology Design Patterns (ODPs) were introduced at
around the same time independently by Gangemi [13]
and Blomqvist and Sandkuhl [12], as potential solu-
tions to the drawbacks of classic methods described
above. The former defines such patterns by way of
the characteristics that they display, including exam-
ples such as “[an ODP] is a template to represent,
and possibly solve, a modelling problem” [13, p. 267]
and “[an ODP] can/should be used to describe a
‘best practice’ of modelling” [13, p. 268]. The latter
describes ODPs as generic descriptions of recurring
constructs in ontologies, which can be used to con-
struct components or modules of an ontology. Both ap-
proaches emphasise that patterns, in order to be eas-
ily reusable, need to include not only textual descrip-
tions of the modelling issue or best practice, but also
some formal ontology language encoding of the pro-
posed solution. The documentation portion of the pat-
tern should be structured and contain those fields or
slots that are required for finding and using the pattern.

A substantial body of work has been developed based
on this idea, by a sizable distributed research com-
munity4. Key contributions include the eXtreme De-
sign methodology (detailed in Section 2.3) and sev-
eral other pattern-based ontology engineering methods
(Section 2.4). The majority of work on ODPs has been
based on the use of miniature OWL ontologies as the
formal pattern encoding, but there are several exam-
ples of other encodings, the most prominent of which
are OPPL [26] and more recently OTTR [11].

4https://ontologydesignpatterns.org

Fig. 1. eXtreme Design method overview, from [17].

MOMo extends on those methods, but also incorpo-
rates results from our past work on how to document
ODPs [27–29], how to implement ODP support tool-
ing [30] and how to instantiate patterns into modules
by “stamping out copies” [16].

2.3. eXtreme Design

The eXtreme Design (XD) methodology [17] was
originally proposed as a reaction to previous waterfall-
oriented methods (e.g., some of those discussed above).
XD instead borrows from agile software engineering
methods, emphasizing a divide-and-conquer approach
to problem-solving, early or continuous deployment
rather than a “one-shot” process, and early and fre-
quent refactoring as the ontology grows. Crucially, XD
is built on reusing of ontological best practices via
ODPs.

The XD method consists of a number of tasks, as illus-
trated in Figure 1. The first two tasks deal with estab-
lishing a project context (i.e., introducing initial termi-
nology and obtaining an overview of the problem) and
collecting initial requirements in the form of a priori-
tized list of user stories (describing the required func-
tionality in layman’s terms). These steps are performed
by the whole XD team together with the customer, who
is familiar with the domain and who understands the
required functionalities of the resulting ontology. The
later steps of the process are performed in pairs of two
developers (these steps are in the figure enclosed in the
large box). They begin by selecting the top prioritised
user story that has not yet been handled, and transform
that story into a set of requirements in the form of com-
petency questions (data queries), contextual statements
(invariants), and reasoning requirements. Customer in-
volvement at this stage is required to ensure that the

https://ontologydesignpatterns.org

6 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

user story has been properly understood and that the
elicited requirements are correctly understood.

The development pair then selects one or a small set of
interdependent competency questions for modelling.
They attempt to match these against a known ODP,
possibly from a designated ODP library. The ODP is
adapted and integrated into the ontology module un-
der development (or, if this iteration covers the first
requirements associated with a given user story, a
new module is created from it). The module is tested
against the selected requirements to ensure that it cov-
ers them properly. If that is the case, then the next
set of requirements from the same user story is se-
lected, a pattern is found, adapted, and integrated, and
so on. Once all requirements associated with one user
story have been handled, the module is released by
the pair and integrated with the ontology developed by
the other pairs in the development team. The integra-
tion may be performed either by the development pair
themselves, or by a specifically designated integration
pair.

XD has been evaluated experimentally and observa-
tionally, with results indicating that the method con-
tributes to reduced error rates in ontologies [31, 32],
increased coverage of project requirements [31], and
that pattern usage is perceived as useful and helpful by
inexperienced users [31–33]. However, results also in-
dicate that there are pitfalls associated with a possibil-
ity of over-dependence on ODP designs, as noted in
[33].

2.4. Other Pattern-based Methods

SAMOD [34], or Simplified Agile Methodology for
Ontology Development, is a recently developed method-
ology that builds on and borrows from test-driven
and agile methods (in particular eXtreme Design).
SAMOD emphasises the use of tests to confirm that the
developed ontology is consistent with requirements,
and prescribes that the developer construct three types
of such tests: model tests, data tests, and query tests.
The method prescribes a light-weight three-step pro-
cess broadly mirroring XD, i.e., consisting of (1) con-
structing an ontology module as a partial solution to
the development scenario (including tests), (2) merg-
ing that new module into the main branch ontology,
(3) refactoring as needed. After each of these steps, all
the tests defined for the module and/or main branch
ontology are executed, and development is halted until
all tests are passed.

Hammar [6] presents a set of proposed improvements
to the XD methodology under the umbrella label “XD
1.1”. These include (1) a set of roles and role-specific
responsibilities in an XD project, (2) suggestions on
how to select and implement other forms of ontology
re-use in XD than just patterns (e.g., import, remote
references, slicing, partial cloning), and (3) a project
adaptation questionnaire supporting XD projects in
adapting the process to their particular development
context (e.g., team cohesion, distribution, skill level,
domain knowledge, etc).

XD, SAMOD, and XD 1.1 emphasize the needs for
suitable support tooling for, e.g., finding suitable
ODPs, instantiating those ODPs into an ontology, and
executing tests across the ontology or parts of it. In
developing MOMo and the CoModIDE platform, we
propose and develop solutions to two additional sup-
port tooling needs: that of intuitive and accessible
graphical modeling, and that of a curated high-quality
pattern library.

2.5. Graphical Conceptual Modelling

[35] proposes three factors (see Figure 2) that influence
the construction of a conceptual model, such as an on-
tology; namely, the person doing the modeling (both
their experience and know-how, and their interpreta-
tion of the world, of the modeling task, and of model
quality in general), the modeling grammar (primar-
ily its expressive power/completeness and its clarity),
and the modeling process (including both initial con-
ceptualisation and subsequent formal model-making).
Crucially, only the latter two factors can feasibly be
controlled in academic studies. Research in this space
tends to focus on one or the other of these factors, i.e.,
studying the characteristics of a modeling language or
a modeling process. Our work on CoModIDE straddles
this divide: employing graphical modeling techniques
reduces the grammar available from standard OWL to
those fragments of OWL that can be represented intu-
itively in graphical format; employing design patterns
affects the modeling process.

Graphical conceptual modeling approaches have been
extensively explored and evaluated in fields such as
database modeling, software engineering, business
process modeling, etc. Studying model grammar, [36]
compares EER notation with an early UML-like no-
tation from a comprehensibility point-of-view. This
work observes that restrictions are easier to understand
in a notation where they are displayed coupled to the

C. Shimizu, K. Hammar, P. Hitzler / 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. Factors affecting conceptual modeling, from [35].

types they apply to, rather than the relations they range
over. [37] proposes a quality model for EER diagrams
that can also extend to UML. Some of the quality crite-
ria in this model, that are relevant in graphical model-
ing of OWL ontologies, include minimality (i.e., avoid-
ing duplication of elements), expressiveness (i.e., dis-
playing all of the required elements), and simplicity
(displaying no more than the required elements).

[38] studies the usability of UML, and reports that
users perceive UML class diagrams (closest in in-
tended use to ontology visualizations) to be less easy-
to-use than other types of UML diagrams; in partic-
ular, relationship multiplicities (i.e., cardinalities) are
considered frustrating by several subjects. UML dis-
plays such multiplicities by numeric notation on the
end of connecting lines between classes. [39] analyses
UML and argues that while it is a useful tool in a de-
sign phase, it is overly complex and as a consequence,
suffers from redundancies, overlaps, and breaks in uni-
formity. [39] also cautions against using difficult-to-
read and -interpret adornments on graphical models, as
UML allows.

Various approaches have been developed for present-
ing ontologies visually and enabling their develop-
ment through a graphical modeling interface, the most
prominent of which is probably VOWL, the Visual No-
tation for OWL Ontologies [40], and its implementa-
tion viewer/editor WebVOWL [41, 42]. VOWL em-
ploys a force-directed graph layout (reducing the num-
ber of crossing lines, increasing legibility) and explic-
itly focuses on usability for users less familiar with
ontologies. As a consequence of this, VOWL ren-
ders certain structures in a way that, while not for-
mally consistent with the underlying semantics, sup-
ports comprehensibility; for instance, datatype nodes
and owl:Thing nodes are duplicated across the can-
vas, so that the model does not implode into a tight
cluster around such often used nodes. It has been
evaluated over several user studies with users rang-
ing from laymen to more experienced ontologists, with
results indicating good comprehensibility. CoModIDE

has taken influence from VOWL, e.g., in how we ren-
der datatype nodes. However, in a collaborative edit-
ing environment in which the graphical layout of nodes
and edges needs to remain consistent for all users, and
relatively stable over time, we find the force-directed
graph structure (which changes continuously as enti-
ties are added/removed) to be unsuitable.

For such collaborative modeling use cases, the com-
mercial offering Grafo5 offers a very attractive fea-
ture set, combining the usability of a VOWL-like nota-
tion with stable positioning, and collaborative editing
features. Crucially, however, Grafo does not support
pattern-based modular modeling or import statements,
and only supports RDFS semantics, and as a web-
hosted service, does not allow for customizations or
plugins that would support such a modeling paradigm.

CoModIDE is partially based on the Protégé plugin
OWLAx, as presented in [43]. OWLAx plugin supports
one-way translation from graphical schema diagrams
drawn by the user, into OWL ontology classes and
properties; however, it does not render such constructs
back into a graphical form. There is thus no way of
continually maintaining and developing an ontology
using only OWLAx. There is also no support for de-
sign pattern re-use in this tool.

3. The Modular Ontology Modeling Methodology

Modular Ontology Modeling (MOMo6) consists of a
well-defined process, together with the utilization of
specific components that support the process. The de-
sign characteristics of MOMo and CoModIDE provide
the following benefits over the prior options introduced
in Sections 2.3 and 2.4:

Module focus – While earlier approaches may rec-
ommend the instantiation of ODPs into the target
ontology, they typically do not emphasize the self-
containedness of those instantiations; instead, ODPs
are often merged into larger blocks of functional-
ity or entirely monolithic ontologies. In MOMo, by
contrast, instantiating and interlinking small self-
contained modules is a defining characteristic, that
provides several benefits; e.g., maintainability is sim-

5https://gra.fo
6Momo is the protagonist in the 1973 fantasy novel “Momo” by

Michael Ende. The antagonists are Men in Grey that cause people to
waste time.

https://gra.fo

8 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

plified since each module can be modified with mini-
mal impact on the ontology as a whole; and the prove-
nance of each part of the ontology, back to the origi-
nal requirements, can easily be maintained in module
documentation or metadata.

A curated ODP library – Methodologies based on
ODP usage tend to assume the existence of suit-
able patterns. While the ODP community continues
to develop and publish patterns through, e.g., the
ontologydesignpatterns.org portal, those patterns vary
in terms of documentation quality and completeness,
foundational semantics, granularity, specificity or ab-
straction, etc. In practice, this makes consistent ODP
usage in non-trivially sized projects difficult. MOMo
instead suggests the use of an internally consistent
library of patterns (see Section 3.4); either a well-
curated public library with general coverage, or one
developed specifically for the project/domain at hand.

Diagram-first modeling – Where other methodologies
might recommend the use of illustrations as a way of
explicating ODP design, and suggest the use of post-
facto ontology documentation for communication and
other purposes, in MOMo the developed schema di-
agrams and their accompanying human-readable doc-
umentation are themselves first-order deliverables of
the ontology engineering process; their (manual) trans-
lation into OWL is a final step of post-processing.
The use of such more accessible formalisms enables
non-ontology-experts to easily participate in develop-
ment of and quality assurance over the developed mod-
ules and ontologies; not only as requirements sources
and passive observers, but as active participants. Fur-
thermore, since the diagrams and their documenta-
tion are ontology language-agnostic, they can be trans-
lated into other formalisms than OWL, should the need
arise, by a developer with no or limited OWL exper-
tise.

In this part of the paper, we lay out the key compo-
nents, namely schema diagrams, our approach to OWL
axiomatization, ontology design patterns, and the con-
cept of modules already mentioned previously, as well
as the process which ties them together. In section 4
and 5, we discuss our supporting tools and infrastruc-
ture, however they should be considered just one pos-
sible instantiation of the more general MOMo method-
ology. Indeed, most of the first part of the MOMo
process is, in our experience, best done in analog
mode, armed with whiteboards, flip-charts and a suit-
able modeling team.

3.1. The Modeling Team

Team composition is of critical importance for estab-
lishing a versatile modular ontology. Different per-
spectives are very helpful, as long as the group does
not lose focus. Arrival at a consensus model between
all parties which constitutes a synthesis of different
perspectives is key, and such a consensus is much more
likely to be suitable to accommodate future use cases
and modifications. It is therefore advisable to have
more than one domain expert with overlapping exper-
tise, and more than one ontology engineer on the team.
Based on our experiences, three types of participants
are needed in order to have a team that can establish
a modular ontology: domain experts, ontology engi-
neers, and data scientists. Of course some people may
be able to fill more than one role. An overall team size
of 6-12 people appears to be ideal, based on our experi-
ences (noted in Section 5.5). Meetings with the whole
team will be required, but in the MOMo process most
of the work will fall on the ontology engineers between
the meetings.

1. The domain experts should primarily bring a deep
knowledge of the relevant subject area(s) and of
the use case scenario(s). Ideally, they should also
be aware of perspectives taken by other domain
experts in order to avoid overspecialization of the
model.

2. The ontology engineers should be familiar with
the MOMo process, supporting tools, and rele-
vant standards (in particular, OWL), and guide
the meetings. Their role is to capture the discus-
sions, resulting in (draft) schema diagrams which
are then further discussed and refined by the team.
Between team meetings, they will also work out
detailed documentation of what has been dis-
cussed, which, in turn, will be used as prompts
in following modeling sessions. At least one of
the ontology engineers should have a deep under-
standing of the logical underpinnings of OWL.

3. The data scientists should bring a detailed under-
standing of the actual data that is relevant to the
use case(s) and will or may be utilized (e.g., in-
tegrated by means of the ontology as overarching
schema). Their role is to make sure that the model
does not deviate in an incompatible way from the
actual data that is available.

ontologydesignpatterns.org

C. Shimizu, K. Hammar, P. Hitzler / 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Schema diagram for the Provenance module from the En-
slaved Ontology [44]. It is based on the Provenance pattern from
[20], which in turn is based on the core of PROV-O [45].

3.2. Schema Diagrams

Schema diagrams are a primary tool of the MOMo pro-
cess. In particular, they are the visual vehicle used to
coalesce team discussions into a draft model and used
centrally in the documentation. This diagram-based
approach is also reflected in our tools, which we will
present in sections 4–5.

Let us first explain what we do – and do not – mean
by schema diagram, and we use Figure 3 as an exam-
ple,7 which depicts the Provenance module from the
Enslaved Ontology [44].

Our schema diagrams are labeled graphs that in-
dicate OWL entities and their (possible) relation-
ships. Nodes can be labeled by (1) classes (Entity-
WithProvenance – rectangular, orange, solid border),
(2) modules (Agent, PersonRecord, ProvenanceAc-
tivity – rectangular, light blue, dashed border), (3)
controlled vocabularies (DocumentTypes, LicenseIn-
formation – rectangular, purple, solid border), (4)
datatypes (xsd:string, xsd:anyURI – oval, yellow, solid
border). Arrows can be white-headed without label,
indicating a subclass relationship (the arrow between
PersonRecord and EntityWithProvenance) or can be
labeled with the name of the property, which could be
a data or an object property, which is identified by the
target of the arrow, which may be a datatype.

Indication of a module in a diagram means that in-
stead of the node (the light blue, dashed border), there

7The schema diagrams in this paper were produced with yEd,
available from https://www.yworks.com/products/yed/.

may be a complex model in its very own right, which
would be discussed, depicted, and documented sepa-
rately. For example, PersonRecord in the Enslaved On-
tology is a complex module with several sub-modules.
The diagram in Figure 3 “collapses” this into a single
node, in order to emphasize what is essential for the
Provenance module. Controlled vocabularies are pre-
defined sets of IRIs with a specific meaning that is doc-
umented externally (i.e., not captured in the ontology
itself). A typical example would be IRIs for physical
units like meter or gram or, as in our example dia-
gram, IRIs for specific copyright licences, such as CC-
BY-SA. Datatypes would be the concrete datatypes al-
lowed in OWL. This type of schema diagram underlies
a study on automatic schema diagram creation from
OWL files [19].

Note that our schema diagrams do not directly indicate
what the underlying OWL axioms are. A (labeled) ar-
row only indicates that a property could typically be
used between nodes of the indicated types. It does not
indicate any of functionality, existential or universal
restriction, etc. It also does not indicate any specific
domain or range axioms or use of logical connectives,
such as conjunction or disjunction. In the end, the on-
tology will consist of a set of OWL axioms (i.e., a con-
crete axiomatization will be done), but these are cre-
ated rather late in the process. During team modeling,
simple diagrams help to focus on the essentials and
are intuitively accessible even for participants with no
background in ontology engineering. The ontology en-
gineers, however, should keep in mind that logical ax-
ioms are needed eventually and that the diagrams alone
remain highly ambiguous.

3.3. OWL Axioms

As already mentioned, OWL axioms are the key con-
stituents of an ontology as a data artifact, although in
our experience quality documentation is of at least the
same importance. As has been laid out elsewhere [46],
axiomatizations can have different interpretations, and
while they can, for example, be used for performing
deductive reasoning, this is not their main role as part
of the MOMo approach. Rather, for our purposes ax-
ioms serve to disambiguate meaning, for a human user
of the ontology. As such, they can also be understood
as a way to disambiguate the schema diagram, as ap-
propriate (e.g., by labeling a property functional, by
declaring domain and range restrictions).

https://www.yworks.com/products/yed/

10 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

As such, we recommend a rather complete axiomati-
zation, as long as it does not force an overly specific
reading on the ontology. We usually use the checklist
from the OWLAx tool [43] to axiomatize with simple
axioms. More complex axioms, in particular those that
span more than two nodes in a diagram, can be added
conventionally or by means of the ROWLTab Protégé
plug-in [47, 48]. We also utilize what we call structural
tautologies which are axioms that are in fact tautolo-
gies such as A v >0R.B, to indicate that individuals in
classes A and B may have an R relation between them,
and that this would be a typical usage of the property
R.8

3.4. Ontology Design Patterns

As already mentioned, Ontology Design Patterns (ODPs)
have originated in the early 2000s as reusable solu-
tions to frequently occurring ontology design prob-
lems. Most ODPs can currently be found on the
ontologydesignpatterns.org portal, and they appear to
be of very varied quality both in terms of their design
and documentation, and following a variety of differ-
ent design principles. While they proved to be use-
ful for the community [14], as part of MOMo, we re-
imagine ontology design patterns and their use.

Most importantly, rather than working with a crowd-
sourced collection of ODPs, there seems to be a sig-
nificant advantage in working with a well-curated li-
brary of ontology design patterns that are developed
with a similar mindset, and expressed and documented
in a uniform way. A first version of such a library is
the Modular Ontology Design Library (MODL) [20],
which contains patterns that we have frequently found
to be useful in the recent past. We furthermore utilize
the Ontology Pattern Language (OPLa) [28, 29] which
is an annotation language using OWL that makes it
possible to work with ODPs (and modules) in a pro-
grammatic way.

As an example, a schema diagram for the MODL
Provenance pattern is provided in Figure 4. In MOMo,
the pattern would be used as a template in the sense
that it serves as a blueprint, usually for a module –
such as the Provenance module depicted in Figure 3

8This is similar to the schema:domainIncludes and
schema:rangeIncludes from Schema.org. We note, however, that a
structural tautology is slightly stricter, in that it directly pairs two
concepts via the role, whereas Schema.org’s is a many-to-many
approach.

Fig. 4. Schema diagram of the MODL Provenance ODP. It is based
on the core of PROV-O [45]

in the resulting ontology. That is, the pattern can be
modified, simplified, extended at will, but usually both
the schema diagram and the axioms of the ODP will
still be reflected and in some way recognizable in the
module. The resulting ontology will also use OPLa to
capture the information that the resulting module has
re-used an ODP as a template.

3.5. Modules

An (ontology) module is a part of an ontology which
captures a key notion, and its key relations to other no-
tions. An example that was already discussed is given
in Figure 3. A module may sometimes consist of a cen-
tral class together with relations (properties) to other
classes, modules, controlled vocabularies or datatypes,
but can sometimes also be of a more complex struc-
ture.

Modules can be overlapping, or nested. While they are
often based on some shared semantics, as encoded in
an ODP, this is not a hard requirement; the purpose of
the module is to encapsulate a set of interrelated func-
tionality, the logic of which classes and properties that
the module covers can be, and often is, guided, not
only by the semantics of the domain, but also by the
development context and use case. For example, in the
context of Figure 3, the PersonRecord class could rea-
sonably be considered to be outside the module. Like-
wise, the EntityWithProvenance class may or may not
be considered part of the PersonRecord module. The
latter may depend on the question how “central” prove-
nance for person records is, in the application context
of the ontology. In this sense, ontology modules are
ambiguous in their delineation, just as the human con-
cepts they are based on.

As a data artifact, though, i.e., in the OWL file of the
ontology, we will use the above-mentioned Ontology

ontologydesignpatterns.org

C. Shimizu, K. Hammar, P. Hitzler / 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Schema diagram of a supply chain ontology currently under development by the authors.

Pattern Language OPLa to identify modules, i.e. the
ontology engineers will have to make an assessment
how to delineate each module in this case. OPLa will
furthermore be used to identify ODPs (if any) which
were used as templates for a module.

Finally, an ontology’s modules will drive the documen-
tation, which will usually discuss each module in turn,
with separate schema diagrams, axioms, examples and
explanations, and will only at the very end discuss the
overall ontology which is essentially a composition of
the modules. In a diagram that encompasses several
modules, the modules can be identified visually using
frames or boxes around sets of nodes and arrows. An
example for this is given in figure 5. Several modules
are identified by grey boxes in this diagram, including
nested modules such as on the lower right.

3.6. The MOMo Workflow

We now describe the Modular Ontology Modeling
workflow that we have been applying and refining over
the past few years. It borrows significantly from the

eXtreme Design approach described in Section 2.3, but
has an emphasis on modularization, systematic use of
schema diagrams, and late-stage OWL generation. Ta-
ble 1 summarizes the steps of the workflow, and the
following sections discuss each step in more detail. A
walk-through tutorial for the approach can be found in
[49].

This workflow is not necessarily a strict sequence, and
work on later steps may cause reverting to an earlier
step for modifications. Sometimes subsequent steps
are done together, e.g., 4 and 5, or 7 and 8.

Steps 1 through 4 can usually be done through a few
shorter one-hour teleconferences (or meetings), the
number of which depends a lot on the group dynam-
ics and prior experience of the participants. This se-
quence would usually also include a brief tutorial on
the modeling process. If some of the participants al-
ready have a rather clear conception of the use cases
and data sources, then 2 or 3 one-hour calls would of-
ten suffice.

12 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
MOMo Workflow

Step Responsible Output

1. Describe use cases & data sources Entire team Use case descriptions
2. Gather competency questions Entire team List of CQs
3. Identify key notions Entire team List of key notions
4. Identify existing ODPs Ontology engineers Selected ODP(s) for each key notion.
5. Create module diagrams Entire team Diagrammatic representation of the solution module.
6. Document modules & axioms Ontology engineers &

domain experts
Module documentation with embedded schema diagrams, axioma-
tization, etc. (e.g., in LaTeX, Word, HTML format).

7. Create ontology diagram Ontology engineers Diagrammatic representation of the whole composed ontology.
8. Add spanning axioms Ontology engineers Documentation of the entire ontology with embedded schema dia-

grams, axiomatization, etc. (e.g., in LaTeX, Word, HTML format).
9. Review naming & axioms Ontology engineers Updated module and ontology documentation.
10. Create OWL file & axioms Ontology engineers An OWL file for publication and use.

In our experience, synchronous engagement (in the
sense of longer meetings) of the modeling team usually
cannot be avoided for step 5. Ideally, they would be
conducted through in-person meetings, which for effi-
ciency should usually be set up for 2 to 3 subsequent
days. Online meetings can also be almost as effective,
but for this we recommend several, at least 3, subse-
quent half-day sessions about 4-5 hours in length.

Steps 6 to 10 are mostly up to the ontology engineers
at the team, however they would request feedback and
correctness checks from the data and domain experts.
This can be done asynchronously, but depending on
preference could also include some brief teleconfer-
ences (or meetings).

3.6.1. Describe use cases and gather possible data
sources

As the first step, the use case, i.e., the problem to be
addressed, should be described. The output description
can be very brief, e.g., a paragraph of text, and it does
not necessarily have to be very crisp. In fact it may de-
scribe a set of related use cases rather than one specific
use case, and it may include future extensions which
are currently out of scope. Setting up a use case de-
scription in this way alerts the modeling team to the
fact that the goal is to arrive at a modular ontology
that is extensible and re-useable for adjacent but dif-
ferent purposes. In addition to capturing the problem
itself, the use case descriptions can also describe exist-
ing data sources that the ontology needs to be able to
represent or align against, if any.

An example for such a use case description can be
found in Figure 6. In this particular case, the possible

Design an ontology that can be used as part of
a “recipe discovery” website. The ontology shall
be set up such that content from existing recipe
websites can be mapped into it (i.e. the ontol-
ogy will be populated with data from the recipe
websites). On the discovery website, detailed
graph-queries (using the ontology) shall produce
links to recipes from different recipe websites as
results. The ontology should be extendable to-
wards incorporation of additional external data,
e.g., nutritional information about ingredients or
detailed information about cooking equipment.

Fig. 6. Example use case description, taken from [49].

data sources would be a set of different recipe websites
such as allrecipes.com.

3.6.2. Gather competency questions
Competency questions are examples for queries of in-
terest, expressed in natural language, that should be an-
swerable from the data graph with which the ontology
would be populated. Competency questions help to re-
fine the use case scenario, and can also aid as a san-
ity check on the adequacy of the data sources for the
use case. While the competency questions can often be
gathered during work on the use case description, it is
sometimes also helpful to collect them from potential
future users. For example, for an ontology on the his-
tory of the slave trade [44], professionals, school chil-
dren, and some members of the general public were
asked to provide competency questions. A few exam-
ples are provided in Figure 7. We found experientially,
10-12 sufficiently different competency questions will
be enough.

C. Shimizu, K. Hammar, P. Hitzler / 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Who were the godparents of my great-great
grandmother, Beatriz of the Ambaca nation, bap-
tized at São José church in Rio de Janeiro on
April 12, 1840?

Who did Thomas Jefferson enslave at Monti-
cello?

I am researching an enslaved person named Mo-
hammed who was a new arrival from West Africa
in Charleston in 1776. Is there data about what
slave ship he might have been on?

Fig. 7. Example competency questions, taken from [44].

3.6.3. Identify key notions for the domain to be
modeled

This is a central step which sets the stage for the ac-
tual modeling work in step 5. The main idea is that
each of the identified key notions will become a mod-
ule, however, during modeling, some closely related
notions may also become combined into a single mod-
ule. It is also possible that at a later stage is realized
that a key notion had been forgotten, which is easily
corrected by adding the new key notion to the previous
list.

The key notions are determined by the modeling team,
by taking into consideration the use case description,
the possible data sources, and the competency ques-
tions from the previous steps. One approach, which
can help guide this elicitation is to generalize use
case descriptions and/or competency questions into in-
stance free statements as proposed in [17], and subse-
quently to note which noun terms recur across multi-
ple statements. Other more advanced text mining tech-
niques could help ascertain the centrality of particular
nouns in those source materials. However, care needs
to be taken to ensure that implicit or “hidden” con-
cepts that may be candidates for key notions/modules
are made explicit, and for this, human expertise is typ-
ically required. For instance, in the Figure 7 examples,
a purely technical solution might infer that enslave-
ment is a momentary event that occurs to persons, or
a permanent characteristic of those persons; whereas a
human modeler would understand that being enslaved
describes a state with a temporal duration, which is
most likely a key notion.

The list of key notions can act not only as a feature in-
clusion list, but also as a control to help prevent fea-
ture creep; in our experience, it is not unusual for mod-
ellers to try to generalize their modeling early on, in-
cluding additional concepts and relations that are not

Recipe RecipeName RecipeInstructions
TimeInterval QuantityOfFood Quantity
Equipment FoodType Difficultylevel
RecipeClassification NutritionalInfo Source

Fig. 8. Example for key notions in the scenario of Figure 6, taken
from [49].

strictly speaking part of the project requirements. By
keeping track of requirements and their provenance,
from use case descriptions through competency ques-
tions through key notions and subsequently modules,
one can prevent such premature generalization. Ideally
this workflow is supported by integrated requirements
management tooling that provides traceability of those
requirements.

An example for key notions, for the recipe scenario
from Figure 6, is given in Figure 8.

3.6.4. Identify existing ontology design patterns to be
used

In MOMo, we utilize pattern libraries such as MODL.
For each of the key notions identified in the previous
step, we thus attempt to find a pattern from the library
which seems close enough or modifiable, so that it can
serve as a template for a first draft of a correspond-
ing module. For example, for source, it seems reason-
able to use the Provenance pattern depicted in Figure
4. MODL also has patterns for quantities.

For some key notions there may be different reason-
able choices for a pattern. For example, Recipe may be
understood as a Document, a Plan, or a Process. In this
case the modeling team should consult the use case and
the competency questions to select a pattern that seems
to be a good overall fit.

In some cases, there will be no pattern in the library
which can reasonably be used as a template. This is of
course fine, it just means that the module will have to
be developed from scratch.

3.6.5. Create schema diagrams for modules
This step usually requires synchronous work sessions
by the modeling team, led by the ontology engineers.
The key notions are looked at in isolation, one at a
time, although of course the ontology engineers should
simultaneously keep an eye on basic compatibility be-
tween the draft modules. The modeling order is also
important. It often helps to delay the more compli-
cated, involved or controversial modules, and focus
first on modules that appear to be relatively clear or

14 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 9. A minimalistic provenance module based on the MODL
Provenance pattern shown in Figure 4.

derivable from an existing pattern. It is also helpful to
begin with notions that are most central to the use case.

A typical modeling session could begin with a discus-
sion as to which pattern may be most suitable to use as
a template (thus overlapping with step 4). Or it could
start with the domain experts attempting to explain the
key notion, and its main aspects, to the ontology engi-
neers. The ontology engineers would query about de-
tails of the notion, and also about available data, until
they can come up with a draft schema diagram which
can serve as a prompt.

Indeed, the idea of prompting with schema diagrams is
in our experience a very helpful one for these model-
ing sessions. A prompt in this sense does not have to
be exact or even close in terms of the eventual solu-
tion. Rather, the diagram used as a prompt reflects an
attempt by the ontology engineer based on his current
(and often naturally) limited understanding of the key
notion. Usually, such a prompt will prompt(!) the do-
main and data experts to point out the deficiencies of
the prompt diagram, thus making it possible to refine
or modify it, or to completely reject it and come up
with a new one. Discussions around the prompts also
sometimes expose disagreements between the different
domain experts in the team, in which case the goal is to
find a consensus solution. It is important, though, that
the ontology engineers attempt to keep the discussion
focused on mostly the notion currently modeled.

Ontology engineers leading the modeling should also
keep in mind that schema diagrams are highly ambigu-
ous. This is important for several reasons.

For instance, some critique by a domain expert may
be based on an unintended interpretation of the di-
agram. When appropriate, the ontology engineers
should therefore explain the meaning of the diagram in
natural language terms, such as "there is one hasChild

arrow leading from the Person class to itself, but this
does not necessarily mean that a person can be their
own child." It is sometimes indeed helpful to keep
this in mind when creating schema diagrams; in the
example just given, the diagram could have two Per-
son classes depicted, with the hasChild arrow point-
ing from one of them to the other. Good namings of
classes and properties in the diagram will also help to
avoid unintended interpretations.

Furthermore, eventually (see the next step) the ontol-
ogy engineers will have to convert the schema dia-
grams into a formal model which will no longer be am-
biguous. The ontology engineers should therefore be
aware that they need to understand how to interpret the
diagram in the same way as the domain experts. This
can usually be done by asking the domain experts –
during this step or a subsequent one – concrete ques-
tions about the intended meaning, e.g., whether a per-
son can have several children, or at most one, etc.

It is of course possible that a module may use a pattern
as a template, but will end up to being a highly simpli-
fied version of the pattern. E.g., the provenance mod-
ule depicted in Figure 9 was derived from the pattern
depicted in Figure 4, as discussed in Section 3.4.

3.6.6. Set up documentation and determine axioms
for each module

We consider the documentation to be a primary part
of an ontology: In the end, an OWL file alone, in par-
ticular if sizable, is really hard to understand, and it
will mostly be humans who will deal with the ontology
when it is populated or re-used. In MOMo, creation
of the documentation is in fact an integral part of the
modeling process, and the documentation is a primary
vehicle for communication with the domain and data
experts in order to polish the model draft.

MOMo documentations – see [50] for an example –
discuss each of the modules in turn, and for each mod-
ule, a schema diagram is given together with the for-
mal OWL axioms (and possible additional axioms not
expressible in OWL) that will eventually be part of the
OWL file. Since the documentation is meant for human
consumption, we prefer to use a concise formal rep-
resentation of axioms, usually using description logic
syntax or rules, together with an additional listing of
the axioms in a natural language representation.

Domain and data experts can be asked specific ques-
tions, as mentioned above, to determine the most suit-
able axioms. Sometimes, the choice of axiom appears

C. Shimizu, K. Hammar, P. Hitzler / 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

to be arbitrary, but would have direct bearing on the
data graph. An example for this would be whether the
property availableFrom in Figure 9 should be declared
functional. Indeed, if declared functional, then any En-
tityWithProvenance can have at most one URI it is
available from (the use of owl:sameAs notwithstand-
ing). This may or may not be desired in terms of data
or use case, or it may simply be a choice that has to be
made by the modeling team in order to disambiguate
how the model shall be used.

In our experience, using axioms that only contain two
classes and one property suffices to express an over-
whelming majority of the desired logical theory [51].
We are thus utilizing the relatively short list of 17 ax-
iom patterns that was determined for support in the
OWLAx Protégé plug-in [43] and that can also be
found discussed in [49]. More complex axioms can of
course also be added as required. Axioms can often
also be derived from the patterns used as templates.

We would like to mention, in particular, two types
of axioms that we found very helpful. One of them
are structural tautologies which we have already dis-
cussed in Section 3.3. The other are scoped domain
(respectively, range) axioms (introduced as the class-
oriented strategy in [52]).

Scoped domain (resp., range) axioms differ from un-
scoped or global ones in that they make the do-
main (resp., range) contingent on the range (resp., do-
main). In formal terms, a domain axiom is of the form
∃R.> v B, which indicates that the global domain of
R is B. The scoped version is ∃R.A v B, i.e., in this
case the domain of R falls into B only if the range of R
falls into A. The situation for range is similar: Global
range is > v ∀R.B, indicating that the global range of
R is B, while the scoped version is A v ∀R.B, which
states that the range of R falls into B only if the domain
falls into A.

Using scoped versions of domain and range helps to
avoid making overly general domain or range axioms.
E.g., if you specify two global domains for a property
R, then the domain would in fact amount to a conjunc-
tion of the two domains given. In the scoped case this
is avoided, if the corresponding ranges are, for exam-
ple, disjoint.

To give an example, consider the two scoped domain
axioms ∃providesRole.WhiteChessPlayerRole v ChessGame
and ∃providesRole.EmployeeRole v Organization.
These two axioms are scoped domain axioms for pro-

videsRole, however they would not interfere. The same
could not be reasonably stated using global domain
axioms.

We generally recommend to use scoped versions of do-
main and range axioms – and, likewise, for functional-
ity, inverse functionality, and cardinality axioms – in-
stead of the global versions. It makes the axioms easier
to re-use, and avoids overly general axioms which may
be undesirable in a different context.

3.6.7. Create ontology schema diagram from the
module schema diagrams, and add axioms
spanning more than one module

A combined schema diagram, see Figure 5 for an ex-
ample, can be produced from the diagrams for the in-
dividual modules, In our experience, it is best to focus
on understandability of the diagram [19, 27]. The fol-
lowing guidelines should be applied with caution – ex-
ceptions at the right places may sometimes be helpful.

– Arrange key classes in columns and rows.
– Prefer vertical or horizontal arrows; this will

automatically happen if classes are arranged in
columns and rows.

– Avoid sub-class arrows: We have found that sub-
class arrows can sometimes be confusing for
readers that are not intimately familiar with the
formal logical meaning of them. E.g., in Fig-
ure 5, SourceRole is a subclass of Participant-
Role, which means that a container may assume
SourceRole. However the diagram does not show
a direct arrow from Container to the box contain-
ing SourceRole, and this in some cases makes
the diagram harder to understand, in particular if
there is an abundance of sub-class relationships.

– Prefer straight arrows.
– Avoid arrow crossings; if they are needed, make

them near perpendicular.
– Use "module" boxes (light blue with dashed bor-

der) to refer to distant parts of the diagram to
avoid cluttering the diagram with too many ar-
rows.

– Avoid partial overlap of module groupings (grey
boxes) in the diagram, even if modules are in fact
overlapping. This is generally done by duplicat-
ing class nodes.

– Break any guideline if it makes the diagram easier
to understand.

The schema diagram for the entire ontology should
then also be perused for additional axioms that may
span more than one module. These axioms will often

16 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

be rather complex, but they can often be expressed as
rules. For complex axioms, rules are preferable over
OWL axioms since they are easier for humans to un-
derstand and create [48]; the ROWLtab Protégé plug-
in [47] can for example be used to convert many of
these rules into OWL.

3.6.8. Reflect on entity naming and all axioms
Good names for ontology entities, in particular classes
and properties, are very helpful to make an ontology
easier to understand and therefore to re-use. We use a
mix of common sense and practice, and our own nam-
ing conventions which have found to be useful. We list
the most important ones in the following.

– The entity names (i.e., the last part of the URI,
after the namespace) should be descriptive. Avoid
the encoding of meaning in earlier parts of the
URI. An exception would be concrete datatypes
such as xsd:string.

– Begin class names and controlled vocabulary
names with uppercase letters, and properties (as
well as individuals and datatypes) with lowercase
letters.

– Use CamelCase for enhanced readability of com-
posite entity names. E.g., use AgentRole rather
than Agentrole, and use hasQuantityValue rather
than hasquantityvalue.

– Use singular class names, e.g., Person instead of
Persons.

– Use class names that are specific, and that help to
avoid common misunderstandings. For example,
use ActorRole instead of Actor, to avoid acciden-
tal subClassing with Person.

– Whenever possible, use directional property names,
and in particular avoid using nouns as prop-
erty names. E.g., use hasQuantityValue instead
of quantityvalue. The inverse property could then
be consistently named as quantityValueOf. Other
examples would be providesAgentRole and as-
sumesAgentRole.

– Make particularly careful choices concerning
property names, and that they are consistent with
the domain and range axioms chosen. E.g., a has-
Name property should probably never have a do-
main (other than owl:Thing), as many things can
indeed have names.

It is helpful to keep these conventions in mind from the
very start. However, during actual modeling sessions,
it is often better to focus more on the structure of the
schema diagram that is being designed, and to delay

a discussion on most appropriate names for ontology
entities. These can be relatively easily changed during
the documentation phase.

3.6.9. Create OWL file(s)
Creation of the OWL file can be done using CoMo-
dIDE (discussed below). The work could be done in
parallel with writing up the documentation; however
we describe it as the last point in order to emphasize
that most of the work on a modular ontology is done
conceptually, using discussions, diagrams, and docu-
mentation; and that the formal model, in form of an
OWL file, is really only the final step in the creation.

For the sake of future maintainability, the generated
OWL file should incorporate OPLa annotations that
identify modules and their provenance; such annota-
tions are created by CoModIDE.

4. CoModIDE

CoModIDE is intended to simplify MOMo-based on-
tology engineering projects. Per the MOMo methodol-
ogy, initial modeling rarely needs to (or should) make
use of the full set of language constructs that OWL 2
provides; instead, at these early stages of the process,
work is typically carried out graphically – whether that
be on whiteboards, in vector drawing software, or even
on paper. This limits the modeling constructs to those
that can be expressed intuitively using graphical nota-
tions, i.e., schema diagrams9, as discussed above.

Per MOMo, the formalization of the developed solu-
tion into an OWL ontology is carried out after-the-fact,
by a designated ontologist with extensive knowledge
of both the language and applicable tooling. However,
this comes at a cost, both in terms of hours expended,
and in terms of the risk of incorrect interpretations
of the previously drawn graphical representations (the
OWL standard does not define a graphical syntax, so
such human-generated representations are sometimes
ambiguous). CoModIDE intends to reduce costs by
bridging this gap, by providing tooling that supports
both user-friendly schema diagram composition, ac-
cording to our graphical notation described in Sec-

9We find that the size of partial solutions users typically develop
fit on a medium-sized whiteboard; but whether this is a naturally
manageable size for humans to operate with, or whether it is the
result of constraints of or conditioning to the available tooling, i.e.,
the size of the whiteboards often mounted in conference rooms, we
cannot say.

C. Shimizu, K. Hammar, P. Hitzler / 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tion 3.2, (using both ODP-based modules and “free-
hand” modeling of classes and relationships), and di-
rect OWL file generation.

4.1. Design and Features

The design criteria for CoModIDE, derived from the
requirements discussed above, are as follows:

– CoModIDE should support visual-first ontology
engineering, based on a graph representation of
classes, properties, and datatypes. This graphical
rendering of an ontology built using CoModIDE
should be consistent across restarts, machines,
and operating system.

– CoModIDE should support the type of OWL 2
constructs that can be easily and intuitively un-
derstood when rendered as a schema diagram.
To model more advanced constructs (unions and
intersections in property domains or ranges, the
property subsumption hierarchy, property chains,
etc), the user can drop back into the standard Pro-
tégé tabs.

– CoModIDE should embed an ODP repository.
Each included ODP should be free-standing and
completely documented. There should be no ex-
ternal dependency on anything outside of the
user’s machine10. If the user wishes, they should
be able to load a separately downloaded ODP
repository, to replace or complement the built-in
one.

– CoModIDE should support simple composition
of ODPs; patterns should snap together like Lego
blocks, ideally with potential connection points
between the patterns lighting up while drag-
ging compatible patterns. The resulting ontology
modules should maintain their coherence and be
treated like modules in a consistent manner across
restarts, machines, etc. A pattern or ontology in-
terface concept will need to be developed to sup-
port this.

CoModIDE is developed as a plugin to the versatile
and well-established Protégé ontology engineering en-
vironment. The plugin provides three Protégé views,
and a tab that hosts these views (see Figure 10). The
schema editor view provides an a graphical overview

10Our experience indicates that while our target users are gener-
ally enthusiastic about the idea of reusing design patterns, they are
quickly turned off of the idea when they are faced with patterns that
lack documentation or that exhibit link rot.

of an ontology’s structure, including the classes in the
ontology, their subclass relations, and the object and
datatype properties in the ontology that relate these
classes to one another and to datatypes. All of these
entities can be manipulated graphically through drag-
ging and dropping. The pattern library view provides a
built-in copy of the MODL ontology design pattern li-
brary [20], sourced from various projects and from the
ODP community wiki11. A user can drag and drop de-
sign patterns from the pattern library onto the canvas to
instantiate those patterns as modules in their ontology.
The configuration view lets the user configure the be-
havior of the other CoModIDE views and their compo-
nents. For a detailed description, we refer the reader to
the video walkthrough on the CoModIDE webpage12.
We also invite the reader to download and install Co-
ModIDE themselves, from that same site.

When a pattern is dragged onto the canvas, the con-
structs in that pattern are copied into the ontology (op-
tionally having their IRIs updated to correspond with
the target ontology namespace), but they are also an-
notated using the OPLa vocabulary, to indicate 1) that
they belong to a certain pattern-based module, and
2) what pattern that module implements. In this way
module provenance is maintained, and modules can be
manipulated (folded, unfolded, removed, annotated) as
needed.

4.2. Evaluation Method

We have evaluated CoModIDE through a four-step ex-
perimental setup, consisting of: a survey to collect sub-
ject background data (familiarity with ontology lan-
guages and tools), two modeling tasks, and a follow-
up survey to collect information on the usability13s of
both Protégé and CoModIDE. The tasks were designed
to emulate a MOMo process, where a conceptual de-
sign is developed and agreed upon by whiteboard pro-
totyping, and a developer is then assigned to formal-
izing the resulting whiteboard schema diagram into an
OWL ontology. Our experimental hypotheses were de-
fined as follows:

H1. When using CoModIDE, a user takes less time to
produce correct and reasonable output, than when
using Protege.

11http://ontologydesignpatterns.org/
12https://comodide.com
13As according to the System Usability Scale (SUS) and de-

scribed further in Section 4.2.2.

http://ontologydesignpatterns.org/
https://comodide.com

18 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 10. CoModIDE User Interface featuring 1) the schema editor, 2) the pattern library, and 3) the configuration view.

H2. A user will find CoModIDE to have a higher SUS
score than when using Protege alone.

During each of the modeling tasks, participants were
asked to generate a reasonable and correct OWL file
for the provided schema diagram. In order to prevent
a learning effect, the two tasks utilized two different
schema diagrams. To prevent bias arising from differ-
ences in task complexity, counterbalancing was em-
ployed (such that half the users performed the first task
with standard Protégé and the second task with CoMo-
dIDE, and half did the opposite). The correctness of
the developed OWL files, and the time taken to com-
plete each task, were recorded (the latter was however,
for practical reasons, limited to 20 minutes per task).

The following sections provide a brief overview of
each of the steps. The source material for the entire
experiment is available online.14

4.2.1. Introductory Tutorial
When recruiting our participants for this evaluation,
we did not place any requirements on ontology model-

14http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887

ing familiarity. However, to establish a shared baseline
knowledge of foundational modeling concepts (such
as one would assume participants would have in the
MOMo scenario we try to emulate, see above), we pro-
vided a 10 minute tutorial on ontologies, classes, prop-
erties, domains, and ranges. The slides used for this tu-
torial may be found online with the rest of the experi-
ment’s source materials.

4.2.2. a priori Survey
The purpose of the a priori survey was to collect in-
formation relating to the participants base level famil-
iarity with topics related to knowledge modeling, to be
used as control variables in later analysis. We used a
5-point Likert scale for rating the accuracy of the fol-
lowing statements.

CV1. I have done ontology modeling before.

CV2. I am familiar with Ontology Design Patterns.

CV3. I am familiar with Manchester Syntax.15

CV4. I am familiar with Description Logics.

15This is asked as Manchester Syntax is the default syntax in Pro-
tégé. The underlying assumption is that the manual addition of ax-

http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887

C. Shimizu, K. Hammar, P. Hitzler / 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 11. Task A Schema Diagram

CV5. I am familiar with Protégé.

Finally, we asked the participants to describe their re-
lationship to the test leader, (e.g. student, colleague,
same research lab, not familiar).

4.2.3. Modeling Task A
In Task A, participants were to develop an ontology
to model how an analyst might generate reports about
an ongoing emergency. The scenario identified two de-
sign patterns to use:

– Provenance: to track who made a report and how;

– Event: to capture the notion of an emergency.

Figure 11 shows how these patterns are instantiated
and connected together. Overall the schema diagram
contains seven concepts, one datatype, one subclass re-
lation, one data property, and six object properties.

4.2.4. Modeling Task B
In Task B, participants were to develop an ontology to
capture the steps of an experiment. The scenario iden-
tified two design patterns to use:

– Trajectory: to track the order of the steps;

– Explicit Typing: to easily model different types
of apparatus.

ioms with the expression editor in Protégé would be faster given fa-
miliarity with Manchester Syntax.

Fig. 12. Task B Schema Diagram

Figure 12 shows how these patterns are instantiated
and connected together. Overall, the schema diagram
contains six concepts, two datatypes, two subclass re-
lations, two data properties, and four object properties
(one of which is a self-loop).

4.2.5. a posteriori Survey
The a posteriori survey included the SUS evaluations
for both Protégé and CoModIDE. The SUS is a very
common “quick and dirty,” yet reliable tool for mea-
suring the usability of a system. It consists of ten ques-
tions, the answers to which are used to compute a total
usability score of 0–100. Additional information on the
SUS and its included questions can be found online.16

Additionally, we inquire about CoModIDE-specific
features. These statements are also rated using a Likert
scale. However, we do not use this data in our evalua-
tion, except to inform our future work.. Finally, we re-
quested any free-text comments on CoModIDE’s fea-
tures.

4.3. Results

4.3.1. Participant Pool Composition
Of the 21 subjects, 12 reported some degree of famil-
iarity with the authors, while 9 reported no such con-
nection. In terms of self-reported ontology engineering
familiarity, the responses are as detailed in Table 2. It
should be observed that responses vary widely, with a
relative standard deviation (σ/mean) of 43–67 %.

16https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

20 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Mean, standard deviation, relative standard deviation, and median
responses to a priori statements

mean σ relative σ median

CV1 3.05 1.75 57 % 3
CV2 3.05 1.32 43 % 3
CV3 2.33 1.56 67 % 1
CV4 2.81 1.33 47 % 3
CV5 2.95 1.63 55 % 3

4.3.2. Metric Evaluation
We define our two metrics as follows:

– Time Taken: number of minutes, rounded to the
nearest whole minute and capped at 20 minutes
due to practical limitations, taken to complete a
task;

– Correctness of Output is a discrete measure that
corresponds to the structural accuracy of the out-
put. That is, 2 points were awarded to structurally
accurate OWL files; 1 point for a borderline case
(e.g one or two incorrect linkages, or missing a
domain statement but including the range); and 0
points for any other output.

For these metrics, we generate simple statistics that de-
scribe the data, per modeling task. Tables 3a and 3b
show the mean, standard deviation, and median for the
Time Taken and Correctness of Output, respectively.

In addition, we examine the impact of our control vari-
ables (CV). This analysis is important, as it provides
context for representation or bias in our data set. These
are reported in Table 3c. CV1-CV5 correspond exactly
to those questions asked during the a priori Survey, as
described in Section 4.2. For each CV, we calculated
the bivariate correlation between the sample data and
the self-reported data in the survey. We believe that this
is a reasonable measure of impact on effect, as our lim-
ited sample size is not amenable to partitioning. That
is, the partitions (as based on responses in the a pri-
ori survey) could have been tested pair-wise for statis-
tical significance. Unfortunately, the partitions would
have been too small to conduct proper statistical test-
ing. However, we do caution that correlation effects are
strongly impacted by sample size.

We analyze the SUS scores in the same manner. Table
5 presents the mean, standard deviation, and median of
the data set. The maximum score while using the scale
is a 100. Table 3d presents our observed correlations
with our control variables.

Finally, we compare each metric for one tool against
the other. That is, we want to know if our results are
statistically significant—that as the statistics suggest
in Table 3, CoModIDE does indeed perform better for
both metrics and the SUS evaluation. To do so, we
calculate the probability p that the samples from each
dataset come from different underlying distributions.
A common tool, and the tool we employ here, is the
Paired (two-tailed) T-Test—noting that it is reasonable
to assume that the underlying data are normally dis-
tributed, as well a powerful tool for analyzing datasets
of limited size. The threshold for indicating confidence
that the difference is significant is generally taken to
be p < 0.05. Table 4 summarizes these results.

4.3.3. Free-text Responses
18 of the 21 subjects opted to leave free-text com-
ments. We applied fragment-based qualitative coding
and analysis on these comments. I.e., we split the com-
ments apart per the line breaks entered by the subjects,
we read through the fragments and generated a simple
category scheme, and we then re-read the fragments
and applied these categories to the fragments (allow-
ing at most one category per fragment) [53, 54]. The
subjects left between 1–6 fragments each for a total of
49 fragments for analysis, of which 37 were coded, as
detailed in Table 6.

Of the 18 participants who left comments, 3 left com-
ments containing no codable fragments; these either
commented upon the subjects own performance in the
experiment, which is covered in the aforementioned
completion metrics, or were simple statements of fact
(e.g., “In order to connect two classes I drew a con-
necting line”).

4.4. Discussion

4.4.1. Participant Pool Composition
The data indicates no correlation (bivariate correlation
< ±0.1) between the subjects’ reported author famil-
iarity, and their reported SUS scores, such as would
have been the case if the subjects who knew the au-
thors were biased. The high relative standard deviation
for a priori knowledge level responses indicates that
our subjects are rather diverse in their skill levels. As
discussed below, this variation is fortunate as it allows
us to compare the performance of more or less experi-
enced users.

C. Shimizu, K. Hammar, P. Hitzler / 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Summary of statistics comparing Protege and CoModIDE.

mean σ median

Protégé 17.44 3.67 20.0
CoModIDE 13.94 4.22 13.5

(a) Mean, standard deviation, and median time taken to
complete each modeling task.

mean σ median

Protégé 0.50 0.71 0.0
CoModIDE 1.33 0.77 1.5

(b) Mean, standard deviation, and median correctness of
output for each modeling task.

CV1 CV2 CV3 CV4 CV5

TT (P) -0.61 -0.18 -0.38 -0.58 -0.62
Cor. (P) 0.50 0.20 0.35 0.51 0.35
TT (C) 0.02 -0.34 -0.28 -0.06 0.01
Cor. (C) -0.30 0.00 -0.12 -0.33 -0.30

(c) Correlations control variables (CV) on the Time Taken
(TT) and Correctness of Output (Cor.) for both tools Pro-
tégé (P) and CoModIDE (C).

CV1 CV2 CV3 CV4 CV5

SUS (P) 0.70 0.52 0.64 0.73 0.64
SUS (C) -0.34 -0.05 -0.08 -0.29 -0.39

(d) Correlations with control variables (CV) on the SUS
scores for both tools Protégé (P) and CoModIDE (C).

4.4.2. Metric Evaluation
Before we can determine if our results confirm H1 and
H2, we must first examine the correlations between our
results and the control variables gathered in the a pri-
ori survey. In this context, we find it reasonable to use
these thresholds for a correlation |r|: 0-0.19 very weak,

Table 4
Significance of results.

Time Taken Correctness SUS Evaluation

p ≈ 0.025 < 0.05 p ≈ 0.009 < 0.01 p ≈ 0.0003 < 0.001

Table 5
Mean, standard deviation, and median SUS score for each tool. The
maximum score is 100.

mean σ median

Protégé 36.67 22.11 35.00
CoModIDE 73.33 16.80 76.25

Table 6
Free text comment fragments per category

Code Fragment #

Graph layout 4
Dragging & dropping 6

Feature requests 5
Bugs 8

Modeling problems 5
Value/preference statements 9

0.20-0.39 weak, 0.40-0.59 moderate, 0.60-0.79 strong,
0.80-1.00 very strong.

As shown in Table 3c, the metric time taken when us-
ing Protégé is negatively correlated with each CV. The
correctness metric is positively correlated with each
CV. This is unsurprising and reasonable; it indicates
that familiarity with the ontology modeling, related
concepts, and Protégé improves (shortens) time taken
to complete a modeling task and improves the cor-
rectness of the output. However, for the metrics per-
taining to CoModIDE, there are only very weak and
three weak correlations with the CVs. We may con-
strue this to mean that performance when using CoMo-
dIDE, with respect to our metrics, is largely agnostic
to our control variables.

To confirm H1, we look at the metrics separately. Time
taken is reported better for CoModIDE in both mean
and median. When comparing the underlying data, we
achieve p ≈ 0.025 < 0.05. Next, in comparing the
correctness metric from Table 3b, CoModIDE again
outperforms Protégé in both mean and median. When
comparing the underlying data, we achieve a statistical
significance of p ≈ 0.009 < 0.01. With these together,
we reject the null hypothesis and confirm H1.

This is particularly interesting; given the above analy-
sis of CV correlations where we see no (or very weak)
correlations between prior ontology modeling famil-
iarity and CoModIDE modeling results, and the con-
firmation of H1, that CoModIDE users perform better

22 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

than Protégé users, we have a strong indicator that we
have achieved increased approachability.

When comparing the SUS score evaluations, we see
that the usability of Protégé is strongly influenced
by familiarity with ontology modeling and familiar-
ity with Protégé itself. The magnitude of the correla-
tion suggests that newcomers to Protege do not find it
very usable. CoModIDE, on the other hand is, weakly,
negatively correlated along the CV. This suggests that
switching to a graphical modeling paradigm may take
some adjusting.

However, we still see that the SUS scores for CoMo-
dIDE have a greater mean, tighter σ, and greater me-
dian, achieving a very strong statistical significance
p ≈ 0.0003 < 0.001. Thus, we may reject the null
hypothesis and confirm H2.

As such, by confirming H1 and H2, we may say that
CoModIDE improves the approachability of ontology
engineering, especially for those not familiar with on-
tology modeling—with respect to our participant pool.
However, we suspect that our results are generalizable,
due to the strength of the statistical significance (Table
4) and participant pool composition (Section 4.3.1).

4.4.3. Free-text Responses
The fragments summarized in Table 6 paints a quite
coherent picture of the subjects’ perceived advantages
and shortcomings of CoModIDE, as follows:

– Graph layout: The layout of the included MODL
patterns, when dropped on the canvas, is too
cramped and several classes or properties overlap,
which reduces tooling usability.

– Dragging and dropping: Dragging classes was
hit-and-miss; this often caused users to create new
properties between classes, not move them.

– Feature requests: Pressing the “enter” key should
accept and close the entity renaming window.
Zooming is requested, and an auto-layout button.

– Bugs: Entity renaming is buggy when entities
with similar names exist.

– Modeling problems: Self-links/loops cannot eas-
ily be modeled.

– Value/preference statements: Users really appre-
ciate the graphical modeling paradigm offered,
e.g., “Much easier to use the GUI to develop on-
tologies”, “Moreover, I find this system to be way
more intuitive than Protégé”, “CoModIDE was
intuitive to learn and use, despite never working
with it before.”

We note that there is a near-unanimous consensus
among the subjects that graphical modeling is intuitive
and helpful. When users are critical of the CoModIDE
software, these criticisms are typically aimed at spe-
cific and quite shallow bugs or UI features that are
lacking. The only consistent criticism of the modeling
method itself relates to the difficulty in constructing
self-links (i.e., properties that have the same class as
domain and range).

4.5. CoModIDE 2.0

Since the evaluation, we have made plenty of progress
on improving CoModIDE in significant ways. Aside
from bug fixes and general quality of life improve-
ments (i.e. versions 1.1.1 and 1.1.2) addressing many
of the free-text responses in Section 4.4.3, we have
implemented additional key aspects of the MOMo
methodology. In particular, they are as follows.

– Modules are now directly supported. The grey
boxes, as shown in Figure 5, can now be cre-
ated by highlighting a group of connected classes
and datatypes and pressing ‘G’. These new nodes
can be folded into a single cell in order to
simplify large or complex diagrams. Outgoing
edges are maintained from the collapsed node.
Newly instantiated patterns (i.e. those dragged-
and-dropped from the pattern library) appear pre-
grouped into modules.

– OPLa Annotations are added whenever mod-
ules are created directly, and are properly retained
when dragged-and-dropped from the pattern li-
brary. In particular, the isNativeTo and reuses-
PatternAsTemplate properties are currently sup-
ported. This generally subsumes the functionality
of [21].

– The Systematic Axiomatization process from
MOMo is now directly supported. By clicking on
a named edge on the canvas, the user can now
customize exactly what the edge represents in the
“Edge Inspection Tool.” The list offers the hu-
man readable labels for the list of axioms gener-
ally used in the MOMo workflow, and described
in Section 3.6.6.

We have also added functionality to assist in navigat-
ing a complex pattern space through the notion of in-
terfaces. That is, categorizing patterns based on the
roles that they may play. For example, a more general
ontology may call for some pattern that satisfies a spa-
tial extent modeling requirement. To borrow from soft-

C. Shimizu, K. Hammar, P. Hitzler / 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ware engineering terms, one could imagine several dif-
ferent implementations of a ‘spatial extent” interface.

In addition, we have added simple, manual alignment
to external ontologies. More information on this upper
alignment tool for CoModIDE can be found in [55].

In order to improve the extensibility of the platform,
we have reworked the overarching conceptual frame-
work for functionality in CoModIDE. Functionality is
now categorized into so-called toolkits which commu-
nicate through a newly implemented message bus. This
allows for a relatively straightforward integration pro-
cess for external developers.

It is also important to recall that CoModIDE is not
just a development platform, but a tool that enables
research into ontology engineering. To that point, we
have implemented an opt-in telemetry agent that col-
lects and sends anonymized usage characteristics back
to the developers. This records session lengths, clicks,
and other such metrics that give us insight on how on-
tologies are authored in a graphical environment.

5. Additional Infrastructure and Resources

5.1. The Modular Ontology Design Library (MODL)

The Modular Ontology Design Library (MODL) is
both an artifact and a framework for creating col-
lections of ontology design patterns [20]. MODL is
a method for establishing a well-curated and well-
documented collection of ODPs that is structured us-
ing OPLa. This allows for a queryable interface when
the MODL is very large, or if the MODL is integrated
into other tooling infrastructure. For example, CoMo-
dIDE uses OPLa annotations to structure, define, and
relate patterns in its internal MODL, as described in
Section 4.1.

5.2. OPLa Annotator

The OPLa Annotator [21] is a standalone plugin for
Protégé. This plug-in allows for the guided creation of
opla:isNativeTo annotations on ontological entities of
an OWL file. While this particular functionality is sub-
sumed in CoModIDE, it does not require the graphical
canvas or the creation of modules, and can be a quicker
option when the imposed graphical organization is not
desired or required.

5.3. ROWLTab

ROWLTab [48] is another standalone plugin for Pro-
tégé. It is based on the premise that some ontology
users, and frequently non-ontologists, find conceptual-
izing knowledge through rules to be more convenient.
This plugin allows the user to enter SWRL rules which
will then, when applicable, be converted into equiv-
alent OWL axioms. An extension to this plug-in, de-
tailed in [56], allows for existential rules.

5.4. SDOnt

SDOnt [19] is an early tool for generating schema dia-
grams from OWL files. Unlike other visual OWL gen-
erators, SDOnt does not give a strictly disambiguous
diagram. Instead, it generates schema diagrams in the
style that has been described in Section 3.2 based on
the TBox of the input OWL file. This program only re-
quires Java to run and can be run on any OWL ontol-
ogy; although, as with any graph visualization, it tends
to work best with smaller schemas.

5.5. Example Modular Ontologies

In this section, we provide a brief directory of ex-
isting modular ontologies, organized by modeling
challenges. These can be used for inspiration to the
prospective modeler, or, in the spirit of the MOMo
methodology, the modeler may wish to reuse or adapt
their modules to new or similar use cases.

Highly Spatial Data
It is frequently common to model data that has a strong
spatial dimension. The challenges that accompany this
are unfortunately myriad. In the GeoLink Modular On-
tology [57] we utilize the Semantic Trajectory pat-
tern to model discrete representations of continuous
spatial movement. Ongoing work regarding the inte-
gration of multiple datasets (e.g., NOAA storm data,
USGS earthquake data, and FEMA disaster declara-
tions)17 while using their spatial data as the dimension
of integration can be found online18. The RealEstate-
Core Ontology [33, 58] provides a set of patterns and
modules for the integration of spatial footprints and
structures in a real estate property with sensors and
other devices present on the Internet of Things.

17Respectively, these are National Oceanic and Atmospheric Ad-
ministration, United States Geological Survey, and Federal Emer-
gency Management Agency.

18See https://knowwheregraph.org/

https://knowwheregraph.org/

24 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Elusive Ground Truth
Sometimes, it is necessary to model data where it is not
known if it is true, or that it is necessary to knowingly
ingest possibly contradictory knowledge. In this case,
we suggest a records-based approach, with a strong
emphasis on the first-class modeling of provenance.
That is, knowledge or data is not modeled directly, but
instead we model a container for the data, which is
then strongly connected to its provenance. An example
of this approach can be found in the Enslaved Ontol-
ogy [44], where historical data may contradict or con-
flict with itself, based on the interpretations of different
historians.

Rule-based Knowledge
In some cases, it may be necessary to directly encode
rules or conditional data, such as attempting to de-
scribe the action-response mechanisms when reacting
to an event. The methods for doing so, and the mod-
ules therein associated, can be found in the Modular
Ontology for Space Weather Research [59] and in the
Domain Ontology for Task Instructions [60].

Shortcuts & Views
Shortcuts and Views are used to manage complexity
between rich and detailed ontological truthiness and
convenience for data providers, publishers, and con-
sumers. That is, it is frequently desirable to have high
fidelity in the underlying knowledge model, which
may result in a model that is confusing or unintuitive
to the non-ontologist. As such, shortcuts can be used
to simplify navigation or publishing according to the
model. These shortcuts would also be formally de-
scribed allowing for a navigation between levels of ab-
straction. A full examination of these constructs is out
of scope, but examples of shortcuts and views, along-
side their use, can be found in the Geolink Modular
Ontology [57], the tutorial for modeling Chess Game
Data [61], and in the Enslaved Ontology [44].

6. Conclusion

The re-use of ontologies for new purposes, or adapt-
ing them to new use-cases, is frequently very diffi-
cult. In our experiences, we have found this to be the
case for several reasons: (i) differing representational
granularity, (ii) lack of conceptual clarity of the ontol-
ogy design, (iii) adhering to good modeling principles,
and (iv) a lack of re-use emphasis and process support
available in ontology engineering tooling. In order to
address these concerns, we have developed the Mod-

ular Ontology Modeling (MOMo) workflow and sup-
porting tooling infrastructure, CoModIDE (The Com-
prehensive Modular Ontology Integrated Development
Environment – “commodity”).

In this paper, we have presented the MOMo work-
flow in detail, from introducing the schema diagram as
the primary conceptual vehicle for communicating be-
tween ontology engineers and domain experts, to pre-
senting several experiences in executing the workflow
across many distinct domains with different use cases
and data requirements.

We have also shown how the CoModIDE platform
allows ontology engineers, irrespective of previous
knowledge level, to develop ontologies more correctly
and more quickly, than by using standard Protégé; that
CoModIDE has a higher usability (SUS score) than
standard Protégé; and that the CoModIDE issues that
concern users primarily derive from shallow bugs as
opposed to methodological or modeling issues. Taken
together, this implies that the modular graphical ontol-
ogy engineering paradigm is a viable way for support-
ing the MOMo workflow.

6.1. Future Work

From here, there are still many avenues of investiga-
tion remaining, pertaining to both the MOMo work-
flow and CoModIDE.

Regarding the workflow, we will continue to exe-
cute the workflow in new domains and observe differ-
ences in experiences. Currently, we are examining how
to better incorporate spatially-explicit modeling tech-
niques. In addition, we wish to further explore how
schema diagrams may represent distinctly different se-
mantics, such as ShEx [62], SHACL [63], rather than
OWL.

We also foresee the continued development of the plat-
form. As mentioned in Section 4.5, we have improved
its internal structure so that it may support bundled
pieces of functionality. In particular, we will develop
such toolkits for supporting holistic ontology engineer-
ing projects, going beyond just the modeling process.
This will include the incorporation of ontology align-
ment systems so that CoModIDE may export auto-
matic alignments alongside the designed deliverable,
and the incorporation of recommendation software,
perhaps based on input seed data. Further, we see a
route for automatic documentation in the style of our
own technical reports. Finally, we wish to examine col-

C. Shimizu, K. Hammar, P. Hitzler / 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

lected telemetry data in order to analyse how users de-
velop ontologies in a graphical modeling paradigm.

Acknowledgements. Cogan Shimizu and Pascal Hit-
zler acknowledge partial support from the financial
assistance award 70NANB19H094 from U.S. Depart-
ment of Commerce, National Institute of Standards
and Technology and the National Science Foundation
under Grant No. 2033521 and the Andrew W. Mel-
lon Foundation. The authors acknowledge the help-
ful input from Adila Krisnadhi and MD Kamruzza-
man Sarker; and development support from Sulogna
Chowdhury, Abhilekha Dalal, Riley Mueller, and Lu
Zhou.

References

[1] G.O. Consortium, Gene Ontology Consortium: The Gene
Ontology (GO) database and informatics resource, Nu-
cleic Acids Research 32(Database–Issue) (2004), 258–261.
doi:10.1093/nar/gkh036.

[2] P. Hitzler, A Review of the Semantic Web Field, Commun.
ACM 64(2) (2021), 76–83. doi:10.1145/3397512.

[3] Linked Open Vocabularies (LOV), Accessed: 2021-05-06.
https://lov.linkeddata.es/dataset/lov/.

[4] A. Algergawy, D. Faria, A. Ferrara, I. Fundulaki, I. Harrow,
S. Hertling, E. Jiménez-Ruiz, N. Karam, A. Khiat, P. Lam-
brix, H. Li, S. Montanelli, H. Paulheim, C. Pesquita, T. Saveta,
P. Shvaiko, A. Splendiani, É. Thiéblin, C. Trojahn, J. Vatas-
cinová, O. Zamazal and L. Zhou, Results of the Ontology
Alignment Evaluation Initiative 2019, in: Proceedings of the
14th International Workshop on Ontology Matching co-located
with the 18th International Semantic Web Conference (ISWC
2019), Auckland, New Zealand, October 26, 2019, P. Shvaiko,
J. Euzenat, E. Jiménez-Ruiz, O. Hassanzadeh and C. Trojahn,
eds, CEUR Workshop Proceedings, Vol. 2536, CEUR-WS.org,
2019, pp. 46–85.

[5] O. Zamazal and V. Svátek, The Ten-Year OntoFarm and its Fer-
tilization within the Onto-Sphere, J. Web Semant. 43 (2017),
46–53. doi:10.1016/j.websem.2017.01.001.

[6] K. Hammar, Content Ontology Design Patterns: Quali-
ties, Methods, and Tools, PhD thesis, Linköping Univer-
sity, Sweden, 2017. doi:10.3384/diss.diva-139584. https://
nbn-resolving.org/urn:nbn:se:liu:diva-139584.

[7] A. Algergawy, S. Babalou, F. Klan and B. König-Ries, Ontol-
ogy Modularization with OAPT, J. Data Semant. 9(2) (2020),
53–83. doi:10.1007/s13740-020-00114-7.

[8] B.C. Grau, I. Horrocks, Y. Kazakov and U. Sattler, Extract-
ing Modules from Ontologies: A Logic-Based Approach, in:
Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization, H. Stuckenschmidt, C. Parent and
S. Spaccapietra, eds, Lecture Notes in Computer Science,
Vol. 5445, Springer, 2009, pp. 159–186. doi:10.1007/978-3-
642-01907-4_8.

[9] H. Stuckenschmidt, C. Parent and S. Spaccapietra (eds),
Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization, Lecture Notes in Computer Sci-
ence, Vol. 5445, Springer, 2009. ISBN 978-3-642-01906-7.
doi:10.1007/978-3-642-01907-4.

[10] D. Osumi-Sutherland, M. Courtot, J.P. Balhoff and
C.J. Mungall, Dead simple OWL design patterns, J. Biomed.
Semant. 8(1) (2017), 18:1–18:7. doi:10.1186/s13326-017-
0126-0.

[11] M.G. Skjæveland, D.P. Lupp, L.H. Karlsen and H. Forssell,
Practical Ontology Pattern Instantiation, Discovery, and Main-
tenance with Reasonable Ontology Templates, in: The Seman-
tic Web - ISWC 2018 - 17th International Semantic Web Con-
ference, Monterey, CA, USA, October 8-12, 2018, Proceedings,
Part I, D. Vrandecic, K. Bontcheva, M.C. Suárez-Figueroa,
V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl,
eds, Lecture Notes in Computer Science, Vol. 11136, Springer,
2018, pp. 477–494. doi:10.1007/978-3-030-00671-6_28.

[12] E. Blomqvist and K. Sandkuhl, Patterns in Ontology Engi-
neering: Classification of Ontology Patterns, in: ICEIS 2005,
Proceedings of the Seventh International Conference on En-
terprise Information Systems, Miami, USA, May 25-28, 2005,
C. Chen, J. Filipe, I. Seruca and J. Cordeiro, eds, 2005,
pp. 413–416.

[13] A. Gangemi, Ontology Design Patterns for Semantic Web
Content, in: The Semantic Web - ISWC 2005, 4th Interna-
tional Semantic Web Conference, ISWC 2005, Galway, Ire-
land, November 6-10, 2005, Proceedings, Y. Gil, E. Motta,
V.R. Benjamins and M.A. Musen, eds, Lecture Notes in
Computer Science, Vol. 3729, Springer, 2005, pp. 262–276.
doi:10.1007/11574620_21.

[14] P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi and V. Pre-
sutti (eds), Ontology Engineering with Ontology Design Pat-
terns – Foundations and Applications, Studies on the Semantic
Web, Vol. 25, IOS Press, 2016. ISBN 978-1-61499-676-7.

[15] Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-
Cross, P. Hitzler, M. Dean and D. Kolas, A Geo-ontology De-
sign Pattern for Semantic Trajectories, in: Spatial Informa-
tion Theory - 11th International Conference, COSIT 2013,
Scarborough, UK, September 2-6, 2013. Proceedings, T. Ten-
brink, J.G. Stell, A. Galton and Z. Wood, eds, Lecture Notes
in Computer Science, Vol. 8116, Springer, 2013, pp. 438–456.
doi:10.1007/978-3-319-01790-7_24.

[16] K. Hammar and V. Presutti, Template-Based Content ODP
Instantiation, in: Advances in Ontology Design and Patterns
[revised and extended versions of the papers presented at
the 7th edition of the Workshop on Ontology and Semantic
Web Patterns, WOP@ISWC 2016, Kobe, Japan, 18th October
2016], K. Hammar, P. Hitzler, A. Krisnadhi, A. Lawrynowicz,
A.G. Nuzzolese and M. Solanki, eds, Studies on the Semantic
Web, Vol. 32, IOS Press, pp. 1–13. doi:10.3233/978-1-61499-
826-6-1.

[17] E. Blomqvist, K. Hammar and V. Presutti, Engineering On-
tologies with Patterns - The eXtreme Design Methodology, in:
Ontology Engineering with Ontology Design Patterns - Foun-
dations and Applications, P. Hitzler, A. Gangemi, K. Janow-
icz, A. Krisnadhi and V. Presutti, eds, Studies on the Semantic
Web, Vol. 25, IOS Press, 2016, pp. 23–50. doi:10.3233/978-1-
61499-676-7-23.

https://lov.linkeddata.es/dataset/lov/
https://nbn-resolving.org/urn:nbn:se:liu:diva-139584
https://nbn-resolving.org/urn:nbn:se:liu:diva-139584

26 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[18] C. Shimizu, K. Hammar and P. Hitzler, Modular Graphi-
cal Ontology Engineering Evaluated, in: The Semantic Web -
17th International Conference, ESWC 2020, Heraklion, Crete,
Greece, May 31-June 4, 2020, Proceedings, A. Harth, S. Kir-
rane, A.N. Ngomo, H. Paulheim, A. Rula, A.L. Gentile,
P. Haase and M. Cochez, eds, Lecture Notes in Computer Sci-
ence, Vol. 12123, Springer, 2020, pp. 20–35. doi:10.1007/978-
3-030-49461-2_2.

[19] C. Shimizu, A. Eberhart, N. Karima, Q. Hirt, A. Krisnadhi and
P. Hitzler, A Method for Automatically Generating Schema Di-
agrams for OWL Ontologies, in: Knowledge Graphs and Se-
mantic Web - First Iberoamerican Conference, KGSWC 2019,
Villa Clara, Cuba, June 23-30, 2019, Proceedings, B. Villazón-
Terrazas and Y. Hidalgo-Delgado, eds, Communications in
Computer and Information Science, Vol. 1029, Springer, 2019,
pp. 149–161. doi:10.1007/978-3-030-21395-4_11.

[20] C. Shimizu, Q. Hirt and P. Hitzler, MODL: A Modular Ontol-
ogy Design Library, in: WOP@ISWC, CEUR Workshop Pro-
ceedings, Vol. 2459, CEUR-WS.org, 2019, pp. 47–58.

[21] C. Shimizu, Q. Hirt and P. Hitzler, A Protégé Plug-In for An-
notating OWL Ontologies with OPLa, in: The Semantic Web:
ESWC 2018 Satellite Events - ESWC 2018 Satellite Events,
Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Pa-
pers, A. Gangemi, A.L. Gentile, A.G. Nuzzolese, S. Rudolph,
M. Maleshkova, H. Paulheim, J.Z. Pan and M. Alam, eds, Lec-
ture Notes in Computer Science, Vol. 11155, Springer, 2018,
pp. 23–27. doi:10.1007/978-3-319-98192-5_5.

[22] M. Fernández-López, A. Gómez-Pérez and N. Juristo,
METHONTOLOGY: From Ontological Art Towards Ontolog-
ical Engineering, Technical Report, SS-97-06, American As-
sociation for Artificial Intelligence, 1997.

[23] Y. Sure, S. Staab and R. Studer, On-To-Knowledge Method-
ology (OTKM), in: Handbook on Ontologies, S. Staab and
R. Studer, eds, International Handbooks on Information Sys-
tems, Springer Berlin Heidelberg, 2004, pp. 117–132.

[24] H.S. Pinto, S. Staab, C. Tempich and Y. Sure, Distributed En-
gineering of Ontologies (DILIGENT), in: Semantic Web and
Peer-to-Peer - Decentralized Management and Exchange of
Knowledge and Information, S. Staab and H. Stuckenschmidt,
eds, Springer, 2006, pp. 303–322. doi:10.1007/3-540-28347-
1_16.

[25] W.C. Mann and S.A. Thompson, Rhetorical Structure Theory:
A Theory of Text Organization, Information Sciences Institute,
University of Southern California, Los Angeles, 1987.

[26] M. Egaña, R. Stevens and E. Antezana, Transforming the Ax-
iomisation of Ontologies: The Ontology Pre-Processor Lan-
guage, in: Proceedings of the Fourth OWLED Workshop on
OWL: Experiences and Directions, Washington, DC, USA, 1-
2 April 2008, K. Clark and P.F. Patel-Schneider, eds, CEUR
Workshop Proceedings, Vol. 496, CEUR-WS.org, 2008. http:
//ceur-ws.org/Vol-496/owled2008dc_paper_14.pdf.

[27] N. Karima, K. Hammar and P. Hitzler, How to Document
Ontology Design Patterns, in: Advances in Ontology Design
and Patterns [revised and extended versions of the papers
presented at the 7th edition of the Workshop on Ontology
and Semantic Web Patterns, WOP@ISWC 2016, Kobe, Japan,
18th October 2016], K. Hammar, P. Hitzler, A. Krisnadhi,
A. Lawrynowicz, A.G. Nuzzolese and M. Solanki, eds, Stud-
ies on the Semantic Web, Vol. 32, IOS Press, 2016, pp. 15–27.
doi:10.3233/978-1-61499-826-6-15.

[28] Q. Hirt, C. Shimizu and P. Hitzler, Extensions to the On-
tology Design Pattern Representation Language, in: Proceed-
ings of the 10th Workshop on Ontology Design and Pat-
terns (WOP 2019) co-located with 18th International Seman-
tic Web Conference (ISWC 2019), Auckland, New Zealand,
October 27, 2019, K. Janowicz, A.A. Krisnadhi, M. Poveda-
Villalón, K. Hammar and C. Shimizu, eds, CEUR Workshop
Proceedings, Vol. 2459, CEUR-WS.org, 2019, pp. 76–75. http:
//ceur-ws.org/Vol-2459/short2.pdf.

[29] P. Hitzler, A. Gangemi, K. Janowicz, A.A. Krisnadhi and
V. Presutti, Towards a Simple but Useful Ontology Design
Pattern Representation Language, in: Proceedings of the 8th
Workshop on Ontology Design and Patterns (WOP 2017)
co-located with the 16th International Semantic Web Con-
ference (ISWC 2017), Vienna, Austria, October 21, 2017.,
E. Blomqvist, Ó. Corcho, M. Horridge, D. Carral and R. Hoek-
stra, eds, CEUR Workshop Proceedings, Vol. 2043, CEUR-
WS.org, 2017. http://ceur-ws.org/Vol-2043/paper-09.pdf.

[30] K. Hammar, Ontology Design Patterns in WebProtégé, in: Pro-
ceedings of the ISWC 2015 Posters & Demonstrations Track
co-located with the 14th International Semantic Web Confer-
ence (ISWC-2015), Bethlehem, PA, USA, October 11, 2015.,
S. Villata, J.Z. Pan and M. Dragoni, eds, CEUR Workshop Pro-
ceedings, Vol. 1486, CEUR-WS.org, 2015. http://ceur-ws.org/
Vol-1486/paper_50.pdf.

[31] E. Blomqvist, A. Gangemi and V. Presutti, Experiments on
pattern-based ontology design, in: Proceedings of the 5th
International Conference on Knowledge Capture (K-CAP
2009), September 1-4, 2009, Redondo Beach, California,
USA, Y. Gil and N.F. Noy, eds, ACM, 2009, pp. 41–48.
doi:10.1145/1597735.1597743.

[32] E. Blomqvist, V. Presutti, E. Daga and A. Gangemi, Exper-
imenting with eXtreme Design, in: Knowledge Engineering
and Management by the Masses - 17th International Confer-
ence, EKAW 2010, Lisbon, Portugal, October 11-15, 2010.
Proceedings, P. Cimiano and H.S. Pinto, eds, Lecture Notes
in Computer Science, Vol. 6317, Springer, 2010, pp. 120–134.
doi:10.1007/978-3-642-16438-5_9.

[33] K. Hammar, Ontology Design Patterns in Use - Lessons Learnt
from an Ontology Engineering Case, in: Proceedings of the
3rd Workshop on Ontology Patterns, Boston, USA, Novem-
ber 12, 2012, E. Blomqvist, A. Gangemi, K. Hammar and
M.C. Suárez-Figueroa, eds, CEUR Workshop Proceedings,
Vol. 929, CEUR-WS.org, 2012. http://ceur-ws.org/Vol-929/
paper2.pdf.

[34] S. Peroni, A Simplified Agile Methodology for Ontology De-
velopment, in: OWL: - Experiences and Directions - Reasoner
Evaluation - 13th International Workshop, OWLED 2016,
and 5th International Workshop, ORE 2016, Bologna, Italy,
November 20, 2016, Revised Selected Papers, M. Dragoni,
M. Poveda-Villalón and E. Jiménez-Ruiz, eds, Lecture Notes
in Computer Science, Vol. 10161, Springer, 2016, pp. 55–69.
doi:10.1007/978-3-319-54627-8_5.

[35] I. Hadar and P. Soffer, Variations in Conceptual Modeling:
Classification and Ontological Analysis, J. Assoc. Inf. Syst.
7(8) (2006), 20. doi:10.17705/1jais.00096. http://aisel.aisnet.
org/jais/vol7/iss8/20.

[36] P. Shoval and I. Frumermann, OO and EER concep-
tual schemas: a comparison of user comprehension, Jour-
nal of Database Management (JDM) 5(4) (1994), 28–38.
doi:10.4018/jdm.1994100103.

http://ceur-ws.org/Vol-496/owled2008dc_paper_14.pdf
http://ceur-ws.org/Vol-496/owled2008dc_paper_14.pdf
http://ceur-ws.org/Vol-2459/short2.pdf
http://ceur-ws.org/Vol-2459/short2.pdf
http://ceur-ws.org/Vol-2043/paper-09.pdf
http://ceur-ws.org/Vol-1486/paper_50.pdf
http://ceur-ws.org/Vol-1486/paper_50.pdf
http://ceur-ws.org/Vol-929/paper2.pdf
http://ceur-ws.org/Vol-929/paper2.pdf
http://aisel.aisnet.org/jais/vol7/iss8/20
http://aisel.aisnet.org/jais/vol7/iss8/20

C. Shimizu, K. Hammar, P. Hitzler / 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[37] S.S. Cherfi, J. Akoka and I. Comyn-Wattiau, Conceptual Mod-
eling Quality - From EER to UML Schemas Evaluation, in:
Conceptual Modeling - ER 2002, 21st International Confer-
ence on Conceptual Modeling, Tampere, Finland, October
7-11, 2002, Proceedings, S. Spaccapietra, S.T. March and
Y. Kambayashi, eds, Lecture Notes in Computer Science,
Vol. 2503, Springer, 2002, pp. 414–428. doi:10.1007/3-540-
45816-6_38.

[38] R. Agarwal and A.P. Sinha, Object-oriented modeling with
UML: a study of developers’ perceptions, Commun. ACM
46(9) (2003), 248–256. doi:10.1145/903893.903944.

[39] J. Krogstie, Evaluating UML using a generic quality frame-
work, in: UML and the Unified Process, IGI Global, 2003,
pp. 1–22. doi:10.4018/978-1-93177-744-5.ch001.

[40] S. Lohmann, S. Negru, F. Haag and T. Ertl, Visualizing on-
tologies with VOWL, Semantic Web 7(4) (2016), 399–419.
doi:10.3233/SW-150200.

[41] S. Lohmann, V. Link, E. Marbach and S. Negru, WebVOWL:
Web-based Visualization of Ontologies, in: Knowledge En-
gineering and Knowledge Management - EKAW 2014 Satel-
lite Events, VISUAL, EKM1, and ARCOE-Logic, Linköping,
Sweden, November 24-28, 2014. Revised Selected Papers,
P. Lambrix, E. Hyvönen, E. Blomqvist, V. Presutti, G. Qi,
U. Sattler, Y. Ding and C. Ghidini, eds, Lecture Notes in
Computer Science, Vol. 8982, Springer, 2014, pp. 154–158.
doi:10.1007/978-3-319-17966-7_21.

[42] V. Wiens, S. Lohmann and S. Auer, WebVOWL Editor:
Device-Independent Visual Ontology Modeling, in: Proceed-
ings of the ISWC 2018 Posters & Demonstrations, Industry
and Blue Sky Ideas Tracks co-located with 17th International
Semantic Web Conference (ISWC 2018), Monterey, USA, Oc-
tober 8th - to - 12th, 2018, M. van Erp, M. Atre, V. López,
K. Srinivas and C. Fortuna, eds, CEUR Workshop Proceedings,
Vol. 2180, CEUR-WS.org, 2018. http://ceur-ws.org/Vol-2180/
paper-75.pdf.

[43] M.K. Sarker, A.A. Krisnadhi and P. Hitzler, OWLAx: A Pro-
tege Plugin to Support Ontology Axiomatization through Di-
agramming, in: Proceedings of the ISWC 2016 Posters &
Demonstrations Track co-located with 15th International Se-
mantic Web Conference (ISWC 2016), Kobe, Japan, Octo-
ber 19, 2016, T. Kawamura and H. Paulheim, eds, CEUR
Workshop Proceedings, Vol. 1690, CEUR-WS.org, 2016. http:
//ceur-ws.org/Vol-1690/paper83.pdf.

[44] C. Shimizu, P. Hitzler, Q. Hirt, D. Rehberger, S.G. Estrecha,
C. Foley, A.M. Sheill, W. Hawthorne, J. Mixter, E. Watrall,
R. Carty and D. Tarr, The Enslaved Ontology: Peoples of
the historic slave trade, Journal of Web Semantics 63 (2020),
100567. doi:10.1016/j.websem.2020.100567.

[45] S. Sahoo, D. McGuinness and T. Lebo, PROV-O: The
PROV Ontology, W3C Recommendation, W3C, 2013,
http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[46] P. Hitzler and A. Krisnadhi, On the Roles of Logical Axiom-
atizations for Ontologies, in: Ontology Engineering with On-
tology Design Patterns – Foundations and Applications, P. Hit-
zler, A. Gangemi, K. Janowicz, A. Krisnadhi and V. Presutti,
eds, Studies on the Semantic Web, Vol. 25, IOS Press, 2016,
pp. 73–80. doi:10.3233/978-1-61499-676-7-73.

[47] M.K. Sarker, D. Carral, A.A. Krisnadhi and P. Hitzler, Mod-
eling OWL with Rules: The ROWL Protege Plugin, in: Pro-
ceedings of the ISWC 2016 Posters & Demonstrations Track
co-located with 15th International Semantic Web Conference

(ISWC 2016), Kobe, Japan, October 19, 2016, T. Kawa-
mura and H. Paulheim, eds, CEUR Workshop Proceedings,
Vol. 1690, CEUR-WS.org, 2016. http://ceur-ws.org/Vol-1690/
paper92.pdf.

[48] M.K. Sarker, A. Krisnadhi, D. Carral and P. Hitzler, Rule-
Based OWL Modeling with ROWLTab Protégé Plugin, in:
The Semantic Web – 14th International Conference, ESWC
2017, Portorož, Slovenia, May 28 – June 1, 2017, Proceedings,
Part I, E. Blomqvist, D. Maynard, A. Gangemi, R. Hoekstra,
P. Hitzler and O. Hartig, eds, Lecture Notes in Computer Sci-
ence, Vol. 10249, 2017, pp. 419–433. doi:10.1007/978-3-319-
58068-5_26.

[49] C. Shimizu, P. Hitzler and A. Krisnadhi, Modular Ontology
Modeling: A Tutorial, in: Applications and Practices in Ontol-
ogy Design, Extraction, and Reasoning, G. Cota, M. Daquino
and G.L. Pozzato, eds, Studies on the Semantic Web, Vol. 49,
IOS Press, 2020, pp. 3–20. doi:10.3233/SSW200032.

[50] C. Shimizu, P. Hitzler, Q. Hirt, A. Shiell, S. Gonzalez, C. Fo-
ley, D. Rehberger, E. Watrall, W. Hawthorne, D. Tarr, R. Carty
and J. Mixter, The Enslaved Ontology 1.0: People of the His-
toric Slave Trade, Technical Report, Michigan State University,
East Lansing, Michigan, 2019, available from https://daselab.
cs.ksu.edu/projects/ontology-modeling-slave-trade.

[51] A. Eberhart, C. Shimizu, S. Chowdhury, M.K. Sarker and
P. Hitzler, Expressibility of OWL Axioms with Patterns, in:
The Semantic Web - 18th International Conference, ESWC
2021, Virtual Event, June 6-10, 2021, Proceedings, R. Ver-
borgh, K. Hose, H. Paulheim, P. Champin, M. Maleshkova,
Ó. Corcho, P. Ristoski and M. Alam, eds, Lecture Notes in
Computer Science, Vol. 12731, Springer, 2021, pp. 230–245.
doi:10.1007/978-3-030-77385-4_14.

[52] K. Hammar, Ontology Design Pattern Property Specialisa-
tion Strategies, in: Knowledge Engineering and Knowledge
Management - 19th International Conference, EKAW 2014,
Linköping, Sweden, November 24-28, 2014. Proceedings,
K. Janowicz, S. Schlobach, P. Lambrix and E. Hyvönen, eds,
Lecture Notes in Computer Science, Vol. 8876, Springer, 2014,
pp. 165–180. doi:10.1007/978-3-319-13704-9_13.

[53] P. Burnard, A method of analysing interview transcripts in
qualitative research, Nurse Education Today 11(6) (1991),
461–466. doi:https://doi.org/10.1016/0260-6917(91)90009-
Y. https://www.sciencedirect.com/science/article/pii/
026069179190009Y.

[54] C.B. Seaman, Qualitative Methods, in: Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer and
D.I.K. Sjøberg, eds, Springer London, London, 2008, pp. 35–
62. ISBN 978-1-84800-044-5. doi:10.1007/978-1-84800-044-
5_2.

[55] A. Dalal, C. Shimizu and P. Hitzler, Modular Ontology Model-
ing Meets Upper Ontologies: The Upper Ontology Alignment
Tool, in: Proceedings of the ISWC 2020 Demos and Indus-
try Tracks: From Novel Ideas to Industrial Practice co-located
with 19th International Semantic Web Conference (ISWC
2020), Globally online, November 1-6, 2020 (UTC), K.L. Tay-
lor, R.S. Gonçalves, F. Lécué and J. Yan, eds, CEUR Work-
shop Proceedings, Vol. 2721, CEUR-WS.org, 2020, pp. 119–
124. http://ceur-ws.org/Vol-2721/paper528.pdf.

[56] S.J. Satpathy, Rules with Right hand Existential or Disjunc-
tion with ROWLTab, Master’s thesis, Wright State University,
2019.

http://ceur-ws.org/Vol-2180/paper-75.pdf
http://ceur-ws.org/Vol-2180/paper-75.pdf
http://ceur-ws.org/Vol-1690/paper83.pdf
http://ceur-ws.org/Vol-1690/paper83.pdf
http://ceur-ws.org/Vol-1690/paper92.pdf
http://ceur-ws.org/Vol-1690/paper92.pdf
https://daselab.cs.ksu.edu/projects/ontology-modeling-slave-trade
https://daselab.cs.ksu.edu/projects/ontology-modeling-slave-trade
https://www.sciencedirect.com/science/article/pii/026069179190009Y
https://www.sciencedirect.com/science/article/pii/026069179190009Y
http://ceur-ws.org/Vol-2721/paper528.pdf

28 C. Shimizu, K. Hammar, P. Hitzler /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[57] A. Krisnadhi, Ontology Design Patterns for Data Integration:
The GeoLink Experience, in: Ontology Engineering with On-
tology Design Patterns - Foundations and Applications, P. Hit-
zler, A. Gangemi, K. Janowicz, A. Krisnadhi and V. Presutti,
eds, Studies on the Semantic Web, Vol. 25, IOS Press, 2016,
pp. 267–278. doi:10.3233/978-1-61499-676-7-267.

[58] K. Hammar, E.O. Wallin, P. Karlberg and D. Hälleberg, The
RealEstateCore Ontology, in: The Semantic Web – ISWC
2019, Lecture Notes in Computer Science, Vol. 11779,
Springer, Cham, 2019, pp. 130–145. https://doi.org/10.1007/
978-3-030-30796-7_9.

[59] C. Shimizu, R. McGranaghan, A. Eberhart and A.C. Keller-
man, Towards a Modular Ontology for Space Weather Re-
search, in: Advances in Pattern-Based Ontology Engineer-
ing, E. Blomqvist, T. Hahmann, K. Hammar, P. Hitzler,
R. Hoekstra, R. Mutharaju, M. Poveda-Villalón, C. Shimizu,
M.G.S. nd Monika Solanki, V. Svátek and L. Zhou, eds,
Studies on the Semantic Web, Vol. 51, IOS Press, 2021.
doi:10.3233/SSW210021.

[60] A. Eberhart, C. Shimizu, C. Stevens, P. Hitzler, C.W. My-
ers and B. Maruyama, A Domain Ontology for Task In-

structions, in: Knowledge Graphs and Semantic Web - Sec-
ond Iberoamerican Conference and First Indo-American Con-
ference, KGSWC 2020, Mérida, Mexico, November 26-27,
2020, Proceedings, B. Villazón-Terrazas, F. Ortiz-Rodríguez,
S.M. Tiwari and S.K. Shandilya, eds, Communications in
Computer and Information Science, Vol. 1232, Springer, 2020,
pp. 1–13. doi:10.1007/978-3-030-65384-2_1.

[61] A. Krisnadhi and P. Hitzler, Modeling With Ontology De-
sign Patterns: Chess Games As a Worked Example, in: On-
tology Engineering with Ontology Design Patterns - Founda-
tions and Applications, P. Hitzler, A. Gangemi, K. Janowicz,
A. Krisnadhi and V. Presutti, eds, Studies on the Semantic Web,
Vol. 25, IOS Press, 2016, pp. 3–21. doi:10.3233/978-1-61499-
676-7-3.

[62] T. Baker and E. Prud’hommeaux (eds), Shape Expressions
(ShEx) 2.1 Primer, Final Community Group Report 09 October
2019, 2019, http://shex.io/shex-primer/index.html.

[63] H. Knublauch and D. Kontokostas (eds), Shapes Constraint
Language (SHACL), W3C Recommendation 20 July 2017,
2017, https://www.w3.org/TR/shacl/.

https://doi.org/10.1007/978-3-030-30796-7_9
https://doi.org/10.1007/978-3-030-30796-7_9

	Introduction
	Related Work
	Ontology Engineering Methods
	Ontology Design Patterns
	eXtreme Design
	Other Pattern-based Methods
	Graphical Conceptual Modelling

	The Modular Ontology Modeling Methodology
	The Modeling Team
	Schema Diagrams
	OWL Axioms
	Ontology Design Patterns
	Modules
	The MOMo Workflow
	Describe use cases and gather possible data sources
	Gather competency questions
	Identify key notions for the domain to be modeled
	Identify existing ontology design patterns to be used
	Create schema diagrams for modules
	Set up documentation and determine axioms for each module
	Create ontology schema diagram from the module schema diagrams, and add axioms spanning more than one module
	Reflect on entity naming and all axioms
	Create OWL file(s)

	CoModIDE
	Design and Features
	Evaluation Method
	Introductory Tutorial
	a priori Survey
	Modeling Task A
	Modeling Task B
	a posteriori Survey

	Results
	Participant Pool Composition
	Metric Evaluation
	Free-text Responses

	Discussion
	Participant Pool Composition
	Metric Evaluation
	Free-text Responses

	CoModIDE 2.0

	Additional Infrastructure and Resources
	The Modular Ontology Design Library (MODL)
	OPLa Annotator
	ROWLTab
	SDOnt
	Example Modular Ontologies
	Highly Spatial Data
	Elusive Ground Truth
	Rule-based Knowledge
	Shortcuts & Views

	Conclusion
	Future Work

	References

