
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021 3351

Algebraic Neural Networks: Stability to

Deformations
Alejandro Parada-Mayorga and Alejandro Ribeiro

Abstract—We study algebraic neural networks (AlgNNs) with
commutative algebras which unify diverse architectures such as
Euclidean convolutional neural networks, graph neural networks,
and group neural networks under the umbrella of algebraic signal
processing. An AlgNN is a stacked layered information processing
structure where each layer is conformed by an algebra, a vector
space and a homomorphism between the algebra and the space
of endomorphisms of the vector space. Signals are modeled as ele-
ments of the vector space and are processed by convolutional filters
that are defined as the images of the elements of the algebra under
the action of the homomorphism. We analyze stability of algebraic
filters and AlgNNs to deformations of the homomorphism and
derive conditions on filters that lead to Lipschitz stable operators.
We conclude that stable algebraic filters have frequency responses
– defined as eigenvalue domain representations – whose derivative
is inversely proportional to the frequency – defined as eigenvalue
magnitudes. It follows that for a given level of discriminability,
AlgNNs are more stable than algebraic filters, thereby explaining
their better empirical performance. This same phenomenon has
been proven for Euclidean convolutional neural networks and
graph neural networks. Our analysis shows that this is a deep
algebraic property shared by a number of architectures.

Index Terms—Algebraic neural networks, algebraic signal
processing, representation theory of algebras, convolutional neural
networks (CNNs), graph neural networks (GNNs), stability,
Fréchet differentiability.

I. INTRODUCTION

T
HE overwhelming empirical evidence that shows the good-

ness of using convolutional neural networks (CNNs) and

graph neural networks (GNNs) in machine learning raises inter-

est in finding reasons that explain their performance. In this

context, stability analyses of the operators representing the

neural networks play a central role, with insights reported for

both CNNs [1]–[4] and GNNs [5]–[7]. Although independent,

these results are similar in form and nature. This fact raises the

question of whether they descend from a common notion of

stability and motivates the search for a framework where these

results can be unified.
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Stability of CNNs is rooted in the notion of Lipschitz-

continuity to the action of diffeomorphisms introduced in [1]

for the analysis of translation-invariant operators acting on

L2(Rn). Although initially derived for scattering transforms

[1], [2] stability results are readily extendable to the analysis of

convolutional neural networks [3], [4]. For GNNs the problem of

formulating stability conditions has been considered in [5]–[7].

In [6] the notion of stability on graphs is considered in depth

pointing out that the generalization of the conditions stated

in [1], [2] is not straightforward for non smooth, non Euclidean

domains, and as a way to quantify stability in GNNs the notion

of metric stability is considered using a diffusion operator to

measure the perturbations or changes in the graphs. In [7] a

related notion of stability is used to provide concrete results

about the stability on GNNs.

However different, stability results for CNNs and GNNs have

uncanny similarities. For instance, they both focus on signal

perturbations that are modeled as deformations of the signal

domain, they both analyze the effect of perturbations in the

frequency (spectral) domain, and they both conclude that (graph

or Euclidean) convolutional filters have instabilities associated

with high frequency components (large eigenvalues). In our

search for underlying common principles we adopt the formal-

ism of algebraic signal processing (ASP) [8].

In general, signals are elements of a vector space M which

we could process with any linear transformation in the algebra

of endomorphisms ofM. In practice, learning is facilitated if we

introduce a suitable class of convolutional filters to restrict the

type of transformations that are allowable. In ASP, convolutional

algebraic filters are defined as elements of a more restrictive

algebra A that are mapped into the algebra of endomorphisms

of M through a homomorphism ρ (Section II). In the case of

signals supported on a graph with n nodes, the vector space is

made up of vectors of length n and the space of endomorphisms

is made up of square matrices of matching dimension. Choosing

the algebra of polynomials of a single variable t and choosing a

homomorphism that maps t to the Laplacian matrix of the graph

results in graph convolutional filters expressed as polynomials

of the graph’s Laplacian. This is the usual definition of a graph

filter [9]. In the case of signals in time the vector space is that

of square summable sequences and convolutions can be written

as polynomials on the time shift operator. This is the standard

definition of convolution for discrete time signals [10, Ch. 2].

In this paper we leverage algebraic filters to introduce al-

gebraic neural networks (AlgNNs) and study their stability
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to deformations of the signal domain. In particular, the main

contributions of this paper are:

(C1) The definition of AlgNNs as layered information process-

ing architectures in which individual layers are made up of

algebraic convolutional filters (Section III).

(C2) The introduction of perturbation models (Section IV) and

stability properties (Section V) that are analogous to the

notions of perturbation and stability considered in [1]–[7].

(C3) The proof of stability theorems for algebraic filters (The-

orems 1-4 and Corollaries 1 and 2) out of which stability

theorems for AlgNNs follow (Theorems 5 and 6).

Our results are meaningful for algebras with a small number

of generators (see Definition 2). This includes discrete time

convolutions but does not include continuous time convolutions.

Thus, we do not recover results in [1]–[4] as particular cases of

our theorems. Rather our conclusions for discrete time CNNs are

analogous to the conclusions that [1]–[4] reach for continuous

time CNNs. This relatively minor technicality aside, our stability

results for AlgNNs recover existing results for CNNs and GNNs

(Section V-D). Our results also extend to other types of convo-

lutional architectures like multidimensional CNNs – as used in

image processing –, group neural networks and graphon neural

networks. They also apply to as of yet unknown convolutional

architectures. Indeed, the universality of stability properties is

among the fundamental insights of this paper:

(I1) The stability properties of convolutional filters and neural

networks are universal.

This holds because the stability properties of convolutional

architectures can be expressed in terms of the algebraic laws that

govern the signal model in each layer as encoded in the algebra

A. To explain this statement we mention that representations

of algebras admit spectral decompositions (Section VI). These

decompositions permit the definition of Fourier transforms of

signals and, more germane to our discussions, frequency repre-

sentations of algebraic filters. These representations are defined

as isomorphisms that map generators of the algebraA into scalar

variables (Definitions 6 and 8). As such, frequency represen-

tations are functions with as many variables as generators as

needed to generate the algebra. In cases of interest, this just

means a function of a few variables, each of which we call a

frequency. Remarkably, frequency representations depend on

the choice of algebra but do not depend on the vector space

where signals live. Ultimately, this is the reason why universal

stability results are possible and it further leads to the following

insights:

(I2) Although perturbations are considered on filter operators,

stability is determined by restrictions to certain subsets of the

algebra. These restrictions are expressed in terms of filters’

frequency representations (Section VII).

(I3) Stability requires filter frequency responses that are flat

for large values of the frequency variables. This limits the

discriminability of algebraic filters (Section VIII).

(I4) AlgNNs improve the stability vs discriminability tradeoff

of algebraic filters because pointwise nonlinearities move

Fig. 1. Algebraic Signal Processing (ASP) Model. An ASP model is made up
of a vector space M where signals x live and an Algebra A where filters a live.
The homomorphism ρ ties the algebra and the vector space together by mapping
the filter a to the linear function ρ(a) in the space of endomorphisms of M.
The Algebra restricts the set of linear processing maps that can be applied to
signals x.

signal energy towards lower frequencies where signals can be

better discriminated by filters with a given level of stability

(Section VIII).

Insights (I3) and (I4) are the summary messages of this paper.

We know from [1]–[4] that (I3) and (I4) explain the increased

performance of CNNs relative to convolutional filters. We know

from [5]–[7] that (I3) and (I4) explain the increased performance

of GNNs relative to graph filters. As per (I1) we show here that

the reason why these analogous properties hold is the shared

algebraic structure of CNNs and GNNs. The universality of

the result implies that (I3) and (I4) also explain performance

improvements of CNNs with multidimensional inputs relative to

multidimensional Euclidean convolutional filters, group neural

networks relative to group filters, and graphon neural networks

relative to graphon filters among any number of known and

unknown convolutional information processing architectures.

Our results are limited to commutative algebras with a small

number of representers. Further work is needed to extend our

results to these more general signal models (Section IX).

II. ALGEBRAIC FILTERS

Algebraic signal processing (ASP) provides a framework for

understanding and generalizing traditional signal processing

exploiting the representation theory of algebras [8], [11]–[13];

see Figure 1. In ASP, a signal model is defined as the triple

(A,M, ρ), (1)

in which A is an associative algebra with unity, M is a vector

space with inner product, and ρ : A → End(M) is a homomor-

phism between the algebra A and the set of endomorphisms of

the vector space M. The elements in (1) are tied together by the

notion of a representation which we formally define next.

Definition 1 (Representation): A representation (M, ρ) of

the associative algebra A is a vector space M equipped with a

homomorphism ρ : A → End(M), i.e., a linear map preserving

multiplication and unit.
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In an ASP model, signals are elements of the vector space

M, and filters are elements of the algebra A. Thus, the vector

spaceM determines the objects of interest and the algebraA the

rules of the operations that define a filter. The homomorphism ρ
translates the abstract operators a ∈ A into concrete operators

ρ(a) that act on signals x to produce filter outputs

y = ρ(a)x. (2)

The algebraic filters in (2) generalize the convolutional pro-

cessing of time signals – see Example 1. Our goal in this

paper is to use them to generalize convolutional neural networks

(Section III) and to study their fundamental stability properties

(Section IV). Generators, which we formally define next, are

important for the latter goal.

Definition 2 (Generators): For an associative algebra with

unity A we say the set G ⊆ A generates A if all a ∈ A can

be represented as polynomial functions of the elements of G.

We say elements g ∈ G are generators of A and we denote as

a = pA(G) the polynomial that generates a.

Definition 2 states that elements a ∈ A can be built from the

generating set as polynomials using the operations of the algebra.

Given that representations connect the algebra A to signals x

as per Definition 1, the representation ρ(g) of a generator g ∈ G
will be of interest. In the context of ASP, these representations

are called shift operators as we formally define next.

Definition 3 (Shift Operators): Let (M, ρ)be a representation

of the algebra A. Then, if G ⊆ A is a generator set of A, the

operators S = ρ(g) with g ∈ G are called shift operators. The

set of all admissible shift operators is denoted by S .

Given that elements a of the algebra are generated from

elements g of the generating set, it follows that filters ρ(a) are

generated from the set of shift operators S = ρ(g). In fact, if we

have that a = pA(G) is the polynomial that generates a, the fact

that ρ is a homomorphism that preserves operations implies that

the filter’s instantiation ρ(a) can be written as

ρ(a) = pM (ρ(G)) = pM (S) = p (S) , (3)

where the subindex M signifies that the operations in (3) are

those of the vector space M – in contrast to the polynomial a =
pA(G) whose operations are those of the algebra A. In the last

equality and for the rest of the paper we drop the subindices in

the polynomials to simplify notation as it is generally understood

from context to which set the independent variable of p belongs.

We restrict attention to commutative algebras A. We also

restrict the field F on which M and A are supported to be

algebraically closed. If this doesn’t hold our results apply to the

corresponding algebraic extension. We point out that although

not a formal requirement, our results are meaningful when

the algebra A has a set of generators with a small number of

elements.

We present examples to clarify ideas. Readers may skip ahead

since they are not needed to understand the rest of the paper.

Example 1 (Discrete Time Signal Processing): Let M = �2

be the space of square summable sequences x = {xn}n∈Z and

A the algebra of polynomials generated by g = t with elements

a =
∑K−1

k=0 hkt
k. Consider the time shift operator S such that

Sx is the sequence with entries (Sx)n = xn−1. Define the

homomorphism ρ in which the generator g = t is mapped to

ρ(g) = ρ(t) = S. Then, the filter a =
∑K−1

k=0 hkt
k is mapped to

the endomorphism [cf.(3)]

ρ

(

K−1
∑

k=0

hkt
k

)

=

K−1
∑

k=0

hkS
k. (4)

Observe how the abstract polynomial a =
∑K−1

k=0 hkt
k is

mapped to the polynomial ρ(a) =
∑K−1

k=0 hkS
k. The latter is

a concrete linear operator in the space of square summable

sequences that we can use to process sequences x as per (2).

This leads to the input output relationship

y =

(

K−1
∑

k=0

hkS
k

)

x =

K−1
∑

k=0

hkS
kx. (5)

Since (Sx)n = xn−1 it follows that (Skx)n = xn−k and that

(5) representats a discrete time convolutional filter [10, Ch. 2].

Example 2 (Graph Signal Processing): We retain the algebra

of polynomials as in Example 1 but we change the space of sig-

nals to the set of complex vectors with N entries, M = C
N . We

interpret components xn of x ∈ M = C
N as being associated

with nodes of a graph with matrix representation S ∈ C
N×N .

We consider the homomorphism ρ in which the generator g = t
is mapped to the matrix representation S of the graph. Having

chosen ρ(t) = S we use (3) to write

ρ

(

K−1
∑

k=0

hkt
k

)

=

K−1
∑

k=0

hkS
k. (6)

Analogously to (4), the abstract polynomial
∑K−1

k=0 hkt
k is

mapped to the concrete polynomial
∑K−1

k=0 hkS
k. The latter is

an N ×N matrix that can be applied to signals x to produce

outputs

y =

(

K−1
∑

k=0

hkS
k

)

x =

K−1
∑

k=0

hkS
kx. (7)

This is a representation of the graph convolutional filters used

in graph signal processing (GSP) [14], [15]. Observe that (7)

and (5) are similar but represent different operations. In (7) x is

a vector and Sk a matrix power. In (5) x is a sequence and Sk

is the composition of the time shift operator S. Their similarity

arises from the common use of the algebra of polynomials. Their

differences are because we use different vector spaces M and

different homomorphisms ρ.

Example 3 (Discrete Signal Processing): We consider dis-

crete time signals of length N with circular convolutions. To

do that we consider the vector space M = C
N and the al-

gebra of polynomials modulo tN − 1. I.e., filters a ∈ A are

polynomials a =
∑K−1

k=0 hkt
k but we must have K ≤ N and

monomial products use the rule tk = tk mod N . We consider

the directed cyclic matrix C with exactly N nonzero entries

Cn,m = 1 for m = (n− 1) mod N . This matrix is such that

(Cx)n = x(n−1) mod N . Using the homomorphism in which we

map the generator g = t toρ(g) = ρ(t) = C, filter instantiations
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take the form

ρ

(

K−1
∑

k=0

hkt
k

)

=

K−1
∑

k=0

hkC
k. (8)

The filter instantiation ρ(a) =
∑K−1

k=0 hkC
k leads to the input

output relationship

y =

(

K−1
∑

k=0

hkC
k

)

x =

K−1
∑

k=0

hkC
kx. (9)

Since (Cx)n = x(n−1) mod N we have that (Ckx)n =
x(n−k) mod N . Thus, (9) is equivalent to the usual definition

of circular convolutions [10, Ch. 8]. Observe that the homomor-

phism ρ(a) =
∑K−1

k=0 hkC
k is indeed a homomorphism because

the cyclic matrix C satisfies Ck = Ck mod N . This example

illustrates that in some situations the choice of algebra and the

choice of homomorphism are tied.

As is clear from Examples 1-3, the effect of the operator ρ(a)
on a given signal x is determined by two factors: The filter

a ∈ A and the homomorphism ρ. The filter a ∈ A indicates

the laws and rules to be used to manipulate the signal x and

ρ provides a physical realization of the filter a on the space

M to which x belongs. For instance, in these three examples

the filter a = 1 + 2t indicates that the signal is to be added

to a transformed version of the signal scaled by coefficient 2.

The homomorphism ρ in Example 1 dictates that the physi-

cal implementation of this transformation is a time shift. The

homomorphism ρ in Example 2 defines a transformation as a

multiplication byS and in Example 3 the homomorphism entails

a cyclic shift. We remark that in order to specify the physical

effect of a filter it is always sufficient to specify the physical

effect of the generators. In all three examples, the generator of

the algebra is g = t. The respective effects of an arbitrary filter

a are determined once we specify that ρ(t) = S in Example 1,

ρ(t) = S in Example 2, or ρ(t) = C in Example 3.

The flexibility in the choice of algebra and homomorphism

allows for a rich variety of signal processing frameworks. We

highlight this richness with three more examples.

Example 4 (Image Processing): We represent images

as square summable sequences with two indexes, x =
{xn,m}n,m∈Z. We define the horizontal translation operator

SH such that (SHx)mn = xm,n−1 and the vertical translation

operator SV such that (SVx)mn = xm−1,n. Filters to process

images are elements of the algebra of polynomials of two vari-

ables a =
∑K1−1

k1=0

∑K2−1
k2=0 hk1k2

tk1
1 tk2

2 . This algebra has two

generators g1 = t1 and g2 = t2 that we map to ρ(t1) = SH and

ρ(t2) = SV. This generator mapping defines the homomorphism

ρ in which filters are mapped to instances

ρ

(

K1−1
∑

k1=0

K2−1
∑

k2=0

hk1,k2
tk1
1 tk2

2

)

=

K1−1
∑

k1=0

K2−1
∑

k2=0

hk1k2
Sk1

H Sk2
V .

(10)

The composed operator Sk1
H Sk2

V applied to a sequence x trans-

lates horizontal and vertical indexes by k1 and k2 indexes. Thus,

applying the operator in the right hand side of (10) to an image

x is equivalent to convolving the image with an 2-dimensional

convolutional filter with coefficients hk1k2
.

Example 5 (Signal Processing on Groups): Let M = {x :
G → C} = {∑g∈G x(g)g} be the set of functions defined on

the group G with values in C and A = M the group algebra.

The homomorphism is given by ρ(a) = La, with Lab = ab.

Then, the action of ρ on elements of M is given by

ρ

⎛

⎝

∑

g∈G
a(g)g

⎞

⎠x =
∑

g∈G
a(g)gx =

∑

g∈G

∑

h∈G
a(g)x(h)gh,

(11)

and making u = gh we have that the filtering in (2) takes the

form
∑

g,h∈G
a(g)x(h)gh =

∑

u,h∈G
a(uh−1)x(h)u. (12)

This is the standard representation of convolution of signals on

groups [16]–[18]. We point out that (11) and (12) hold for any

group but that not all group algebras are commutative. Results

in Section V apply only when the group algebra is commutative.

Example 6 (Graphon Signal Processing): A graphon

W (u, v) : [0, 1]2 → [0, 1] is a bounded symmetric measurable

function and graphon signals are square summable functions

x(u) : [0, 1] → C. Graphons are intended to represent dense

limits of graphs [19]–[22] and graphon signals dense limits of

graph signals [21], [22]. To define graphon convolutional filters

consider the algebra of polynomials of a single variable and

define the graphon shift operator as

(Wx) (u) =

∫ 1

0

W (u, v)x(v)dv, (13)

Filters a =
∑K−1

k=0 hkt
k are mapped according to the homo-

morphism defined by the generator map ρ(t) = W resulting on

filters that define the input-output relationship

y = ρ

(

K−1
∑

k=0

hkt
k

)

x =

K−1
∑

k=0

hkWkx. (14)

This is the same definition of graphon convolutional filters

introduced in [21] where they are shown to be limit objects of

graph filters.

The choice of A and ρ provides means to leverage our

knowledge of the signal’s domain in its processing. The con-

volutional filters in (5) leverage the shift invariance of time

signals and the filters in (9) the cyclic invariance of periodic

signals. The group convolutional filters in (12) generalize shift

invariance with respect to an arbitrary group action. The graph

convolutional filters in (7) engender signal processing that is

independent of node labeling [23] and the graphon filters in

Example 6 a generalization of this notion to dense domains [21].

Leveraging this structure is instrumental in achieving scalable

information processing. In the following section we explain how

neural network architectures combine algebraic filters as defined

in (2) with pointwise nonlinearities to attain signal processing

that inherits the invariance properties of the respective algebraic

filters.
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Remark 1 (Shift Equivariance of Algebraic Filters): In re-

stricting the linear transformations that can be applied to signals,

the Algebra A reduces the complexity of the learning space. It is

easier to learn coefficients of a filter than it is to learn entries of an

arbitrary linear transform. In this statement, the equivariance of

algebraic filters to applications of shift operators is important.

Equivariance to applications of the shift operator means that

applying a shift operator at the input of an algebraic filter is

equivalent to applying the same shift operator at the output.

Namely, that for all filters a = p(G) and shift operators S ∈ S
we have

Sp(S)x = p(S)Sx. (15)

This holds true for any commutative algebra. Equivariance to

application of the shift operator is important in discrete time

signal processing, discrete signal processing, image processing,

and group signal processing. It implies that algebraic filters are

equivariant to time shifts, cyclic shifts, translations, and actions

of the group, respectively.

Remark 2 (Permutation Equivariance of Algebraic Filters):

In learning with algebraic filters equivariance to permutations

is also important. Equivariance to permutations means that a

consistent permutation of the signal and the shift operator results

in a consistent permutation of the output of the filter. For-

mally, let P ∈ End(M) be a permutation operator with adjoint

PT = adj(P). A permutation of the signal x is x̃ = PTx and

a consistent permutation of the shift operator S is the endomor-

phism S̃ = PTSP. If we let S̃ denote the set of permuted shift

operators we must have,

p
(

S̃
)

x̃ = PT (p(S)x) . (16)

I.e., the output of processing a permuted signal x̃ with the filter

instantiated on the set of permuted shift operators S̃ is equivalent

to a permutation of the output signal that results from processing

x with the filter instantiated on the shift operator S. This is

a consequence of the fact that the adjoint permutation PT is

the inverse of the permutation P. Equivariance to permutations

is important in graph signal processing and graphon signal

processing. It implies processing that is independent of labeling.

III. ALGEBRAIC NEURAL NETWORKS

With the concept of algebraic filtering at hand we define an

algebraic neural network (AlgNN) as a stacked layered structure

(see Fig. 2) in which each layer is composed by the triple

(A�,M�, ρ�), which is an algebraic signal model associated to

each layer. Notice that (M�, ρ�) is a representation of A�. The

mapping between layers is performed by the maps σ� : M� →
M�+1 that perform those operations of point-wise nonlinearity

and pooling. Then, the ouput from the layer � in the AlgNN is

given by

x� = σ� (ρ�(a�)x�−1) (17)

where a� ∈ A�, which can be represented equivalently as

x� = Φ(x�−1,P�−1,S�−1), (18)

Fig. 2. Algebraic Neural NetworkΞ = {(A�,M�, ρ�)}3�=1
with three layers

indicating how the input signal x is processed by Ξ and mapped into x3.

where P� ⊂ A� highlights the properties of the filters and S� is

the set of shifts associated to (M�, ρ�). Additionally, the term

Φ(x, {P�}L1 , {S�}L1 ) represents the total map associated to an

AlgNN acting on a signal x.

Convolutional Features: The processing in each layer can be

performed by means of several families of filters, which will

lead to several features. In particular the feature f obtained in

the layer � is given by

x
f
� = σ�

(

F�
∑

g=1

ρ�

(

agf�

)

x
g
�−1

)

, (19)

where afg� is the filter inA� used to process the g-th feature x
g
�−1

obtained from layer �− 1 and F� is the number of features.

Pooling: As stated in [24] the pooling operation in CNNs

helps to keep representations approximately invariant to small

translations of an input signal, and also helps to improve the

computational efficiency. In this work this operation is attributed

to the operator σ�. In particular, we consider σ� = P� ◦ η� where

P� is a pooling operator and η� is a pointwise nonlinearity. The

only property assumed from σ� is to be Lipschitz and to have

zero as a fixed point, i.e. σ�(0) = 0. It is important to point out

that P� projects elements from a given vector space into another.

We present some examples to clarify ideas.

Example 7 (CNNs in Discrete Time): Traditional CNNs rely

on the use of typical signal processing models and can be

considered a particular case of an AlgNN where the algebraic

signal model is the same as in example 1. Consequently, the f th

feature in layer � is given by

x
f
� = σ�

(

F�
∑

g=1

K
∑

k=1

hgf
�kS

k
� x

g
�−1

)

, (20)
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where ρ�(t) = S�. In this case P� is a sampling operator while

typically η�(u) = max{0, u}.

Example 8 (Graph Neural Networks): In graph neural net-

works the algebraic signal model in each layer corresponds to

the one discussed in example 2. Therefore, the f th feature in

layer � has the form

x
f
� = σ�

(

F�
∑

g=1

K
∑

k=1

hgf
�kS

k
�x

g
�−1

)

, (21)

where ρ� = S�. Here P� can be a dimensionality reduction

operator or a zeroing operator that nullify components of the

signal keeping its dimensionality. A common choice of the

nonlinearity function is given by η�(u) = max{0, u}.

Example 9 (Group Neural Networks): In group neural net-

works the algebraic model is the same as specified in example 5.

Therefore, the f th feature in layer � is given by

x
f
� = σ�

⎛

⎝

F�
∑

n=1

∑

u,h∈G�

a
nf

(�)(uh
−1)x�−1(h)u

⎞

⎠ . (22)

WhereG� is the group associated to the �th layer and a
nf

(�) are the

coefficients of the filter associated to the feature f in layer �. In

this case P� : L
2(G�) → L2(G�+1), where L2(G) is the set of

signals of finite energy defined on the group G. If the groups G�

are finite P� can be conceived as a typical projection mapping

between R
|G�| → R

|G�+1|.

IV. PERTURBATIONS

In an ASP triple (A,M, ρ), signals x ∈ M are observations

of interest and the algebra A defines the operations that are to

be performed on signals. The homomorphism ρ ties these two

objects and, as such, is one we can consider as subject to model

mismatch. In this paper we consider perturbations adhering to

the following model.

Definition 4: (ASP Model Perturbation) Let (A,M, ρ) be an

ASP model with algebra elements generated by g ∈ G (Defini-

tion 2) and recall the definition of the shift operators S = ρ(g)
(Definition 3). We say that (A,M, ρ̃) is a perturbed ASP model

if for all a = p(G) we have that

ρ̃(a) = pM (ρ̃(g)) = pM
(

S̃
)

= p
(

S̃
)

, (23)

where S̃ is a set of perturbed shift operators of the form

S̃ = S+T(S), (24)

for all shift operators S ∈ S .

As per Definition 4, an ASP perturbation model, is a pertur-

bation of the homomorphism ρ defined by a perturbation of the

shift operators S. Each shift operator S is perturbed to the shift

operator S̃ according to (24) and this perturbation propagates

to the filter ρ(a) according to (23). An important technical

remark is that the resulting mapping ρ̃ is not required to be a

homomorphism – although it can be, indeed, often is.

We point out that Definition 4 limits the perturbation of the

homomorphism ρ to perturbations of the shift operators. This

is justifiable by practical considerations. In the case of graph

signals a perturbation of the homomorphism models changes in

the graph or errors in the measurement of edge weights. In the

case of time signals, images, or groups, a perturbation of the

homomorphism is an appropriate model of a diffeomorphism –

a small warping of the domain. See Section V-D for more details.

Of the other components of an algebraic filter, the algebra and

the vector space define the choice of operations and therefore are

not naturally subject to perturbation. Perturbations of the input

signal x are possible in practice but their theoretical analysis is

simple. Filters are linear functions of the input and the nonlinear

operations of AlgNNs are Lipschitz. Thus, algebraic filters and

AlgNNs are readily shown to be Lipschitz stable to perturbations

of the input x.

A. Perturbation Models

In our subsequent analysis we consider perturbation models

of the form

T(S) = T0 +T1S, (25)

which is a generic model of small perturbations of a shift

operator that involve an absolute perturbation T0 and a relative

perturbation T1S; see [7]. The Tr are compact normal oper-

ators with operator norm ‖Tr‖ < 1. Requiring ‖Tr‖ < 1 is a

minor restriction as we are interested in small perturbations with

‖Tr‖ 	 1.

For the model in (25) it is important to describe the com-

mutativity of the shift operator S and the perturbation model

operators Tr. To that end, we write

STr = TcrS+ SPr, (26)

where Tcr =
∑

i µiui〈ui, ·〉, µi is the ith eigenvalue of Tr, ui

is the ith eigenvector of S, and 〈, 〉 represents the inner product

operation. As a consequence, we have that STrc = TrcS and

‖Tcr‖ = ‖Tr‖. We define the commutation factor δ according

to

‖Pr‖F ≤ δ‖Tr‖, (27)

which is a measure of how far the operators S and Tr are

from commuting with each other. Notice that δ = 0 implies

Pr = 0 and Tr = Tcr. The commutation factor δ in (27) can

be bounded as we show in Proposition 8. The specifics of this

bound are not central to the results of Section V. Notice that

when representations of an algebra A with multiple generators

{gi}mi=1 are considered, we have that for a ∈ A the operator

p(ρ(a)) ∈ End(M) is a function of ρ(gi) = Si ∈ End(M) and

therefore can be seen as the functionp : End(M)m → End(M),
where End(M)m is the m-times cartesian product of End(M).
In this scenario we use the notation p(S) = p(S1, . . . ,Sm)
and when considering the perturbation model in eqn. (25)

acting on S = (S1, . . . ,Sm) we use the following notation

T(S) = (T(S1), . . . ,T(Sm)) where T(Si) = T0,i +T1,iSi.

V. STABILITY THEOREMS

The filters in Section II and the algebraic neural networks

in Section III are operators acting on the space M. These

operators are of the form p(S), and their outputs depend on
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a filter set P ⊂ A which is denoted as p ∈ P ⊂ A, and the

set of shift operators S , where S ∈ S . When we perturb the

processing model according to Definition 4, these operators are

perturbed as well. The goal of this paper is to analyze these

perturbations. In particular, our goal is to identify conditions for

filters and algebraic neural networks to be stable in the sense of

the following definition.

Definition 5 (Operator Stability): Given operators p(S) and

p(S̃)defined on the processing models (A,M, ρ) and (A,M, ρ̃)
(cf. Definition 4) we say the operator p(S) is Lipschitz stable if

there exist constants C0, C1 > 0 such that
∥

∥

∥p(S)x− p(S̃)x
∥

∥

∥ ≤
[

C0 sup
S∈S

‖T(S)‖+ C1 sup
S∈S

∥

∥DT(S)
∥

∥+O
(

‖T(S)‖2
)

]

∥

∥x
∥

∥,

(28)

for all x ∈ M. In (28) DT(S) is the Fréchet derivative of the

perturbation operator T.

When the perturbation value T(S) and its derivative DT(S)
are small, the inequality in (28) states that the operators p(S)
and p(S̃) are close uniformly across all inputs x. Our stability

theorems are presented in the next section, but at this point

it is important to remark that algebraic filters are not always

stable in the sense of (28). We know that this is true because

unstable counterexamples are known in the case of graph signal

processing [23] and the processing of time signals [1]. The

best known example of an unstable filter is a high-pass filter

in time when consider a dilation of the time line [6]. The same

phenomenon is observed for graph signals when considering the

dilation of graph shift operator [23].

A. Stability of Algebraic Filters

Taking into account that the notion of stability is meant to be

satisfied by subsets of filters of the algebra and not necessarily

the whole algebra, it is important to have a characterization of

these subsets in simple terms. To do so, we introduce the notion

of frequency representation of the elements of an algebra as

follows.

Definition 6 (Frequency Representation of a Filter): Consider

an algebra A with a single generator g so that for all a ∈ A we

can write a = p(g). Let λ ∈ F be a variable taking values on the

field F . We say that p(λ) is the frequency representation of the

filter a = p(g).
Notice that the frequency representation of the elements of

the algebra A induces an isomorphism of algebras ι : A �→ AF ,

where AF is obtained when the variables of elements in A
are evaluated in F . Then, we can characterize elements in A
by means of the properties of their frequency representations.

In what follows we introduce a definition used to characterize

subsets of filters in algebras with a single generator that are

relevant in our analysis.

Definition 7: Let p : F → F be the frequency representation

of an element in an algebra with a single generator. Then, it is

said that p is Lipschitz if there exists L0 > 0 such that

|p(λ)− p(µ)| ≤ L0|λ− µ| (29)

for all λ, µ ∈ F . Additionally, it is said that p(λ) is Lipschitz

integral if there exists L1 > 0 such that

∣

∣

∣

∣

λ
dp(λ)

dλ

∣

∣

∣

∣

≤ L1 for all λ. (30)

In what follows, when considering subsets of a commutative

algebra A, we denote by AL0
the subset of elements in A that

are Lipschitz with constant L0 and by AL1
the subset of element

of A that are Lipschitz integral with constant L1.

We start our discussion on stability with a result for operators

in algebraic models with a single generator. The result highlights

the role of the Fréchet derivative of the map that relates the

operator and its perturbed version.

Theorem 1: Let A be an algebra generated by g and let

(M, ρ) be a representation of A with ρ(g) = S ∈ End(M).
Let ρ̃(g) = S̃ ∈ End(M) where the pair (M, ρ̃) is a perturbed

version of (M, ρ) and S̃ is related toS by the perturbation model

in eqn. (24). Then, for any p ∈ A we have

∥

∥

∥p(S)x− p(S̃)x
∥

∥

∥ ≤ ‖x‖
(

‖Dp(S) {T(S)}‖+O
(

‖T(S)‖2
))

(31)

where Dp(S) is the Fréchet derivative of p on S.

Proof: See Section VII-A. �

Theorem 1 highlights an important point, the difference be-

tween two operators obtained from the same elements in the

algebra is bounded by the Fréchet derivative of p(S) which

depends of the properties of the elements in A. In particular, we

can see that an upper bound in the term ‖Dp(S)T(S)‖ depends

on how the the operator Dp(S) acts on the perturbation T(S).
Then, Dp(S) will determine whether p(S) is stable under the

effect of T(S), or in other words the properties of p act on the

perturbation via the operator Dp(S). Additionally, notice that

eqn. (31) is satisfied for any T(S) if Dp(S) exists.

In the following theorems we show how these terms are related

to T(S) and its Fréchet derivative DT.

Theorem 2: Let A be an algebra with one generator element

g and let (M, ρ) be a finite or countable infinite dimensional

representation ofA. Let (M, ρ̃)be a perturbed version of (M, ρ)
associated to the perturbation model in eqn. (25). If p ∈ AL0

∩
AL1

, then

‖DpT(S)‖ ≤ (1 + δ)

(

L0 sup
S

‖T(S)‖+ L1 sup
S

‖DT(S)‖
)

(32)

Proof: See Section VII-B. �

It is worth pointing out that the constants involved in the upper

bound of eqn. (32) depend on the properties of the filters and the

difference between the eigenvectors of S and Tr. Therefore, the

difference between the eigenvectors of these operators do not

determine if p(S) is stable or not, although the absolute value of

the stability constants increase proportionally to δ.

From theorems 1 and 2 we can state the notion of stability for

algebraic filters in the following corollary.

Corollary 1: Let A be an algebra with one generator element

g and let (M, ρ) be a finite or countable infinite dimensional

representation of A. Let (M, ρ̃) be a perturbed version of

(M, ρ) related by the perturbation model in eqn. (25). Then,
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if p ∈ AL0
∩ AL1

the operator p(S) is stable in the sense of

definition 5 with C0 = (1 + δ)L0 and C1 = (1 + δ)L1.

Proof: Replace (32) from Theorem 2 into (31) from Theorem

1 and reorder terms. �

B. Algebraic Filter Stability in Algebras with Multiple

Generators

The stability results presented in previous subsection can be

extended naturally to operators associated to representations of

algebras with multiple generators. To do so, we introduce the

notion of frequency representation of elements of algebras with

multiple generators as follows.

Definition 8 (Frequency Representation of a Filter): Consider

an algebra A with generators g1, . . . , gm so that for all a ∈ A
we can write a = p(g1, . . . , gm). Let λi ∈ F be variables taking

values on the filed F . We say that p(λ1, . . . , λm) is the frequency

representation of the filter a = p(g1, . . . , gm).
Similar to the scenario of algebras with a single generator,

the frequency representation of the elements of A induces an

isomorphism of algebras ι : A �→ AF , where AF is obtained

when the variables of elements in A are evaluated in F . In

this way we have a characterization of elements in A when

considering the properties of their frequency representations.

We extend definitions introduced before to characterize fre-

quency representations in multivariate algebras.

Definition 9: Let p : F
m → F be the frequency representa-

tion of an element in an algebra with m generators. Then, it is

said that p is Lipschitz if there exists L0 > 0 such that

|p(λ)− p(µ)| ≤ L0‖λ− µ‖ (33)

for all λ,µ ∈ F
m. Additionally, it is said that p(λ) is Lipschitz

integral if there exists L1 > 0 such that
∣

∣

∣

∣

λi

∂p(λ)

∂λi

∣

∣

∣

∣

≤ L1 for all i ∈ {1, . . .m}, (34)

where λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm).
With these notions at hand, we are ready to extend the stability

theorems.

Theorem 3: Let A be an algebra generated by {gi}mi=1 and

let (M, ρ) be a representation of A with ρ(gi) = Si ∈ End(M)
for all i. Let ρ̃(gi) = S̃i ∈ End(M) where the pair (M, ρ̃) is

a perturbed version of (M, ρ) and S̃i is related to Si by the

perturbation model in eqn. (24). Then, for any p ∈ A we have
∥

∥

∥p(S)x− p(S̃)x
∥

∥

∥ ≤

‖x‖
m
∑

i=1

(∥

∥Dp|Si
(S)T(Si)

∥

∥+O
(

‖T(Si)‖2
))

(35)

where Dp|Si
(S) is the partial Fréchet derivative of p on Si.

Proof: See Section VII-A. �

Notice that in eqn. (35) we naturally add the contribution

associated to each generator. Therefore, to guarantee stability

we must have stability in each generator. Now, we show how the

Fréchet derivative of T(S) is involved in the stability properties

when considering multiple generators.

Theorem 4: Let A be an algebra with m generators {gi}mi=1

andgigj = gjgi for all i, j ∈ {1, . . .m}. Let (M, ρ)be a finite or

countable infinite dimensional representation of A and (M, ρ̃)
a perturbed version of (M, ρ) related by the perturbation model

in eqn. (25). Then, if p ∈ AL0
∩ AL1

it holds that
∥

∥Dp|Si
(S)T(Si)

∥

∥

≤ (1 + δ)

(

L0 sup
Si∈S

‖T(Si)‖+ L1 sup
Si∈S

‖DT(Si)‖
)

(36)

Proof: See Section VII-B. �

It is important to remark that the upper bound in eqn. (36)

is defined by the largest perturbation in a given generator al-

though the constants associated are determined completely by

the properties of the filters.

From theorems 3 and 4 we can state the stability results

for filters in algebras with multiple generators in the following

corollary.

Corollary 2: LetA be an algebra with generators {gi}mi=1 and

gigj = gjgi for all i, j. Let (M, ρ) be a finite or countable infi-

nite dimensional representation of A and (M, ρ̃) be a perturbed

version of (M, ρ) related by the perturbation model in eqn. (25).

Then, if p ∈ AL0
∪ AL1

the operator p(S) is stable in the sense

of definition 5 with C0 = m(1 + δ)L0 and C1 = m(1 + δ)L1.

Proof: Replacing eqn. (36) from theorem 4 into eqn. (35)

from theorem 3 and organazing the terms. �

C. Stability of Algebraic Neural Networks

The results in Theorems 1 to 4 and corollaries 1 and 2 can be

extended to operators representing AlgNNs. We say that for a

given AlgNN, Ξ = {(A�,M�, ρ�)}L�=1, a perturbed version of

Ξ is given by Ξ̃ = {(A�,M�, ρ̃�)}L�=1 where (A�,M�, ρ̃�) is a

perturbed version of (A�,M�, ρ�). For the sake of simplicity

we present a theorem for AlgNNs with algebras with a single

generator, but notice that these results can be easily stated

for AlgNNs with multiple generators directly from theorems 3

and 4. To do so, we start highlighting in the following theorem the

stability properties of the operators in the layer � of an AlgNN.

Theorem 5: LetΞ = {(A�,M�, ρ�)}L�=1 be an algebraic neu-

ral network with L layers, one feature per layer and algebras

A� with a single generator. Let Ξ̃ = {(A�,M�, ρ̃�)}L�=1 be the

perturbed version of Ξ by means of the perturbation model in

eqn. (25). Then, if Φ(x�−1,P�,S�) and Φ(x�−1,P�, S̃�) repre-

sent the mapping operators associated to Ξ and Ξ̃ in the layer �
respectively, we have

∥

∥

∥Φ(x�−1,P�,S�)− Φ
(

x�−1,P�, S̃�

)∥

∥

∥

≤ C�(1 + δ�)

(

L
(�)
0 sup

S�

‖T(�)(S�)‖

+L
(�)
1 sup

S�

‖DT(�)(S�)‖
)

‖x�−1‖ (37)

where C� is the Lipschitz constant of σ�, and P� = AL0
∩ AL1

represents the domain of ρ�. The index (�) makes reference to

quantities and constants associated to the layer �.
Proof: See Section VII-C1. �
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This result, although simple, highlights the role of the maps

σ� when perturbations are considered in each layer. In particular,

we see that the effect of σ� is to scale∆� by a constant but it does

not change the nature or mathematical form of the perturbation.

Notice also that σ� plays the role of a mixer that allows an

AlgNN to provide selectivity without affecting the stability (see

Section VIII).

Now we present in the following theorem the stability result

for a general AlgNN with commutative algebras.

Theorem 6: LetΞ = {(A�,M�, ρ�)}L�=1 be an algebraic neu-

ral network with L layers, one feature per layer and alge-

bras A� with a single generator. Let Ξ̃ = {(A�,M�, ρ̃�)}L�=1

be the perturbed version of Ξ by means of the perturba-

tion model in eqn. (25). Then, if Φ(x, {P�}L1 , {S�}L1 ) and

Φ(x, {P�}L1 , {S̃�}L1 ) represent the mapping operators associated

to Ξ and Ξ̃ respectively, we have

∥

∥

∥
Φ
(

x, {P�}L1 , {S�}L1
)

− Φ
(

x, {P�}L1 , {S̃�}L1
)∥

∥

∥

≤
L
∑

�=1

∆�

(

L
∏

r=�

Cr

)(

L
∏

r=�+1

Br

)(

�−1
∏

r=1

CrBr

)

‖x‖ (38)

where C� is the Lipschitz constant of σ� and B� is a bound on

the filter’s norm, ‖ρ�(a)‖ ≤ B�. The functions ∆� are given by

∆� = (1 + δ�)

(

L
(�)
0 sup

S�

‖T(�)(S�)‖+ L
(�)
1 sup

S�

‖DT(�)(S�)‖
)

(39)

with the index (�) indicating quantities and constants associated

to the layer �.
Proof: See Section VII-C2. �

Theorem 6 states how an AlgNN can be made stable by the

selection of an appropriate subset of filters in the algebra, for a

given perturbation model. It is worth pointing out that conditions

like the ones obtained in [7] for GNNs can be considered partic-

ular instantiations of the conditions in Theorem 6. Additionally,

notice that Theorem 6 can be easily extended to consider several

features per layer, the reader can check the details of the proof of

the theorem in Section VII-C2 where the analysis is performed

considering multiple features.

The bound in (38) exhibits an exponential dependency on the

Lipschitz constants C� and the maximum filter norms B�. This

dependency can be avoided if we normalize the nonlinearities so

that C� = 1 and the filters so that B� = 1. Their presence in (38)

highlights that if the filters and nonlinearities amplify signals,

they may amplify errors as well.

Remark 3: It is important to highlight the fact that the pertur-

bation model in eqn. (25) is smooth in the space of admissible

S and this smoothness allows a consistent calculation of the

Fréchet derivative of T(S). This can be considered as a conse-

quence of the fact that deformations between arbitrary spaces can

be measured according to the topology of the space. In particular,

if a diffeomorphism is used to produce deformation in the signal

models of interest, it is possible to find an equivalent associated

map that produces deformation of the set of operators acting on

the signal. If notions of differentiability are used to measure the

size of the original diffeomorphism, it is natural to find similar

notions involved on the map acting on the operators, but with

the difference that the differentiability is measured according to

the topology of the new space.

Remark 4: It is worth noticing that the role of the Fréchet

derivative Dp|S(S) raises naturally when the the norm of the

difference between an operator p(S) and its perturbed version

p(S̃) is considered (see Section VII-A), and this is a direct

consequence of the definition of such derivative and the type

of perturbation considered (see eqn. (49) and eqn. (50)). Then,

as long as the perturbed shifts considered can be modeled as

S̃ = S+T(S), i.e. the perturbation is added to the unperturbed

shift, the operator that acts on T(S) is always the Fréchet

derivative of the filter.

D. Implications for particular signal models

In this subsection we show the implication of the stability

results for particular signal models.

Graph Neural Networks (GNNs) In graph signal process-

ing the shift operator S is a matrix representation of a graph.

The perturbation model in (4) simply states that S̃ is a matrix

representation of a different graph. Definition 5 defines a stable

operator p(S) as one that doesn’t change much when run on

graphs that are close and related by perturbations that are suffi-

ciently smooth in the space of matrix representations of graphs.

The absolute perturbation model considered in [7] is the

perturbation model where T(S) = T0. Therefore the stability

bound for graph filters translates into
∥

∥

∥p(S)− p(S̃)
∥

∥

∥ ≤ (1 + δ)L0‖T0‖+O
(

‖T0‖2
)

, (40)

which is a scaled version of the result in [7] (Theorem 1).

Additionally, δ ≤ δ̂
√
N where δ̂ is the non commutativity con-

stant used in [7] which depends on the difference between the

eigenvectors of S and Tr – please see Appendix A where

the formal connection between δ and δ̂ is stated. Notice that

supS ‖T(S)‖ = ‖T0‖.

A relative model can be obtained considering T(S) = T1S,

and in that case the stability bounds are given according to
∥

∥

∥
p(S)− p(S̃)

∥

∥

∥
≤ (1 + δ)L1‖T1‖+O

(

‖T(S)‖2
)

, (41)

which is a scaled version of the bound obtained in [7]. No-

tice that supS ‖DT(S)‖ = ‖T1‖. Like in the previous scenario

δ ≤
√
Nδ̂ where δ̂ is the non commutativity constant used in [7]

– please see Appendix A. It is also important to remark that

the stability of bounds derived in [25] for graph scattering

transforms are rooted in the fact that wavelet graph filters are

stable, and as a consequence the stability bounds are scaled

versions of the ones derived for graph filters.

CNNs with DTSP In discrete time signal processing (DTSP)

the shift operator is the discrete time shift S. The processing

induced by (5) is invariant to shifts and therefore adequate to

processing signals that are shift invariant. In general, signals are

close to shift invariant but not exactly so. That is, a given signal

x is invariant with respect to a shift operator S̃ that is close to

the time shift S. If the stability property in (28) holds we can

guarantee that processing the signal x with the operator S̃ is not

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:07:41 UTC from IEEE Xplore.  Restrictions apply. 



3360 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

far from processing the signal with the operator S. The latter

represents the operations we perform – since we choose to use

S in the processing of time signals. The former represents the

processing we should undertake to respect the actual invariance

properties of the signal x – which are characterized by S̃. The

stability bound in this scenario is given by

∥

∥

∥p(S)x− p(S̃)x
∥

∥

∥ ≤
[

L0(1 + δ) sup
S∈S

‖T(S)‖

+L1(1 + δ) sup
S∈S

∥

∥DT(S)
∥

∥+O
(

‖T(S)‖2
)

]

∥

∥x
∥

∥. (42)

Notice that although results in eqn. (42) are different from

those in [1], they exhibit similarities. This is expected since

the right hand side of eqn. (42) measures the size of T(S),
which is a diffeomorphism acting on the space of admissible shift

operators. The bounds derived in [1] consider diffeomorphisms

acting on R
n which is the domain of the signals. Additionally,

notice that since the operators considered in [1] are shift invariant

the term associated to the absolute norm of the deformation is

not present in the bounds. It is also worth pointing out that the

convolutions we consider in the DTSP model are attributed to a

polynomial algebra. While the convolutions considered in [1] are

defined considering functions in L2(R
n) and filters in L1(R), a

scenario that requires the use of a non polynomial algebra.

Graphon Neural Networks Similar to the case of GNNs

the graphon W (u, v) is a limit object that represents a family

of random graphs. The perturbed graphon W̃ (u, v) represents

a different family of random graphs. The perturbation of the

graphon generates a corresponding perturbation of the shift

operator defined in (13). If the condition stated in (28) is satisfied,

then filtering graphon signals using the perturbed shift operator

associated to W̃ (u, v) will lead to similar results to the ones

obtained with the unperturbed operator and the differences are

proportional to the size of the perturbation acting on W (u, v).
For instance, if the perturbation considered is additive we have

∥

∥

∥
p(S)− p(S̃)

∥

∥

∥
≤ (1 + C)L0‖T0‖+O

(

‖T0‖2
)

, (43)

where S is the graphon shift operator indicated in eqn. (6) and

C is a constant associated to the eigenvalue and eigenvector

spreading of the graphon operator.

Group Neural Network Similar to the case of DSP, the filters

in (11) are invariant to the action of the group. Actual signals

x are invariant to actions of operators that are close to actions

of the group – e.g., a signal is close to invariant to rotations and

symmetries. If (28) is true, processing the signal with operators

g – as we choose to do – is not far from processing the signal with

operators g̃ – as we should do to leverage the actual invariance of

the signal x. We remark that when we perturb g to g̃ the resulting

shift operators will not, in general, be representations of a ho-

momorphism. Notice that when considering the representations

of finite commutative groups the analysis of stability is the same

as in the case of an architecture based on a DSP model, therefore

the stability bounds to perturbations are given by eqn. (42).

VI. SPECTRAL OPERATORS

Part of our proofs on the stability of AlgNN rely on the

notion of spectral or Fourier decompositions associated to the

realization of algebraic filters. In this section we discuss the

notion of spectrum for general operators associated to algebraic

signal models. Such notions of spectral decompositions are a

natural generalization of the well established notions of spec-

trum used in GNNs and CNNs. To do so we elaborate about the

concepts of irreducible and indecomposable subrepresentations,

which generalize the notions of decompositions in terms of

eigenvectors and eigenvalues [8], [26], [27].

We will highlight specially the role of the filters when a

representation is compared to its perturbed version. In particular,

we will show that there are essentially two factors that can cause

differences between operators and their perturbed versions, the

eigenvalues1 and eigenvectors. Additionally, we show how the

algebra can only affect one of those sources. This is consistent

with the fact that differences in the eigenvectors of the operators

only affect the constants that are associated to the stability

bounds.

We start introducing the notion of subrepresentation.

Definition 10: Let (M, ρ) be a representation of A. Then, a

representation (U , ρ) of A is a subrepresentation of (M, ρ) if

U ⊆ M and U is invariant under all operators ρ(a) for all a ∈
A, i.e. ρ(a)u ∈ U for all u ∈ U and a ∈ A. A representation

(M �= 0, ρ) is irreducible or simple if the only subrepresenta-

tions of (M �= 0, ρ) are (0, ρ) and (M, ρ).
The class of irreducible representations of an algebra A

is denoted by Irr{A}. Notice that the zero vector space and

M induce themselves subrepresentations of (M, ρ). In order

to state a comparison between representations the concept of

homomorphism between representations is introduced in the

following definition.

Definition 11: Let (M1, ρ1) and (M2, ρ2) be two repre-

sentations of an algebra A. A homomorphism or interwining

operator φ : M1 → M2 is a linear operator which commutes

with the action of A, i.e.

φ(ρ1(a)v) = ρ2(a)φ(v). (44)

A homomorphism φ is said to be an isomorphism of represen-

tations if it is an isomorphism of vectors spaces.

Notice from definition 11 a substantial difference between

the concepts of isomorphism of vector spaces and isomorphism

of representations. In the first case we can consider that two

arbitrary vector spaces of the same dimension (finite) are iso-

morphic, while for representations that condition is required but

still the condition in eqn. (44) must be satisfied. For instance, as

pointed out in [28] all the irreducible 1-dimensional representa-

tions of the polynomial algebra C[t] are non isomorphic.

As we have discussed before, the vector space M associated

to (M, ρ) provides the space where the signals are modeled.

Therefore, it is of central interest to determine whether it is

possible or not to decompose M in terms of simpler or smaller

1As we will show later, this is indeed a particular case of a general notion of
homomorphism between the algebra and an irreducible subrepresentation of A.
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spaces consistent with the action of ρ. We remark that for any

two representations (M1, ρ1) and (M2, ρ2) of an algebra A,

their direct sum is given by the representation (M1 ⊕M2, ρ)
where ρ(a)(x1 ⊕ x2) = (ρ1(a)x1 ⊕ ρ2(a)x2). We introduce

the concept of indecomposability in the following definition.

Definition 12: A nonzero representation (M, ρ) of an algebra

A is said to be indecomposable if it is not isomorphic to a direct

sum of two nonzero representations.

Indecomposable representations provide the minimum units

of information that can be extracted from signals in a given

space when the filters have a specific structure (defined by the

algebra) [29]. The following theorem provides the basic building

block for the decomposition of finite dimensional representa-

tions.

Theorem 7 (Krull-Schmit, [30]): Any finite dimensional rep-

resentation of an algebra can be decomposed into a finite direct

sum of indecomposable subrepresentations and this decompo-

sition is unique up to the order of the summands and up to

isomorphism.

The uniqueness in this result means that if (⊕r
r=1Vi, ρ) ∼=

(⊕s
j=1Wj , γ) for indecomposable representations (Vj ,

ρj), (Wj , γj), then r = s and there is a permutation π of

the indices such that (Vi, ρi) ∼= (Wπ(j), γπ(j)) [30]. Although

theorem 7 provides the guarantees for the decomposition of

representation in terms of indecomposable representations,

it is not applicable when infinite dimensional representations

are considered. However, it is possible to overcome this

obstacle taking into account that irreducible representations

are indecomposable [28], [30], and they can be used then to

build representations that are indecomposable. In particular,

irreducibility plays a central role to decompose the invariance

properties of the images of ρ on End(M) [30]. Representations

that allow a decomposition in terms of subrepresentations that

are irreducible are called completely reducible and its formal

description is presented in the following definition.

Definition 13 ( [30]): A representation (M, ρ) of the algebra

A is said to be completely reducible if (M, ρ) =
⊕

i∈I(Ui, ρi)
with irreducible subrepresentations (Ui, ρi). The length of

(M, ρ) is given by |I|.
For a given (U , ρU ) ∈ Irr{A} the sum of all irreducible

subrepresentations of (V, ρV ) that are equivalent (isomorphic)

to (U , ρU ) is represented by V (U) and it is called the U -

homogeneous component of (V, ρV ). This sum is a direct

sum, therefore it has a length that is well defined and whose

value is called the multiplicity of (U , ρU ) and is represented by

m(U , V ) [30]. Additionally, the sum of all irreducible subrepre-

sentations of (V, ρV ) will be denoted as soc{V }. It is possible to

see that a given representation (V, ρV ) is completely reducible

if and only if (V, ρV ) = soc{S} [30]. The connection between

soc{V } and V (U) is given by the following proposition.

Proposition 1 (Proposition 1.31 [30]): Let (V, ρV ) ∈
Rep{A}. Then soc{V } =

⊕

S∈Irr{A} V (S).
Now, taking into account that any homogeneous component

V (U) is itself a direct sum we have that

soc{V } ∼=
⊕

S∈Irr{A}
S⊕m(U,V ). (45)

Equation (45) provides the building block for the definition of

Fourier decompositions in algebraic signal processing [11]. With

all these concepts at hand we are ready to introduce the following

definition.

Definition 14 (Fourier Decomposition): For an algebraic sig-

nal model (A,M, ρ) we say that there is a spectral or Fourier

decomposition of (M, ρ) if

(M, ρ) ∼=
⊕

(Ui,φi)∈Irr{A}
(Ui, φi)

⊕m(Ui,M) (46)

where the (Ui, φi) are irreducible subrepresentations of (M, ρ).
Any signal x ∈ M can be therefore represented by the map ∆
given by

∆ : M → ⊕

(Ui,φi)∈Irr{A}(Ui, φi)
⊕m(Ui,M)

x �→ x̂
(47)

known as the Fourier decomposition of x and the projection of

x̂ in each Ui are the Fourier components represented by x̂(i).
Notice that in eqn. (46) there are two sums, one dedicated

to the non isomorphic subrepresentations (external) and another

one (internal) dedicated to subrepresentations that are isomor-

phic. In this context, the sum for non isomorphic representations

indicates the sum on the frequencies of the representation while

the sum for isomorphic representations a sum of components

associated to a given frequency. It is also worth pointing out

that ∆ is an interwining operator, therefore, we have that

∆(ρ(a)x) = ρ(a)∆(x). As pointed out in [8] this can be used

to define a convolution operator as ρ(a)x = ∆−1(ρ(a)∆(x)).
The projection of a filtered signal ρ(a)x on each Ui is given

by φi(a)x̂(i) and the collection of all this projections is known

as the spectral representation of the operator ρ(a). Notice that

φi(a)x̂(i) translates to different operations depending on the

dimension of Ui. For instance, if dim(Ui) = 1, x̂(i) and φi(a)
are scalars while if dim(Ui) > 1 and finite φi(a)x̂(i) is obtained

as a matrix product.

Remark 5: The spectral representation of an operator in-

dicated as φi(a)x̂(i) and eqns. (46) and (47) highlight one

important fact that is essential for the discussion of the re-

sults in Section VII. For a completely reducible representation

(M, ρ) ∈ Rep{A} the connection between the algebra A and

the spectral representation is exclusively given by φi(a) which

is acting on x̂(i), therefore, it is not possible by the selection

of elements or subsets of the algebra to do any modification

on the spaces Ui associated to the irreducible components in

eqn.(46). As a consequence, when measuring the similarities

between two operators ρ(a) and ρ̃(a) associated to (M, ρ) and

(M, ρ̃), respectively, there will be two sources of error. One

source of error that can be modified by the selection of a ∈ A
and another one that will be associated with the differences

between spaces Ui and Ũi, which are associated to the direct

sum decomposition of (M, ρ) and (M, ρ̃), respectively. This

point was first elucidated in [7] for the particular case of GNNs,

but it is part of a much more general statement that becomes

more clear in the language of algebraic signal processing.

Example 10 (Discrete signal processing): In CNNs the filter-

ing is defined by the polynomial algebra A = C[t]/(tN − 1),
therefore, in a given layer the spectral representation of the filters
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is given by

ρ(a)x =

N
∑

i=1

φi

(

K−1
∑

k=0

hkt
k

)

x̂(i)ui

=

N
∑

i=1

K−1
∑

k=0

hkφi(t)
kx̂(i)ui =

N
∑

i=1

K−1
∑

k=0

hk

(

e−
2πij
N

)k

x̂(i)ui,

with a =
∑K−1

k=0 hkt
k and where the ui(v) =

1√
N
e

2πjvi
N are the

column vectors of the traditional DFT matrix, while φi(t) =

e−
2πji
N is the eigenvalue associated to ui. Here x̂ represents the

DFT of x.

Example 11 (Graph signal processing): Taking into account

that the filtering in each layer of a GNN is defined by a poly-

nomial algebra, the spectral representation of the filter is given

by

ρ(a)x =
N
∑

i=1

φi

(

K−1
∑

k=0

hkt
k

)

x̂(i)ui

=

N
∑

i=1

K−1
∑

k=0

hkφi(t)
kx̂(i)ui =

N
∑

i=1

K−1
∑

k=0

hkλ
k
i x̂(i)ui

(48)

with a =
∑K−1

k=0 hkt
k, and where the ui are given by the

eigenvector decomposition of ρ(t) = S, where S could be the

adjacency matrix or the Laplacian of the graph, whileφi(t) = λi

being λi the eigenvalue associated to ui. The projection of

x in each subspace Ui is given by x̂(i) = 〈ui,x〉, and if U

is the matrix of eigenvectors of S we have the widely known

representation x̂ = UTx [23].

Example 12 (Group signal processing): Considering the

Fourier decomposition on general groups [16]–[18], we obtain

the spectral representation of the algebraic filters as

a ∗ x =
∑

u,h∈G
a(uh−1)

∑

i,j,k

dk
|G| x̂

(

ϕ(k)
)

i,j
ϕ

(k)
i,j (h)hu,

where x̂(ϕ(k)) represents the Fourier components asso-

ciated to the kth irreducible representation with dimen-

sion dk and ϕ(k) is the associated unitary element. We

can see that the kth element in this decomposition is
∑

i,j x(ϕ
(k))i,j

∑

u,h
dk

|G|a(uh
−1)ϕ

(k)
i,j (h)hu.

Example 13 (Graphon signal processing): According to the

spectral theorem [31], [32], it is possible to represent the action

of a compact normal operatorS asSx =
∑

i λi〈ϕi,x〉ϕi where

λi andϕi are the eigenvalues and eigenvectors ofS, respectively,

and 〈·〉 indicates an inner product. Then, the spectral represen-

tation of the filtering of a signal in the layer � is given by

ρ� (p(t))x =
∑

i

p(λi)〈x,ϕi〉ϕi =
∑

i

φi(p(t))x̂iϕi,

where φi(p(t)) = p(λi).

VII. PROOF OF THEOREMS

Let us start defining some notation. Let

πa1,...,ar
(A1, . . . ,Ar) be the operator that represents

the sum of all the products of the operators A1, . . . ,Ar

that appear a1, a2, . . . , ar times respectively. For instance,

π2,1(A,B) = AAB+ABA+BAA. Additionally, when

considering all summation and product symbols the following

convention is used
∑b

i=a F (i) = 0 if b < a, and
∏b

i=a F (i) = 0
if b < a. In what follows ‖ · ‖ represents the �2 norm and ‖ · ‖F
the Frobenius norm.

A. Proof of Theorems 1 and 3

Proof: We say that p(S) as a function of S is Fréchet dif-

ferentiable at S if there exists a bounded linear operator Dp :
End(M)m → End(M) such that [33], [34]

lim
‖ξ‖→0

‖p(S+ ξ)− p(S)−Dp(S) {ξ}‖
‖ξ‖ = 0 (49)

which in Landau notation can be written as

p(S+ ξ) = p(S) +Dp(S) {ξ}+ o(‖ξ‖). (50)

Calculating the norm in eqn. (50) and applying the triangle

inequality we have:

‖p(S+ ξ)− p(S)‖ ≤ ‖Dp(S) {ξ}‖+O
(

‖ξ‖2
)

(51)

for all ξ = (ξ1, . . . , ξm) ∈ End(M)m. Now, taking into ac-

count the properties of a Fréchet derivative for a function of

multiple variables (see [35] pages 69-70) we have

‖Dp(S) {ξ} ‖ ≤
m
∑

i=1

∥

∥Dp|Si
(S) {ξi}

∥

∥ (52)

and therefore

‖p(S+ ξ)− p(S)‖ ≤
m
∑

i=1

∥

∥Dp|Si
(S) {ξi}

∥

∥+O
(

‖ξ‖2
)

,

where Dp|Si
(S) is the partial Frechet derivative of p(S) on Si.

Then, taking into account that

‖p(S+ ξ)x− p(S)x‖ ≤ ‖x‖ ‖p(S+ ξ)− p(S)‖ (53)

and selecting ξi = T(Si) we complete the proof. �

B. Proof of Theorem 2 and Theorem 4

Proof: Taking into account the definition of the Fréchet

derivative of p on Si (see Appendix B) we have

∥

∥Dp|Si
(S) {T(Si)}

∥

∥ =

∥

∥

∥

∥

∥

∞
∑

ki=1

Aki
π1,ki−1 (T(Si),Si)

∥

∥

∥

∥

∥

,

and re-organizating terms we have

∥

∥Dp|Si
(S) {T(Si)}

∥

∥ =

∥

∥

∥

∥

∥

∞
∑

�=1

S�−1
i T(Si)

∞
∑

ki=�

Aki
S
ki−�
i

∥

∥

∥

∥

∥

.

(54)

Taking into account eqn. (26), it follows that
∥

∥Dp|Si
(S) {T(Si)}

∥

∥ =
∥

∥

∥

∥

∥

∞
∑

�=1

(

T0c,iS
�−1
i + S�−1

i P0,i

)

∞
∑

ki=�

Aki
S
ki−�
i
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+

∞
∑

�=1

(

T1c,iS
�
i + S�−1

i P1,iSi

)

∞
∑

k=�

Aki
Ski−�

∥

∥

∥

∥

∥

. (55)

Applying the triangle inequality and distribuiting the sum we

have

∥

∥Dp|Si
(S) {T(Si)}

∥

∥ ≤
∥

∥

∥

∥

∥

T0c,i

∞
∑

�=1

∞
∑

ki=�

S
ki−1
i Aki

∥

∥

∥

∥

∥

+
∥

∥Dp|Si
(S) {P0,i}

∥

∥+

∥

∥

∥

∥

∥

T1c,i

∞
∑

�=1

∞
∑

ki=�

SkiAki

∥

∥

∥

∥

∥

+
∥

∥Dp|Si
(S) {P1,iSi}

∥

∥ (56)

Now, we analyze term by term in eqn. (56). For the first term we

take into account that
∞
∑

�=1

∞
∑

ki=�

Ski−1
i Aki

=

∞
∑

ki=1

kiAki
Ski−1
i (57)

and we apply the product norm property taking into account that

the filters belong to AL0
, which leads to

∥

∥

∥

∥

∥

T0c,i

∞
∑

�=1

∞
∑

ki=�

S
ki−1
i Aki

∥

∥

∥

∥

∥

≤ ‖T0c,i‖
∥

∥

∥

∥

∥

∞
∑

ki=1

kiAki
Ski−1
i

∥

∥

∥

∥

∥

≤ L0‖T0,i‖. (58)

For the second term in eqn. (56) we take into account that the

Fréchet derivative acting on P0,i can be equivalently expressed

as a linear operator acting on the left of a vectorized version of

P0,i (see [36] pages 61 and 331). Then,
∥

∥Dp|Si
(S) {P0,i}

∥

∥ ≤ L0‖P0,i‖F (59)

and with the fact that ‖P0,i‖F ≤ δ‖T0,i‖, we have
∥

∥Dp|Si
(S) {P0,i}

∥

∥ ≤ L0δ‖T0,i‖. (60)

For the third term in eqn. (56), we take into account that

∞
∑

�=1

∞
∑

ki=�

Ski

i Aki
=

∞
∑

ki=1

kiAki
Ski

i , (61)

and we apply the norm product property taking into account that

the filters belong to AL1
, which leads to

∥

∥

∥

∥

∥

T1c,i

∞
∑

�=1

∞
∑

ki=�

Ski

i Aki

∥

∥

∥

∥

∥

≤ ‖T1c,i‖
∥

∥

∥

∥

∥

∞
∑

ki=1

kiAki
S
ki

i

∥

∥

∥

∥

∥

≤ L1‖T1,i‖. (62)

Finally, for the fourth term we use the notation D̃(S){P1,i} =
Dp|Si

(S){P1,iSi}. We start pointing out that (see [36] pages 61

and 331) the eigenvalues of the operator D̃(S) represented as

ζpq are given by

ζpq =

{

p(λp)−p(λq)

λp−λq

λq if λp �= λq

λpp
′(λp) if λp = λq

. (63)

Then, taking into account that the filters belong to AL1
we

have ‖D̃(S)‖ ≤ L1, and therefore

∥

∥Dp|Si
(S) {P1,iSi}

∥

∥ =
∥

∥

∥D̃(S) {P1,i}
∥

∥

∥ ≤ L1‖P1,i‖F (64)

Additionally, with ‖P1,i‖F ≤ δ‖T1,i‖ it follows that
∥

∥Dp|Si
(S) {P1,iSi}

∥

∥ ≤ L1δ‖T1,i‖ (65)

Putting all these results together into eqn. (56) we reach
∥

∥Dp|Si
(S) {T(Si)}

∥

∥ ≤ (1 + δ)L0‖T0,i‖+ (1 + δ)L1‖T1,i‖

≤ (1 + δ)

(

L0 sup
Si∈S

‖T(Si)‖+ L1 sup
Si∈S

‖DT(Si)‖
)

C. Proof of Theorems 5 and 6

1) Proof of Theorem 5: Proof: Taking into account

eqns. (17), and (18) and the fact that the maps σ� are Lipschitz

with constant C� we have that
∥

∥

∥σ� (p(S�)x�−1)− σ�

(

p(S̃�)x�−1

)∥

∥

∥ ≤ C�∆�‖x�−1‖, (66)

where ∆� = ‖p(S�)− p(S̃�)‖, and whose value is determined

by theorems 1 and 2. �

2) Proof of Theorem 6: Proof: Before starting the calcula-

tions let us introduce some notation. Let ϕf (�, g) = ρ�(ξ
fg)

denote the image of the filter ξfg ∈ A� that process the gth

feature coming from the layer �− 1 and that is associated to f th

feature in layer �. As indicated before, σ� indicates the Lipschitz

mapping from layer � to layer �+ 1. The term x
g
�−1 indicates

the gth feature in the layer �− 1. Then, we have that:

∥

∥

∥x
f
� − x̃

f
�

∥

∥

∥ ≤
∥

∥

∥

∥

∥

σ�−1

∑

g�−1

ϕg�(�− 1, g�−1)σ�−2

∑

g�−2

ϕg�−1
(�− 2, g�−2) · · ·σ1

∑

g1

ϕg2x −

σ�−1

∑

g�−1

ϕ̃g�(�− 1, g�−1)σ�−2

∑

g�−2

ϕ̃g�−1
(�− 2, g�−2)

· · ·σ1

∑

g1

ϕ̃g2(1, g1)x

∥

∥

∥

∥

∥

. (67)

In order to exapand eqn. (67) we start pointing out that:

A�+1σ�(a)− Ã�+1σ�(ã) =

(A�+1 − Ã�+1)σ�(a) + Ã�+1(σ�(a)− σ�(ã)) (68)

where A�+1 and Ã�+1 indicate filter operators and their per-

turbed versions, respectively. Now, noticing that ‖σ�(a)−
σ�(b)‖ ≤ C�‖a− b‖, ‖A�+1 − Ã�+1‖ ≤ ∆� and ‖A�+1‖ ≤
B�+1 we have the following relations

∑

gk

‖α− α̃‖ ≤
∑

gk

(

∆k‖σk−1(α)‖+BkCk−1‖β − β̃‖
)

(69)

∑

gk

‖β − β̃‖ ≤
∑

gk

∑

gk−1

‖α− α̃‖ (70)
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∑

gk

‖σk−1(α)‖ ≤
(

k
∏

r=1

Fr

)(

k−1
∏

r=1

CrBr

)

‖x‖ (71)

where α and α̃ represent sequences of symbols in eqn. (67)

that start with a symbol of the type ϕ, while β and β̃ indicate

a sequence of symbols that start with a summation symbol,

and the tilde makes reference to symbols that are associated to

the perturbed representations. The term ∆� is associated to the

difference between the operators and their perturbed versions

(see definition 5) in the layer � and whose values are given in

Theorems 1 and 2. Combining eqns. (69), (70) and (71) we have:

∥

∥

∥
x
f
L − x̃

f
L

∥

∥

∥
≤

L
∑

�=1

∆�

(

L
∏

r=�

Cr

)(

L
∏

r=�+1

Br

)

(

L−1
∏

r=�

Fr

)(

�−1
∏

r=1

CrFrBr

)

‖x‖ , (72)

where the products
∏b

r=a F (r) = 0 if b < a. Now taking into

account that
∥

∥

∥Φ
(

x, {P�}L1 , {S�}L1
)

− Φ
(

x, {P�}L1 , {S̃�}L1
)∥

∥

∥

2

=

FL
∑

f=1

∥

∥

∥x
f
L − x̃

f
L

∥

∥

∥

2

we have
∥

∥

∥Φ
(

x, {P�}L1 , {S�}L1
)

− Φ
(

x, {P�}L1 , {S̃�}L1
)∥

∥

∥

≤
√

FL

L
∑

�=1

∆�

(

L
∏

r=�

Cr

)(

L
∏

r=�+1

Br

)(

L−1
∏

r=�

Fr

)

(

�−1
∏

r=1

CrFrBr

)

‖x‖ (73)

VIII. DISCUSSION

The mathematical form of the notion of stability introduced in

definition (5), eqn. (28) is uncannily similar to the expressions

associated to the stability conditions stated in [1], [2] when the

perturbation operator τ considered was affecting directly the

domain of the signals. This is consistent with the fact that the

size of the perturbation on the operators is the size of an induced

diffeomorphism T acting on End(M). Measuring the size of

perturbations in this way, although less intuitive, provides an

alternative way to handle and interpret perturbations on irregular

domains.

The nature and severity of the perturbations, imposes restric-

tions on the behavior of the filters needed to guarantee stability.

The more complex and severe the perturbation is the more

conditions on the filters are necessary to guarantee stability.

This in particular has implications regarding to the selectivity

of the filters in some specific frequency bands. The trade-off

between stability and selectivity in the filters of the AlgNN can

be measured by the norm of the Fréchet derivative of the filters

‖Dp|S(S)‖. Those filters with slow variation and low selectivity

Fig. 3. Filter properties and stability for algebraic operators considering
algebras with a single generator. (Top) We depict a Lipschitz filter where it
is possible to see that an arbitrary degree of selectivity can be achieved in any
part of the spectrum. (bottom) We depict a Lipschitz integral filter where we
can see how the magnitude of the filters tends to a constant value as the size of
|λi| grows. As a consequence there is no discriminability in one portion of the
spectrum.

will be associated with a low value of ‖Dp|S(S)‖ while a filter

that high variation will lead to large values of ‖Dp|S(S)‖. This

is also reflected in the size of the upper bounds in Theorems 1

up to 6. In particular, the size of L0 and L1 associated to the

boundedness of the derivatives of the elements in AL0 and AL1.

The smaller the value ofL0, L1 the more stable the operators but

the less selectivity we have. In Fig. (3) the properties in frequency

of Lipschtiz and Lipschitz integral filters are depicted, where it

is possible to see how the selectivity on portions of the spectrum

is affected by properties that at the same time provide stability

conditions for the perturbation models considered.

It is important to remark that the function σ� = P� ◦ η� com-

posed by the projection operatorP� and the nonlinearity function

η� relocates information from one layer to the other performing a

mapping between different portions of the spectrum associated

to each of the spaces M�. As η� maps elements of M� onto

itself, we can see in light of the decomposition of M� in terms

of irreducible representations that η� is nothing but a relocator

of information from one portion of the spectrum to the other.

Additionally, the simplicity of η� provides a rich variety of

choices that can be explored in future research.

The notion of differentiability between metric spaces or

Banach spaces can be considered also using the notion of

Gâteaux derivative which is considered a weak notion of dif-

ferentiability. Although Gateaux differentiability is in general

different from Fréchet differentiability, it is possible to show

that when dim(End(M)) < ∞ both notions are equivalent for

Lipschtiz functions, but substantial differences may exist if
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dim(End(M)) = ∞ even if the functions are Lipschitz [33],

[34].

IX. CONCLUSION

We considered algebraic neural networks (AlgNN) with com-

mutative algebras as a tool to unify convolutional architectures

like CNNs and GNNs, synthesizing the algebraic structure by

exploiting results from the representation theory of algebras

and algebraic signal processing. Within this framework, we

showed that AlgNNs can, in general, be stable to different types

of perturbations, and the conditions under which the AlgNN

operators are stable are determined by subsets of the algebra. We

pointed out that the perturbations of the domain of the signals

can be equivalently modeled as a perturbation of the representa-

tion or the signal model, and the degree of this perturbation

can be measured by means of the Fréchet derivative of two

functions, the image of the homomorhisms in End(M) and the

perturbation model T(S). The perturbation model considered

provides enough expressive power to represent a wide variety

of perturbations affecting the domain of the signals or the

operator themselves directly. In particular, when considering

the algebraic model for GNNs, the absolute and the relative

perturbation models can be considered particular cases of the

perturbation model used in this work.

An interesting and relevant future research direction is to

analyze stability of operators in signal models with non com-

mutative algebras. This is important since we do not have shift

invariance, and consequently there is the question of how this af-

fects the stability properties and the constants in a stability bound

if it exists. Another essential question to solve is how the ASP

theory can be extended to consider stability of convolutional

operators in signal models where the algebra is not of polynomial

type. This has implications when considering convolutions with

functions inL2(R
n), where the algebra isL1(R

n) and the notion

of generator set proposed in [8] is insufficient/inadequate to

capture the whole structure of the algebra.

APPENDIX A

PERTURBATION MODEL

Theorem 8: Let Tr,Tcr as specified in eqn. (26) for the

perturbation model with ‖Pr‖F ≤ δ‖Tr‖. Let ei a orthonormal

basis, (λi,vi) the eigenpairs of S and (µi,ui) the eigenpairs of

Tr. Then

δ ≤
√
Nδ̂ (74)

where

δ̂ = (‖Tu −Tv‖+ 1)2 − 1 (75)

and

Tv =

(

∑

i

ei〈vi, ·〉
)

, Tu =

(

∑

i

ei〈ui, ·〉
)

. (76)

The terms 〈ui, ·〉 and 〈ui, ·〉 indicate the inner product operators

with ui and vi respectively.

Proof: For our analysis we consider the following operators

Tv∗ =

(

∑

i

vi〈·, ei〉
)

, Tu∗ =

(

∑

i

ui〈·, ei〉
)

, (77)

Tµ =

(

∑

i

µiei〈ei, ·〉
)

, (78)

and we remark that

Tr = Tu∗TµTu, Tcr = Tv∗TµTv (79)

with

‖Tu∗‖ = ‖Tu‖ = ‖Tv∗‖ = ‖Tv‖ = 1 (80)

and

‖Tµ‖ = ‖Tr‖. (81)

Now, we start taking into account that Tr can be rewritten as

Tr = Tv∗TµTv + (Tu∗ −Tv∗)Tµ(Tu −Tv)

+Tv∗Tµ(Tu −Tv) + (Tu∗ −Tv∗)TµTv. (82)

Then, taking into account that Tr = Tcr +Pr we have that

Pr = (Tu∗ −Tv∗)Tµ(Tu −Tv)

+Tv∗Tµ(Tu −Tv) + (Tu∗ −Tv∗)TµTv. (83)

Computing the norm on both sides of eqn. (83) and applying the

triangular inequality and the operator norm property it follows

that

‖Pr‖ ≤ ‖Tu∗ −Tv∗‖‖Tµ‖‖Tu −Tv‖
+ ‖Tv∗‖‖Tµ‖‖Tu −Tv‖+ ‖Tu∗ −Tv∗‖‖Tµ‖‖Tv‖.

(84)

Taking into account the expressions in eqn. (80), eqn. (81), and

the fact that ‖Tu∗ −Tv∗‖ = ‖Tu −Tv‖, the eqn. (84) turns

into

‖Pr‖ ≤ ‖Tu −Tv‖2‖Tr‖+ 2‖Tr‖‖Tu −Tv‖ (85)

which finally can be written as

‖Pr‖ ≤ ‖Tr‖
(

(‖Tu −Tv‖+ 1)2 − 1
)

. (86)

Now, from the relationship between the Frobenius norm and

the �2-norm we know that

‖Pr‖F√
N

≤ ‖Pr‖ (87)

Combining eqn. (87) and eqn. (86) it follows that

‖Pr‖F ≤
√
N

(

(‖Tu −Tv‖+ 1)2 − 1
)

‖Tr‖. (88)

Notice that the term ‖Tu −Tv‖ is a measure of the difference

between the eigenvectors of S and the eigenvectors of Tr.
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APPENDIX B

FRECHET DERIVATIVE Dp|Si
(S)

First, notice that p(S) =
∑∞

k1,...,km=0 hk1...km
S
k1
1 . . .Skm

m =
∑∞

ki=0 S
ki

i Aki
, where Aki

=
∑∞

{kj}=0
j �=i

hk1,...,km

∏m
j=1
j �=i

S
kj

j .

Then, it follows that

p(S+ ξ)− p(S) =

∞
∑

ki=0

(Si + ξi)
ki Aki

−
∞
∑

ki=0

Ski

i Aki

(89)

for ξ = (0, . . . , ξi, . . . ,0). Considering the expansion

(Si + ξi)
ki = Ski

i + ξki

i +
∑k−1

r=1 πr,ki−r(Si, ξi) for ki ≥ 2,

eqn. (89) takes the form

p(S+ ξ)− p(S)

=

∞
∑

ki=1

ki−1
∑

r=1

πr,ki−r (ξi,Si)Aki
+

∞
∑

ki=1

ξki

i Aki
. (90)

Separating the linear terms on ξi eqn. (90) leads to

p(S+ ξ)− p(S) =

∞
∑

ki=1

π1,ki−1 (ξi,Si)Aki

+

∞
∑

ki=2

ki−1
∑

r=2

πr,ki−r (ξi,Si)Aki
+

∞
∑

ki=2

ξkiAki
. (91)

Therefore, taking into account the definition of Fréchet deriva-

tive (see Section 1) it follows that

Dp|Si
(S) {ξi} =

∞
∑

ki=1

π1,ki−1 (ξi,Si)Aki
(92)
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