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Predicting Flash Flood Economic Damage at the

Community Scale: Empirical Zero-Inflated Model
with Semicontinuous Data
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Abstract: Rainfall-induced flash floods are characterized by their rapid onset and small spatial scale. With little lead time for warning,
floodwater can accumulate rapidly and its force can damage roads, swamp houses, destroy bridges, and scour out channels. Having data-
driven estimates of potential economic losses from flash floods (before they occur) helps authorities make informed decisions about planning
and prioritizing mitigation projects. This article provides a probabilistic predictive model to estimate flash flood economic damage at the
census tract scale. To simplify model utilization and avoid strong assumptions about property value and replacement costs, the model predicts
the total cost of property and infrastructure damages for individual census tracts (expressed in 2019 prices). The model was developed based
on a flash flood data set for a 15-year period (2005-2019) in Texas. The data set was assembled by integrating disparate data from multiple
platforms. The occurrence of economic damage was found to be a zero-inflated problem. Therefore, we developed a two-part mixed-effect
model. The model first estimates the probability that economic damage will occur (zero-inflated part) and then predicts the dollar amount of
the economic damage (continuous part). Utilization of the developed model was demonstrated in an application to Harris County, Texas.
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Introduction

Over the past two decades, data reported by the National Oceanic
and Atmospheric Administration’s National Weather Service (NWS)
have indicated that approximately 52% of flood-related economic
losses in the US are attributed to flash flooding (NWS 2019). These
economic losses include immediate and long-term damages to both
private property and public infrastructure (Vinet 2008; Karagiorgos
et al. 2016).

Flood economic-damage forecasting models have received in-
creasing attention over the years to inform flood control and insur-
ance policies (Karamouz et al. 2016; Mokhtari et al. 2017; Gutenson
et al. 2017; Milanesi and Pilotti 2021). However, the spatial scales
of these models remain either too large (e.g., county level) or too
small (e.g., site-specific or building type—specific) for planning flash
flood mitigation measures at the city or sub-city scale (Chang et al.
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2023; Wilkho et al. 2023). For a detailed discussion of differences in
the methodology and purpose of flood risk assessments at different
spatial scales (supra-national, macro, meso, micro), we refer the
reader to a review by De Moel et al. (2015). Furthermore, many
flood damage estimation models are based on the depth of flood-
water and associated damage at those depths using depth-damage
functions. In flash floods, however, the concern is not just the depth
of water but also the water flow velocity and accumulation time. In
depth-damage functions, the main determinant of direct damage is
the water depth. Pistrika et al. (2014) and Milanesi and Pilotti
(2021) pointed out that many more factors— flow velocity, dura-
tion of flooding, sediment load, contamination, available flood
warning systems, and effectiveness of emergency response during
a flood event—affect the severity and extent of flood damages.
Flood economic damage models rarely include all of these influ-
encing factors (Pistrika et al. 2014; Baradaranshoraka et al. 2019),
perhaps due to difficulties in obtaining reliable data for them. Other
factors, such as population increase, urbanization, increasing vul-
nerabilities, and increasing extreme rainfalls, seem to have a sub-
stantial effect on the impacts of flash floods (Ahmadalipour and
Moradkhani 2019). Gutenson et al. (2017) emphasized the need
for considering the uncertainties associated with flood damage
and economic loss estimations, and effectively communicating
these uncertainties to end users. To address these limitations, we
provide a new empirical model for forecasting flash flood eco-
nomic damages at the census tract scale. Economic damage is de-
fined here as the approximate cost of direct physical damage
(expressed in 2019 US prices), including loss of property and costs
of repairing damaged infrastructure (Downton and Pielke 2005).

We make provide two major advances to flash flood economic
damage forecasting models in this article. First, the proposed model
uses a spatial scale consistent with the scale of flash floods. We use
the census tract as the analysis unit to capture the characteristics
of the triggering storm and the built, natural, and social environ-
ments in which it occurs. Furthermore, data on the model inputs
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are readily available at this spatial scale. The census tract
(delineated by the US Census Bureau) is a relatively permanent
subdivision of a county with a population size between 1,200 and
8,000 people (the optimum size is 4,000 people). Second, the
model accounts for the inflated zeros in flash flood damages. As
shown later in this paper, flash flood damage data are strongly
skewed, containing large numbers of zeros (i.e., flash floods that
have no or minimal damages), as well as extremely high damage
values (outliers). This type of phenomenon is described as a zero-
inflated problem in economics and epidemiology (Burger et al.
2009; Rose et al. 2006). It is difficult to obtain unbiased statistical
inferences and predictions from such data using conventional stat-
istical methods (Burger et al. 2009; Rose et al. 2006). Therefore, we
employ a two-part mixed-effect model. The first part determines the
probability that economic damage will occur, and the second part
predicts the dollar amount of the damage.

Background

There exists a considerable body of research on flood damage as-
sessment and forecasting models. However, the literature on fore-
casting flash flood damage at the community level remains scarce,
despite the unique nature of flash floods. The conventional ap-
proach for estimating direct economic flood damage to structures
is water depth-damage functions. In flash floods, however, damage
to structures is often caused by swift floodwater (high velocity and
high force) and it can involve the carrying away of valuable proper-
ties such as vehicles (Vuichard and Zimmermann 1986; Schroeder
et al. 2016). Also, water depth-damage functions tend to ignore the
harmful molds, producing allergens and irritants, which usually re-
quire specialized treatments performed by licensed technicians
(Chew et al. 2006; Brandt et al. 2006). These treatments cost more
than a thousand dollars each time and can be long term (Aalberts
and Hoyt 2000). In addition to immediate and long-term damages
to private property, flash floods result in damages to critical infra-
structure. Large debris and floodwaters can cause structural damage
to bridge and roadways. Power, telephone, and cable lines can be
washed away or seriously damaged by flash floods as well. Inter-
ruptions to transportation systems, business closures, and logistical
delays can lead to additional economic losses (Taguchi et al. 2022).
A review by Merz et al. (2010) provides a comprehensive review of
economic flood damage assessment models and future research
directions.

The impacts of flash flooding have been analyzed at the county
scale in the United States. Khajehei et al. (2020) evaluated the
socioeconomic vulnerability to flash flooding at the county scale
in accounting for flash flood characteristics, including duration, fre-
quency, magnitude, and severity. Alipour et al. (2020) employed a
random forest model to predict flash flood damages at the county
scale in the Southeastern US. Such models indicate an association
between flash flood—related economic losses and event precipita-
tion level, event duration, unit peak discharge, surrounding natural
and built environment, population density, and community social
vulnerability.

In summary, the model provided in this paper has two key ad-
vantages. First, the model uses a spatial scale consistent with the
spatial scale of flash flood events (i.e., sub-city scale, census tract).
While the census tract scale may not be in perfect agreement with
the flash flooding scale (e.g., low-populated areas where the scale
might be smaller than the affected census tract), it provides closer
agreement than currently available models (e.g., county scale).
Second, the model does not rely on conventional water depth-
damage functions, which may not be suitable for flash flooding
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where damage occurs because of not only floodwater depth but
also floodwater velocity and accumulation time. Instead, the model
estimates economic damage based on empirical data about the trig-
gering storm and the built, natural, and social environments in which
it occurs.

Finally, we recognize that previous research efforts addressed
the safety risks (human fatalities and injuries) of flash flooding in
the United States (Zahran et al. 2008; Ashley and Ashley 2008;
Sharif et al. 2012, 2015; Ahmadalipour and Moradkhani 2019;
Chang et al. 2023). However, these safety issues are beyond the
scope of this article.

Study Area and Data

Flash Flood Event Data

Flash flood event data were obtained from NOAA’s storm events
database. A total of 2,866 flash flood events that occurred in Texas
over a 15-year period (2005-2019) were included in this study.
These events were recorded by law enforcement and emergency
management officials. The storm events database contains spatial
and temporal information about natural storm hazards (including
flash flooding) that have sufficient intensity to cause loss of life, in-
juries, significant economic damage, and/or disruption to commerce.

Texas has the highest number of flash flood events in the US.
These flash floods occur largely in the Hill Country and in Central
Texas areas along the Balcones Escarpment, which lies between the
Edwards Plateau and the coastal plain (Sharif et al. 2012, 2015).
This region (often called Flash Flood Alley) is characterized by
steep terrain, shallow soil, and unusually high rainfall rates (Baker
1975; Caran and Baker 1986). Additionally, hurricanes and tropical
storms frequently visit Gulf of Mexico coastal areas in Texas and
release enormous amounts of water in a very short time, which gen-
erates flash floods across communities and results in billions of
dollars of damage or economic loss (Burnett 2008; Kousky et al.
2020).

Fig. 1 shows the number of flash flood events in each Texas
county and the total dollar amounts (expressed in 2019 dollars)
of economic damage from these events. Since the damage analysis
in this study spans a 15-year period, a 2% annual average inflation
rate, acquired from the US Bureau of Labor Statistics, was applied
to convert the dollar amounts into 2019 equivalent values. It can be
seen that areas with severe flash flood damage (>$10M) were found
not only in areas where flash flooding happens recurrently (dark red
areas) but also in in areas with occasional or infrequent flash flood-
ing. This indicates that these damages occur due to a variety of
influencing factors, such as storm characteristics, the built environ-
ment, site geographic and socioeconomic characteristics, and envi-
ronmental stimulus.

Factors Influencing Economic Damage from Flash
Flood Events

Studies have found that flash flood damage and human loss are
related not only to behavior or poor judgment about potential
dangers but also to the physical, natural, and social environments
at the site of the event (Zahran et al. 2008; Sharif et al. 2015;
Terti et al. 2019; Chang et al. 2021). Based on this research, we
identified 14 candidate factors that represent these environments
and influence the occurrence and magnitude of flash flood eco-
nomic damage. These factors and their data sources are provided
in Fig. 2.

The data on our candidate factors were acquired from different
publicly available data sets and platforms with diverse formats and
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Fig. 1. Number of flash flood events and associated economic damages in Texas (2005-2019).
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Fig. 2. Flash flood microdata and feature selection for input variables.

structures. Therefore, it was necessary to integrate these disparate
data based on geographical coordinates (latitude and longitude),
census tract, and year of event. The Google Earth Engine Python
programming interface and Esri’s ArcGIS software were used to
implement data integration and geoprocessing at a fine spatial scale.
The final data set used in this study included flash flood events and
potential influencing factors at the census tract scale. The census tract
was used as a surrogate for neighborhood/community and local envi-
ronment to capture temporal and spatial complexities at the scene of
the event.
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Two-Part Model of Economic Damage

In this section, we describe the development of the flash flood eco-
nomic damage predictive model. Fig. 3 shows that 70% of the flash
flood events in the data set resulted in zero economic damage. Also,
the nonzero part of the economic damages exhibits a log-normal
distribution. Such skewed data with many zeros are typically re-
ferred to as semicontinuous data in economics, social science, and
epidemiology research (Su et al. 2009; Hsu and Liu 2008; Boulton
and Williford 2018).
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Fig. 3. Histogram of Texas flash flood economic damage in
2005-2019 (expressed in 2019 prices).

The skewed shape of distribution for the response variable, like
that shown in Fig. 3, can be problematic for conventional statistical
predictive models (i.e., linear regression, generalized linear regres-
sion), in which several assumptions must be satisfied, leading to a
biased estimation and misleading inference for potential influenc-
ing factors (Olsen and Schafer 2001; Boulton and Williford 2018).
On the other hand, simple discretization of the data into two cat-
egories (zero damages and nonzero damages) leads to loss of in-
formation and inflates relations between the response variables and
the influencing factors. Therefore, semicontinuous variables are often
thought to reflect observations from two distinct data-generating
processes, one determining whether the outcome is zero and the other
determining the actual value if the outcome is nonzero (Olsen and
Schafer 2001; Lachenbruch 2002; Tooze et al. 2002; Su et al. 2009).

County-Level Random Intercept

In this study, the severity of flash flood damage was shown to vary
significantly in different geographic areas, even under the same rain-
fall amount, onset time, and storm episode. This depends on local
vulnerability and resilience to flash flooding, such as landscape ter-
rains, soil types, land use types, housing structures, drainage sys-
tem conditions, and household compositions (Zahran et al. 2008;
Khajehei et al. 2020). To illustrate this point, Fig. 4 plots flash flood
economic damage (in 2019 prices and log-transformed) versus
event precipitation in four counties in Texas.

The fitted lines indicate that Travis County (the top line), located
in central Texas, where the landscape is covered by steep terrain

15-

County

== HARRIS

=== HIDALGO
~~ TARRANT
~o~ TRAVIS

Log($Economic Damage)

5 10
Precipitation (in.)
Fig. 4. Flash flood damages versus event precipitation in four Texas
counties.
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and shallow soil, experienced more severe economic damage than
other counties in flash flood hazards. The economic damage in
Hidalgo County was also high, possibly due to its poor infrastruc-
ture conditions and frequent tropical storms off the Gulf of Mexico.
On the other hand, Harris County and Tarrant County, the two big-
gest metropolitan areas in Texas, exhibited better resistance to flash
flood hazards in terms of economic loss. Therefore, this study
treated county as a random intercept in the predictive model to re-
present a combination of unknown factors that are difficult to mea-
sure but that influence flash flood economic damage. Observation
of the plot in Fig. 4 shows that for any given precipitation economic
damage can vary greatly depending on county.

Mathematical Basis of Two-Part Mixed-Effect Model for
Semicontinuous Data

Olsen and Schafer (2001) proposed a two-part mixed-effect model
based on the generalized linear mixed model (GLMM) by intro-
ducing correlated random effects into both the model’s binary and
continuous parts. This model specifies a logistic regression for the
dichotomous indicator that the outcome is zero or not, and a stan-
dard linear mixed-effect model for the logarithmic transformation
of nonzero responses. In the literature, two-part mixed models has
been proposed to analyze such continuous data with extra zeros
(Su et al. 2009). Model notation and formulation are briefly de-
scribed in this section.

Let Y; be a semicontinuous variable for the ith (i =1, ..., N)
event. This outcome variable can be represented by the occurrence
variable Z;, where

Zﬁ:{o ifY, =0 0

1 ifY;,>0

and the intensity variable ¢(Y;), given that ¥; > 0; g(-) = transfor-
mation function (log transform) that makes Y; approximately nor-
mally distributed.

In the two-part mixed model, other than marginal distribution of
Y;, we focused on the distribution of the occurrence variable Z; and
the conditional distribution of the intensity variable ¢(Y;), given
that Y; > 0. Specifically, we assumed that Z; follows a logistic re-
gression model [Eq. (2)], so

m; = logit(Pr(Z; = 0)) = X0 (2)

where 7; = probability of zero economic loss from event i; X; =
1 x ¢ explanatory variable vector; and # = g x 1 regression coef-
ficient vector. The intensity variable ¢(Y;), given Y; > 0, follows a
linear mixed model [Eq. (3)], so

9(Y)[Y; >0, 9(Y:) =XiB+V;+e¢ (3)
where X7 = 1 x p explanatory variable vector; 3 = p x 1 regres-
sion coefficient vector; and V;, again, = county-level random inter-
cept. The error term ¢; is assumed to be distributed as N(0, o2).
The coefficients in Egs. (2) and (3) were estimated using
the maximization likelihood function available in the R package
GLMMAdpative. This function is based on a linear mixed-effects
Laplacian approximation by adaptive Gaussian quadrature to ap-
proximate the likelihood developed by Pinheiro and Bates (1995).
The final model mixture response variable can be expressed as

Y; = Exp(g(Y;) x (1 —m;)) (4)

where 7; = likelihood of zero economic damage from the model’s
zero-inflated part; g(¥;) = model estimation from the continuous
part; and Y; = estimated economic damage.
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Fig. 5. Correlation matrix for flash flood influencing factors.

Feature Selection

Feature selection is an important process that removes redundant
variables and reduces the number of input variables when develop-
ing a predictive model. It is desired to remove highly correlated
variables to reduce the computational cost of modeling, improve
the model’s performance and robustness, avoid overfitting, and
facilitate the model’s utilization in practice.

We performed a correlation test to remove redundant features by
analyzing the Pearson correlation matrix between the input varia-
bles. Fig. 5 shows the correlation matrix between all features in our
flash flood data set. High correlation coefficients (> 0.5) were found
between impervious surface percentage, road and bridge density, and
population density (shown as large dots in the correlation matrix).

In addition to removing highly correlated features, we estimated
the importance of features from the data by building a preliminary
classification or regression model. We constructed a learning vector
quantization (LVQ) model (classification) and a quantile regression
forest (QRF) model (regression) to evaluate and rank the impor-
tance of input features for the zero-inflated part and the continuous
part, separately. For the zero-inflated part, receiver operating char-
acteristic (ROC) curve analysis was conducted for each predictor
from the LVQ model. For the continuous part, the relationship

Ground_Slope

Road_Density

Duration

Impervious_pct

Population_Density
LWX_Density
Precipitation
Bridge_Density
Elevation

Home_Median_Value =
Night_Event ———=
Community Age =
Flash_Flood_Alley ——=

Tropical_System ——

T T T
0.50 0.55 0.60

Importance

(a)

between each predictor and the outcome was evaluated based on
the R? statistic from the QRF model. The LVQ model is an artificial
neural network algorithm developed for classification problems us-
ing a collection of codebook vectors (Kohonen 1995). The QRF
model, a generalization of random forests, provides a nonparametric
and accurate way of estimating conditional quantiles for high-
dimensional predictor variables (Meinshausen and Ridgeway 2006).
Details of these algorithms are beyond the scope of this work since
we only used them for preliminary feature selection and estimating
feature importance.

As shown in Fig. 6(a), ground slope is the most important fea-
ture among all input features to classify whether a flash flood event
will cause economic damage. It is followed by road density, dura-
tion, impervious percentage, population density, and precipitation.
On the other hand, according to Fig. 6(b), the magnitude of eco-
nomic damage (in 2019 dollars) seems to be determined only by
duration and precipitation.

Feature selection methods are believed to provide the most pre-
dictive features to be included in the two-part mixed model. The
reduced amount of input variables will not only save computation
time for fitting the two-part mixed model, but also generate a robust
and nonoverfitted predictive model.

Model Results

Selection of Best Model

Table 1 lists four two-part mixed-effect models for four different
subsets of input variables preselected using the feature selection
method discussed earlier. As discussed earlier, the marginal distri-
bution of the flash flood damage data is not normal due to the extra
zeros. As a result, standard residual plots, when interpreted in the
same way as linear models, are not suitable due to non-normality
and heteroscedasticity, even if the model is correctly specified.
Therefore, we used a simulation-based approach to create readily
interpretable scaled (quantile) residuals to assess this GLMM model,
with standardized residuals between 0 and 1. This approach is imple-
mented in the R package DHARMa residual (DHARMa stands for
diagnostics for hierarchical regression models) (Rizopoulos et al.
2010; Hartig and Hartig 2017). Its key advantage is that the defined
residuals always have the same known distribution, independent
of model fitting, if the model is correctly specified. Additionally,
the following goodness-of-fit tests were performed on the scaled re-
siduals and support visual inspection of the simulated residuals and
model predictive power:

Duration
Precipitation
Flash_Flood_Alley
Home_Median_Value
LWX_Density
Bridge_Density

Population_Density
Ground_Slope
Road_Density
Elevation
Night_Event

Impervious_pct

Community_Age
Tropical_System

T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Importance

(b)

Fig. 6. (a) Feature importance ranking for model’s zero-inflated part; and (b) feature importance ranking for model’s continuous part.
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Table 1. Candidate models and their performance metrics

Dispersion
Model Input variables AIC BIC KS test test
1 Precipitation + impervious percentage + ground slope + community 6,454 6,502 Deviation not Deviation
age + duration + LWX density + elevation significant significant
2 Precipitation + impervious percentage + ground slope + community 6,453 6,501 Deviation not Deviation
age + duration + elevation significant significant
3 Precipitation + impervious percent + ground slope + duration + community age 6,453 6,498 Deviation not Deviation
significant significant
4 Precipitation + impervious percent + ground slope + community age 6,451 6,492 Deviation not Deviation not
significant significant
* Kolmogorov—Smirnov (KS): tests if the overall distribution Table 2. Model coefficients
CO.IlfOI'II.IS to expecltatlons.. ' o Standard
* Dispersion: tests if the simulated dispersion is equal to the Part Parameter Coefficient error p-value

observed dispersion.

In this model, overdispersion or underdispersion deviation oc-
curs when the discrepancies between the observed responses and
their predicted values are larger or smaller than what the GLMM
model predicts, possibly due to omitted covariates or nonsignificant
variables involved. Based on Table 1, only Model 4 satisfies both
goodness-of-fit tests on the scaled residuals, which indicates that
it conforms to the expected distribution and shows no deviation for
overdispersion or underdispersion problems. Therefore, Model 4
was selected as the best model.

In addition, we used Akaike’s (1974) information criterion
(AIC) and Schwartz’s (1978) Bayesian information criterion (BIC)
to describe the model’s balance between goodness of fit and ability
to avoid overfitting or underfitting problems. As shown in Table 1,
Model 4 outperforms the other models with a lower value of AIC
and BIC. While models with lower AIC and BIC are generally pre-
ferred, AIC and BIC may not be directly applicable to a model’s
significance for complex models, such as GLMM (Waagepetersen
2006; Pan and Lin 2005).

Model Coefficients

Table 2 provides coefficient estimates for the final model. For the
zero-inflated part of the model, precipitation, duration, community
age, and ground slope proved to have a significant correlation with
the occurrence of economic damage during flash flood events. These
inputs variables exhibit small p-values (<0.05). Further, the negative
coefficient of precipitation and impervious percentage indicates
that flash flood events with higher precipitation or occurring in
areas with a greater number of impervious surfaces tend to have
a greater chance of resulting in economic damage. In contrast, a
positive coefficient of ground slope indicates that areas with a flat-
ter ground slope tend to have higher levels of economic damage.
We attributed this to accumulation of floodwater in flat downstream
areas. Also, older neighborhoods exhibited less risk of economic
damage during flash flood events than newer neighborhoods. This
finding might be an indicator that older neighborhoods (in terms of
median age of structures) in Texas tend to be located at higher el-
evations and at greater distances from floodways compared with
newer neighborhoods.

For the continuous part of the model, a linear correlation was
found between the amount of economic damage (expressed in
2019 prices) and the square-transformed level of precipitation
and duration of the storm; both showed very small p-values
(<1 x 10™*). The positive coefficients for both variables imply that
flash flood events with heavier rainfall and longer duration generate
greater economic damage. Further, greater flash flood economic
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—0.2436 0.1924 0.2055
—0.0064 0.0012 <l x 107
—0.0117 0.0031 0.0001

Zero-inflated (Intercept)
part (probability ~ Precipitation®
of zero damage) Impervious

percentage

Ground slope 0.0246 0.0026 <Ix 107

Community age 0.0085 0.0038 0.0236
Continuous (Intercept) — 09578 <1x10~*
part (dollar Precipitation® 0.0144 0.0021 <1 x107
amount) Duration® 0.0068 0.0015 <1x10*

Elevation® —0.1686 0.0843 0.0454

Home median 0.354 0.1771 0.0457

value®

Note: See Fig. 7 and Appendix for county-specific random intercept values.
4Squared-transformation of variable.
°Log-transformation of variable.

damage tends to occur in communities where buildings are worth
more in dollar value and are located in low-elevation areas.

The intercept value of the model’s continuous part varies by
county, as shown in Fig. 7 and listed in the Appendix. In this case,
the county encompasses a random effect, which may be attributed
to a combination of factors that are difficult to identify and quantify
from the data set. Counties with darker color (and therefore greater
intercept) exhibit more vulnerability to flash flood economic
damages.

Final Model Evaluation

A simulation-based DHARMa residual analysis was performed
to assess whether the final two-part mixed model has a visually
homogenous residual. Fig. 8 shows the qqg-plot and residual plot
generated from the DHARMa residual simulation. The qg-plot on
the left shows that the expected and observed residuals are lined up
at the 45-degree line, without a significant deviation problem found.
In the residuals against the predicted value plot, a scaled residual
value of 0.5 means that half of the simulated data are higher than
the observed value and half are lower. Several outliers at the top of
the residual plot, shown as stars in Fig. 8, indicate high economic
damage. These outliers are largely due to flash floods induced by
hurricanes and tropical storms in the Texas coastal region. The over-
all uniform distribution of the scaled residuals in this plot indicates
that the final model is correctly specified.

Finally, we performed a posterior predictive check on the final
model, as shown in Fig. 9. We compared the empirical distribution
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Fig. 7. Random intercept value based on the county variant. (© OpenStreetMap contributors.)
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Fig. 8. qg-plot and DHARMa residuals (n.s. = not significant).

function of the observed data with estimates of the empirical dis-
tribution function of simulated/replicated data from the model. The
figure indicates that the model-estimated economic damage (gray
lines) has good agreement with observed economic damage (black
line) at 30 iterations of simulation.

Model Application

To demonstrate use of the developed model for informing flash
flood mitigation planning and economic risk assessment at the

© ASCE

04023030-7

community scale (i.e., census tract), we applied it to estimate eco-
nomic damage from the highest 1% of rainfall events in Harris
County, Texas. According to the George Bush Intercontinental/
Houston Airport (IAH) weather station, precipitation for these
events at 6-, 12-, and 24-h duration are 27.7 mm (10.9 in.),
34.5 mm (13.6 in.), 41.6 mm (16.4 in.), respectively.

Fig. 10 shows the probability of economic damage if flash
flooding occurs in each census tract in Harris County. For a
6-h extreme rainfall event, a 40% to 60% chance of economic
damage is predicted for the majority of the county’s commun-
ities. The chance of economic damage increases substantially
if the rainfall events lasts for 12 and 24 h, as indicated by the
darker areas. A few communities have a more than 80% chance
of economic damages if such storm events occur. These commun-
ities tend to have a high percentage of impervious land cover
and/or are built in low-lying areas where floodwater can easily
accumulate.

Fig. 11 shows the dollar amount of economic damage (in 2019
prices) estimated by coupling the economic damage probability and
the expected economic damage amount from model’s continuous
part. For a 6-h extreme rainfall event, the economic damage remains
at $10,000 or less. However, it rises dramatically across commun-
ities when rainfall and duration increase, shown as darker for
12- and 24-h events. A few communities may expect millions
of dollars of economic damages for such long and intense storms.
These communities are generally located in the central Houston
area, which has high home values and is highly urbanized.
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Fig. 11. Dollar amount of economic damage in extreme rainfall events. (© OpenStreetMap contributors.)

Summary, Conclusions, and Future Work A two-part mixed-effect model was developed in this study to pre-

dict zero-inflated economic damage at the census tract scale. The
The occurrence of economic damage was found to be a zero-inflated model indicates that flash flood events with higher levels of precipi-
problem: 70% of flash flood events result in zero economic damage tation or occurring in areas with higher percentages of impervious
based on observation of a 15-year period (2005-2019) in Texas, surfaces have a greater chance of resulting in economic damages.
whereas the nonzero part conforms to a log-normal distribution. It also indicates that the effect of ground slope on increasing flash
© ASCE 04023030-8 Nat. Hazards Rev.
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flood damage at the sub-city scale may be reversed given that flood-
waters tend to accumulate in flatter downstream areas. These results

Appendix. (Continued.)

County Intercept
suggest that flash flood damage cannot be explained by a single
.. . . Clay 8.763674
factor. Instead, it is explained by the combination of three funda- Coke 3763674
mental 1ssqes: how soon runoft collection takes place, floodwater Coleman 8.763674
flow velocity, and floodwater depth. Collin 8.005075
Use of the developed model was demonstrated in an application Collingsworth 8.763674
to estimate the probability of occurrence and dollar amount of eco- Colorado 9.647803
nomic damage from extreme rainfall-induced flash flood events in Comal 8.749377
Harris County, Texas. The developed model can provide insights Comanche 9.003894
for regional and state authorities in planning and prioritizing of Concho 9.365725
flash flood mitigation projects. Cooke 9.378267
Model limitations and future work to address them are as fol- Coryell 8.990429
. . .. Cottle 8.763674
lows. One, since this was an empirical study, one must be very care- Crane 3763674
ful in extrapolating its results to areas bey_ond Texas. Futl}re studies Crockett 8:76367 4
may develop other models for other regions in the United States Crosby 9.276274
with local influencing factors considered. Two, the occurrence of Culberson 8.08386
damage in flash flooding is a complex process with potentially Dallas 8.600488
many influencing variables. Future work might identify a more de- Dawson 7.962285
tailed variant than the county to account for hidden factors in the De Witt 8.763674
model’s random effect component. Third, although the model was Deaf Smith 9.257984
evaluated and its applicability demonstrated, further validation using g clia 3222?24
separate data would be beneficial to confirm its predictive accuracy. Dfxiﬁrilt 8.7 63674
Finally, the model can be integrated into simulation decision support Donley 8:76367 4
systems to inform the planning of flash flood mitigation and safety Duval 8763674
projects. Eastland 8.735558
Ector 9.006931
Edwards 8.766531
Appendix. Random Effect Intercept El Paso 10.371396
Ellis 9.853416
Erath 9.3996
County Intercept Falls 8.442595
Anderson 9.380956 Fannin 7.89387
Andrews 732277 Fayette 8.102733
Angelina 9.2835 Fisher 8.763674
Aransas 8.763674 Floyd 9.341472
Archer 8.763674 Foard 8.763674
Armstrong 8.763674 Fort Bend 8.737717
Atascosa 8.90862 Franklin 8.763674
Austin 0.198015 Freestone 8.699667
Bailey 8.763674 Frio 8.763674
Bandera 9.510173 Gaines 7.12738
Bastrop 0.38471 Galveston 7.921484
Baylor 8.763674 Garza 9.45351
Bee 9.642205 Gillespie 8.763674
Bell 9.043998 Glasscock 8.763674
Bexar 8.937398 Goliad 8.763674
Blanco 10.22549 Gonzales 8.561258
Borden 7.070281 Gray 8.763674
Bosque 8.796952 Grayson 9.494468
Bowie 8.592224 Gregg 9.354148
Brazoria 8.727681 Grimes 8.351476
Brazos 8.115521 Guadalupe 9.3983
Brewster 7.529803 Hale 9.928009
Brooks 8.864337 Hamilton 11.261738
Brown 8.972698 Hansford 8.763674
Burleson 8.840071 Hardeman 8.763674
Burnet 8.763674 Hardin 7.517398
Caldwell 8.763674 Harris 9.069818
Calhoun 8.763674 Harrison 9.126006
Callahan 8.763674 Hartley 8.763674
Cameron 9.754217 Haskell 8.763674
Camp 8.763674 Hays 9.587365
Carson 8.763674 Hemphill 8.763674
Cass 9.021529 Henderson 8.399621
Chambers 7.544593 Hidalgo 10.782907
Cherokee 8.763674 Hill 8.666045
© ASCE 04023030-9 Nat. Hazards Rev.
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Appendix. (Continued.)

Appendix. (Continued.)

County Intercept County Intercept

Hockley 9.596809 Orange 8.233246
Hood 9.073847 Palo Pinto 8.005903
Hopkins 8.296038 Panola 8.763674
Houston 8.87229 Parker 8.207132
Howard 7.891936 Parmer 8.763674
Hudspeth 8.763674 Pecos 7.228842
Hunt 8.579403 Polk 8.918924
Hutchinson 8.763674 Potter 9.839518
Irion 8.763674 Presidio 8.763674
Jack 8.39682 Rains 8.468775
Jackson 8.489897 Randall 9.52662

Jasper 7.686141 Reagan 7.787388
Jeff Davis 8.763674 Real 8.709842
Jefferson 7.746858 Red River 8.100367
Jim Hogg 8.447321 Reeves 7.90682

Jim Wells 9.817957 Refugio 8.763674
Johnson 7.618314 Roberts 8.763674
Jones 8.763674 Robertson 8.235995
Karnes 8.763674 Rockwall 7.978919
Kaufman 8.407157 Runnels 8.763674
Kendall 8.763674 Rusk 8.942039
Kerr 9.051575 Sabine 8.859321
Kimble 8.763674 San Augustine 9.779242
King 8.763674 San Jacinto 8.291942
Kinney 9.269886 San Patricio 9.620295
Kleberg 9.112436 San Saba 8.763674
La Salle 9.101595 Schleicher 8.763674
Lamar 8.294216 Scurry 7.307483
Lampasas 8.383396 Shackelford 8.215698
Lavaca 8.763674 Shelby 8.763674
Lee 8.763674 Smith 9.044134
Leon 8.921879 Somervell 8.991642
Liberty 8.145533 Starr 8.876768
Limestone 7.664471 Stephens 8.763674
Lipscomb 8.763674 Sterling 8.763674
Live Oak 9.046656 Sutton 8.763674
Llano 9.389816 Swisher 8.763674
Loving 7.005927 Tarrant 8.255634
Lubbock 10.86478 Taylor 8.56278

Lynn 9.216361 Terrell 8.763674
Madison 8.673184 Terry 9.48456

Marion 9.085162 Throckmorton 8.763674
Martin 7.472931 Titus 9.344153
Mason 8.763674 Tom Green 8.763674
Matagorda 8.098542 Travis 10.924512
Maverick 10.002265 Trinity 8.763674
Mcculloch 8.471851 Tyler 7.824816
Mclennan 7.803653 Upshur 8.725422
Mcmullen 8.92191 Upton 7.512817
Medina 9.464084 Uvalde 9.155334
Menard 8.763674 Val Verde 8.826047
Midland 8.413078 Van Zandt 8.520482
Milam 8.680758 Victoria 9.573463
Mills 8.763674 Walker 8.137177
Mitchell 8.194534 Waller 9.33142

Montague 8.987995 Ward 8.195995
Montague 8.125462 Washington 8.132443
Montgomery 8.92191 Webb 9.386166
Moore 9.304132 Wharton 7.909092
Morris 8.653933 Wheeler 8.444792
Nacogdoches 8.654602 Wichita 10.669928
Navarro 9.003734 Wilbarger 8.763674
Newton 8.185618 Willacy 9.821527
Nolan 8.763674 Williamson 8.550515
Nueces 9.809476 Wilson 9.779524
Ochiltree 8.763674 Winkler 7.802466
Oldham 8.763674 Wise 8.718033
© ASCE 04023030-10 Nat. Hazards Rev.
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Appendix. (Continued.)

County Intercept
Wood 8.173361
Young 8.551549
Zapata 8.20151
Zavala 8.763674
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