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Norm rigidity for arithmetic and profinite groups

Leonid Polterovich Yehuda Shalom Zvi Shem-Tov

Abstract

Let A be a commutative ring, and assume every non-trivial ideal of A has finite-
index. We show that if SLn(A) has bounded elementary generation then every conjugation-
invariant norm on it is either discrete or precompact. If G is any group satisfying this
dichotomy we say that G has the dichotomy property. We relate the dichotomy property,
as well as some natural variants of it, to other rigidity results in the theory of arithmetic
and profinite groups such as the celebrated normal subgroup theorem of Margulis and
the seminal work of Nikolov and Segal. As a consequence we derive constraints to the
possible approximations of certain non residually finite central extensions of arithmetic
groups, which we hope might have further applications in the study of sofic groups. In
the last section we provide several open problems for further research.

1 Introduction

A classical theorem of Ostrowski says that every absolute value on the field of rational
numbers Q, or equivalently on the ring of integers Z, is equivalent to either the standard
(real) absolute value, or a p-adic absolute value for which the closure of Z is compact.
One of the main purposes of this paper is a non-abelian analogue of this result for
SLn≥3(Z) and related groups of arithmetic type. In a different direction, our results
can also be viewed as part of the Margulis–Zimmer rigidity theory: they extend the
celebrated Margulis’ normal subgroup theorem for some arithmetic groups, and prove
for them rigidity theorems for homomorphisms into certain non-locally compact groups–
those equipped with a bi-invariant metric. Somewhat surprisingly, this turns out to be
strongly related also to the deep work of Nikolov–Segal on profinite groups, and to
constraints on sofic approximations of certain central extensions of arithmetic groups.
To make all this precise, we shall need the notion of a conjugation-invariant norm on a
group.

Norms on groups and some basic constructions. A conjugation-invariant
norm on a group G (or simply, a norm 1) is a function ‖·‖ : G → R satisfying the
following properties:

(i) ‖g‖ ≥ 0 for every g ∈ G

(ii) ‖g‖ = 0 if and only if g = 1G

(iii)
∥

∥g−1
∥

∥ =‖g‖ for every g ∈ G

(iv) ‖gh‖ ≤‖g‖+‖h‖ for every g, h ∈ G

(v)
∥

∥hgh−1
∥

∥ =‖g‖ for every g, h ∈ G

2020 Mathematics Subject Classification: 22E40; 22XX; 20E18; 20F65
1There is also a notion of a norm on a group which is not conjugation invariant, but in this paper we

only consider conjugation-invariant norms and occasionally omit the adjective “conjugation-invariant”.
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The most obvious construction of a conjugation-invariant norm on a group is a Dirac
norm, assigning 0 to the identity element and 1 to any other element. This norm can
easily be perturbed, for example by replacing 1 by any other value, or changing its
value slightly so that it is still constant on conjugacy classes and satisfies the triangle
inequality thus creating a family of what we call the discrete norms – see below. A less
obvious, yet still extremely natural construction of a norm on a group G comes from
embedding it in a compact groupK. It is well known ([12]) that any compact metrizable
group admits a bi-invariant metric d, and it is easily seen that setting ‖g‖ = d(1, g)
defines then a norm on G inherited by the embedding. We call below such norms
precompact. If the group G is residually finite then such K can always be taken as
the profinite completion of G.2 For the benefit of non specialists let us make this
construction concrete:

Construction 1.1 (The norm corresponding to a chain of finite-index subgroups). Let
G be a residually-finite group. Let

G = G0 ✄G1 ✄ . . .

be a descending chain of finite-index normal subgroups of G with trivial intersection.
For each element g in G set ‖g‖ := 2−i if g belongs to Gi −Gi+1. It is easy to see that
‖·‖ is a conjugation-invariant norm on G, and that this norm is precompact. We say
that ‖·‖ is the standard norm on G corresponding to the sequence (Gi). Note that the
metric completion of any such norm is profinite 3.

We remark that the specific choice of the sequence 2−i above is immaterial; we could
take any decreasing sequence instead. We remark that for finitely generated groups the
connection between residual finiteness and the existence of pre-compact norms goes in
the other way as well: if the group admits such norm, apply Peter-Weyl Theorem and
the well known fact that finitely generated linear groups are residually finite.

One can further combine the above construction with that of the Dirac norm to get
the following:

Construction 1.2 (Singular extension of a conjugation-invariant norm). Let G be a
group, and N a normal subgroup of G. Suppose that ‖·‖N is a conjugation-invariant
norm on N , satisfying ‖n‖N ≤ 1 for all n ∈ N . Suppose

∥

∥gng−1
∥

∥

N
= ‖n‖N for each

g ∈ G. Define a function on G by

‖g‖ :=

{

‖g‖N g ∈ N

1 g /∈ N.
(1)

It is easy to see that ‖·‖ is a conjugation-invariant norm on G. We say that ‖·‖ is the
singular extension of ‖·‖N to G.

Some key definitions and notions. Generalizing our previous terminology, we say
that a conjugation-invariant norm on G is discrete if it generates the discrete topology
on G, and compact (precompact) if every sequence has a converging (resp. Cauchy)
subsequence. Our starting point is the work of Burago, Ivanov and Polterovich [6], who
studied conjugation-invariant norms on groups of diffeomorphisms of smooth manifolds.
IfM is a smooth closed connected manifold, they showed that any conjugation-invariant
norm on Diff0(M) (the connected component of the identity of the diffeomorphism
group of M) is discrete. Furthermore, this group is bounded for all closed manifolds M
provided dimM = 1, 3 (see [6]) and dimM ≥ 5 (see [26, 27]). In dimension 2 this group

2Recall that a group G is called residually-finite if the intersection of all of its finite-index (normal)
subgroups is trivial.

3Recall that a profinite group is a Hausdorff, compact group, which is totally disconnected, i.e. the
connected components are singletons.
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is bounded for the sphere [6] and, remarkably, it is unbounded for oriented surfaces
of positive genus [4]. In the remaining cases (non-orientable surfaces and dim = 4),
boundedness of Diff0(M) is unknown.

An abstract group G is called meager, if any conjugation-invariant norm on it is
both bounded and discrete. Hence in this terminology many diffeomorphism groups are
meager.

The main purpose of the present paper is to establish rigidity results for norms on
special linear groups. We remark that a different phenomenon, that of boundedness
(of all norms) in arithmetic groups, was extensively studied (see e.g. [11], [23] and
references therein). All these works make use of bounded generation, and so shall we,
though by completely different means. After recalling below the definition of bounded
generation, we shall make the interesting observation that boundedness of all norms on
En(A) is in fact equivalent to it.

The following is our key definition of the paper.

Definition 1.3. Let G be a group. We say that G has the dichotomy property if every
conjugation-invariant norm on it is either discrete or precompact.

Remark 1.4. One readily checks that for every norm ‖x‖ on G, the expression ‖x‖′ :=
‖x‖ /(1 +‖x‖) defines another, bounded norm on G, for which the properties of dis-
creteness, compactness or precompactness remain unchanged. Thus, for verification of
the dichotomy property it suffices to stick to bounded norms only.

One of our main motivations in defining the dichotomy property is the following
simple result, connecting it to the famous Normal Subgroup Theorem of Margulis for
higher rank arithmetic groups:

Proposition 1.5. Let G be a residually finite group. Assume that G has the dichotomy
property. Let N be a normal subgroup of G. Then either N has finite index in G or N
is finite.

As remarked above, the existence of a precompact norm for finitely generated groups
implies residual finiteness, hence assuming the latter property is very natural in this
context. As the proof of the proposition is quite simple, we can bring it here:

Proof. Since G is residually finite, there exists a descending chain N0 ✄ N1 ✄ . . . of
finite-index subgroups of N , which are all normal in G and intersect trivially. Let ‖·‖N
be the profinite norm on N corresponding to Ni (Construction 1.1). Let ‖·‖ be the
singular extension of ‖·‖N to G (Construction 1.2). Suppose that N is infinite. Then
clearly ‖·‖N is non-discrete. Thus ‖·‖ is non-discrete as well. Thus ‖·‖ is precompact.
Combining this with the fact that ‖g‖ = 1 for each g in the complement G−N , we get
that N must be of finite-index in G.

Example 1.6. The infinite cyclic group Z is just infinite but does not satisfy the
dichotomy property: a (tricky!) example of a norm which is neither discrete, nor
precompact is constructed in [15, Theorem 24]. More generally, one can use this fact
and a slight modification of the argument above to deduce that any group G having
a non-torsion central element does not have the dichotomy property (distinguish here
between the cases where the cyclic group generated by this element has finite or infinite
index). This result can then be easily generalized further to any group G with infinite
center.

The main class of groups discussed in this paper is SLn(A) for various rings A. In
all examples known to us, if a group of this kind satisfies the dichotomy property, then
the metric completion of any non-discrete conjugation-invariant norm on it is in fact
profinite. Hence we make the following definition.

Definition 1.7. A group G satisfies the strong dichotomy property if the metric com-
pletion of any non-discrete conjugation-invariant norm on G is profinite.
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The main results – discrete setting. To present our main result, we return to
the notion of bounded generation, extending it further in the context of special linear
groups over general rings. Fix an integer n ≥ 2 and let A be an integral domain
with unit. Let En(A) be the subgroup of SLn(A) generated by all the elementary
matrices. We say that this group has bounded elementary generation if there exists
some constant C such that every matrix in En(A) is a product of at most C elementary
matrices. Restricting from now on to n ≥ 3, notice that boundedness (of all norms on
this group) is not only implied by its being boundedly elementary generated (cf. [11]
and references therein), but also implies it: This follows immediately by considering
the conjugation-invariant norm on G assigning to g the minimal integer l for which g
can be written as a product of l conjugates of elementary matrices, and using the Suslin
factorization theorem (see e.g. [22, Corollary 5.2]) saying that any such conjugate is
a product of a uniformly bounded number of actual elementary matrices. Thus, for
rigidity phenomena related to norms, bounded elementary generation does in fact arise
as an extremely natural concept.

Our main result is the following theorem.

Theorem 1.8. Keep the above notations and assume that any non-trivial ideal q in A
is of finite-index in A. Then

(i) If En(A) has bounded elementary generation, then En(A) has the strong dichotomy
property.

(ii) If En(A) has the (strong) dichotomy property, then every finite-index subgroup of
En(A) has the (strong) dichotomy property as well.

We prove the theorem in Section 2. Examples of rings A satisfying the condition
in the theorem include A = OK – the integer ring of number field K (in particular
A = Z, if K = Q), A = Z[ 1p ] and A = Fq[x] – the polynomial ring in one variable over a

finite field (or more generally, rings of all S-algebraic integers in general global function
fields [25]). While the theorem is formulated for En(A), in all of these examples, we
actually have En(A) = SLn(A). In fact, if En(A) has the dichotomy property, then
SLn(A) has the dichotomy property if and only if En(A) has finite index in SLn(A),
as follows immediately from Proposition 1.5 and Suslin’s normality theorem (see e.g.
[22, Corollary 5.2]) and Lemma 2.4 below. Returning to the opening paragraph of the
introduction, in the case of A = Z, it can be deduced from the congruence subgroup
property (CSP), that any profinite completion of SLn≥3(Z), is a quotient of SLn(Ẑ).
Therefore just as in Ostrowski’s theorem any norm completion is of well-understood
arithmetic type.

Remark 1.9. 1. The requirement that every non-zero ideal of A has finite-index is
necessary. Indeed, if A is a commutative ring with unit and q is a non-zero ideal
in A of infinite index, then consider the natural map π : En(A) → En(A/q). The
image and the kernel of π are infinite, hence En(A) does not have the dichotomy
property, due to Proposition 1.5. To construct such a ring A for which SLn(A) has
elementary bounded generation, start with any principal ideal domain A′ having a
non-zero prime ideal q of infinite index (e.g. A′ = Q[x], q = xA′) and set A as
the localization of A′ at q. Then A is a discrete valuation ring, q still has infinite
index when viewing it as an ideal of A, and since A is a local ring, it then follows
easily from the proof of [21, Theorem 4.1] that En(A) has bounded elementary
generation.

2. We do not know if the requirement n ≥ 3 can be relaxed to n ≥ 2. See [24] for a
positive result in this direction.

The idea of the proof of the first part of the theorem is showing that any non-discrete
conjugation invariant norm induces a non-discrete precompact norm on each elementary
subgroup, then using bounded generation to obtain precompactness of the original norm.
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The proof of the second part is more involved, as in general, the dichotomy property is
not preserved under passage to finite-index subgroups (Proposition 2.7). To prove this
second part, we introduce a somewhat weaker version of the dichotomy property, called
the weak dichotomy property, which passes to finite-index normal subgroups, and turns
out to be equivalent to the dichotomy property in our situation. The case of A = Fq[x]
where one has bounded elementary generation for the full Linear group, but nothing
seems to be known about finite index (congruence) subgroups of it, shows a natural
example where this approach seems to become necessary.

The main results – dual compact setting. We next move to present a du-
ality between the discrete and compact framework. While in our previous discussion
we started with a discrete group (i.e. no topology on the group is specified), and the
dichotomy property ensured that any non-discrete norm on it arises from the com-
pact setting, we now want to discuss the opposite situation, starting from a compact
(metrizable) groupG. We call the topology onG the standard topology. By the Birkhoff–
Kakutani Theorem (see e.g. [12]) there exists a conjugation-invariant norm ‖·‖ on G,
inducing the standard topology. We make the following definition, analogous (in fact,
almost identical) to Definition 1.3.

Definition 1.10. Let G be a compact metrizable group. We say that G is norm
complete if every non-discrete, conjugation-invariant norm on G induces the standard
topology.

Norm-completeness implies the dichotomy property of G as a discrete group (Defi-
nition 1.3), hence the conclusion of Proposition 1.5 applies to any norm-complete group
(note that the residually finiteness was used in the proof of Proposition 1.5 only to
ensure the existence of a precompact norm):

Proposition 1.11. Any infinite normal subgroup of a norm complete group has finite
index.

Here we call a group having the property that any infinite normal subgroup of
it has finite index a just infinite group 4. As a consequence of the seminal work of
Gleason–Montomery–Zippin–Yamabe towards Hilbert’s fifth problem, one observes that
any compact metrizable just-infinite group is either profinite or a semisimple Lie group
(Lemma 3.2). Together with Proposition 1.11, this result provides a rough classifica-
tion of norm-complete groups: they are either profinite or compact real semisimple Lie
groups. In the latter case, we prove in Theorem 3.3 that all compact (semi)simple
groups, both real and p-adic analytic, are (separable) norm-complete. In general how-
ever, we are quite far from having a description of the norm-complete profinite groups.
We remark that being norm-complete is equivalent to the seemingly weaker property
that any non-discrete conjugation invariant norm on G is compact (see Proposition 3.1),
making it analogous to the dichotomy property (Definition 1.3). With essentially the
same proof as Theorem 1.8, using bounded elementary generation again, we have the
following result.

Theorem 1.12. Let n be an integer ≥ 3. Let A be a compact metrizable ring. Assume
that every non-trivial ideal q in A is of finite index in A. Then SLn(A), as well as any
finite-index subgroup of it, is norm complete.

We prove the theorem in Section 3. As in Theorem 1.8, an important component
of the proof is the fact that SLn(A) has bounded elementary generation. In fact, for
compact rings bounded elementary generation occurs in rank 1 as well, suggesting that
SL2(A), as well as its finite-index subgroups, is norm-complete for any compact metriz-
able ring A as in the theorem. Note that various cases like that of SL2(Zp) follow from

4This is not a standard terminology; in most of the literature just infinite refers to all non-trivial normal
subgroups being of finite index.
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the aforementioned result (Theorem 3.3), covering all simple p-adic analytic profinite
groups.

Given a topological metrizable group G, it is natural to ask when its topology is
induced by a conjugation-invariant norm (i.e. a bi-invariant metric). Clearly, a nec-
essary condition is the existence of a system of neighborhoods at the identity, each of
which is invariant under all conjugations. As noted by Klee, it follows from the work
of Birkhoff–Kakutani that the latter condition is also sufficient (see [12] and references
therein). Such groups are often called in the literature SIN (Small Invariant Neighbor-
hoods). In [7], Dowerk and Thom say that a topological group G has the invariant
automatic continuity property (or property IAC) if every homomorphism from G to any
separable SIN group is continuous.

Proposition 1.13. Any norm-complete group has property IAC.

We prove the proposition in Section 3, and use it to extend Dowerk and Thom’s
result that SU(n) has property IAC ([7]) to all simple connected compact groups, p-
adic analytic simple Lie groups, and to the profinite groups covered in Theorem 1.12.
We remark that property IAC is not shared by all finitely generated profinite groups.
For instance, Zp has many non-continuous embeddings into C, coming from abstract
field isomorphisms Cp

∼= C (a similar construction can be made with the circle group).
It is interesting to ask what other profinite, or more general compact groups, have
this property. In [16], Nikolov and Segal proved that every homomorphism from a
topologically finitely generated profinite group to any profinite group is continuous. The
latter property is called strong completeness, which motivated ours norm completeness.
Proposition 1.13 shows that in the particular case of G being a profinite norm-complete
group, the situation is even more rigid, as we do not assume the target group is profinite.
To illustrate this phenomenon we give an example of a target group which is an infinite
dimensional, non-locally compact p-adic SIN group; see the end of Section 3.

Remark 1.14. 5 The group D of Hamiltonian diffeomorphisms of a closed symplec-
tic manifold carries a bi-invariant Finsler metric which, starting from its discovery by
Hofer in 1990 ([8]), became one of the central characters in symplectic topology. The
corresponding Hofer topology is canonical in the following sense: roughly speaking, it is
the unique topology associated to any smooth bi-invariant Finsler metric on D inducing
a non-degenerate distance function (see [5] for further details). With respect to this
topology, the group D is separable (see [11], the proof of Theorem 1.9). Therefore, any
monomorphism of a separably norm complete topological group G to D is necessarily
a homeomorphism to its image with respect to the Hofer topology. By Theorem 3.3,
this is applicable to any a semi-simple compact Lie group G. Note that the situation
changes dramatically in the smooth category: by using a wild automorphism of C, one
can embed PSU(n) as a disconnected subgroup into PSL(n,C), which admits monomor-
phisms to diffeomorphism groups of manifolds (e.g., PSL(2,C) acts on the sphere S2

by Möbius transformations) 6. Note however that since PSL(n,C) is non-compact and
simple, it does not admit monomorphisms to D by a result of Kedra, Libman and Mar-
tin [11, Theorem 1.9], which is quite coherent to our conclusion on Hofer continuity,
see below. It would be interesting to understand whether the Hofer continuity of such
a monomorphism yields an obstruction to its existence. Sometimes, a regularity of a
monomorphism from a Lie group to a diffeomorphism group “upgrades itself” automati-
cally. For instance, it is a classical result [2] that continuous (with respect to the “usual”
uniform topology) monomorphisms from a Lie group to diffeomorphism groups induce a
smooth action. 7 If Hofer continuity can be upgraded to the uniform norm continuity,

5This remark closely follows a comment of an anonymous referee.
6Thanks to Kathryn Mann for this example.
7By Theorem 9.10 in [10], the uniform continuity would follow even from weaker regularity assumption,

Baire measurability.
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any monomorphism from G to D would define a smooth Hamiltonian action of G on
M , and hence numerous constraints on such would be applicable. As an illustration,
recall that a closed symplectic four manifold admitting an effective smooth Hamilto-
nian SO(3)-action is diffeomorphic either to CP2 or to S2 × S2 [9]. Does there exist a
monomorphism SO(3) → D for M being, for instance, the blow up of CP2 at one point?
If exists, such a monomorphism will be necessarily discontinuous in the uniform norm,
albeit Hofer continuous. At the same time in order to rule out its existence, new ideas
are needed.

In the category of topological groups, beyond local compactness it is the separability
property that introduces a certain ”tameness” of the group. When one insists on con-
sidering separable normed groups, some pathological constructions, such as viewing a
compact group with its discrete topology, naturally disappear. This leads us to consider
the following weaker, yet perhaps more natural notion of norm rigidity:

Definition 1.15. Let G be a metrizable compact group. We say that G is separable
norm complete if every separable conjugation-invariant norm on G induces the standard
topology on G.

For separable norm complete groups we prove:

Theorem 1.16. Let G be a separable norm complete group.

(i) Let H be a normal subgroup of G, of countable index. Then H is open (and thus
of finite index).

(ii) Every finite-index subgroup of G is separable norm complete.

We prove the theorem in Section 3. We point out a relation to the work [17] of
Nikolov and Segal on quotients of finitely generated profinite groups. Recall that a
group G is said to be FAb if every virtually-abelian quotient of G is finite. When G is
a topological group, this refers to continuous quotients. Nikolov and Segal showed that
for a finitely generated profinite group G, if G is FAb, then it has no countable infinite
quotients. Theorem 1.16 suggests that this result may be strengthened even further, to
the conclusion that such groups might actually be separable norm complete (see Section
4).

An example of a finitely-presented meager group with possible appli-
cation to the theory of approximable groups. Recall that a group is called
meager if any conjugation-invariant norm on it is bounded and discrete. As an appli-
cation of Theorem 1.8, we construct an example of a finitely-presented meager group.
In [14], Moore constructed by number theoretic methods (following Weil’s work on the
metaplectic kernel) non-split 2 : 1 central extensions π : G̃ → G = SLn(Qp). As an
application of Theorem 1.8 we have the following result.

Theorem 1.17. Let Γ̃ = π−1(SLn(Z[
1
p ])). Then every conjugation-invariant norm on

Γ̃ is discrete and bounded.

We prove the theorem at the end of Section 2. It seems that all previously known
meager groups were essentially boundedly simple (from any non trivial element one can
get to any other by uniformly bounded multiplication of conjugates). This property
implies uniform discreteness of all conjugation invariant norms. In the above example
the abundance of (finite index) normal subgroups makes such uniformity impossible.
We hope Theorem 1.17 might be of interest in the theory of approximable groups. One
of the equivalent definitions of a group G being approximable with respect to a class of
groups endowed with a length function is that G can be embedded in a certain large,
ultra product group, endowed naturally with a bi-invariant metric. From Theorem 1.17
we see that any embedding of Γ̃ in such a group must be discrete. This yields some
inherent uniformity in all possible approximations of Γ̃, which might be useful in trying
to contradict their existence.
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Plan of the paper. Let us outline the plan of the paper.

In Section 2, we prove Theorem 1.8. After proving the first part of the theorem, we
discuss the weak dichotomy property and passage to finite-index subgroups. Then we
prove the second part of Theorem 1.8. Finally we prove Theorem 1.17.

In Section 3, we start with some generalities of our norm-rigidity notions for com-
pact groups, showing in particular that norm-complete groups are either semisimple Lie
groups or profinite groups, and that simple Lie groups are norm-complete. Then we
prove Proposition 1.13 and Theorem 1.12. Finally we prove Theorem 1.16. At the end
of the section we give a construction of an infinite-dimensional separable non-locally
compact p-adic normed group.

In Section 4 we provide several questions for further research.

In Appendix A we prove results related to conjugacy width in SLn, which are needed
for the proofs of our main results.

Acknowledgments. We would like to thank Dor Elboim, Michael Larsen, Elon
Lindenstrauss, Nikolay Nikolov, Peter Sarnak and Alexander Trost for useful discus-
sions. We thank the anonymous referee for pointing out an application of our results to
symplectic geometry (see Remark 1.14), and David Fisher and Kathryn Mann for useful
consultations on related topics. We would also like to thank the anonymous referee for
the suggestion to generalize our original Theorem 3.3 to its current form, and numerous
useful comments. The third named author was supported by the ISF grant 1483/16 of
the second named author during part of the work on this paper. They both thank the
Israeli Science Foundation for its support.

2 Norm rigidity for abstract groups

We start with proving the first part of the Theorem 1.8. As pointed out in the intro-
duction, proving the second part is more involved. In particular, we will see that in
general the dichotomy property must not be preserved under passage to a finite-index
subgroup (Proposition 2.7). To prove the second part, we introduce a weak dichotomy
property which is invariant under passage to finite-index normal subgroups, but turns
out to be equivalent in our situation (Definition 2.9). Finally we prove Theorem 1.17.

2.1 Proof of Theorem 1.8 (i)

To prove the first part of the theorem, we analyze the restrictions of our conjugation-
invariant norm to certain abelian subgroups. These subgroups are described in the
following lemma.

Lemma 2.1 ( [21, Lemma 2.4]). Fix an integer n ≥ 3. Every elementary matrix
I + teij ∈ SLn(A) belongs to some copy of a subgroup isomorphic to A2, contained
naturally in the semi-direct product SL2(A) ⋊ A2, itself embedded in SLn(A). In fact,
the asserted copy SL2(A) can always be found along the main diagonal (i.e. occupying
the entries (i, j) with i, j = k, k + 1, for some 1 ≤ k ≤ n− 1).

Lemma 2.2. Let A be an integral domain with unit, and q an infinite ideal in A. Let
‖·‖ be a non-discrete norm on q⊕ q. Assume ‖·‖ is invariant under the standard linear
action of E(2, q, A) on q ⊕ q. Then for every ǫ > 0 there exists a non-zero ideal q′,
contained in q, such that q′ ⊕ q

′ is contained in Dǫ(0) (the ‖·‖-ball of radius ǫ, centered
at 0).
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Proof. Let (x, y) ∈ q⊕ q. Then for each z ∈ q we have

(

x
y

)

−

(

1 −z
0 1

)(

x
y

)

=

(

0 z
0 0

)(

x
y

)

=

(

zy
0

)

,

and so
∥

∥(zy, 0)
∥

∥ ≤ 2
∥

∥(x, y)
∥

∥ . (2)

Similarly,
∥

∥(0, zx)
∥

∥ ≤ 2
∥

∥(x, y)
∥

∥ . (3)

Applying (2) again we get
∥

∥(z′zx, 0)
∥

∥ ≤ 4
∥

∥(x, y)
∥

∥ ,

for each z, z′ ∈ q. Combining this with (3) we find that

∥

∥(z′z′′x, zx)
∥

∥ ≤ 6
∥

∥(x, y)
∥

∥ ,

for any z, z′, z′′ ∈ q. In particular, for any a, b ∈ A
∥

∥

∥(ax3, bx3)
∥

∥

∥ ≤ 6
∥

∥(x, y)
∥

∥ .

Thus if (x, y) ∈ q⊕q satisfies 6
∥

∥(x, y)
∥

∥ ≤ ǫ, then the ideal q′ = Ax3 satisfies the required
property. The result now follows from the fact that ‖·‖ is non-discrete.

Notice that for this proof, we only used the fact there exists M > 0 such that
‖gv‖ ≤ M‖v‖ for each g ∈ E(2, q, A) and v ∈ q⊕ q.

Lemma 2.3. With the notation of Lemma 2.2, let q⊕ q be the metric completion of
q ⊕ q with respect to ‖·‖. Assume that A has the property that every non-zero ideal in
A has finite index. Then q⊕ q is profinite.

Proof. Consider all subgroups of q⊕ q of the form q
′ ⊕ q

′, where q′ is a non-trivial ideal
of q. Viewing them as subgroups of q⊕ q, we may take the closure. In this way we
get for each non-trivial ideal q′ of q a closed subgroup of q⊕ q. Denote this subgroup
by Uq′ . Since q

′ is non-trivial it has finite index in q, hence Uq′ has finite index in
q⊕ q. Thus Uq′ is open. On the other hand, by Lemma 2.2 for each ǫ > 0 there exists
a non-trivial ideal q′ such that Uq′ is contained in the ball of radius ǫ around 0. By
taking translates we obtain a finite cover of q⊕ q by open-closed cosets, each of them
is contained in a ball of radius ǫ. We conclude that q⊕ q is profinite.

Now we are ready to complete the proof. Let ‖·‖ be a non-discrete conjugation-
invariant norm on En(A), and denote the metric completion of En(A) with respect to
‖·‖ by G. By Theorem A.2 we have that the elementary subgroups are non-discrete.
Thus by Lemma 2.1 and Lemma 2.3, the completion of each elementary subgroup is
profinite. Denote these completions by U1, . . . , Un(n−1). Then each Ui can be seen as a
subgroup of G, and from the fact that En(A) is boundedly generated by its elementary
groups we get that G is boundedly generated by the Ui. This means that G = Ui1 · · ·Uim

for some finite sequence (i1, . . . , im) (1 ≤ ij ≤ n(n − 1)). Hence to finish the proof it
suffices to show that for any topological group G, if G is a finite (set-theoretic) product
G = G1 · · ·Gm of a finite collection of subgroups Gi < G, and each Gi is profinite
in the relative topology, then G is profinite itself. To see this, notice first for each i,
any finite-dimensional representation π : Gi → GLd(C) has finite image. This follows
easily from the fact that Gi is profinite and that GLd(C) has no small subgroups,
meaning that there exists an identity neighborhood U such that the only subgroup of
GLd(C) contained in U is the trivial group. Hence the image of any finite-dimensional
representation π : G → GLd(C) is finite. Since G is compact, being a continuous image
of the compact group G1×· · ·×Gm, it follows that the kernel of any such representation
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must be open. On the other hand, as a consequence of the Peter-Weyl theorem, each
non-trivial element g ∈ G has an open neighborhood Vg, lying outside of the kernel of
some finite dimensional representation ρg of G. Given any open identity neighborhood
V ⊂ G, we can cover its complement by finitely many of the Vg (using again the fact
that G is compact), so that the kernel of the direct sum of the corresponding ρg’s
is contained in V . Thus for any open identity neighborhood V there exists a finite-
dimensional representation π as above, with kerπ ⊂ V . It follows that G admits a basis
of the identity consisting of open and closed subgroups, hence G is profinite.

We would like to thank Yves de Cornulier for pointing out to us the argument at
the end of the proof.

2.2 Preparations for the proof of Theorem 1.8 (ii) – Behavior

under passage to finite-index subgroups, and the weak dichotomy

property

Before we turn to the proof of the second part of the theorem, we introduce a slightly
weaker version of the dichotomy property called the weak dichotomy property. The
following lemma states that any group having a finite-index subgroup with the (strong)
dichotomy property satisfies the (strong) dichotomy property itself.

Lemma 2.4. Let G be a group, and H a finite-index subgroup of G. Assume H has
the (strong) dichotomy property. Then G has the (strong) dichotomy property as well.

Proof. Let ‖·‖ a non-discrete conjugation-invariant norm on G. We need to show that
‖·‖ is precompact. To prove this, we claim that the restriction of‖·‖ to H is non-discrete
as well. Indeed, suppose otherwise, then H is discrete (with respect to the metric on G
induced by ‖·‖). In particular, H is closed in G. Thus all of the cosets of H are closed
and discrete in G. Since H has finite index in G it follows that G is discrete, which is a
contradiction. Thus the restriction of ‖·‖ to H is non-discrete, as claimed. Since H has
the dichotomy property, this restriction is precompact. Since H has finite index in G it
follows that‖·‖ is precompact as well. If the metric completion of H is further profinite
then clearly the same is true for G.

It turn out that the converse statement, that the dichotomy property is preserved
under passage to a finite-index subgroup is false (Proposition 2.7), and this fact is our
motivation for defining the weak dichotomy property. We start with the following simple
but useful lemma.

Lemma 2.5. Let G be a group and N a normal subgroup of G. Let‖·‖ be a non-discrete
conjugation-invariant norm on G. Assume that the restriction of ‖·‖ to N is discrete.
Then CG(N) (the centralizer of N in G) contains an open neighborhood of 1 in G (with
respect to the topology induced by ‖·‖).

Proof. Since the restriction of ‖·‖ to N is discrete, there exists ǫ > 0 such that ‖n‖ > ǫ
for every 1 6= n ∈ N . Let g ∈ G, and suppose that ‖g‖ < ǫ

2 . Then for every n ∈ N we
have

∥

∥[g, n]
∥

∥ ≤ 2‖g‖ < ǫ. (4)

On the other hand [g, n] belongs to N , since N is normal in G. Thus [g, n] = 1, and so
g ∈ CG(N). Thus the ball of radius ǫ

2 is contained in CG(N), finishing the proof of the
lemma.

Corollary 2.6. Let G be a group, and A,B subgroups of G. Suppose G = AB, a direct
product. Suppose A has trivial center. Let ‖·‖ be a non-discrete norm on G. Then at
least one of the restrictions of ‖·‖ to A and B is non-discrete.
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Proof. Suppose the restriction to A is discrete. Then by Lemma 2.5 we have that B
contains a neighborhood of 1 in G. Since‖·‖ is non-discrete, it follows that its restriction
to B is non-discrete.

Note that a direct product Γ1 × Γ2 of two infinite, residually finite groups cannot
satisfy the dichotomy property, due to Proposition 1.5. Using this observation, we
show that the dichotomy property must not be preserved under passage to finite-index
subgroups.

Proposition 2.7 (Example). Let Γ be a group having the dichotomy property. Assume
Γ has trivial center. Let G be the semidirect product G = (Γ× Γ)⋊ (Z/2Z), where the
action of the non-trivial element in Z/2Z on Γ×Γ is given by switching the coordinates.
Then G has the dichotomy property (while its finite-index subgroup Γ× Γ does not, as
long as Γ admits some non-discrete conjugation-invariant norm).

Proof. Denote by Γ1,Γ2 the copies of Γ in G in the first and second coordinate respec-
tively. Let ‖·‖ be a non-discrete, conjugation-invariant norm on G. We need to show
that G is precompact with respect to that norm. To prove this, note first that Γ1Γ2 is
non-discrete. Thus either Γ1 or Γ2 are non-discrete, due to Corollary 2.6. Assume with-
out loss of generality that Γ1 is non-discrete. Then applying the non-trivial element of
Z/2Z on Γ1 we see that Γ2 is non-discrete as well. Since Γ has the dichotomy property
it follows that both Γ1 and Γ2 are precompact. Thus Γ1Γ2 is precompact. Since Γ1Γ2

has finite index in G, we conclude that G is precompact as well.

Our example in Proposition 2.7 uses significantly the fact that the dichotomy prop-
erty is not preserved under taking direct products. If G = A×B then our basic example
of a conjugation-invariant norm on G which is neither discrete or precompact, is the sin-
gular extension of a non-discrete norm on one of the factors A or B of G (Construction
1.2). Denote these extension norms by ‖·‖1 and ‖·‖2 respectively. Then clearly the sum
norm ‖·‖1 +‖·‖2 is discrete. As we shall see, the existence of such norms is essentially
the reason that the dichotomy property is not preserved under taking direct products.
This leads us to make the following two definitions.

Definition 2.8. Let G be a group. A conjugation-invariant norm ‖·‖ on G is called
strongly non-discrete (SND) if for any non-discrete norm ‖·‖1 on G, the sum norm
‖·‖+‖·‖1 is non-discrete.

Definition 2.9. Let G be a group. We say that G has the weak dichotomy property if
every SND norm on G is precompact.

Theorem 2.10. Let G be a group and let N be a finite-index, normal subgroup of
G. Assume that G has the weak dichotomy property. Then N has the weak dichotomy
property as well. Similarly, if any SND norm on G has a profinite completion then the
same is true for N . If every SND norm on G is compact, then N has this property as
well.

Proof. Let ‖·‖ be an SND norm on N . Replacing ‖·‖ by n 7→ ‖n‖
1+‖n‖ , we may assume

that ‖·‖ is bounded by 1. For each element g ∈ G consider the function on N given by
‖·‖g :=

∥

∥gng−1
∥

∥. It is easy to see that ‖·‖g is again an SND norm on N . Finally, set
˜‖n‖ := 1

[G:N ]

∑

s∈G/N‖n‖s. It is easy to see that n 7→ ˜‖n‖ is again an SND norm on N ,

and is bounded by 1. Clearly we have ˜‖gng−1‖ = ˜‖n‖ for each element g in G. Thus

we can consider the singular extension of ˜‖·‖ to G (Construction 1.2). We continue to

denote this extension by ˜‖·‖. Since the restriction of ˜‖·‖ to N is an SND norm on N ,

we have that ˜‖·‖ is an SND norm on G. Since G has the weak dichotomy property, ˜‖·‖
is precompact, and its restriction to N is precompact. Thus ‖·‖ is precompact. This
proves the first part of the theorem. The second and third parts follow by repeating
the argument above.
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Lemma 2.11. Let G be a direct product G = N ×M of two groups. Assume N has
trivial center. Let ‖·‖M be a precompact norm on M . Let ‖·‖N be an SND norm on N .
For each element g = (n,m) in G let

‖g‖ :=‖n‖N +‖m‖M .

Then ‖·‖ is an SND norm on G.

Proof. Clearly ‖·‖ is a non-discrete, conjugation-invariant norm on G. To prove that
‖·‖ is SND, let ‖·‖1 be a non-discrete norm on G. Suppose ‖·‖ +‖·‖1 were discrete.
Then in particular its restriction to N is discrete. Since ‖·‖N is an SND norm on N ,
it follows that the restriction of ‖·‖1 to N is discrete as well. Thus the restriction of
‖·‖1 to M is non-discrete, due to Corollary 2.6. Combining this with the fact that
‖·‖M is precompact, we get that the restriction of ‖·‖ +‖·‖1 to M is non-discrete. In
particular ‖·‖+‖·‖1 is non-discrete, which is a contradiction. This contradiction proves
the lemma.

Lemma 2.12. Let G be a direct product G = N × M of groups, and assume N has
trivial center. Let ‖·‖ be any SND norm on G. Then the restriction ‖·‖ |N , of ‖·‖ to N ,
is an SND norm on N .

Proof. Let ‖·‖N be a non-discrete conjugation-invariant norm on N . We have to show
that‖·‖ |N +‖·‖N is non-discrete as well. For this, fix any discrete, conjugation-invariant
norm ‖·‖M on M . Since ‖·‖N is non-discrete, the sum (n,m) 7→‖n‖N +‖m‖M defines a
non-discrete, conjugation-invariant norm on G. As usual, denote this norm by ‖·‖N +
‖·‖M . Thus since ‖·‖ is an SND norm on G, ‖·‖ +‖·‖N +‖·‖M is non-discrete. The
restriction of‖·‖+‖·‖N +‖·‖M to N is‖·‖ |N +‖·‖N . If this restriction was discrete, then
we would get by Corollary 2.6 that the restriction of ‖·‖ +‖·‖N +‖·‖M to M is non-
discrete, contradicting the fact that‖·‖M is discrete. Thus‖·‖ |N +‖·‖N is non-discrete,
finishing the proof of the lemma.

Corollary 2.13. Let G be a direct product G = M × N , where M,N are residually-
finite groups with trivial centers. Then G has the weak dichotomy property if and only
if both M and N has the weak dichotomy property.

Proof. Suppose G has the weak dichotomy property, and let ‖·‖N be an SND norm
on N . We need to show ‖·‖N is precompact. By Lemma 2.11 we can extend ‖·‖N to
an SND norm ‖·‖ on G. Since G has the weak dichotomy property, ‖·‖ is precompact.
In particular ‖·‖N is precompact. A symmetric argument shows that every SND norm
on M is precompact. In the other direction, suppose that N and M have the weak
dichotomy property, and let ‖·‖ be an SND norm on G. Then the restrictions of ‖·‖ to
N andM are SND norms, due to Lemma 2.12. Since N andM have the weak dichotomy
property, these restrictions are precompact, making ‖·‖ precompact as well.

Since the weak dichotomy property is preserved under direct products, groups having
the weak dichotomy property might fail to have the property that any infinite normal
subgroup has finite-index. However, the following result shows that this is essentially
the only obstacle.

Theorem 2.14. Let G be a residually-finite group having the weak dichotomy prop-
erty. Assume that every finite-index subgroup of G has trivial center. Let N be an
infinite normal subgroup of G. Then there exist a finite-index, normal subgroup G0 of
G containing N , and a subgroup M of G0, such that G0 is a direct product G0 = NM .
Moreover, M can chosen to be normal in G. In fact, M can be taken to be M = CG(N).
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Proof. Let G0 = MN , where M is the centralizer M = CG(N) of N in G. Then both
M and G0 are normal in G. Thus it suffices to show that G0 has finite index in G,
and that M and N have trivial intersection. We start by showing that G0 has finite
index in G. Let ‖·‖G0

be a precompact norm on G0, invariant under conjugations by
all elements of G (Construction 1.1). Let ‖·‖ be the singular extension of ‖·‖G0

to G
(Construction 1.2). We claim that ‖·‖ is an SND norm on G. Indeed, suppose this
were not so. Then there would exist a non-discrete conjugation-invariant norm ‖·‖1 on
G such that ‖·‖ +‖·‖1 is discrete. In particular the restriction ‖·‖G0

+‖·‖1 |G0
to G0 is

discrete. Thus, since‖·‖G0
is precompact,‖·‖1 |G0

is discrete. Thus the restriction of‖·‖1
to CG(G0) is non-discrete, due to Lemma 2.5. Since CG(G0) ⊂ CG(N) ⊂ G0, we get
a contradiction. This contradiction proves the claim. Since G has the weak dichotomy
property, it follows that ‖·‖ is precompact. Thus, since ‖g‖ = 1 for each element g in
G−G0, we get that G0 has finite index in G. Finally, M and N have trivial intersection
since M ∩ N is contained in the center of G0, and this center is trivial since G0 has
finite index in G.

The following lemma plays a key role in our proof of the second part of Theorem
1.8.

Lemma 2.15. Let G be a group. Assume that there exists an infinite subgroup H of
G, which is precompact with respect to any non-discrete conjugation-invariant norm on
G. Then the sum of any two non-discrete conjugation-invariant norms on G is again
non-discrete. In particular, G has the dichotomy property if and only if G has the weak
dichotomy property. The same is true when replacing the dichotomy property by the
strong dichotomy property and the weak dichotomy property by the property that each
SND-norm has a profinite metric completion in the previous statement.

Proof. Let‖·‖ ,‖·‖1 be non-discrete conjugation invariant norms on G. Then the restric-
tions of‖·‖ ,‖·‖1 to H are precompact. Thus the restriction of the sum‖·‖+‖·‖1 to H is
precompact. In particular this restriction is non-discrete. Thus‖·‖+‖·‖1 is non-discrete
as a norm on G.

2.3 Proof of the second part of Theorem 1.8

We turn to the proof of the second part of Theorem 1.8. Recall that in general, if G
is a group and H is a finite-index subgroup of G, then G has a finite-index normal
subgroup N contained in H . Thus Lemma 2.4 reduces the problem to (finite-index)
normal subgroups. Let N be a finite-index normal subgroup of En(A). Since En(A)
has the dichotomy property it has the weak dichotomy property, hence N has the weak
dichotomy property as well, due to Theorem 2.10. Since N is normal and has finite-
index in En(A) there exists a non-trivial ideal q of A such that E(n,A, q) ⊂ N (see e.g.
[1] Corollary 2.4). We claim that the restriction to N ∩ SL(n,A, q) of any non-discrete,
conjugation-invariant norm ‖·‖ on N is non-discrete. Indeed, suppose this were not so,
then by Lemma 2.5 there exists a non-trivial sequence (ni) ⊂ CN (N ∩ SL(n,A, q)),
satisfying ‖ni‖ → 0 as i → ∞. Thus, since E(n,A, q) ⊂ N , (ni) is contained in the cen-
tralizer of E(n,A, q). Since the centralizer of E(n,A, q) consists only of scalar matrices
and there are only finitely many such matrices in SLn(A), we get a contradiction. This
contradiction proves the claim. By applying Theorem A.2 we get that the restriction to
each of the elementary subgroups Eij(A) ∩ E(n,A, q), of any non-discrete conjugation-
invariant norm on N is non-discrete, hence precompact, due to Lemma 2.3. Thus N
has the dichotomy property as a consequence of Lemma 2.15. This finishes the proof of
Theorem 1.8.

2.4 Proof of Theorem 1.17

We need the following lemma.

13



Lemma 2.16. Let E be a group and A < E a finite central subgroup. Let G = E/A be
the quotient group. If G has the strong dichotomy property, then so does E.

Proof. Let ‖·‖ be a non-discrete norm on E. Consider the quotient norm

‖xA‖G := min
a∈A

{‖xa‖}

on G. It is easy to see that the natural map (E,‖·‖) → (G,‖·‖G) is continuous. If ‖·‖G
is discrete then clearly ‖·‖ is discrete. We claim that if the metric completion G (with
respect to ‖·‖G) is profinite, then so is the metric completion E of E (with respect to
‖·‖). To see this, notice that G is isometric to E/A. Thus E is profinite, due to the fact
that being profinite is closed under extensions.

To prove Theorem 1.17, let π : G̃ → SLn(Qp) be any non-split finite central extension

of topological groups. By [20, Theorem 7.4] the lifted group Γ̃ := π−1(SLn(Z[
1
p ])) is

not residually finite. On the other hand, it follows from Theorem 1.8 and Lemma 2.16
that the metric completion of any non-discrete conjugation-invariant norm on Γ̃ must
be a profinite group. Since profinite groups are residually finite, Γ̃ admits no residually
finite completions, thus every conjugation-invariant norm on it is discrete. It is easily
seen by using the Steinberg relations that any norm on SLn(Z[

1
p ]) must be bounded on

the elementary matrices. Thus every such norm must be bounded due to the fact that
SLn(Z[

1
p ]) is boundedly generated by its elementary matrices. This clearly implies that

Γ̃ is bounded as well.
Notice that by the triangle inequality and finiteness of A, ‖·‖G is bounded iff ‖·‖E

is, thus in fact we proved:

Proposition 2.17. Let G be a bounded group with strong dichotomy property. Then
every finite central extension of G, which is not residually finite, is necessarily meager.

Finally, we remark that while one can show that any finite index subgroup of Γ̃ is
meager as well, we do not know if this stability property holds more generally for all
meager groups.

3 Norm rigidity for compact groups

3.1 Generalities

Recall that we called compact metrizable group G norm-complete if any non-discrete
conjugation-invariant norm on G generates the standard topology of G (Definition 1.10).
We say that G is separable norm complete if any separable conjugation invariant norm
on it induces the standard topology (Definition 1.15). Throughout we shall make use
of two basic properties of separable metric spaces: The first one is that a subspace of
a separable metric space is always separable as well. The second one is that compact
metric spaces are always separable. The following proposition shows that the property
of being norm complete is equivalent to the seemingly weaker property that every non-
discrete conjugation-invariant norm is compact, making the notion of norm complete
analogous to the dichotomy property (Definition 1.3).

Proposition 3.1. Let G be a compact metrizble group. Assume that every non-discrete
conjugation-invariant norm on G is compact. Then any such norm generates the stan-
dard topology on G.

Proof. Let ‖·‖0 be a non-discrete, conjugation-invariant norm on G. Then ‖·‖0 is com-
pact and we have to show that ‖·‖0 induces the standard topology on G. Fix any
conjugation-invariant norm ‖·‖ on G inducing the standard topology, and consider the
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sum norm ‖·‖1 :=‖·‖+‖·‖0. Let G0 = G with the topology induced by ‖·‖0 and let G1

be the abstract group G with the topology induced by‖·‖1. The identity map ϕ : x → x
is a continuous bijection between G1 and G0. Since ‖·‖ and ‖·‖0 are compact, ‖·‖1 is
non-discrete, hence compact as well. Thus G1 is compact. Thus ϕ is a homeomorphism.
Thus ‖·‖1 is equivalent to ‖·‖0. A symmetric argument shows that ‖·‖1 is equivalent to
‖·‖. Thus ‖·‖0 is equivalent to ‖·‖ which finishes the proof of the proposition.

We remark that although the proposition is stated for norm complete groups, the
argument above proves the analogous statement for separable norm complete groups.
Recall that norm-complete groups are just-infinite, meaning that every infinite normal
subgroup of a norm-complete group must be of finite index (Proposition 1.5). The fol-
lowing observation, which is a consequence of the seminal work of Gleason-Montomery-
Zippin towards Hilbert’s fifth problem, gives a rough classification of norm-complete
groups.

Lemma 3.2. Let G be a compact metrizable just-infinite group. Then G is either a
profinite group, or a semisimple Lie group.

Since we could not find a suitable reference we give a proof here.

Proof. Let G0 denote the identity connected component of G. If G0 is finite then it
must be trivial, and in this case G is profinite. Hence, since G is just infinite, we may
assume G0 has finite-index in G. By [13], we have that G is an inverse limit of Lie
groups, G = limα Gα. Then for each α, we have a surjection φα : G → Gα, and the
kernel of φα is either finite or of finite index in G. In the latter case, Gα is finite. Since
G has finitely many connected components we must have at least one α for which the
kernel of φα is finite. But then G is a finite extension of Gα hence G is a Lie group
itself. Thus G0 is a compact connected Lie group. Let Z0 denote the center of G0.
Since Z0 is a characteristic subgroup of G0, it is normal in G, and so Z0 is either finite
or of finite index. We claim that the latter possibility, that Z0 has finite index, cannot
occur. Indeed, otherwise Z0 = G0 is a compact torus (a product of circles). Then the
torsion subgroup of Z0 forms an infinite characteristic subgroup of infinite index, hence
an infinite normal subgroup of G of infinite index, and we get a contradiction. Thus Z0

is finite, and so G0, and hence G, is semisimple, completing the proof of the lemma.

While we are far from being able to describe the norm-complete profinite groups,
the picture is very clear for Lie groups:

Theorem 3.3. Let G be a compact Lie group, either real or p-adic analytic. If G is
simple, meaning its Lie algebra is simple, then G is norm complete. If G is semisimple
(meaning its Lie algebra is semisimple), then G is separable norm complete.

For the proof we need the following two results. The first one is the following version
of Lemma 2.16, whose proof we omit as in view of Proposition 3.1, it is essentially the
same as the proof of Lemma 2.16.

Lemma 3.4. Let E be a compact metrizable group and A < E a finite central subgroup.
Let G = E/A be the quotient group. If G is norm-complete, then so is E. If G is
separable norm-complete, then so is E.

The second result we need is the following local surjectivity result.

Lemma 3.5. Let k be either R or Qp. Let M be a k-analytic manifold of dimension n,
and fix a metric on M compatible with the topology. Fix a point e ∈ M (the “origin”).
Let F : M × kn → M be an analytic function. Assume that there exists an open subset
Ω ⊂ M such that for every x ∈ Ω we have:

1. F (x, 0) = e.
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2. F (x, ·) is non-singular at 0; that is the differential

D0F (x, ·) : kn → TeM

is invertible.

Then, for every open neighborhood U ⊂ kn of 0, if we denote by rx (x ∈ Ω) the maximal
radius of a ball around e contained in F (x, U), then rx > 0, and is locally bounded below.

Proof. The result for k = R is standard and follows immediately from an appropriate
version of the inverse function theorem. The case k = Qp is proved similarly but for the
sake of completeness we give a proof. We shall use standard notation and facts regarding
p-adic analytic functions (see e.g. [19] Part 2, Chapter 2). By taking coordinate charts
it obviously suffices to assume M = Qn

p and e = 0. Let x0 ∈ Ω and V ⊂ Ω a small
compact neighborhood of x0. Let x ∈ V . The function x 7→ D0F (x, ·) is analytic,
so by multiplying by D0F (x, ·)−1, we may without loss of generality assume that the
coordinate function Fi(x, t), viewing it as an analytic function in t, has the form

Fi(x, t) = ti +
∑

|α|>1

ai,α,xt
α,

where ai,α,x ∈ Qp. Here by convention α is an n-tuple α = (α1, . . . , αn), αi ≥ 0,∈ Z,
tα = tα1

1 · · · tαn

n , and |α| =
∑

i αi. Since F is analytic we may assume, by replacing the
function F by (x, t) 7→ µ−1F (x, µt), where |µ|p is sufficiently small, that ai,α,x ∈ Zp.
Thus without loss of generality F (x, ·) is an analytic function whose differential at
t = 0 is the identity, and whose coefficients in the local expansion at t = 0 are p-adic
integers. The lemma now follows from the fact that such a function has an inverse on
the open polydisk P0(1) = {t ∈ Qpn | |t1|p , . . . ,|tn|p < 1} of radius 1 around 0. For
the convenience of the reader we sketch the proof of the last fact (following the proof
of the Inverse Function Theorem, [19], Part 2, Chapter 2): One can invert f := F (x, ·)
as follows. First, write φi(t) = ti − fi(t) and find a (unique) formal solution to the
equations

Ti = ψi(T )− φi(ψ(T )) (1 ≤ i ≤ n),

of the form ψi =
∑

β>0 bi,βT
β. Observe by induction that bi,β = piβ(aj,α,x) where piβ

is a polynomial with positive integral coefficients independent of the {φi}, depending
only on the aj,α,x’s for |α| < |β|. Thus bi,β ∈ Zp, so that the {ψi} converge in P0(1) as
claimed.

Proof of Theorem 3.3. We start with the case where G is simple. Since G has finite
center, we may assume without loss of generality that G has no center, due to Lemma
3.4. Assuming this, let d : G×G → R be any bi-invariant metric on G compatible with
the topology on G. For each x ∈ G, let M(x) be the set of all conjugates and inverses
of elements of the form [x, y] for y ∈ G. That is,

M(x) = {g[x, y]jg−1 | g, y ∈ G, j = ±1}.

Let n denote the dimension of G. By [11, Lemma 3.4], for any non-trivial x ∈ G,
M(x)2n contains an identity neighborhood. Note that in [11], this lemma is stated and
proved in the case of a real group, however the exact same proof works verbatim in the
case of p-adic analytic groups. For each 1 6= x ∈ G, let rx > 0 be the maximal radius
for which Brx , the d-ball of radius rx centered at 1, is contained in M(x)2n. We claim
that rx is locally bounded below. To see this we repeat the argument in the proof of
[11, Lemma 3.4] and then apply Lemma 3.5: Let x0 ∈ G be any non-trivial element.
Let Y ∈ g be any element such that Xx := Ad(x)Y − Y 6= 0, for any x in a small
enough neighborhood of x0. Using the simplicity of g we get that there exist elements
g1, . . . , gn ∈ G so that {Ad(gi)Xx0

}ni=1, is a basis of g, and so the same is true when
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replacing x0 by any x close enough to x0. Consider the function F (x, ·) : kn → G,
defined by

F (x, t) =

n
∏

i=1

gi[x, exp(tiY )]g−1
i .

Here k = R in the real case and Qp in the p-adic case. A direct computation now
shows that D0F (x, ·) is invertible (sending the partial derivative ∂i to Ad(gi)Xx). It is
clear that F is analytic, and F (x, 0) = 1, and so F satisfies the conditions of Lemma
3.5, proving that rx is indeed locally bounded below. Now, let ‖·‖ be a non-discrete
conjugation-invariant norm on G. We claim that there exists a sequence gk, converging
to 1 with respect to both ‖·‖, and d, which is not eventually constant. This follows
immediately from the straightforward fact that the sum of any compact and non-discrete
norms is non-discrete. To finish the proof, we shall use such a sequence gk to show
that ‖·‖ is continuous at 1. For this, let xi be any sequence converging to 1 in the
standard topology. Then for every k ∈ N there exists ik ∈ N such that for every i ≥ ik,
xi ∈ M(gk)

2n. Thus for all i ≥ ik, ‖xi‖ ≤ 4n‖gk‖. Since ‖gk‖ → 0, we get ‖xi‖ → 0,
proving that‖·‖ is continuous at 1. Equivalently, the identity map id : (G, d) → (G,‖·‖)
is continuous at 1. It follows that id is continuous at every point, and since G is compact
it is a homeomorphism. Hence ‖·‖ induces the standard topology on G, finishing the
proof of the first part of the theorem.

For the second part, in the real case recall that a compact semisimple Lie group is
finite central extension of a direct sum of finitely many simple Lie groups. Clearly a
direct sum of finitely many separable norm-complete groups is again separable norm
complete (using the fact that a subspace of any separable metric space is again sep-
arable), so that in the real case the second part of the theorem follows from Lemma
3.4. For the p-adic case, we shall make use of the general fact that G has a finite-index
subgroup G′ which is a direct sum of simple Lie groups. To see this, let g = g1+ · · ·+gs

(direct sum) denote the Lie algebra of G where gi are simple Lie algebras (over Qp).
Let U = U1+ · · ·+Us (Ui ⊂ gi) be a compact open neighborhood of 0 in g such that the
exponential map is well-defined on U , and is a homeomorphism onto an open subgroup
of G (see [3, Chapter 2.7.2, Proposition 3] for the existence of such a neighborhood U).
For each i let Gi denote the subgroup of G generated by exp(Ui). Then Gi is a closed
subgroup of G corresponding to the subalgebra gi, and so the Gi’s commute with each
other (pointwise). Thus for any distinct i, j the intersection Gi ∩Gj lie in the center of
both Gi and Gj . On the other hand, for each i, since gi is simple and Gi is compact, the
center of Gi is finite. Thus by using the fact that the Gi’s are profinite, hence residually
finite, we can replace each Gi by a finite index subgroup G′

i in a way that G′
i and G′

j

intersect trivially for any distinct i, j. The subgroup G′ = G′
1 · · ·G

′
s has finite-index in

G and is a direct sum of simple Lie groups, finishing the proof of the general fact stated
above. Using this fact, the result follows from Lemma 2.4.

We remark that semisimple Lie group are not, in general, norm-complete, due to
Proposition 1.5.

3.2 Proof of Proposition 1.13

Let f : G → H a homomorphism from a norm complete group G to a separable SIN
group H . We assume that G is not a finite group as otherwise the claim is trivial.
Let N denote the kernel of f . Then we have by Proposition 1.11 that N is either
finite or of finite index. If N is of finite index then it is open in G, due to Theorem
1.16, and the statement is clear. Hence we assume that N is finite. Let G0 be the
connected component of G. Then G0 is a normal subgroup of G and so G0 is either
finite, in which case it must be trivial, or of finite index in G, due to Proposition
1.11. Assume first that G0 is trivial. Then G is profinite, and so there exists an open
subgroup G′ of G which intersects N trivially. Let ‖·‖ be a conjugation-invariant norm

17



on H , generating the standard topology on H . Then the function g 7→
∥

∥f(g)
∥

∥ induces a
conjugation-invariant norm on G′. Denote this norm by ‖·‖G′ . Since G′ is uncountable
(as an infinite compact group), its image in H is non-discrete, due to the fact that H
is separable, making ‖·‖G′ non-discrete. Thus ‖·‖G′ induces the standard topology on
G′, making the restriction of f to G′ continuous. Since G′ is open in G we have that
f is continuous as well. Next suppose G0 has finite index in G. Put L = G/N and
let L0 denote the identity connected component of L. Then L0 is of finite index in L,
and moreover, L is just-infinite, since G is. Since L0 has finite index in L, L cannot
be profinite (otherwise L0 would be trivial, making L a finite group, contradicting the
fact that N has infinite index in G), hence L is a semisimple Lie group, due to Lemma
3.2. Thus by Theorem 3.3 we have that L is separable norm complete. Consider the
induced injection f̄ : L → H . The function l 7→

∥

∥f̄(l)
∥

∥ is a conjugation invariant norm
on L, which is clearly separable, due to the separability of H . Thus this norm induces
the standard topology on L, making f̄ , and hence f , continuous.

There is a rich literature around the subject of automatic continuity of homomor-
phisms in various settings – see for example the list at the beginning of [7, Section 8],
and in particular the survey [18] where some negative results for compact Lie groups
are illustrated as well.

3.3 Proof of Theorem 1.12

We need the following lemma, analogous to Lemma 2.3.

Lemma 3.6. Let A be a compact metric ring, and assume every non-trivial ideal in
A has finite index. Let q be a non-trivial ideal in A. Let ‖·‖ be a non-discrete norm
on q⊕ q, and assume ‖·‖ is invariant under the standard action of E(2, A, q) on q⊕ q.
Then ‖·‖ is profinite.

Proof. From Lemma 2.2 we have that for every ǫ > 0 there is a non-zero ideal q′ ⊂ q

such that q
′ ⊕ q

′ ⊂ Dǫ(0), where Dǫ(0) is the ‖·‖-open ball of radius ǫ centered at 0.
On the other hand, any such q

′ is closed in q (since it contains a non-trivial principal
ideal aA which is automatically closed, and of finite index by our assumption on A) and
of finite index, and so it is open in q with respect to the standard topology on q (the
relative topology, induced from the standard topology on A). By taking translates we
obtain that every‖·‖-open subset of q⊕ q is open with respect to the standard topology
as well. Since the standard topology is compact, it follows that ‖·‖ is compact as well.
The sets q′⊕q

′ with q
′ as above form a basis of 0 for the topology induced by‖·‖, hence

‖·‖ is profinite.

Proof of Theorem 1.12. Recall that for any compact ring A, SLn(A) is boundedly gen-
erated by its elementary matrices ([21]). Thus the result follows by repeating verbatim
the proof of Theorem 1.8, using Lemma 3.6 instead of Lemma 2.3.

3.4 Proof of Theorem 1.16

Fix a norm ‖·‖ on G which induces the standard topology on G. Then ‖·‖ is compact,
and in particular is separable. Thus‖·‖ |H is separable, due to the fact that any subspace
of a separable space is separable. Let δ be the characteristic function of the complement
G − H . It is obvious that ‖·‖1 := ‖·‖ + δ is a conjugation-invariant norm on G, and
we claim that ‖·‖1 is separable. To see this, let C be a countable dense subset of H
(with respect to the topology induced by‖·‖ |H), and let C′ be the union C′ =

⋃

s∈S sC,
where S is some countable set of representatives for G/H . Then C′ is countable, and it
is easy to see that C′ is dense in G, with respect to the topology induced by‖·‖1. Hence
‖·‖1 is separable, as claimed. Since G is separable norm complete it follows that ‖·‖1 is
compact. Suppose now that H were not open. Then there would exist a sequence gi of
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elements in the complement of H with‖gi‖ → 0. Since‖·‖1 is compact, we may assume
that ‖gig‖1 → 0 for some element g ∈ G. Since ‖·‖ ≤‖·‖1 we get that ‖gig‖ → 0, hence
g = 1G. On the other hand ‖gi‖1 ≥ 1, which is a contradiction. This contradiction
proves (i).

To prove (ii), let H be a subgroup of G of finite index, and let ‖·‖ be a separable
norm on H . We have to show that ‖·‖ is compact. We may assume that ‖·‖ ≤ 1 (see
e.g. in the beginning of the proof of Theorem 2.10). Using the fact the any subspace
of a separable metric space is again separable it is easy to modify the proof of Lemma
2.4 to show that any metric compact group is separable norm complete whenever it has
a separable norm complete, finite index subgroup. Thus by passing to a finite-index
subgroup, we may assume H is normal in G (see the proof of Lemma 2.4). For each
element g in G let‖·‖g be the conjugation-invariant norm on H defined by x 7→

∥

∥gxg−1
∥

∥,
and set ‖·‖1 :=

∑

s∈S‖·‖s, where S is some set of representatives for G/H . It is easy
to see that ‖·‖1 is a conjugation-invariant norm on H , invariant under conjugations by
all elements of G. We keep denoting by ‖·‖1 the singular extension of ‖·‖1 to G (see
Construction 1.2). As in the proof of (i), it is easy to see that ‖·‖1 is separable. Since
G is separable norm complete, it follows that ‖·‖1 induces the standard topology on G.
Hence, using (i), H is open in G with respect to ‖·‖1, and so the restriction ‖·‖1 |H is
compact. Since ‖·‖ ≤‖·‖1, we get that ‖·‖ is compact as well, which finishes the proof
of the theorem.

3.5 A construction of an infinite-dimensional, separable, non-

locally compact, p-adic group

As indicated in the introduction, Proposition 1.13 holds for a quite large family of target
groups H . To demonstrate it, we construct an infinite dimensional p-adic group which
is not locally compact, yet separable. For this, let Rp be the valuation ring of Cp. We
let GL(Rp) := ∪nGLn(Rp). The natural topology on GL(Rp), coming from the p-adic
absolute value, is induced from a conjugation-invariant norm. Indeed, on each GLn(Rp)
we can define a conjugation-invariant norm by letting‖g‖n :=‖In − g‖op, where‖·‖op is
the usual operator norm:

‖X‖op := sup
‖v‖

∞
=1

(‖Xv‖∞).

Here
∥

∥

∑

i viei
∥

∥

∞
= supi |vi|p, where ei is the standard basis of Rn

p and | · |p is the
p-adic absolute value. It can be verified that ‖·‖n generates the standard topology on
GLn(Rp). To define a norm on GL(Rp) we simply take the limit of the norms ‖·‖n.
Denote the resulting norm by ‖·‖, and let H be the metric completion of GL(Rp) with
respect to this norm. Then H can be described as follows: As an abstract group H is
the collection of all infinite matrices of the form I+(aij)i,j∈N with aij ∈ Rp and aij → 0
as i+ j → ∞, which have inverse of the same kind. The topology on H is the topology
induced by the supremum-norm. As a consequence of Proposition 1.13 we obtain that
every abstract homomorphism ϕ : SLn(Zp) → H is already continuous.

4 Questions

We close the paper by posing several questions that naturally arise from our work.

1. The dichotomy property for higher-rank lattices. Let Γ be a so-called
“higher-rank” arithmetic lattice, or, more generally S-arithmetic lattice of a simply
connected simple algebraic group G defined over a global field K. In our paper we
showed that when G = SLn≥3, Γ has the dichotomy property, but it is very natural to
conjecture that, as with most elements of the rigidity theory of arithmetic groups, this
should hold for all G and K (and S). The most non-trivial ingredient in our approach
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is the use of bounded generation, hence we certainly expect (although it would still be
nice to establish) that as first step these results can be extended to other Chevalley
groups like Sp2n.

Two especially challenging cases seem to stand out: The first is that when G is
anisotropic over K, i.e. Γ has no unipotent elements (and is a co-compact lattice in its
“natural envelope”; see [29, Section 6.8] for more detalis, as well as a construction of such
groups by means of maximal orders in division algebras). Recall from the introduction
that the dichotomy property implies being just infinite, and in these cases, even that of
G(R) = SL3(R), there is no known algebraic proof of the latter (in fact no other proof
besides that of Margulis, invoking property (T) and amenability).

In the original version submitted for publication we discussed the question of G =
SL2 with K = Q but S containing some finite prime, i.e., Γ = SL2(Z[1/p]). Here
there is an algebraic proof for the normal subgroup theorem, but a main ingredient in
our approach breaks completely: Unlike in the proof of Theorem 1.8, there does exist
a norm on the unipotent subgroup Z[1/p] invariant under its normalizer in Γ (acting
on it via multiplication by powers of p), which is neither discrete nor precompact. A
construction of such a norm was given to us by Dor Elboim, to whom we are thankful.
We refer the reader to the previous version of the paper, appearing on arXiv, for a
sketch of Elbom’s construction. Fortunately, following the distribution of that version,
A. Trost [24] found a way around this issue, by adapting Lemma A.8.

2. Norm-completeness for finitely-generated FAb profinite groups.
In their deep work on finitely generated profinite groups ([16, 17]), Nikolov and Segal
have shown that such groups G which are so-called FAb have the property that their
normal subgroups of countable index must in fact be of finite index (and open) [17,
Corollary 5.24]. If the group G is furthermore just infinite in the topological sense, then
they show that it must be so in an abstract sense as well – any infinite normal subgroup
must have finite index [17, Corollary 1.5]. Recall that in our paper we established these
two same properties: The first for G which is separable norm-complete, and the second
for G which is norm-complete, and it seems very natural to wonder if those two norm
rigidity properties are the “reason” underlying these deep results of Nikolov–Segal, i.e.,
Is it true that a finitely generated profinite FAb group must be separable norm complete,
and one which is furthermore just-infinite must be norm complete?

3. Norms on Z2 invariant under thin subgroups of SL2(Z). Let ‖·‖ be
a non-discrete norm on Z2 (viewed as an additive group Z2 = (Z2,+)), and assume
‖·‖ is invariant under the usual linear action of some subgroup Γ < SL2(Z). If Γ =
〈

(

1 m
0 1

)

,

(

1 0
m 1

)

〉

for some m ∈ N, then ‖·‖ must be precompact, due to Lemma

2.3. It is well known that if m ≥ 3 then Γ has infinite index in SL2(Z), making it a
thin subgroup, i.e. an infinite co-volume, discrete, Zariski dense subgroup of SL2(R).
An interesting question is whether any thin subgroup has this property. That is,

Must any non-discrete norm on Z2 invariant under the linear action of a thin sub-
group Γ < SL2(Z) be pre-compact?
Note that there do exist non-discrete, unbounded norms on Z2 which are invariant under
the action of a cyclic subgroup of SL2(Z). For instance, let‖·‖ be a norm on Z2 defined
by

‖·‖ : (x, y) → max{
|x|p
2

, |y|},

where | · |p is the p-adic absolute value and | · | is the usual absolute value on Z. It is easy
to check that ‖·‖ is a non-discrete, unbounded norm on Z2, invariant under the action

of the matrix

(

1 1
0 1

)

. It seems likely possible to construct a non-discrete, unbounded
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norm invariant under the action of a hyperbolic matrix as well.
A possible approach to attack the aforementioned question is as follows: For a

subgroup Γ < SL2(Z) and a positive number M > 0, let SM (Γ) denote the set of sums:

SM (Γ) := {

l
∑

i=1

γi | γi ∈ Γ, l ≤ M}.

Suppose that SM (Γ) contains some congruence subgroup of SL2(Z) (and in particular a

subgroup of the form H =

〈

(

1 m
0 1

)

,

(

1 0
m 1

)

〉

for some m). If‖·‖ is any non-discrete

norm on Z2 invariant under the action of Γ, then for v ∈ Z2 and h ∈ H we have

‖hv‖ ≤ M‖v‖ .

It follows from the remark after the proof of Lemma 2.2 and Lemma 2.3 that ‖·‖ is
pre-compact (in fact, its metric completion is profinite). This raises the following ques-
tion, which seems of interest in its own right, being related to various ”sum-product”
phenomena in the deep theory of so-called ”super-strong approximation”:

Let Γ < SL2(Z) be a thin subgroup. Does there exist a positive number M > 0 such
that the set SM (Γ) defined above contains some congruence subgroup of SL2(Z)?

(in fact, SM (Γ) should contain the group of all scalar congruence matrices, which is
invariant under addition.)

The above discussion shows that any thin subgroup Γ < SL2(Z) for which the
answer is positive has the property that any non-discrete norm it preserves on Z2 must
be pre-compact.

To see a non-trivial example where one has positive answer to this question note that
for any positive integer m, any element of the full congruence subgroup SL(2,Z,m) =
ker(SL2(Z) → SL2(Z/m

2Z)) can be written as a sum of a bounded number (depending

on m) of elements in the thin subgroup Γ =

〈

(

1 m
0 1

)

,

(

1 0
m 1

)

〉

, as the following

computation shows:

(

1 +m2a mb
mc 1 +m2d

)

= (2m2 − 3)

(

1 0
0 1

)

+

(

1 m(b− 2)
0 1

)

+

(

1 0
m(c− a− d+ 4) 1

)

+

(

1 +m2(a− 2) m
m(a− 2) 1

)

+

(

1 m
m(d− 2) 1 +m2(d− 2)

)

.

Of course, one can naturally extend the problem above for all n ≥ 2, and more
general rings A in place of Z.

A Production of elementary matrices

The results of this appendix are related to conjugacy width in SLn. We feel that such
results should be standard, but as we were unable to find suitable versions in the
literature we give proofs. Our proof of Theorem A.2 relies on computations from [1].
Let A be an integral domain with unit, and fix an integer n ≥ 2. We fix notation for
some subgroups of SLn(A). For each pair of integers 1 ≤ i 6= j ≤ n we denote by eij
the n × n matrix with 1 in the (i, j)-entry and 0 elsewhere. We denote by I (or In if
we want to emphasize the dimention) the identity matrix in SLn(A). We denote by
Eij(A) the group of matrices of the form I + aeij , where a ∈ A. A matrix of this form
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is called an elementary matrix. We denote by En(A) the subgroup of SLn(A) generated
by all elementary matrices. For any non-zero ideal q in A, we denote by E(n,A, q)
the subgroup of En(A) generated by the elementary matrices with off-diagonal entries
belonging to q. We denote SL(n,A, q) := ker(SLn(A) → SLn(A/q)) (the map being the
natural projection). If it is clear from the context what A and n are, we denote also
SL(n,A, q) = Γ(q).

Let G be any group and g an element g ∈ G. Let S be any subset of G. We define

gS := {sgis−1 | s ∈ S, i = ±1}. (5)

Consider the group
〈

gS
〉

generated by gS . For any subgroup H of G we can ask what

is the minimal length of a non-trivial element in
〈

gS
〉

∩ H , with respect to the set of
generators gS . The main result of this section is obtaining a uniform bound on this
quantity, over all non-central elements in G, where G = SL(n,A, q), S = E(n,A, q),
and H an elementary group H = Eij(q). Here n is any integer n ≥ 3, A is an integral
domain satisfying SRn−1 (see Definition A.1 below), and q is any non-zero ideal in A.
In fact, the bound we obtain is absolute (29), although we do not make any use of this
fact.

We start by recalling the definition of the stable range of a ring.

Definition A.1. Let A be a commutative ring with unit. For r ∈ N, an element
v =

∑r
i=1 viei ∈ Ar is called unimodular if

∑

viA = A. Here ei (1 ≤ i ≤ r) is the
standard basis of Ar (1 is the ith coordinate and 0 elsewhere). A satisfies SRm if for

any unimodular element v =
∑m+1

i=1 viei ∈ Am+1 there exist elements t1, . . . , tm ∈ A
such that

∑m
i=1(vi + tivm+1)ei ∈ Am is unimodular. The smallest integer m such that

A satisfies SRm is called the stable range of A.

Theorem A.2. Let n ≥ 3. Let A be an integral domain with unit, satisfying SRn−1.
Let q be a non-zero ideal in A. Let σ be any non-central element in SL(n,A, q). Let

1 ≤ i 6= j ≤ n. Then there exists a non-trivial element in
〈

σE(n,A,q)
〉

∩Eij(q) of length

at most 29 with respect to the set of generators σE(n,A,q).

For the rest of the section, we fix n ≥ 3, A a ring satisfying SRn−1, G = SL(n,A, q),
and S = E(n,A, q). We call a transformation T : G → G a q-operation if T is either of
the form g 7→ sgs−1, g 7→ [g, s], or g 7→ [s, g], where s ∈ S. To prove Theorem A.2, we
will show that any non-central element σ ∈ G can be reduced to a non-trivial element
of Eij(q), using at most 9 q-operations. We shall make use of the following facts, which
are easily verified:

(i) Let g, h be any two matrices in GLn(A). Let 1 ≤ i 6= j ≤ n. Let α be the i-th
column of g and β the j-th column of h. Then

geijh = αβ. (6)

(ii) Let x, y ∈ GLn−1(A), v ∈ An−1, and u ∈ A×. Then

[

(

u v
0 x

)

,

(

1 0
0 y

)

]

=

(

1 (vy − v)(yx)−1

0 [x, y]

)

. (7)

Here we view v as a row vector.

(iii) In the notation of (ii),

[

(

x v
0 u

)

,

(

y 0
0 1

)

]

=

(

[x, y] u−1(v − xyx−1v)
0 1

)

. (8)

Here we view v as a column vector.
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We will also make use of the following simple lemma concerning unimodular elements.

Lemma A.3. If (a1, . . . , an) ∈ An is unimodular, then so is (a1, . . . , an−1, a
2
n).

Proof. Let (t1, . . . , tn) so that

t1a1 + · · ·+ tnan = 1. (9)

Multiplying (9) by an we get

ant1a1 + · · ·+ antn−1an−1 + tna
2
n = an.

Hence an belongs to the ideal generated by a1, . . . , a
2
n and we get

a1A+ · · ·+ an−1A+ a2nA = a1A+ · · ·+ anA = A.

We turn to the proof of Theorem A.2. We divide the proof in several steps. The first
step is reducing σ to a copy of the semi-direct product Affn−1(A) = SLn−1(A)⋉An−1.
We consider two copies of Affn−1(A) inside SLn(A); the images of the embeddings

(γ, v) 7→

(

γ v
0 1

)

, and (γ, v) 7→

(

1 vT

0 γ

)

. We denote these copies by G1 and G2

respectively.

Lemma A.4. Any non-central element σ ∈ G can be reduced to a non-central element
of either G1 or G2, using at most 4 q-operations.

Proof. Let α =









a1
...
an









be the first column of σ, and β =
(

b1, . . . , bn
)

be the second row

of σ−1. Let τ = In + pe12, where p is some arbitrary non-zero element in q.
Case 1. First, we consider the case where τ and σ commute. Then we have

In = [σ, τ ]

= σ(In + pe12)σ
−1(In − pe12)

= (In + pσe12σ
−1)(In − pe12)

= (In + pαβ)(In − pe12),

and so αβ = e12. Hence α = ue1 for some unit u ∈ A. Thus in this case we have

σ =

(

u v
0 σ′

)

,

where v ∈ q
n−1 and σ′ ∈ GL(n − 1, A, q). Suppose that σ′ does not belong to the

centralizer of E(n−1, A, q). Then there exists σ′′ ∈ E(n−1, q, A) so that [σ′, σ′′] 6= In−1.

By commutating σ with

(

1 0
0 σ′′

)

we then get

[

σ,

(

1 0
0 σ′′

)

]

=

(

1 ∗
0

[

σ′, σ′′
]

)

,

which is non-central, due to the fact that [σ′, σ′′] 6= In−1, and we are done. If σ′ belongs
to the centralizer of E(n− 1, A, q), then σ′ = tIn−1 for some unit t ∈ A, and we have

(

u pte1 + v
0 tIn−1

)

= τσ = στ =

(

u pue1 + v
0 tIn−1

)

,
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and so u = t. Thus in this case σ =

(

u v
0 uIn−1

)

. Since σ is non-central we must

have v 6= 0. Thus there exists an element σ′′ ∈ E(n − 1, A, q) so that vσ′′−1 6= v.

Commutating σ with

(

1 0
0 σ′′

)

we get, using (ii),

[

σ,

(

1 0
0 σ′′

)

]

=

(

1 u−1(v − vσ′′−1)
0 In−1

)

,

which is non-central because vσ′′−1 6= v. Thus we see that if σ and τ commute then σ
can be reduced to an element belonging to one of the copies of the semi-direct product
by at most two q-operations.

Case 2. Assume now that σ and τ do not commute, i.e.

[σ, τ ] 6= In. (10)

We first reduce to the case where (a1, . . . , an−1) ∈ An−1 is unimodular. It is clear that α
is unimodular, and so (a1, . . . , an−1, a

2
n) is unimodular, due to Lemma A.3. Thus there

exists t = (t1, . . . , tn−1) ∈ An−1 so that (a1 + t1a
2
n, . . . , an−1 + tn−1a

2
n) is unimodular.

Conjugating σ by

(

In−1 ant
0 1

)

(viewing t as a column vector) we get

(

In−1 ant
0 1

)

σ

(

In−1 −ant
0 1

)

=

















a1 + t1a
2
n ∗ . . . ∗

a2 + t2a
2
n ∗ . . . ∗

...
...

...
an−1 + tn−1a

2
n ∗ . . . ∗

∗ ∗ . . . ∗

















.

Thus after one conjugation we may assume that (a1, . . . , an−1) is unimodular. As-

suming this, let d = (d1, . . . , dn−1) ∈ An−1 such that
∑n−1

k=1 dkak − 1 = 0, and let

λ =

(

In−1 0
and 1

)

. Conjugating [σ, τ ] by λ we get

λ−1[σ, τ ]λ = λ−1(στσ−1τ−1)λ

= λ−1(σ(In + pe12)σ
−1τ−1)λ

= λ−1(In + pαβ)τ−1)λ

= λ−1(τ−1 + pαβτ−1)λ

= λ−1τ−1λ+ pλ−1αβτ−1λ.

(11)

Note that by construction, λ−1α has 0 in the last entry, so that the last row of
λ−1αβτ−1λ is 0. Thus using (11) we get that the last row of λ−1[σ, τ ]λ is equal to
the last row of λ−1τλ, which is (0,−pand1, 0, . . . , 0, 1). Denote ρ = λ−1[σ, τ ]λ. We
claim that ρ is non-central. Indeed, otherwise ρ would be a scalar matrix, and since (at
least) one entry of ρ is 1, this would mean ρ = In. But then [σ, τ ] = In, which contra-
dicts (10). Now let α′, β′ be the first column and second row of ρ and ρ−1 respectively.
As before, if [ρ, τ ] = In then α′ = ue1 for some unit u ∈ A, and we are done. Thus we
may assume that

[ρ, τ ] 6= In. (12)

As in (11), we have
[ρ, τ ] = τ−1 + pα′β′τ−1. (13)

As before, since α′ has 0 in the last entry, the last row of α′β′τ−1 is 0, and (13) implies
that [ρ, τ ] has the same last row as τ−1. But the last row of τ−1 is (0, . . . , 0, 1), so
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that [ρ, τ ] belongs to G1. As before, [ρ, τ ] is non-central since one of its diagonal entries
equals 1. Thus we see that σ can be reduced to an element belonging to one of the
copies of the semi-direct product by at most 4 q-operations.

Lemma A.5. Any non-central matrix in G1 may be reduced, using at most 1 q-operation

to a non-central matrix of the form

(

In−1 ∗
0 1

)

. Any non-central matrix in G2 may be

reduced, using at most 1 q-operation to a non-central matrix of the form

(

In−1 0
∗ 1

)

.

Proof. Let σ =

(

γ v
0 1

)

, where γ ∈ SLn−1(A) and v ∈ An−1. Assume σ is non-central.

If γ = In−1 there is nothing to prove. Otherwise there exists v′ ∈ q
n−1 such that

γv′ 6= v′. Let λ =

(

In−1 v′

0 1

)

. Then [σ, λ] =

(

In−1 γv′ − v′

0 1

)

is a non-central

element of the required form. The second part follows by a symmetric argument.

Lemma A.6. Any non-central matrix of the form

(

In−1 ∗
0 1

)

may be reduced to a non-

trivial elementary matrix using at most 1 q-operation. The same is true for non-central

elements of the form

(

In−1 0
∗ 1

)

.

Proof. Let σ =

(

In−1 v
0 1

)

, where v =









v1
...

vn−1









. Assume that σ is non-central, so that

vj 6= 0 for some 1 ≤ j ≤ n − 1. Let 0 6= q ∈ q be any non-zero element of q. Let

λ =

(

In−1 + qe1j 0
0 1

)

. We have [σ, λ] =

(

In−1 −qvje1
0 1

)

, which proves the first part

of the lemma. The second part follows by a symmetric argument.

Lemma A.7. Let 1 ≤ i 6= j ≤ n. Then any non-trivial elementary matrix may be
reduced to a non-trivial element in Eij(A) by using at most 3 q-operations.

Proof. For the proof we use the relations

[In + aeαβ , In + beβγ] = In + abeαγ ,

whenever 1 ≤ α, β, γ ≤ n are pairwise distinct. Suppose we are given an element
In + rekl ∈ Ekl where (i, j) 6= (k, l). We consider the following two cases:

Case 1 i = k or j = l.

Case 2 i 6= k, j 6= l.

Suppose first we are in Case 1. If j = l, then i, k, l are pairwise distinct, and thus for
any q ∈ q

[In + qeik, In + rekl] = In + qreil = In + qreij ,

and we are done. The case where i = k is handled similarly. Suppose we are in Case 2.
If k, l, j are pairwise distinct, then for any q ∈ q

[In + rekl, In + qelj ] = In + rqekj ,

and we are in Case 1 again. If k, l, j are not pairwise distinct then necessarily k = j.
Since n ≥ 3 we can find some 1 ≤ h ≤ n such that h, k, l are distinct and we have that
for any q ∈ q

[In + qehk, In + rekl] = In + qrehl.
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If h = i we are in Case 1 again. Otherwise commutate with In + qelj to get

[In + qrehl, In + qelj ] = In + rq2ehj ,

and apply Case 1.

Proof of Theorem A.2. The theorem follows immediately by applying Lemmas A.4, A.5,
A.6 and A.7 above.

Lemma A.8. Let A be a commutative ring with unit and q be an ideal in A. Let

σ =

(

a b
c d

)

∈ Γ(q). Suppose there exists a unit u in A, such that u ≡ 1 mod c2A.

Then there exists an non-trivial element of E12(q) which can be written as a product of
at most 4 conjugates of σ and σ−1 by elements of Γ(q). The same is true if we replace
E12(q) by E21(q) and require the existence of a unit u with u2 ≡ 1 mod bA.

Proof. Let x ∈ A such that u4 = 1 + cx and let t = ax. Let S =

(

1 t
0 1

)

σ

(

1 −t
0 1

)

,

and T =

(

u2 0
0 u−2

)

σ

(

u−2 0
0 u2

)

. Then both S and T are conjugates of σ by elements

of Γ(q). Let Y = S−1T . Then a direct computation shows that Y =

(

u−4 q
0 u4

)

, where

q ∈ q. After commutating with a suitable element of the form

(

u4 ∗
0 u−4

)

we get the

desired element of E12(q). The other part of the lemma is obtained by using a symmetric
argument.
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