
Energy- and Temperature-aware Scheduling: From
Theory to an Implementation on Intel Processor

Qaisar Bashir†, Mohammad Pivezhandi‡, Abusayeed Saifullah‡

†AMD, Inc., California
‡Wayne State University, Michigan

Abstract—Temperature, energy, and performance are the key
considerations of real-time multicore systems. Thermal hotspots
and high temperatures not only degrade reliability and per-
formance but also increase cooling costs and leakage current.
To address these issues, we propose an energy, performance,
and temperature-aware semi-partitioned scheduling technique
for sporadic real-time tasks. The proposed approach incorporates
DVFS, Dynamic Power Management, and chip floor-plan in clas-
sical partitioned scheduling technique. To further reduce temper-
ature, energy, hotspots, and gradients, the proposed partitioned
scheduling also considers individual task behaviors in the form
of hot and cold tasks and applies reactive thermal management
techniques such as task migration (hence called semi-partitioned
scheduling) for system safety. To our knowledge, this is the
first paper that considers energy, performance, reliability, and
temperature together in real-time multicore scheduling. Finally,
we present the results through experiments on the Intel Xeon
2680 v3 multicore platform. The results show that the proposed
approach on average saves 15% power, reduces 3�c average
temperature, improves task schedulability, and avoids 100%
thermal emergencies compared to the state-of-the-art technique.

I. INTRODUCTION

In multicore technology, thermal management plays a cru-
cial role. Power density is doubling nearly every three years.
During processing, heat is produced, and energy is consumed.
To remove heat from the processor die, hardware-based solu-
tions are typically used, such as fans. However, it increases
cooling costs by almost $3 per watt of heat dissipation [27].
An overheated chip not only increases the cooling costs but
also reduces reliability [30]. Moreover, the power consumption
of a chip includes the power necessary for normal operation
(dynamic power) and the power of invalid electric leakage
(static power). The invalid electric leakages account for half
of the total power consumption when the cheap temperature
exceeds 86°C. A chip’s temperature management is crucial for
reducing electric leakage and increasing reliability.

An uncontrolled temperature can adversely deteriorate the
performance and reliability of the system. Furthermore, spatial
gradients (a situation where a core is operating at high
temperature as compared to the others), temporal gradients (a
situation where a core is overly used as compared to the oth-
ers), and thermal cycles (a large temperature variation) bring
challenges to leakage power, cooling cost, and performance.
Moreover, the temperature of the multicore system on the chip
heavily depends on energy or power density [12]. Aggressive

frequency scaling and increasing system temperature may
result in a significant increase in power consumption [28].
Today, real-time embedded systems are exploiting the ubiq-
uitous multicore platforms. For multicore platforms, power-
aware designs are important, but localized heating occurs at a
much faster rate as compared to chip-wide heating. It increases
thermal cycles, thermal hotspots, and temperature gradients
that cause physical damage [30]. Therefore, it is important to
control both the energy and temperature of multicore systems.

There are many reliability-aware techniques that maintain
system reliability, including replication, frequency elevation,
and rollback recovery [16], [33], [34]. But these techniques
incur high energy consumption and degrade performance. It
is important to consider energy consumption, temperature,
and problems associated with peak temperatures, including
hotspots, temporal and spatial gradients, and thermal cycles,
when considering overall system performance. By considering
the temporal and spatial gradients of the operating temper-
atures, power-aware techniques can provide a better perfor-
mance, energy efficiency, and reliability. In a recent study,
researchers identified that a 6�C of temperature reduction
could boost chip reliability by two times [19].

Thermal and energy management for multicore systems
can be introduced at both software and hardware levels.
Scheduling is one of the ways to overcome these problems. So,
it is important to introduce a temperature, performance, and
energy-aware mechanism for real-time systems. Energy and
temperature-aware scheduling techniques have been widely
introduced previously but most of the techniques in literature
either considered temperature or energy individually [18], [20].

This work addresses real-time scheduling of constrained
deadline sporadic tasks on multicore that takes temperature,
energy, reliability, and performance into account. A com-
plex interdependence between temperature, performance, and
energy makes temperature, performance, and energy-aware
scheduling techniques challenging. Each core’s temperature
profile depends on its power profile, floor plan, neighboring
cores’ power profiles, and execution pattern of tasks.

In this paper, we focus on energy, temperature, and per-
formance trade-off by exploiting the Dynamic Voltage and
Frequency Scaling (DVFS) and Dynamic Power Manage-
ment (DPM) capabilities of multicore platforms in real-time
scheduling. Our approach regulates the voltage and frequency
of each core by taking into account individual task behavior,

thereby enabling the control of energy consumption as well
as the temperature of each core. Specifically, we make the
following new contributions.

• We observe that a fixed partitioned scheduling may not
ensure system reliability under adverse heat effects on
a multicore. Therefore, we propose a temperature- and
energy-aware semi-partitioned scheduling for real-time
tasks on a multicore platform which allows occasional
task migration with negligible overhead. It takes into
account the temperature profile of each core, floor-plan,
neighboring cores’ power profiles, the execution pattern
of the tasks based on their characteristics, and the indi-
vidual behaviors in the form of hot and cold tasks.

• We implement the proposed scheduling on the Intel Xeon
2680 v3 multicore platform [1] and evaluate through
experiments on Intel Xeon 2680 multicore considering
actual workload. To our knowledge, this is the first
implementation and systematic experimentation of such
real-time scheduling using actual processor workload
on a commercial multicore platform. The results show
that the proposed approach, on average, reduces power
consumption by 15%, reduces 3�C average temperature,
improves task schedulability, and avoids 100% thermal
emergencies compared to the state-of-the-art technique.

In the the rest of the paper, Section II reviews related work,
Section III describes the system model and problem definition,
Section IV discusses the proposed scheduling, and Section V
describes our implementation and experimentation.

II. RELATED WORK

While there are many works on semi-partitioned scheduling
(see [10]), they do not consider temperature or energy-aware
scheduling. Existing temperature-aware techniques are based
on prediction [18], model-based stochastic [32], or floor-
planning [35]. Their actions are performed only when the op-
erating temperature goes beyond a certain threshold limit, and
requests are issued by the scheduler to control frequencies. The
work in [22] formulated a constructive speed-based scheduling
algorithm and derived thermal feasibility checks for periodic
tasks. A response time analysis was studied in [11] considering
energy harvesting. It does not consider energy or performance
while optimizing temperature.

The issues related to reactive thermal management tech-
niques such as hotspots, thermal cycles, and thermal gradients
also adversely affect the reliability of the system. They lower
the lifespan of the system [29]. A few reliability-aware tech-
niques were introduced in the past. These techniques are based
on frequency elevation [34], rollback [33], and replication [16].
But none of these techniques considered energy as a constraint.

The energy benefits of multicore scheduling were studied
in [4], [5], [38]–[40]. These techniques improve energy con-
sumption under performance constraints but do not consider
temperature. Some of these techniques are based on DPM and
switch cores to low-energy modes to optimize energy con-
sumption. A detailed review of these techniques is presented in

TABLE I
DEFINITION OF NOTATIONS

Symbol Defintion
⇣i Power deviation factor of task ⌧i

⇢i The time period of task ⌧i

�i Dropping priority level of task ⌧i

Ci Worst-case execution time of ⌧i
ui Utilization of task ⌧i

� Static power
IL Leakage current
Vop Operating voltage
Tambient Ambient temperature
I0 Current in ambient temperature
J Junction temperature
RC Time Constant for damping voltage
Vtt Transistor threshold temperature
Tj Temperature of the j

th core
P [t2 � t1] Power consumption in time period [t2 � t1]
Rthermal Thermal Coefficient
pij Impact of power consumption of jth core on i

th core
U(fi) Total power consumption of the respective i

th core
C

l
k Worst case execution time of ⌧k at frequency level l

Di Deadline of ⌧i

[6]. While the DPM-based techniques perform well in thermal
emergencies, they drastically reduce system performance.

A number of studies considered optimizing temperature
and energy under real-time constraints [7], [9], [25]. The
work in [25] is based on genetic algorithms that has high
computational and runtime overhead, making it unsuitable for
real-time systems in practice. The other approaches are based
on core configurations [9] that only provide control on a
group of cores. In contrast, our approach regulates frequencies
and low energy states of individual cores, which is more
effective in controlling temperature and energy consumption.
In addition, our approach considers task behavior to ensure
system reliability and adopts occasional task migration to
control peak temperature and improve performance. To our
knowledge, ours is the first work that considers temperature,
energy, performance, reliability, and individual task behavior
(hot and cold tasks) at once. Furthermore, we have imple-
mented the proposed scheduling on the Intel Xeon platform
considering actual workload.

III. SYSTEM MODEL

A. Task Model

We consider a task set ⌧ consisting of n sporadic tasks
with constrained deadlines: ⌧ = {⌧1, ⌧2,, ⌧n}. Each task
⌧i, 1  i  n, is a sequence of instructions, and is charac-
terized using five-tuple (Ci, Di, ⇢i, ⇣i,�i) representation. We
consider a multicore system consisting of m cores where each
core is DVFS-enabled. Apart from that, we have also assigned
a power deviation factor ⇣i to each task ⌧i to designate it as
a hot or cold task. ⇣ is the fraction of core power consumed
by a task instance execution. This value varies between 0.01
and 1.0 to indicate 1 to 100 percent deviation of power. A
task with ⇣ > 0.5 is considered as hot task and a task with
⇣  0.5 is considered as cold task. The time period of a task
⌧i is denoted by ⇢i. The time period is the minimum duration
before a task repeats itself. The deadline of task ⌧i is denoted

2

by Di, and Di  ⇢i. The dropping priority level of each
task is denoted by �i , the lower this value, the higher the
priority to be dropped. The worst-case execution time of task
⌧i is represented via Ci. For an individual task ⌧i, utilization
ui =

Ci
⇢i

; for task set ⌧ , total utilization usum =
P

n

i=1 ui.

B. Power and Thermal Model

A widely used power model for processors [3] models
power P as P = �+↵s� , where ↵ > 0 is the switching capac-
itance, and � is a fixed-parameter dependent on the hardware,
and � > 0 is the static power [31]. So the energy consumption
of a core at speed s over a time duration C

s
at given workload

C is modeled as E(C, s) = (� + ↵s�)C
s
+ ↵Cs��1.

The leakage power is a major cause of overall energy
consumption below the critical frequency [21]. In practice,
this power model cannot be used exactly as it is, due to the
temperature dependence of static power. Specifically, static
power � is given by � = IL.Vop, where IL is the leakage
current and Vop is the operating voltage. IL can be expressed
as shown below [7].

IL = I0 ·
J2

T 2
ambient

· e↵·Vop·
J�Tambient
J·Tambient (1)

In Equation (1), Tambient is the ambient temperature, I0 is the
leakage current at the corresponding ambient temperature, J
is the junction temperature (highest operating temperature),
and Vop is the operating voltage. Equation (1) shows that an
increase in junction temperature increases IL. The value of
� increases due to an increase in IL, thereby increasing the
system’s overall power consumption [13].

For the temperature profile of each core, we first need
to derive a relation between the operating voltage and the
frequency of the core. The relation between Vop and processor
frequency f is given by f = RC. (Vop�Vtt)

2

Vop
, where Vtt is the

transistor threshold voltage or mobility parameter, and RC is
the constant that relates the core frequency to the operating
voltage level [26]. Based on the model described in [8], we
can derive the temperature Tj of the jth core against power
consumption in the presence of fixed ambient temperature
as Tj = p[t2�t1] · Rthermal + S2 + Tambient, where p[t2�t1]

is the power consumption during the time interval [t2 � t1],
Tambient is the fixed ambient temperature, Tj(0) is the reference
temperature at time 0, Rthermal is the thermal coefficient, and
S2 is given by

S2 = Tj(0) · p[(t2)�(t1)].Rthermal � Tambient · e
t2�t1

Rthermal·C .

The above model is used to calculate the temperature of
each core for any duration of time without considering the
effect of neighboring cores. But this model is not the exact
representation of each core temperature due to the significant
impact of neighboring temperatures. Now, to take into account
the effect of neighboring cores, we have adopted the model

proposed in [29] and derived the constants based on hot and
cold tasks upon incorporating ⇣ based on utilization as follows.

2

666664

T1
T2
T3
....

....

Tm

3

777775
=

2

666664

T1(initial)
T2(initial)
T3(initial)

....

....

Tm(initial)

3

777775
+

2

666664

p1
p2
p3
....

....

pm

3

777775
.
⇥
A
⇤

(2)

Here, pi and Ti are the individual power consumption and
individual temperature of the ith core, A is a m ⇥m matrix
given by

A =

2

666664

p11 p12 p13 p1m
p21 p22 p23 p2m
p21 p32 p33 p3m
.... p3m
.... p3m
pm1 pm2 pm3 pmm

3

777775

where pij , 1  i, j  m, indicates the impact of power
consumption of the jth core on the ith core. To calculate these
parameters, we have used a similar formula from [17] based
on utilization and ⇣ as follows.

pij =
f
i � f

j

U(f i)� U(fj)
; U(f i) =

nX

k=1

bki · Cfi

k · ⇣k · ↵s�

Here i and j are the indices of individual cores and f i and
f j are their respective frequencies; U(f i) indicates the total
power consumption of core i; Cl

k
is the worst-case execution of

⌧k task at frequency level l; bki is a boolean variable which is
1 if task ⌧k runs on core i, and 0 otherwise. The above relation
can be used by passing an array of cores as a parameter to
see the impact of multiple cores on a single core at once. This
power model has considered the impact of neighboring cores
to (almost) accurately measure the temperature of each core.
Table I summarizes the notations used in this paper.

We consider a multi-core with m identical cores {M1, M2,
....., Mm}, with discrete frequency levels. The chip floor-
plan is also an important factor for system reliability and the
chip temperature model. Chip floor-plan considers the distance
between cores, thickness, width, and many other parameters.
Our system model also considers the low energy modes
{sleep, deepsleep, standby} of each core, and switching time
between low energy modes and active or idle mode.

IV. PROPOSED SEMI-PARTITIONED SCHEDULING

In a partitioned scheduling technique, each task is statically
assigned to some core and not allowed to migrate. In our
semi-partitioned scheduling, the currently active job of a task
must complete its execution on the assigned core. After its
completion, the next job of the same task may occasionally
be assigned to another core.

To characterize workload, we need to define request bound
functions (rbf). The value of rbf(⌧i, L) is the total execution
requirement of all jobs of ⌧i during interval L (only the jobs
of ⌧i whose release times are in the interval are considered).
An approximation of rbf is given in [14] as follows. The
constant ⇠ is the value that relates frequency and worst-case

3

execution time of a task. Task utilization ui based on frequency
adjustment is: ui =

⇠.Ci

⇢i
.

rbf(⌧i, L) = (⇠ · Ci) +
⇠.Ci

⇢i
· L (3)

A. Initial Partitioning

In our approach, the task assignment on an individual core
depends on the core frequency and scheduling algorithm.
Deadline monotonic (DM) is an optimal algorithm for an
individual core for sporadic tasks with constrained dead-
lines.Therefore, we have used DM for tasks assignment on
an individual core.

Assume all tasks (⌧1, ⌧2, · · · , ⌧n) are in decreasing priority
based on DM and (⌧1, ⌧2, ⌧3, ...,⌧i�1) are already assigned to
the cores and a new task ⌧i requests core time. Task ⌧i can be
feasibly assigned to any core Mk, 1  k  m, that satisfies
the following condition (see [23] for proof), where bjk is a
boolean variable which is 1 if task ⌧j is already assigned to
core k (i.e., Mk), and 0 otherwise.

(Di �
nX

j=1

bjk · rbf(⌧j , Di)) � ⇠ · Ci· (4)

We assign the task to the first available core that satisfies
Condition (4). The algorithm continues to assign tasks to
the available core as long as this condition is satisfied. We
switch to the next frequency level and adjust the execution
requirements according to the next frequency level if the
above condition is not satisfied. We continue to increase
frequency levels (up to maximum available frequency) and
stop whenever the tasks are feasible. If no frequency level is
found where the tasks are feasible (schedulable), Algorithm 3
returns partitioning as failed.

B. Energy Minimization

Our proposed approach computes rbf and evaluates Con-
dition (4) at each core. Since increasing the frequency of
the whole platform leads to an abrupt increase in power
consumption, it selects the core with maximum remaining
utilization and increases the frequency of only the individual
core when Condition (4) is not satisfied.

Note that a frequency much lower or higher than critical
frequency leads to leakage power that becomes the major
source of total energy consumption. Hence, for energy effi-
ciency, first we choose the range of frequencies that are closer
to (but not lower than) critical frequency due to lower energy
consumption in that range. This frequency range is different
for each processing platform. We denote the lower and upper
bounds of this frequency range by fmin and fmax, respectively.
So our proposed algorithm will not choose a frequency lower
than fmin in any case and will limit the frequency at fmax.

Most of the current techniques distribute workload across
the multicore platform and continue to operate all cores. In
our approach, the objective is to minimize the number of cores
for task assignment and keep the unused cores in low energy
modes. Hence, when we assign tasks to a core, we continue

TABLE II
INTEL PXA270 POWER CONSUMPTION AT DIFFERENT

FREQUENCY LEVELS

Levels Frequency (MHz) Active Power(W) Idle Power(W)
Level 1 624 0.925 0.260
Level 2 520 0.747 0.222
Level 3 416 0.570 0.186
Level 4 312 0.390 0.154
Level 5 208 0.279 0.129
Level 6 104 0.116 0.064

assigning workload as long as it is feasible up to the maximum
frequency fmax. As shown in Table II the power values of Intel
PXA270 processor at different frequency levels [2], placing a
core in low energy mode consumes much less power compared
to running/active or idle mode. When the task is not feasible
on available running cores, we move a core from low energy
mode to running mode and assign the task to it.
C. Handling Temperature Threshold and Reliability

In Section III, we have shown how temperature increases
due to the change in frequency and impact of power consump-
tion on temperature. In Section III, Equation (2) shows the
neighboring cores’ effect on a core’s individual temperature.
As we know, every processor has a maximum temperature
threshold value. A thermal hotspot appears when the tem-
perature of any core (T1, T2,, Tm) is greater than the
maximum temperature threshold that may cause permanent
failure or stall the system. We propose a task migration
policy to handle temperature and associated problems. We
have defined multiple threshold levels to safely operate be-
low the maximum temperature threshold. Tthreshold represents
the maximum threshold temperature allowed. We have de-
fined the Tthreshold(2) and Tthreshold(1) just below the maximum
threshold temperature to avoid thermal violations (Tthreshold >
Tthreshold(1) > Tthreshold(2)). Multiple threshold levels are also
beneficial for task migration policy. Task migration policy is
proposed to control peak temperature.

We allow migration of tasks between cores, if a core’s
operating temperature Ti, 1  i  m1 (where m1 is the
number of active cores, and 1, 2, · · · ,m1 are the indices of
active cores) is close to Tthreshold or the core’s workload is
so small that it can be shifted to other cores, while ensuring
that all tasks meet their deadlines and the cores operate in
frequency range [fmin, fmax] on targeted cores. The benefit
of task migration is that either we can control the peak
temperature by migrating tasks or we can move some cores
in low energy mode by shifting their workload to the cores
whose Ti, 1  i  m (m is total number of cores) is less than
Tthreshold(2) to save overall power consumption. The proposed
approach also considers the case when no such core exists that
can accommodate the complete workload of the core (whose
workload is selected for migration). Then our approach shifts a
limited number of tasks by meeting feasibility while operating
at a range of frequency [fmin, fmax]. The task that is selected
for migration must complete its currently active job on the
current core. The next job will migrate to a different core.

4

Let ⌧d is the set of tasks of core Mi that needs to migrate
m1 is the number of active cores that are operating in

frequency range [fmin, fmax] and operating temperature is
< Tthreshold(2)

Step 1: Sort active cores based on operating temperature
Step 2: for each task in ⌧d check Condition (4) on m1 cores
Step 3: if conditions satisfied; then Assign task to

corresponding core and update corresponding rbf;
Step 4: if conditions not satisfied and frequency is < fmax of

any core among m1; then update m1 and increase
frequency level by 1 step of m1 cores and move to Step 2;

Step 5: if ⌧d empty; then move core in low energy mode;
Step 6: if ⌧d not empty; then continue to execute remaining

tasks;
Step 7: Exit;

Algorithm 1: Migration of task (When a core has small workload)

Algorithm 1 shows the first scenario of task migration (when
a core has a small workload). It first finds the list of active
cores (m1 cores) that are operating in the frequency range
[fmin, fmax] and whose operating temperatures Ti are below
Tthreshold(2) except the core whose workload is selected for
migration. Step 1 sorts the available cores in decreasing order
of Ti. Step 2 selects each task one after another from the core
and considers it as a new task and assigns the task to the first
available core that satisfies Condition (4). Steps 3–6 shift the
core (whose workload is selected for migration) in low energy
mode on a feasible assignment of all tasks. Otherwise, the core
continues to execute the remaining tasks.

Now we consider the second scenario of task migration
when a core operating temperature approaches Tthreshold). To
control Tthreshold, Algorithm 2 checks the temperature of each
core (Ti, 1  i  m) as shown in Equation 2, and if Ti is
below Tthreshold(2), the core continues to operate at the same
operating frequency. If the operating temperature of any core
is between Tthreshold(2) and Tthreshold(1), Algorithm 2 finds the
list of active cores that are operating in the frequency range
[fmin, fmax] with operating temperatures below Tthreshold(2).
Migration overhead. The proposed task migration does not
impose special latency overhead since with task migration
instructions will be redistributed through the change of the
program counter (PC) in different threads. This reconfiguration
of PC value takes a few clocks for flush and stall of the
ongoing instructions. Since the clock is in term of gigahertz,
the latency overhead is negligible.

D. Switching Mechanism and Incorporating Break Even Time
As we have seen, the proposed approach moves a core from

low energy mode to running mode and assigns the task to the
core. However, if a core is in low energy mode, it cannot start
executing the workload right away. It needs a considerable
amount of time before starting the execution of an assigned
task based on low energy mode (sleep, deepsleep, standby).

Figure 1 shows the Intel Marvell’s XScale PXA270 pro-
cessor switching time between different states. Its mechanical
and thermal specification is publicly available in [2], but
we cannot extract the same information from the available

Let ⌧d be the set of tasks of core Mi that needs to migrate
m1 is the number of active cores that are operating in

frequency range [fmin, fmax] and operating temperature is
< Tthreshold(2)

Step1:if (Ti and Tthreshold(2) and Ti and Tthreshold(1) and m1

6= 0) then select a task from ⌧d with maximum ⇣i;
Step 2: for each task in ⌧d check Condition (4) on m1 cores
Step 3: if conditions satisfied; then

Assign task to corresponding core and repeat step 1 to 3
unless temperature is below Tthreshold(2)

Step 4: else if conditions not satisfied and frequency is
< fmax of any core among m1; then

update m1 and increase frequency level by 1 step of m1

cores and move to Step 1
Step 5:else if m1=0 and Ti > Tthreshold(2) then

Select the task from ⌧d with maximum �i and drop the
current job of the task

Continue to repeat Step 5 unless temperature is below
Tthreshold(2);

Step 6: else
go to step 7;

Step 7: Exit;

Algorithm 2: Migration of task (When Operating temperature is
close to Tthreshold)

r4cm

Running

Standby Idle Deep
Sleep

Sleep

261𝑚𝑠

4𝑚𝑠

137𝑚𝑠3𝑚𝑠

0.3𝑚𝑠

12𝑚𝑠 0𝑚𝑠 0𝑚𝑠

Fig. 1. PXA270 State Switching.

Intel Xeon 2680 datasheets. Since the ratio of the PXA270
state transitions, e.g., the time to transfer from deep sleep to
idle v.s. the time to transfer from standby to idle state, is
similar to the Intel Xeon 2680 v3 platform, the simulation and
behavior analysis is based on the constraints extracted from
this platform. The same result can be extracted when scaling
the timing according to the results extracted from experiments.

The processor must move from low energy mode to idle or
active/running mode to accommodate that task. In Figure 1,
we observe that time required to move a processor from low
energy to idle or active mode is much larger than the time
required to move a processor to low energy mode from the
active mode. To accommodate the switching times between
states, we have used the concept of break-even time (BET)
defined as BET = tlow + twake, where tlow is the total time
required to move to low energy mode, twake is the wake-time
(time needed to move from low energy to idle/active mode).

The value of tlow varies depending on the low energy
state. For example, the values of tlow for standby, sleep

5

and deepsleep for Intel processor PXA270 are 0.3 ms, 3 ms
and 4 ms respectively. The values of twake are much higher
compared to tlow. The corresponding values of twake against
standby, sleep and deepsleep are 12 ms, 137ms and 261 ms
respectively as shown in Figure 1. Figure 1 shows 0 ms is
required to move a processor from idle mode to running/active
mode. So we can conclude that a processor starts execution
of a task right away if it is in running mode or idle mode.
One greedy approach is that we move a core to low energy
mode as soon as it is idle. This approach only works well
when the system has very small break-even time. In contrast,
the proposed algorithm moves a core (if available) from low
energy mode to idle mode as soon as one of the running cores
approaches the upper limit of frequency range or operating
temperature of the core is close to threshold. So a newly
arrived or migrated task can start execution on the available
core instantly. The proposed technique moves the core in
opposite direction only if the core workload can be feasibly
assigned to other active cores with Ti < Tthreshold(2) within the
defined frequency range.

The sporadic task model is denoted by ⌧ = {⌧1, ⌧2,, ⌧n} m is the
number of cores and n is the total number of tasks

PARTITION(⌧ , m)
for each task in ⌧

Step 1: m1 := get list of active cores
Step 2: while m1<m and frequency of all active cores <fmax and
Ti < Tthreshold(2) do

Step 3: sort m1 in increasing order based on Ti2m1
Step 4: if ⌧i satisfies Condition (4) then

assign task ⌧i to the core; update assigned task utilization on
selected core;

proceed to next task;
Step 5: if ⌧ is empty then

go to step 13;
Step 6: if Condition (4) is not satisfied and frequency of any active core

is < b then
update m1 and choose core with minimum Ti;
update frequency of selected core and go to step 2;

Step 7: else
Move a core from low energy to active mode; Move to step 2;

Step 8: while no of active cores=m and Ti < Tthreshold(1) do
Run task migration algorithm;
Step 9: if ⌧i satisfies Condition (4) then

assign task ⌧i to the core;
update assigned task utilization on selected core; proceed to next

task;
Step 10: while Ti2m1 > Tthreshold(1) do

select the core with maximum Ti; drop task with maximum �i value
from selected core; Continue to drop tasks unless temperature is below
Tthreshold(1) if Ti < Tthreshold(1) then

Move to Step 8;
Step 11: if ⌧ is empty then

go to step 13;
Step 12: else

return Partition Failed;
Step 13: return Partition Successful;

Algorithm 3: Semi-Partitioned Scheduling Technique

E. Handling Power Deviation and Extreme Thermal Condition
Our proposed approach also considers power deviation

factor ⇣ to control peak temperature and temperature balance
among the cores. ⇣ is used to differentiate between hot and
cold tasks. This categorization represents the static power
behavior of cores. For example, hot tasks indicate that the
temperature is above some threshold in steady state. We
keep tracking the power deviation factor of tasks assigned to

each core. This information is used for task assignments and
migrations. For example, if the core operating temperature is
near the threshold level and one of the tasks needs to migrate
from the core to reduce the temperature, the task with a
maximum value of ⇣ is selected to migrate based on target
core feasibility. Migrating a hot task from a core leads to a
sharp decrease in corresponding core operating temperature.
To avoid spatial gradients and temporal gradients, the proposed
approach uses two counters for each core to keep track of how
many times a core is selected and how long it remains active.
We use these counters to ensure that all cores are equally used.

The proposed approach also considers extreme thermal
emergencies. We used a task migration mechanism to control
peak temperature, but a situation can arise in which no
core is available to migrate tasks feasibly and all cores are
operating near Tthreshold. To handle this scenario, we assigned
a task dropping priority �i to each task. The dropping priority
varies between 1 to 6. The lower �i value shows the higher
priority of the task. The proposed approach drops tasks, when
(Ti, 1  i  m1) of any core is greater than Tthreshold(1). The
proposed approach dropped the task with the lowest dropping
priority from the selected core. The purpose of dropping tasks
with low priority is to avoid thermal violations that may lead
to permanent failure of the device. The proposed approach
continues to drop tasks unless the operating temperature of
the core is below Tthreshold(1).

We choose dropping instead of halting to avoid complication
that arises when skipping the jobs. For dropping the tasks,
we get the Linux process ID of each process and assign the
priorities on each ID manually according to the process func-
tionality. However, in halting process, skipping/dropping only
the affected jobs requires significant effort as we have to save
the current state of the process and the associated variables.
Besides, the Intel memory architecture does not provide the
memory unlocking mechanism which makes halting without
knowing the current state of the execution infeasible. This
means the execution of the process should start from the
beginnings for the user cores when dropping the jobs.

Task assignment under temperature and energy constraints
according to the proposed semi-partitioned scheduling tech-
nique is shown in Algorithm 3. Step 1 FINDS the list of
the active number of cores. Steps (2-4) show the process
of task assignment when the active cores are less than the
total available cores and operating in the frequency range.
Frequency scaling on the individual core is shown in step 6.
Step 7 moves a core from low energy mode to active mode if
all active cores are operating at the upper limit of the frequency
range if we still have some cores in low energy mode. Steps 8
and 9 show the task migration mechanism. Steps 10–13 show
the task dropping process.

6

TABLE III
INTEL XEON E5 2680 AVAILABLE FREQUENCIES (GHz)

Core Frequency AP uncore frequency PP uncore frequency
2.5 2.2 2.1
2.4 2.1 2.0
2.3 2.0 1.9
2.2 1.9 1.8
2.1 1.8 1.7
2.0 1.75 1.65
1.9 1.65 1.55
1.8 1.6 1.5
1.7 1.5 1.4
1.6 1.4 1.2
1.5 1.3 1.2
1.4 1.2 1.2
1.3 1.2 1.2
1.2 1.2 1.2

TABLE IV
INTEL XEON E5 2680 BASIC CC-STATES

ID Name Functional Description
C0 Active/Running Core is executing instructions
C1 Halt/Idle No execution, but return to C0 instantaneously

C1E Auto Halt Halt+DVFS(with lowest available frequency)
C2 Stop Clock Same as C1, but requires longer time to C0
C3 Sleep Require considerable long time to move to C0
C6 Power Gating BCLK is off and remove core voltage

V. EXPERIMENT ON INTEL XEON 2680 MULTICORE

This section provides details of the implementation and sys-
tematic experimentation of real-time scheduling using actual
processor workload on an Intel Xeon 2680 v3 platform [1].
By evaluating our technique on a 12-core Intel Xeon 2680
v3 processor, we were able to overcome the shortcomings
of single-core simulations. Intel Xeon E5 2680 v3 supports
per-core P-states. P-states allow changing the frequency and
voltage level of the core [15]. Intel Xeon E5 2680 v3 supports
multiple sets of P-states that correspond to different oper-
ating points (frequency-voltage combinations). P-states can
be either hardware-controlled (Intel speed shift technology)
or OS-controlled (Intel speed step technology). P-states work
based on frequency, where the corresponding voltage level is
automatically selected [24].

vo id t a s k 1 (vo id *)
{ w h i l e (1)

{ c l o c k t wakeup = c l o c k () + 5 0 ;
/ / e l a p s e d t ime (5 0)

w h i l e (c l o c k () < wakeup)
S l e e p (5 0) ; } }

i n t main (i n t , c h a r **)
{ i n t ThreadNr ; i n t p r o c e s s =30;

f o r (i n t i =0 ; i < p r o c e s s ; i ++)
b e g i n t h r e a d (t a s k 1 ,0 ,& ThreadNr) ;

(vo id) g e t c h a r () ;
r e t u r n 0 ; }

Algorithm 4: Workload Generation Program

Another unique feature of Intel Xeon E5 2680 v3 is
uncore frequency scaling (UFS). UFS is independent of the
core frequencies. UFS enables the processor to control the
frequency of uncore components (e.g., RAM, caches) without
the interference of core frequencies. UFS can be specified by
using the Model Specific Register (MSR) [36], [37]. The work
in [15] derived lower bounds of active processor (AP) uncore
frequencies and passive processor (PP) uncore frequencies,
and showed that uncore frequencies can be used to limit power
consumption. We have used uncore frequencies to differentiate
between hot and cold tasks. A hot task will use a higher
UFS value than a cold task. The available frequency levels
are shown in Table III.

Intel Xeon E5 2680 v3 also supports per core C-states.
C-states represent the power-saving states. They are used to
power down a subsystem that is not executing any workload.
C-states are further divided into package C-states (PC-states)
and core C-states (CC-states) [37]. We cannot control PC-
states as we cannot interfere the packages. We only control
CC-states due to interaction with cores. Many other C-states
involve hyper-threading, but we focus on basic CC-states [36].
The basic CC-states are shown in Table IV.

A. Workload Generation

System workload is an average core usage over a certain
time duration. At any given time, a core either executes a task
or remains idle. Generating an exact workload is difficult as
the system threads never guarantee time at millisecond-level
granularity. Most of the tools for workload generation use one
process per-core to stabilize utilization. Algorithm 4 shows our
dynamic program to generate a system workload with multiple
processes per-core. We used the getchar() function to block
the program at any time. This function does not consume any
time and allows to end the program by pressing any key. The
program allows changing the number of processes and elapsed
time (milliseconds) to adjust system utilization. The program
generates stable utilization with +/- 2%.

B. Analysis of Power Consumption

We compared our proposed technique with TBP in terms
of time spent in lower energy states. The technique that keeps
cores in higher energy states consumes more power. Table
V shows time spent by each core in CC-states at different
utilization factors. At 25% utilization factor, the proposed
technique on average spent 19% more time in lower CC-
state as compared to TBP. Our technique spent more time in
lower CC-states because it controls cores individually and only
moves a core in C0 or C1 when the already running cores are
out of good frequency range or due to high core temperature
as defined in IV-D. At 50% and 75% utilization factors, the
proposed technique on average spent 17% and 1.8% more time
in lower energy states, respectively, as compared to TBP.

Figure 2 shows the power consumption results of Intel Xeon
2680 v3 platform. The technique that spent more time in lower
CC-states saves more power. Our technique on average saves

7

TABLE V
TIME SPENT IN CC-STATES PROPOSED TECHNIQUE VS TBP

Utilization 25% 50% 75%
Algorithm Proposed Technique TBP Proposed Technique TBP Proposed Technique TBP

States C0% C1% C2-C3% C0% C1% C2-C3% C0% C1% C2-C3% C0% C1% C2-C3% C0% C1% C2-C3% C0% C1% C2-C3%
Core 01 25.6 10.3 64.1 28.4 34.6 37.0 52.4 13.2 34.4 54.4 27.3 18.3 76.4 21.6 2.0 81.2 18.7 0.1
Core 02 25.4 11.4 63.2 22.4 33.8 43.8 53.2 10.9 35.9 51.6 26.6 21.8 77.7 21.4 0.9 77.8 21.6 0.6
Core 03 30.4 13.6 56.0 21.6 30.6 47.8 51.6 13.4 35.0 53.5 30.7 15.8 81.3 18.2 0.5 76.5 23.4 0.1
Core 04 29.3 11.9 58.8 27.3 31.4 32.2 47.8 11.6 40.6 52.4 31.9 15.7 80.9 17.6 1.5 80.4 19.4 0.2
Core 05 26.6 13.7 59.7 27.2 32.4 40.4 56.4 12.9 30.7 51.7 34.0 14.3 82.3 15.4 2.3 79.8 19.8 0.4
Core 06 34.6 14.3 51.1 29.7 29.6 40.7 53.9 13.7 32.4 47.9 32.7 19.4 81.7 16.3 2.0 83.6 16.1 0.3
Core 07 28.7 13.3 58.0 26.6 33.4 40.0 51.6 14.4 34.0 51.4 30.3 18.3 83.2 14.2 2.6 82.2 17.4 0.4
Core 08 29.6 11.3 59.1 27.4 37.4 35.2 53.7 12.3 34.0 53.4 33.4 13.2 84.1 13.7 2.2 85.4 14.5 0.1
Core 09 32.8 13.2 54.0 28.2 26.6 45.2 52.8 10.6 36.6 57.4 31.6 11.0 83.1 13.4 3.5 79.3 20.1 0.6
Core 10 28.4 12.4 59.2 26.4 32.7 40.9 58.4 11.7 29.9 55.2 30.5 14.3 83.2 13.9 2.9 82.7 16.6 0.7
Core 11 23.6 13.1 63.3 25.4 40.4 34.2 59.2 9.6 31.2 53.3 29.6 17.1 81.2 16.4 2.4 81.7 18.1 0.2
Core 12 31.4 10.4 58.2 25.3 33.4 41.3 51.3 13.4 35.3 51.4 29.3 19.3 80.3 17.2 2.5 83.3 16.3 0.4
Average 28.9 12.4 58.7 26.3 33.0 39.9 53.5 12.3 34.1 52.8 30.6 16.5 81.3 16.6 2.1 81.1 18.5 0.3

r5cm

Fig. 2. Power Consumption under Varying Utilization.

15% and 20% more power as compared to TBP and DM (with
threshold), respectively.

C. Analysis of Temperature

Our approach not only reduces the overall power consump-
tion of the system but also reduces the average temperature
of the system. Figure 3 shows the average operating temper-
ature of the system at 60% utilization. We utilized multiple
temperature threshold levels as defined in IV-C. The proposed
approach maintains a lower average temperature by operating
all the cores at a good range of frequency. DM continues to
execute workload without using low energy modes. Although
TBP also supports low energy modes, it mostly operates
at a maximum frequency that leads to a sharp increase in
temperature. Table V shows that our technique spent more
time in low energy modes as compared to TBP that further
reduces the overall temperature of the system.

Figure 3 also shows that the average temperature of the
system under proposed technique remains below the maximum
threshold temperature. While some existing techniques drasti-
cally reduce the temperature when it is close to the maximum
threshold, a sudden decrease in temperature produces large

Fig. 3. Average operating temperature of the system at 60% utilization under
different utilization policies on Intel Xeon 2680.

thermal cycles (temperature variation) and also affects the
performance of the system. The large thermal cycles directly
reduce the reliability of the system and may cause permanent
damage. Our approach shows smooth behavior by operating at
a good range of frequency. TBP executes workload at a higher
frequency that creates large variations in operating tempera-
ture. Figure 3 also shows that the operating temperature of
DM (without threshold) continues to increase and may cause
permanent damage to the system.

Operating temperature of individual cores under our pro-
posed technique is shown in Figure 4. Our approach not only
keeps average temperature of the system under maximum
threshold but also keeps the operating temperature of indi-
vidual cores below the maximum threshold (Tthreshold).

VI. CONCLUSION

We have proposed a semi-partitioned scheduling technique
for real-time tasks under temperature, energy, and performance
constraints on multicore. We have also implemented and
evaluated the approach on the Intel Xeon platform.

8

Fig. 4. Temperature Behavior of Each Core under Proposed Technique at
60% Utilization

ACKNOWLEDGMENT

This work was supported by NSF through grants CNS-
2301757, CAREER- 2211523, CCF-2118202, and CNS-
2211642.

REFERENCES

[1] http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680
v3-30M-Cache-2-50-GHz.

[2] https://docs.toradex.com/100210-colibri-arm-som-pxa270.pdf.
[3] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor

real-time systems. In ISPDP ’03, 2003.
[4] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan,

and Haoyi Xiong. Energy-efficient real-time scheduling of dag tasks.
ACM Transactions on Embedded Computing Systems (TECS), 17(5):1–
25, 2018.

[5] Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah, Nan
Guan, and Zhishan Guo. Energy-efficient parallel real-time scheduling
on clustered multi-core. IEEE Transactions on Parallel and Distributed
Systems, 31(9):2097–2111, 2020.

[6] Attia et al. Dynamic power management techniques in multi-core
architectures: A survey study. J. Ain Shams Eng, 2017.

[7] Baati et al. Temperature-aware dvfs-dpm for real-time applications under
variable ambient temperature. In Symp SIES ’13.

[8] Bampis et al. On multiprocessor temperature-aware scheduling prob-
lems. J. of Scheduling, 2013.

[9] Bashir et al. An online temperature-aware scheduling technique to avoid
thermal emergencies in multiprocessor systems. J Comp Elec Eng, 2018.

[10] Casini et al. Task splitting and load balancing of dynamic real-time
workloads for semi-partitioned edf. IEEE Trans on Comp, 2020.

[11] Chandarli et al. Response time analysis for thermal-aware real-time
systems under fixed-priority scheduling. In ISORC ’21.

[12] Chantem et al. Temperature-aware scheduling and assignment for hard
real-time applications on mpsocs. IEEE Trans on VLSI Sys, 2010.

[13] Fallah et al. Standby and active leakage current control and minimization
in cmos vlsi circuits. IEICE trans elect, 2005.

[14] Fisher et al. A fully polynomial-time approximation scheme for feasi-
bility analysis in static-priority systems with arbitrary relative deadlines.
In ECRTS ’05, 2005.

[15] Hackenberg et al. An energy efficiency feature survey of the intel haswell
processor. In IPDPS ’15.

[16] Haque et al. On reliability management of energy-aware real-time
systems through task replication. IEEE TPDS, 2016.

[17] Huang et al. Qt-adaptation engine: Adaptive qos-aware scheduling and
governing in thermally constrained mobile devices. IEEE Trans on
Comp-Aided Des of Integ Circt and Sys, 2019.

[18] Hwang et al. A predictive system shutdown method for energy saving
of event-driven computation. TODAES ’00.

[19] Lee et al. Thermal-aware scheduling for integrated cpus–gpu platforms.
TECS ’19.

[20] Liu et al. Overhead-aware system-level joint energy and performance
optimization for streaming applications on multiprocessor systems-on-
chip. In Euromicro Conf Real-Time Sys, 2008.

[21] Pagani et al. Energy efficient task partitioning based on the single
frequency approximation scheme. RTSS ’13.

[22] Quan et al. Leakage aware feasibility analysis for temperature-
constrained hard real-time periodic tasks. In ECRTS’09.

[23] Sanjoy et al. Preemptively scheduling hard-real-time sporadic tasks on
one processor. In RTSS ’90.

[24] Schöne et al. Energy efficiency features of the intel skylake-sp processor
and their impact on performance. arXiv, 2019.

[25] Sheikh et al. Simultaneous optimization of performance, energy and
temperature for dag scheduling in multi-core processors. In IGCC ’12.

[26] Sheikh et al. Fast algorithms for thermal constrained performance
optimization in dag scheduling on multi-core processors. In Int Green
Comp Conf and Workshp, 2011.

[27] Skadron et al. Temperature-aware microarchitecture. ACM SIGARCH,
2003.

[28] Srinivasan et al. Exploiting structural duplication for lifetime reliability
enhancement. In ISCA ’05.

[29] Wang et al. A simple thermal model for multi-core processors and its
application to slack allocation. In IPDPS ’10.

[30] Wang et al. Adaptive routing algorithms for lifetime reliability opti-
mization in network-on-chip. IEEE Trans Comp, 2015.

[31] Xu et al. Energy-efficient policies for embedded clusters. ACM
SIGPLAN Not., 2005.

[32] Zanini et al. A control theory approach for thermal balancing of mpsoc.
In Proc Asia and South Pacific Desgn Automtn, 2009.

[33] Zhang et al. A unified approach for fault tolerance and dynamic power
management in fixed-priority real-time embedded systems. IEEE Trans
on Comp-Aid Des Int Circt and Sys, 2005.

[34] Zhou et al. Balancing lifetime and soft-error reliability to improve
system availability. In ASP-DAC ’16.

[35] Zhou et al. Thermal-aware task scheduling for 3d multicore processors.
IEEE Trans on Para and Dist Sys, 2009.

[36] Agner Fog. The microarchitecture of intel, amd and via cpus. opt guide
for ass programmrs, 2011.

[37] Part Guide. Intel® 64 and ia-32 architectures software developer’s
manual. Vol 3B: Sys prog Guid, 2011.

[38] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed
Saifullah, and Nan Guan. Energy-efficient real-time scheduling of
dags on clustered multi-core platforms. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 156–
168. IEEE, 2019.

[39] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan,
and Haoyi Xiong. Energy-efficient multi-core scheduling for real-time
dag tasks. In 29th Euromicro conference on real-time systems (ECRTS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[40] Abusayeed Saifullah, Sezana Fahmida, Venkata P Modekurthy, Nathan
Fisher, and Zhishan Guo. Cpu energy-aware parallel real-time schedul-
ing. Leibniz international proceedings in informatics, 165, 2020.

9

