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Algebraic Neural Networks: Stability to
Deformations

Alejandro Parada-Mayorga

Abstract—We study algebraic neural networks (AIgNNs) with
commutative algebras which unify diverse architectures such as
Euclidean convolutional neural networks, graph neural networks,
and group neural networks under the umbrella of algebraic signal
processing. An AIgNN is a stacked layered information processing
structure where each layer is conformed by an algebra, a vector
space and a homomorphism between the algebra and the space
of endomorphisms of the vector space. Signals are modeled as ele-
ments of the vector space and are processed by convolutional filters
that are defined as the images of the elements of the algebra under
the action of the homomorphism. We analyze stability of algebraic
filters and AIgNNs to deformations of the homomorphism and
derive conditions on filters that lead to Lipschitz stable operators.
We conclude that stable algebraic filters have frequency responses
— defined as eigenvalue domain representations — whose derivative
is inversely proportional to the frequency — defined as eigenvalue
magnitudes. It follows that for a given level of discriminability,
AlgNNs are more stable than algebraic filters, thereby explaining
their better empirical performance. This same phenomenon has
been proven for Euclidean convolutional neural networks and
graph neural networks. Our analysis shows that this is a deep
algebraic property shared by a number of architectures.

Index Terms—Algebraic neural networks, algebraic signal
processing, representation theory of algebras, convolutional neural
networks (CNNs), graph neural networks (GNNs), stability,
Fréchet differentiability.

I. INTRODUCTION

HE overwhelming empirical evidence that shows the good-
T ness of using convolutional neural networks (CNNs) and
graph neural networks (GNNs) in machine learning raises inter-
est in finding reasons that explain their performance. In this
context, stability analyses of the operators representing the
neural networks play a central role, with insights reported for
both CNNs [1]-[4] and GNNs [5]-[7]. Although independent,
these results are similar in form and nature. This fact raises the
question of whether they descend from a common notion of
stability and motivates the search for a framework where these
results can be unified.
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Stability of CNNs is rooted in the notion of Lipschitz-
continuity to the action of diffeomorphisms introduced in [1]
for the analysis of translation-invariant operators acting on
L?(R™). Although initially derived for scattering transforms
[1], [2] stability results are readily extendable to the analysis of
convolutional neural networks [3], [4]. For GNNs the problem of
formulating stability conditions has been considered in [S]-[7].
In [6] the notion of stability on graphs is considered in depth
pointing out that the generalization of the conditions stated
in [1], [2] is not straightforward for non smooth, non Euclidean
domains, and as a way to quantify stability in GNNs the notion
of metric stability is considered using a diffusion operator to
measure the perturbations or changes in the graphs. In [7] a
related notion of stability is used to provide concrete results
about the stability on GNNs.

However different, stability results for CNNs and GNNs have
uncanny similarities. For instance, they both focus on signal
perturbations that are modeled as deformations of the signal
domain, they both analyze the effect of perturbations in the
frequency (spectral) domain, and they both conclude that (graph
or Euclidean) convolutional filters have instabilities associated
with high frequency components (large eigenvalues). In our
search for underlying common principles we adopt the formal-
ism of algebraic signal processing (ASP) [8].

In general, signals are elements of a vector space M which
we could process with any linear transformation in the algebra
of endomorphisms of M. In practice, learning is facilitated if we
introduce a suitable class of convolutional filters to restrict the
type of transformations that are allowable. In ASP, convolutional
algebraic filters are defined as elements of a more restrictive
algebra A that are mapped into the algebra of endomorphisms
of M through a homomorphism p (Section II). In the case of
signals supported on a graph with n nodes, the vector space is
made up of vectors of length n and the space of endomorphisms
is made up of square matrices of matching dimension. Choosing
the algebra of polynomials of a single variable ¢ and choosing a
homomorphism that maps ¢ to the Laplacian matrix of the graph
results in graph convolutional filters expressed as polynomials
of the graph’s Laplacian. This is the usual definition of a graph
filter [9]. In the case of signals in time the vector space is that
of square summable sequences and convolutions can be written
as polynomials on the time shift operator. This is the standard
definition of convolution for discrete time signals [10, Ch. 2].

In this paper we leverage algebraic filters to introduce al-
gebraic neural networks (AlgNNs) and study their stability
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to deformations of the signal domain. In particular, the main
contributions of this paper are:

(C1) The definition of AlgNNs as layered information process-
ing architectures in which individual layers are made up of
algebraic convolutional filters (Section III).

(C2) The introduction of perturbation models (Section IV) and
stability properties (Section V) that are analogous to the
notions of perturbation and stability considered in [1]-[7].

(C3) The proof of stability theorems for algebraic filters (The-
orems 1-4 and Corollaries 1 and 2) out of which stability
theorems for AlgNNs follow (Theorems 5 and 6).

Our results are meaningful for algebras with a small number
of generators (see Definition 2). This includes discrete time
convolutions but does not include continuous time convolutions.
Thus, we do not recover results in [1]—-[4] as particular cases of
our theorems. Rather our conclusions for discrete time CNNs are
analogous to the conclusions that [1]-[4] reach for continuous
time CNNS. This relatively minor technicality aside, our stability
results for AIgNN s recover existing results for CNNs and GNNs
(Section V-D). Our results also extend to other types of convo-
lutional architectures like multidimensional CNNs — as used in
image processing —, group neural networks and graphon neural
networks. They also apply to as of yet unknown convolutional
architectures. Indeed, the universality of stability properties is
among the fundamental insights of this paper:

(I1) The stability properties of convolutional filters and neural
networks are universal.

This holds because the stability properties of convolutional
architectures can be expressed in terms of the algebraic laws that
govern the signal model in each layer as encoded in the algebra
A. To explain this statement we mention that representations
of algebras admit spectral decompositions (Section VI). These
decompositions permit the definition of Fourier transforms of
signals and, more germane to our discussions, frequency repre-
sentations of algebraic filters. These representations are defined
as isomorphisms that map generators of the algebra A into scalar
variables (Definitions 6 and 8). As such, frequency represen-
tations are functions with as many variables as generators as
needed to generate the algebra. In cases of interest, this just
means a function of a few variables, each of which we call a
frequency. Remarkably, frequency representations depend on
the choice of algebra but do not depend on the vector space
where signals live. Ultimately, this is the reason why universal
stability results are possible and it further leads to the following
insights:

(I2) Although perturbations are considered on filter operators,
stability is determined by restrictions to certain subsets of the
algebra. These restrictions are expressed in terms of filters’
frequency representations (Section VII).

(I3) Stability requires filter frequency responses that are flat
for large values of the frequency variables. This limits the
discriminability of algebraic filters (Section VIII).

(I4) AlgNNs improve the stability vs discriminability tradeoff
of algebraic filters because pointwise nonlinearities move
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Fig. 1. Algebraic Signal Processing (ASP) Model. An ASP model is made up
of a vector space M where signals x live and an Algebra A where filters a live.
The homomorphism p ties the algebra and the vector space together by mapping
the filter a to the linear function p(a) in the space of endomorphisms of M.
The Algebra restricts the set of linear processing maps that can be applied to
signals x.

signal energy towards lower frequencies where signals can be
better discriminated by filters with a given level of stability
(Section VIII).

Insights (I3) and (I4) are the summary messages of this paper.
We know from [1]-[4] that (I3) and (I4) explain the increased
performance of CNNss relative to convolutional filters. We know
from [5]-[7] that (I3) and (I4) explain the increased performance
of GNNs relative to graph filters. As per (I1) we show here that
the reason why these analogous properties hold is the shared
algebraic structure of CNNs and GNNs. The universality of
the result implies that (I3) and (I4) also explain performance
improvements of CNNs with multidimensional inputs relative to
multidimensional Euclidean convolutional filters, group neural
networks relative to group filters, and graphon neural networks
relative to graphon filters among any number of known and
unknown convolutional information processing architectures.
Our results are limited to commutative algebras with a small
number of representers. Further work is needed to extend our
results to these more general signal models (Section IX).

II. ALGEBRAIC FILTERS

Algebraic signal processing (ASP) provides a framework for
understanding and generalizing traditional signal processing
exploiting the representation theory of algebras [8], [11]-[13];
see Figure 1. In ASP, a signal model is defined as the triple

(A, M, p), (1)

in which A is an associative algebra with unity, M is a vector
space with inner product, and p : A — End(M) is a homomor-
phism between the algebra A and the set of endomorphisms of
the vector space M. The elements in (1) are tied together by the
notion of a representation which we formally define next.

Definition 1 (Representation): A representation (M, p) of
the associative algebra A is a vector space M equipped with a
homomorphism p : A — End(M), i.e., a linear map preserving
multiplication and unit.
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In an ASP model, signals are elements of the vector space
M, and filters are elements of the algebra A. Thus, the vector
space M determines the objects of interest and the algebra A the
rules of the operations that define a filter. The homomorphism p
translates the abstract operators a € A into concrete operators
p(a) that act on signals x to produce filter outputs

y = pla)x. ()

The algebraic filters in (2) generalize the convolutional pro-
cessing of time signals — see Example 1. Our goal in this
paper is to use them to generalize convolutional neural networks
(Section III) and to study their fundamental stability properties
(Section IV). Generators, which we formally define next, are
important for the latter goal.

Definition 2 (Generators): For an associative algebra with
unity A we say the set G C A generates A if all a € A can
be represented as polynomial functions of the elements of G.
We say elements g € G are generators of .4 and we denote as
a = p4(G) the polynomial that generates a.

Definition 2 states that elements a € A can be built from the
generating set as polynomials using the operations of the algebra.

Given that representations connect the algebra A to signals x
as per Definition 1, the representation p(g) of a generator g € G
will be of interest. In the context of ASP, these representations
are called shift operators as we formally define next.

Definition 3 (Shift Operators): Let (M, p) be arepresentation
of the algebra A. Then, if G C A is a generator set of A, the
operators S = p(g) with g € G are called shift operators. The
set of all admissible shift operators is denoted by S.

Given that elements a of the algebra are generated from
elements g of the generating set, it follows that filters p(a) are
generated from the set of shift operators S = p(g). In fact, if we
have that a = p4(G) is the polynomial that generates a, the fact
that p is a homomorphism that preserves operations implies that
the filter’s instantiation p(a) can be written as

pla) =pm (p(G)) = pm (S) =p(S), 3)

where the subindex M signifies that the operations in (3) are
those of the vector space M — in contrast to the polynomial a =
p4(G) whose operations are those of the algebra A. In the last
equality and for the rest of the paper we drop the subindices in
the polynomials to simplify notation as it is generally understood
from context to which set the independent variable of p belongs.

We restrict attention to commutative algebras A. We also
restrict the field F on which M and A are supported to be
algebraically closed. If this doesn’t hold our results apply to the
corresponding algebraic extension. We point out that although
not a formal requirement, our results are meaningful when
the algebra A has a set of generators with a small number of
elements.

We present examples to clarify ideas. Readers may skip ahead
since they are not needed to understand the rest of the paper.

Example 1 (Discrete Time Signal Processing): Let M = (?
be the space of square summable sequences x = {x,, } ,cz and
A the algebra of polynomials generated by g = ¢ with elements
a= ZkK;Ol hit*. Consider the time shift operator S such that
Sx is the sequence with entries (Sx),, = x,_1. Define the

3353

homomorphism p in which the generator g = ¢ is mapped to
p(g) = p(t) = S. Then, the filter a = >4 .t is mapped to
the endomorphism [cf.(3)]

K-1 K-1
p (Z mk) =) s “
k=0 k=0

Observe how the abstract polynomial a = Zf;ol hitt is
mapped to the polynomial p(a) = Zf;ol hyS*. The latter is
a concrete linear operator in the space of square summable
sequences that we can use to process sequences x as per (2).
This leads to the input output relationship

K-1 K-1
y = (Z hkSk> X = Z hkSkx. 5)
k=0 k=0

Since (Sx), = x,_1 it follows that (S¥x),, = x,,_ and that
(5) representats a discrete time convolutional filter [10, Ch. 2].

Example 2 (Graph Signal Processing): We retain the algebra
of polynomials as in Example 1 but we change the space of sig-
nals to the set of complex vectors with N entries, M = CV. We
interpret components ,, of x € M = C as being associated
with nodes of a graph with matrix representation S € CN*/V.
We consider the homomorphism p in which the generator g = ¢
is mapped to the matrix representation S of the graph. Having
chosen p(t) = S we use (3) to write

K-1 K-1
p (Z hktk) = > hsSk (6)
k=0 k=0

Analogously to (4), the abstract polynomial Zfz_ol hit is
mapped to the concrete polynomial ZkK;Ol hi,S*. The latter is
an N x N matrix that can be applied to signals x to produce
outputs

K-1 K-1
y = (Z hksk> x = Y hShx (7)
k=0 k=0

This is a representation of the graph convolutional filters used
in graph signal processing (GSP) [14], [15]. Observe that (7)
and (5) are similar but represent different operations. In (7) x is
a vector and S¥ a matrix power. In (5) x is a sequence and S*
is the composition of the time shift operator .S. Their similarity
arises from the common use of the algebra of polynomials. Their
differences are because we use different vector spaces M and
different homomorphisms p.

Example 3 (Discrete Signal Processing): We consider dis-
crete time signals of length NV with circular convolutions. To
do that we consider the vector space M = C¥ and the al-
gebra of polynomials modulo ¢V — 1. Le., filters a € A are
polynomials a = ,i{;ol hi,t* but we must have K < N and
monomial products use the rule t* = t* m°d N We consider
the directed cyclic matrix C with exactly N nonzero entries
Cpm =1form = (n—1) mod N. This matrix is such that
(CX)n = T(n-1) mod n-Using the homomorphism in which we
map the generator g = tto p(g) = p(t) = C, filter instantiations
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take the form
K-1 K-1
p <Z m’“) = > mC* ®)
k=0 k=0

The filter instantiation p(a) = S5 hyC* leads to the input
output relationship

K-1 K-1
y = <Z hka> X = Z hiCFx. ©)
k=0 k=0

Since (CX), = T(-1) moda N We have that (CFx),, =
T(n—k) mod N- Thus, (9) is equivalent to the usual definition
of circular convolutions [10, Ch. 8]. Observe that the homomor-
phism p(a) = f:_ol hi,C* is indeed a homomorphism because
the cyclic matrix C satisfies C¥ = C¥ m°d N This example
illustrates that in some situations the choice of algebra and the
choice of homomorphism are tied.

As is clear from Examples 1-3, the effect of the operator p(a)
on a given signal x is determined by two factors: The filter
a € A and the homomorphism p. The filter a € A indicates
the laws and rules to be used to manipulate the signal x and
p provides a physical realization of the filter a on the space
M to which x belongs. For instance, in these three examples
the filter a = 1 + 2t indicates that the signal is to be added
to a transformed version of the signal scaled by coefficient 2.
The homomorphism p in Example 1 dictates that the physi-
cal implementation of this transformation is a time shift. The
homomorphism p in Example 2 defines a transformation as a
multiplication by S and in Example 3 the homomorphism entails
a cyclic shift. We remark that in order to specify the physical
effect of a filter it is always sufficient to specify the physical
effect of the generators. In all three examples, the generator of
the algebra is g = t. The respective effects of an arbitrary filter
a are determined once we specify that p(t) = S in Example 1,
p(t) = S in Example 2, or p(t) = C in Example 3.

The flexibility in the choice of algebra and homomorphism
allows for a rich variety of signal processing frameworks. We
highlight this richness with three more examples.

Example 4 (Image Processing): We represent images
as square summable sequences with two indexes, x =
{Zn,m}n,mez. We define the horizontal translation operator
Su such that (SuX)mn = Zm.n—1 and the vertical translation
operator Sy such that (SvX)mn = Tm_1.,. Filters to process
images are elements of the algebra of polynomials of two vari-
ables a = Zﬁi!ol f;;ol R,k ti1 52, This algebra has two
generators g; = t1 and go = to that we map to p(t1) = Sy and
p(ta) = Sy. This generator mapping defines the homomorphism
p in which filters are mapped to instances

Ki1—-1Ky—1 Ki1—-1Ky—1
kq k- k k-
’ ( Z Z hkl’k”tllt;) - Z Z Pkiks S Sy

k1=0 ko=0 k1=0 ko=0
(10)

The composed operator Sﬁl S@z applied to a sequence x trans-
lates horizontal and vertical indexes by k; and k9 indexes. Thus,
applying the operator in the right hand side of (10) to an image
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X is equivalent to convolving the image with an 2-dimensional
convolutional filter with coefficients hy, i, .

Example 5 (Signal Processing on Groups): Let M = {x:
G — C} ={>_,ccx(g9)g} be the set of functions defined on
the group G with values in C and A = M the group algebra.
The homomorphism is given by p(a) = L, with L,b = ab.
Then, the action of p on elements of M is given by

p D alg)g | x=> alggx=>Y_> alg)x(h)gh,

9geG gelG geG heG
(11)

and making u = gh we have that the filtering in (2) takes the
form

Z a(g)x(h)gh = Z a(uh™H)x(h)u. (12)

g,heG u,heG

This is the standard representation of convolution of signals on
groups [16]-[18]. We point out that (11) and (12) hold for any
group but that not all group algebras are commutative. Results
in Section V apply only when the group algebra is commutative.

Example 6 (Graphon Signal Processing): A graphon
W (u, ) : [0,1]2 — [0,1] is a bounded symmetric measurable
function and graphon signals are square summable functions
x(u) : [0,1] — C. Graphons are intended to represent dense
limits of graphs [19]-[22] and graphon signals dense limits of
graph signals [21], [22]. To define graphon convolutional filters
consider the algebra of polynomials of a single variable and
define the graphon shift operator as

1

(Wx) () = / W (u, 0)x(v)dv, (13)
0

Filters a = Zi:ol hyt* are mapped according to the homo-

morphism defined by the generator map p(¢) = WV resulting on

filters that define the input-output relationship

K-1 K-1
y=p (Z hktk> X = Z hWFx.
k=0 k=0

This is the same definition of graphon convolutional filters
introduced in [21] where they are shown to be limit objects of
graph filters.

The choice of A and p provides means to leverage our
knowledge of the signal’s domain in its processing. The con-
volutional filters in (5) leverage the shift invariance of time
signals and the filters in (9) the cyclic invariance of periodic
signals. The group convolutional filters in (12) generalize shift
invariance with respect to an arbitrary group action. The graph
convolutional filters in (7) engender signal processing that is
independent of node labeling [23] and the graphon filters in
Example 6 a generalization of this notion to dense domains [21].
Leveraging this structure is instrumental in achieving scalable
information processing. In the following section we explain how
neural network architectures combine algebraic filters as defined
in (2) with pointwise nonlinearities to attain signal processing
that inherits the invariance properties of the respective algebraic
filters.

(14)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:07:41 UTC from IEEE Xplore. Restrictions apply.



PARADA-MAYORGA AND RIBEIRO: ALGEBRAIC NEURAL NETWORKS: STABILITY TO DEFORMATIONS

Remark 1 (Shift Equivariance of Algebraic Filters): In re-
stricting the linear transformations that can be applied to signals,
the Algebra A reduces the complexity of the learning space. It is
easier to learn coefficients of a filter than it is to learn entries of an
arbitrary linear transform. In this statement, the equivariance of
algebraic filters to applications of shift operators is important.
Equivariance to applications of the shift operator means that
applying a shift operator at the input of an algebraic filter is
equivalent to applying the same shift operator at the output.
Namely, that for all filters « = p(G) and shift operators S € S
we have

15)

This holds true for any commutative algebra. Equivariance to
application of the shift operator is important in discrete time
signal processing, discrete signal processing, image processing,
and group signal processing. It implies that algebraic filters are
equivariant to time shifts, cyclic shifts, translations, and actions
of the group, respectively.

Remark 2 (Permutation Equivariance of Algebraic Filters):
In learning with algebraic filters equivariance to permutations
is also important. Equivariance to permutations means that a
consistent permutation of the signal and the shift operator results
in a consistent permutation of the output of the filter. For-
mally, let P € End(M) be a permutation operator with adjoint
P7 = adj(P). A permutation of the signal x is X = PTx and
a consistent permutation of the shift operator S is the endomor-
phism S = PTSP. If we let S denote the set of permuted shift
operators we must have,

p(8)%=PT (p(S)x). (16)
Le., the output of processing a permuted signal x with the filter
instantiated on the set of permuted shift operators Sis equivalent
to a permutation of the output signal that results from processing
x with the filter instantiated on the shift operator S. This is
a consequence of the fact that the adjoint permutation P7 is
the inverse of the permutation P. Equivariance to permutations
is important in graph signal processing and graphon signal
processing. It implies processing that is independent of labeling.

III. ALGEBRAIC NEURAL NETWORKS

With the concept of algebraic filtering at hand we define an
algebraic neural network (AIgNN) as a stacked layered structure
(see Fig. 2) in which each layer is composed by the triple
(Ag, My, pe), which is an algebraic signal model associated to
each layer. Notice that (M, p;) is a representation of .4,. The
mapping between layers is performed by the maps oy : My —
M1 that perform those operations of point-wise nonlinearity
and pooling. Then, the ouput from the layer ¢ in the AlgNN is
given by

x¢ = o¢ (pe(ae)xe-1) (17)
where a; € Ay, which can be represented equivalently as
x¢ = ®(x¢-1,Pe-1,80-1), (18)

3355
xX
Yy z
y1 = pi1(a1)x = Z1=Tl1[y1] L x1=P1[Zl]
(A1, M1, p1)
x1
X1
y2 = p2(a2) x1 22 Zz=n2{y2] =2 x2=P2[z ]
(A2, M2, p2)
X2
x2
Y. z
y3 = p3(a3z) x2 2 zs:n?,[ya] 2 x3=P3[z3]
(Az, M3, p3)
L> x3
Fig.2.  Algebraic Neural Network = = {(Ag, My, pg)}?zl with three layers

indicating how the input signal x is processed by = and mapped into x3.

where P, C Ay highlights the properties of the filters and Sy is
the set of shifts associated to (Mg, p¢). Additionally, the term
O(x, {Pe}¥,{Se}¥) represents the total map associated to an
AlgNN acting on a signal x.

Convolutional Features: The processing in each layer can be
performed by means of several families of filters, which will
lead to several features. In particular the feature f obtained in
the layer ¢ is given by

Fy
o (o (o)1),
g=1

where a{ 9 is the filter in A, used to process the g-th feature xg_l
obtained from layer ¢ — 1 and F} is the number of features.

Pooling: As stated in [24] the pooling operation in CNNs
helps to keep representations approximately invariant to small
translations of an input signal, and also helps to improve the
computational efficiency. In this work this operation is attributed
to the operator oy. In particular, we consider oy = Py o 1, where
Py is a pooling operator and 7, is a pointwise nonlinearity. The
only property assumed from oy is to be Lipschitz and to have
zero as a fixed point, i.e. o4(0) = 0. It is important to point out
that Py projects elements from a given vector space into another.

We present some examples to clarify ideas.

Example 7 (CNNs in Discrete Time): Traditional CNNs rely
on the use of typical signal processing models and can be
considered a particular case of an AIgNN where the algebraic
signal model is the same as in example 1. Consequently, the fth
feature in layer £ is given by

F, K
xg =0y (ZZh%S}?X?_J ,

g=1k=1

19)

(20)
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where py(t) = Sy. In this case Py is a sampling operator while
typically 7, (u) = max{0, u}.

Example 8 (Graph Neural Networks): In graph neural net-
works the algebraic signal model in each layer corresponds to
the one discussed in example 2. Therefore, the fth feature in
layer ¢ has the form

F, K
ok
of — o (zzhzgsele) ,

g=1k=1

@D

where p; = Sy. Here P, can be a dimensionality reduction
operator or a zeroing operator that nullify components of the
signal keeping its dimensionality. A common choice of the
nonlinearity function is given by 7, (u) = max{0, u}.

Example 9 (Group Neural Networks): In group neural net-
works the algebraic model is the same as specified in example 5.
Therefore, the fth feature in layer ¢ is given by

F
x{:ae Z Z a&];(uh_l)Xg,l(h)u

n=1u,heG,

(22)
Where G is the group associated to the /th layer and a&f are the
coefficients of the filter associated to the feature f in layer /. In
this case P : L?(Gy) — L?(Gy41), where L?(G) is the set of
signals of finite energy defined on the group G. If the groups G,

are finite P, can be conceived as a typical projection mapping
between R/l — RIGe+1l,

IV. PERTURBATIONS

In an ASP triple (A, M, p), signals x € M are observations
of interest and the algebra A defines the operations that are to
be performed on signals. The homomorphism p ties these two
objects and, as such, is one we can consider as subject to model
mismatch. In this paper we consider perturbations adhering to
the following model.

Definition 4: (ASP Model Perturbation) Let (A, M, p) be an
ASP model with algebra elements generated by g € G (Defini-
tion 2) and recall the definition of the shift operators S = p(g)
(Definition 3). We say that (A, M, p) is a perturbed ASP model
if for all @ = p(G) we have that

pla) = pa (39) =pua (§) =p(8), @
where S is a set of perturbed shift operators of the form
S=S+T(S), (24)

for all shift operators S € S.

As per Definition 4, an ASP perturbation model, is a pertur-
bation of the homomorphism p defined by a perturbation of the
shift operators S. Each shift operator S is perturbed to the shift
operator S according to (24) and this perturbation propagates
to the filter p(a) according to (23). An important technical
remark is that the resulting mapping p is not required to be a
homomorphism — although it can be, indeed, often is.

We point out that Definition 4 limits the perturbation of the
homomorphism p to perturbations of the shift operators. This
is justifiable by practical considerations. In the case of graph
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signals a perturbation of the homomorphism models changes in
the graph or errors in the measurement of edge weights. In the
case of time signals, images, or groups, a perturbation of the
homomorphism is an appropriate model of a diffeomorphism —
a small warping of the domain. See Section V-D for more details.

Of the other components of an algebraic filter, the algebra and
the vector space define the choice of operations and therefore are
not naturally subject to perturbation. Perturbations of the input
signal x are possible in practice but their theoretical analysis is
simple. Filters are linear functions of the input and the nonlinear
operations of AIgNNs are Lipschitz. Thus, algebraic filters and
AlgNNs are readily shown to be Lipschitz stable to perturbations
of the input x.

A. Perturbation Models

In our subsequent analysis we consider perturbation models
of the form

T(S) = Ty + T;S, (25)

which is a generic model of small perturbations of a shift
operator that involve an absolute perturbation T, and a relative
perturbation T1S; see [7]. The T, are compact normal oper-
ators with operator norm ||'T,.|| < 1. Requiring || T,|| < 1isa
minor restriction as we are interested in small perturbations with
1T, || < 1.

For the model in (25) it is important to describe the com-
mutativity of the shift operator S and the perturbation model
operators T',.. To that end, we write

ST, = T,.S + SP,, (26)

where T, = >, pu;(uy, -), p; is the ith eigenvalue of T, u;
is the ith eigenvector of S, and (, ) represents the inner product
operation. As a consequence, we have that ST,. = T,..S and
IT.|| = ||T,||. We define the commutation factor § according
to

IP-llr < o|IT-, 27

which is a measure of how far the operators S and T, are
from commuting with each other. Notice that § = 0 implies
P, =0and T, = T.,. The commutation factor § in (27) can
be bounded as we show in Proposition 8. The specifics of this
bound are not central to the results of Section V. Notice that
when representations of an algebra A with multiple generators
{g:}™, are considered, we have that for a € A the operator
p(p(a)) € End(M) is a function of p(g;) = S; € End(M) and
therefore can be seen as the function p : End(M)™ — End(M),
where End(M)™ is the m-times cartesian product of End(M).
In this scenario we use the notation p(S) = p(S1,...,Sm)
and when considering the perturbation model in eqn. (25)
acting on S = (Sy,...,S,,) we use the following notation
T(S) = (T(Sl), ey T(Sm)) where T(SZ) = T()A,i + T“SZ

V. STABILITY THEOREMS

The filters in Section II and the algebraic neural networks
in Section III are operators acting on the space M. These
operators are of the form p(S), and their outputs depend on
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a filter set P C A which is denoted as p € P C A, and the
set of shift operators S, where S € S. When we perturb the
processing model according to Definition 4, these operators are
perturbed as well. The goal of this paper is to analyze these
perturbations. In particular, our goal is to identify conditions for
filters and algebraic neural networks to be stable in the sense of
the following definition.

Definition 5 (Operator Stability): Given operators p(S) and
p(S) defined on the processing models (A, M, p) and (A, M, j)
(cf. Definition 4) we say the operator p(S) is Lipschitz stable if
there exist constants Cyp, C; > 0 such that

[p(s)x—p(S)x|| <

[C’o sup |T(S)| + Cy sup |Dx(S)| + 0O (||T(S)||2)] x|,
(28)

for all x € M. In (28) Dr(S) is the Fréchet derivative of the
perturbation operator T.

When the perturbation value T(S) and its derivative D (S)
are small, the inequality in (28) states that the operators p(S)
and p(S) are close uniformly across all inputs x. Our stability
theorems are presented in the next section, but at this point
it is important to remark that algebraic filters are not always
stable in the sense of (28). We know that this is true because
unstable counterexamples are known in the case of graph signal
processing [23] and the processing of time signals [1]. The
best known example of an unstable filter is a high-pass filter
in time when consider a dilation of the time line [6]. The same
phenomenon is observed for graph signals when considering the
dilation of graph shift operator [23].

A. Stability of Algebraic Filters

Taking into account that the notion of stability is meant to be
satisfied by subsets of filters of the algebra and not necessarily
the whole algebra, it is important to have a characterization of
these subsets in simple terms. To do so, we introduce the notion
of frequency representation of the elements of an algebra as
follows.

Definition 6 (Frequency Representation of a Filter): Consider
an algebra A with a single generator ¢ so that for all a € A we
can write ¢ = p(g). Let A € [ be a variable taking values on the
field IF. We say that p(\) is the frequency representation of the
filter a = p(g).

Notice that the frequency representation of the elements of
the algebra A induces an isomorphism of algebras . : A — Ap,
where Ap is obtained when the variables of elements in A
are evaluated in [F. Then, we can characterize elements in A
by means of the properties of their frequency representations.
In what follows we introduce a definition used to characterize
subsets of filters in algebras with a single generator that are
relevant in our analysis.

Definition 7: Letp : F — F be the frequency representation
of an element in an algebra with a single generator. Then, it is
said that p is Lipschitz if there exists Ly > 0 such that

Ip(A) = p(p)| < Lol — p (29)
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for all A, u € F. Additionally, it is said that p()) is Lipschitz
integral if there exists L; > 0 such that

dp(\)

’/\’ < L, forall \. (30)

dA

In what follows, when considering subsets of a commutative
algebra A, we denote by Ay, the subset of elements in A that
are Lipschitz with constant Ly and by A7, the subset of element
of A that are Lipschitz integral with constant L;.

We start our discussion on stability with a result for operators
in algebraic models with a single generator. The result highlights
the role of the Fréchet derivative of the map that relates the
operator and its perturbed version.

Theorem 1: Let A be an algebra generated by ¢ and let
(M, p) be a representation of A with p(g) = S € End(M).
Let 5(g) = S € End(M) where the pair (M, ) is a perturbed
version of (M, p) and Sisrelatedto S by the perturbation model
in eqn. (24). Then, for any p € A we have

[p(S)x = p(S)x|| < Ixll (1D5(S) {T(S)} + O (IT(S) %))
€1y

where D), (S) is the Fréchet derivative of p on S.

Proof: See Section VII-A. |

Theorem 1 highlights an important point, the difference be-
tween two operators obtained from the same elements in the
algebra is bounded by the Fréchet derivative of p(S) which
depends of the properties of the elements in .A. In particular, we
can see that an upper bound in the term || D,,(S)T(S)|| depends
on how the the operator D,,(S) acts on the perturbation T(S).
Then, D,(S) will determine whether p(S) is stable under the
effect of T(S), or in other words the properties of p act on the
perturbation via the operator D,,(S). Additionally, notice that
eqn. (31) is satisfied for any T(S) if D, (S) exists.

In the following theorems we show how these terms are related
to T'(S) and its Fréchet derivative Dr.

Theorem 2: Let A be an algebra with one generator element
g and let (M, p) be a finite or countable infinite dimensional
representation of A. Let (M, p) be aperturbed version of (M, p)
associated to the perturbation model in eqn. (25). If p € Az, N
Arp,, then

D, T(S)] < (1+46) (Lo sup [ T(S)[| + L1 sup ”DT(S)”>

(32)
Proof: See Section VII-B. |
Itis worth pointing out that the constants involved in the upper
bound of eqn. (32) depend on the properties of the filters and the
difference between the eigenvectors of S and T,.. Therefore, the
difference between the eigenvectors of these operators do not
determine if p(S) is stable or not, although the absolute value of
the stability constants increase proportionally to 6.
From theorems 1 and 2 we can state the notion of stability for
algebraic filters in the following corollary.
Corollary 1: Let Abe an algebra with one generator element
g and let (M, p) be a finite or countable infinite dimensional
representation of A. Let (M, p) be a perturbed version of
(M, p) related by the perturbation model in eqn. (25). Then,
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if p e A, N A, the operator p(S) is stable in the sense of
definition 5 with Cy = (14 0)Lo and C; = (1 + 6)L;.

Proof: Replace (32) from Theorem 2 into (31) from Theorem
1 and reorder terms. u

B. Algebraic Filter Stability in Algebras with Multiple
Generators

The stability results presented in previous subsection can be
extended naturally to operators associated to representations of
algebras with multiple generators. To do so, we introduce the
notion of frequency representation of elements of algebras with
multiple generators as follows.

Definition 8 (Frequency Representation of a Filter): Consider
an algebra A with generators ¢, ..., g, so that for all @ € A
we can write a = p(g1, ..., gm)- Let \; € I be variables taking
values on the filed F. We say that p(\1, . .., A,;,) is the frequency
representation of the filter a = p(g1,. .., gm)-

Similar to the scenario of algebras with a single generator,
the frequency representation of the elements of A induces an
isomorphism of algebras ¢ : A +— A, where Ar is obtained
when the variables of elements in A are evaluated in F. In
this way we have a characterization of elements in A when
considering the properties of their frequency representations.

We extend definitions introduced before to characterize fre-
quency representations in multivariate algebras.

Definition 9: Let p: F™ — F be the frequency representa-
tion of an element in an algebra with m generators. Then, it is
said that p is Lipschitz if there exists Ly > 0 such that

[p(A) = p(p)] < Lo||A — pl]

for all A\, p € F™. Additionally, it is said that p() is Lipschitz
integral if there exists L; > 0 such that

Ip(N)
"ON

where A = (A1, ..., Ap) and g = (1, .., fhn)-

With these notions at hand, we are ready to extend the stability
theorems.

Theorem 3: Let A be an algebra generated by {g;}"; and
let (M, p) be a representation of A with p(g;) = S; € End(M)
for all i. Let 5(g;) = S; € End(M) where the pair (M, p) is
a perturbed version of (M, p) and S; is related to S; by the
perturbation model in eqn. (24). Then, for any p € A we have

(33)

A

< Ly forallie{l,...m}, (34)

[p(s)x -~ p(S)x| <
Il 3= (1Dps. (SYTSI | + O (ITS)I?)  (35)
i=1

where D,,s, (S) is the partial Fréchet derivative of p on S;.
Proof: See Section VII-A. |
Notice that in eqn. (35) we naturally add the contribution

associated to each generator. Therefore, to guarantee stability

we must have stability in each generator. Now, we show how the

Fréchet derivative of T(S) is involved in the stability properties

when considering multiple generators.
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Theorem 4: Let A be an algebra with m generators {g; }7",
andg,g9; = g;g; foralli, j € {1,...m}.Let(M, p) beafinite or
countable infinite dimensional representation of A and (M, p)
a perturbed version of (M, p) related by the perturbation model
in eqn. (25). Then, if p € A, N Az, it holds that

| Dpjs. (S)T(S))|
<(149) (Lo sup [ D(S,)] + Ly sup ||DT<si>||) (36)
S.eS S;eS

Proof: See Section VII-B. |

It is important to remark that the upper bound in eqn. (36)
is defined by the largest perturbation in a given generator al-
though the constants associated are determined completely by
the properties of the filters.

From theorems 3 and 4 we can state the stability results
for filters in algebras with multiple generators in the following
corollary.

Corollary 2: Let Abe an algebra with generators {g; } 7>, and
9i9; = g;j9; for all ¢, j. Let (M, p) be a finite or countable infi-
nite dimensional representation of A and (M, p) be a perturbed
version of (M, p) related by the perturbation model in eqn. (25).
Then, if p € A, U Ay, the operator p(S) is stable in the sense
of definition 5 with Cyp = m(1 + §)Lg and Cy = m(1 + J) L.

Proof: Replacing eqn. (36) from theorem 4 into eqn. (35)
from theorem 3 and organazing the terms. |

C. Stability of Algebraic Neural Networks

The results in Theorems 1 to 4 and corollaries 1 and 2 can be
extended to operators representing AlgNNs. We say that for a
given AIgNN, E = {(A, My, pe)}{_,, a perturbed version of
Zis given by = = (Ag, My, po) | where (Ag, My, pe) is a
perturbed version of (Az, My, p). For the sake of simplicity
we present a theorem for AIgNNs with algebras with a single
generator, but notice that these results can be easily stated
for AlgNNs with multiple generators directly from theorems 3
and 4. To do so, we start highlighting in the following theorem the
stability properties of the operators in the layer ¢ of an AIgNN.

Theorem 5: Let = = {( Ay, My, ps) }1_, be an algebraic neu-
ral network with L layers, one feature per layer and algebras
Ay with a single generator. Let = = {(Ay, My, p¢)} 2, be the
perturbed version of = by means of the perturbation model in
eqn. (25). Then, if ®(xy_1, Py, S¢) and ®(x4_1, Py, 5'4) repre-
sent the mapping operators associated to = and = in the layer /¢
respectively, we have

’(b (x¢-1,Pe,; S¢) — @ (Xf—l’w’gf) H

¢ sup [ TO(8,)]|

< Co(1+6p) (L
Sy

L sup | Dace (S@) e 37

Sy
where Cy is the Lipschitz constant of o4, and Py, = A, N Ar,
represents the domain of py. The index (¢) makes reference to
quantities and constants associated to the layer /.
Proof: See Section VII-C1. |
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This result, although simple, highlights the role of the maps
o when perturbations are considered in each layer. In particular,
we see that the effect of oy is to scale A, by a constant but it does
not change the nature or mathematical form of the perturbation.
Notice also that o, plays the role of a mixer that allows an
AlgNN to provide selectivity without affecting the stability (see
Section VIII).

Now we present in the following theorem the stability result
for a general AIgNN with commutative algebras.

Theorem 6: Let= = {(As, My, ps)} £, be an algebraic neu-
ral network with L layers, one feature per layer and alge-
bras A, with a single generator. Let = = {(Ag, My, pr)
be the perturbed version of = by means of the perturba-
tion model in eqn. (25). Then, if ®(x, {P,}¥,{S/}¥) and
O(x, {Po}E, {S‘g}f) represent the mapping operators associated
to = and 2 respectively, we have

@ (x (P (S - @ (x (P (S |
ZL: <HC> ( f[ Br> (ﬁ CTBT> x| (38)
=1 : r=0+1 r=1

where Cy is the Lipschitz constant of o, and By is a bound on
the filter’s norm, || p¢(a)|| < By. The functions A, are given by

Ay = (146 (L(()e) Sélp ‘lT(e)(S£)|| + Lﬁ‘) Sélp | Drpcey (Se)”)
4 4

(39)
with the index (¢) indicating quantities and constants associated
to the layer ¢.

Proof: See Section VII-C2. |

Theorem 6 states how an AlgNN can be made stable by the
selection of an appropriate subset of filters in the algebra, for a
given perturbation model. It is worth pointing out that conditions
like the ones obtained in [7] for GNNs can be considered partic-
ular instantiations of the conditions in Theorem 6. Additionally,
notice that Theorem 6 can be easily extended to consider several
features per layer, the reader can check the details of the proof of
the theorem in Section VII-C2 where the analysis is performed
considering multiple features.

The bound in (38) exhibits an exponential dependency on the
Lipschitz constants C'y and the maximum filter norms By. This
dependency can be avoided if we normalize the nonlinearities so
that Cy = 1 and the filters so that B, = 1. Their presence in (38)
highlights that if the filters and nonlinearities amplify signals,
they may amplify errors as well.

Remark 3: Tt is important to highlight the fact that the pertur-
bation model in eqn. (25) is smooth in the space of admissible
S and this smoothness allows a consistent calculation of the
Fréchet derivative of T(S). This can be considered as a conse-
quence of the fact that deformations between arbitrary spaces can
be measured according to the topology of the space. In particular,
if a diffeomorphism is used to produce deformation in the signal
models of interest, it is possible to find an equivalent associated
map that produces deformation of the set of operators acting on
the signal. If notions of differentiability are used to measure the
size of the original diffeomorphism, it is natural to find similar
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notions involved on the map acting on the operators, but with
the difference that the differentiability is measured according to
the topology of the new space.

Remark 4: 1t is worth noticing that the role of the Fréchet
derivative D, 5(S) raises naturally when the the norm of the
difference between an operator p(S) and its perturbed version
p(S) is considered (see Section VII-A), and this is a direct
consequence of the definition of such derivative and the type
of perturbation considered (see eqn. (49) and eqn. (50)). Then,
as long as the perturbed shifts considered can be modeled as
S = S + T(8), i.e. the perturbation is added to the unperturbed
shift, the operator that acts on T(S) is always the Fréchet
derivative of the filter.

D. Implications for particular signal models

In this subsection we show the implication of the stability
results for particular signal models.

Graph Neural Networks (GNNs) In graph signal process-
ing the shift operator S is a matrix representation of a graph.
The perturbation model in (4) simply states that S is a matrix
representation of a different graph. Definition 5 defines a stable
operator p(S) as one that doesn’t change much when run on
graphs that are close and related by perturbations that are suffi-
ciently smooth in the space of matrix representations of graphs.

The absolute perturbation model considered in [7] is the
perturbation model where T(S) = T. Therefore the stability
bound for graph filters translates into

[p(8) = p(8)| < 1+ ) LoIToll + O (ITol?) . 40)

which is a scaled version of the result in [7] (Theorem 1).
Additionally, § < § 5v/N where § is the non commutativity con-
stant used in [7] which depends on the difference between the
eigenvectors of S and T, — please see Appendix A where
the formal connection between & and 4 is stated. Notice that
sups | T(S)]| = || Tol]-

A relative model can be obtained considering T(S) = TS,
and in that case the stability bounds are given according to

[p(8) = p(S)|| < L+ LTI+ O (TSP, @)
which is a scaled version of the bound obtained in [7]. No-
tice that supg ||[Dr(S)|| = ||T1|. Like in the previous scenario
§ < V/N§ where 5 is the non commutativity constant used in [7]
— please see Appendix A. It is also important to remark that
the stability of bounds derived in [25] for graph scattering
transforms are rooted in the fact that wavelet graph filters are
stable, and as a consequence the stability bounds are scaled
versions of the ones derived for graph filters.

CNNs with DTSP In discrete time signal processing (DTSP)
the shift operator is the discrete time shift S. The processing
induced by (5) is invariant to shifts and therefore adequate to
processing signals that are shift invariant. In general, signals are
close to shift invariant but not exactly so. That is, a given signal
x is invariant with respect to a shift operator S that is close to
the time shift .S. If the stability property in (28) holds we can
guarantee that processing the signal x with the operator S is not
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far from processing the signal with the operator S. The latter
represents the operations we perform — since we choose to use
S in the processing of time signals. The former represents the
processing we should undertake to respect the actual invariance
properties of the signal x — which are characterized by S. The
stability bound in this scenario is given by

[ptsix = s3] < 2ot + s lT(S))
Ses
+L1(1+0) sup [Dr(S)||+O (TS| |Ix]]-  “2)

Notice that although results in eqn. (42) are different from
those in [1], they exhibit similarities. This is expected since
the right hand side of eqn. (42) measures the size of T(S),
which is a diffeomorphism acting on the space of admissible shift
operators. The bounds derived in [1] consider diffeomorphisms
acting on R™ which is the domain of the signals. Additionally,
notice that since the operators considered in [1] are shift invariant
the term associated to the absolute norm of the deformation is
not present in the bounds. It is also worth pointing out that the
convolutions we consider in the DTSP model are attributed to a
polynomial algebra. While the convolutions considered in [1] are
defined considering functions in Lo (R™) and filters in L1 (R), a
scenario that requires the use of a non polynomial algebra.
Graphon Neural Networks Similar to the case of GNNs
the graphon W (u,v) is a limit object that represents a family
of random graphs. The perturbed graphon W(u, v) represents
a different family of random graphs. The perturbation of the
graphon generates a corresponding perturbation of the shift
operator defined in (13). If the condition stated in (28) is satisfied,
then filtering graphon signals using the perturbed shift operator
associated to W(u, v) will lead to similar results to the ones
obtained with the unperturbed operator and the differences are
proportional to the size of the perturbation acting on W (u, v).
For instance, if the perturbation considered is additive we have

[2(8) = p(9)|| < 1+ C)LollToll + O (ITo?),  43)

where S is the graphon shift operator indicated in eqn. (6) and
C' is a constant associated to the eigenvalue and eigenvector
spreading of the graphon operator.

Group Neural Network Similar to the case of DSP, the filters
in (11) are invariant to the action of the group. Actual signals
X are invariant to actions of operators that are close to actions
of the group —e.g., a signal is close to invariant to rotations and
symmetries. If (28) is true, processing the signal with operators
g —as we choose to do —is not far from processing the signal with
operators g — as we should do to leverage the actual invariance of
the signal x. We remark that when we perturb g to g the resulting
shift operators will not, in general, be representations of a ho-
momorphism. Notice that when considering the representations
of finite commutative groups the analysis of stability is the same
as in the case of an architecture based on a DSP model, therefore
the stability bounds to perturbations are given by eqn. (42).
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VI. SPECTRAL OPERATORS

Part of our proofs on the stability of AlgNN rely on the
notion of spectral or Fourier decompositions associated to the
realization of algebraic filters. In this section we discuss the
notion of spectrum for general operators associated to algebraic
signal models. Such notions of spectral decompositions are a
natural generalization of the well established notions of spec-
trum used in GNNs and CNNs. To do so we elaborate about the
concepts of irreducible and indecomposable subrepresentations,
which generalize the notions of decompositions in terms of
eigenvectors and eigenvalues [8], [26], [27].

We will highlight specially the role of the filters when a
representation is compared to its perturbed version. In particular,
we will show that there are essentially two factors that can cause
differences between operators and their perturbed versions, the
eigenvalues' and eigenvectors. Additionally, we show how the
algebra can only affect one of those sources. This is consistent
with the fact that differences in the eigenvectors of the operators
only affect the constants that are associated to the stability
bounds.

We start introducing the notion of subrepresentation.

Definition 10: Let (M, p) be a representation of .A. Then, a
representation (U, p) of A is a subrepresentation of (M, p) if
U C M and U is invariant under all operators p(a) for all a €
A, ie. p(a)u € U for all u € U and a € A. A representation
(M # 0, p) is irreducible or simple if the only subrepresenta-
tions of (M # 0, p) are (0, p) and (M, p).

The class of irreducible representations of an algebra A
is denoted by Irr{.A}. Notice that the zero vector space and
M induce themselves subrepresentations of (M, p). In order
to state a comparison between representations the concept of
homomorphism between representations is introduced in the
following definition.

Definition 11: Let (Mj,p1) and (Mg, pa) be two repre-
sentations of an algebra A. A homomorphism or interwining
operator ¢ : M; — Mo is a linear operator which commutes
with the action of A, i.e.

d(pr(a)v) = p2(a)p(v).

A homomorphism ¢ is said to be an isomorphism of represen-
tations if it is an isomorphism of vectors spaces.

Notice from definition 11 a substantial difference between
the concepts of isomorphism of vector spaces and isomorphism
of representations. In the first case we can consider that two
arbitrary vector spaces of the same dimension (finite) are iso-
morphic, while for representations that condition is required but
still the condition in eqn. (44) must be satisfied. For instance, as
pointed out in [28] all the irreducible 1-dimensional representa-
tions of the polynomial algebra C[¢] are non isomorphic.

As we have discussed before, the vector space M associated
to (M, p) provides the space where the signals are modeled.
Therefore, it is of central interest to determine whether it is
possible or not to decompose M in terms of simpler or smaller

(44)

!'As we will show later, this is indeed a particular case of a general notion of
homomorphism between the algebra and an irreducible subrepresentation of A.
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spaces consistent with the action of p. We remark that for any
two representations (M, p1) and (Ms, p2) of an algebra A,
their direct sum is given by the representation (M7 & Ma, p)
where p(a)(x1 ® x2) = (p1(a)x1 ® p2(a)xs). We introduce
the concept of indecomposability in the following definition.

Definition 12: A nonzero representation (M, p) of an algebra
A is said to be indecomposable if it is not isomorphic to a direct
sum of two nonzero representations.

Indecomposable representations provide the minimum units
of information that can be extracted from signals in a given
space when the filters have a specific structure (defined by the
algebra) [29]. The following theorem provides the basic building
block for the decomposition of finite dimensional representa-
tions.

Theorem 7 (Krull-Schmit, [30]): Any finite dimensional rep-
resentation of an algebra can be decomposed into a finite direct
sum of indecomposable subrepresentations and this decompo-
sition is unique up to the order of the summands and up to
isomorphism.

The uniqueness in this result means that if (®I_,V;, p) =
(®j-1Wj,v) for indecomposable representations (V
p;),(Wj,7;), then 7 =s and there is a permutation 7 of
the indices such that (V;, p;) = (Wx(;), ¥(j)) [30]. Although
theorem 7 provides the guarantees for the decomposition of
representation in terms of indecomposable representations,
it is not applicable when infinite dimensional representations
are considered. However, it is possible to overcome this
obstacle taking into account that irreducible representations
are indecomposable [28], [30], and they can be used then to
build representations that are indecomposable. In particular,
irreducibility plays a central role to decompose the invariance
properties of the images of p on End(M) [30]. Representations
that allow a decomposition in terms of subrepresentations that
are irreducible are called completely reducible and its formal
description is presented in the following definition.

Definition 13 ( [30]): A representation (M, p) of the algebra
Ais said to be completely reducible if (M, p) = @, _; (U, pi)
with irreducible subrepresentations (U, p;). The length of
(M, p) is given by |I].

For a given (U, py) € Iir{ A} the sum of all irreducible
subrepresentations of (V, py/) that are equivalent (isomorphic)
to (U, py) is represented by V(U) and it is called the U-
homogeneous component of (V| py ). This sum is a direct
sum, therefore it has a length that is well defined and whose
value is called the multiplicity of (U, pys) and is represented by
m(U, V') [30]. Additionally, the sum of all irreducible subrepre-
sentations of (V, py-) will be denoted as soc{V'}. It is possible to
see that a given representation (V, py/) is completely reducible
if and only if (V, py) = soc{S} [30]. The connection between
soc{V'} and V(i) is given by the following proposition.

Proposition 1 (Proposition 1.31 [30]): Let (V,py) €
Rep{A}. Then soc{V} = @ gepupay V(5)-

Now, taking into account that any homogeneous component
V(U) is itself a direct sum we have that

soc{V}= @ s, (45)
Selrr{A}
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Equation (45) provides the building block for the definition of
Fourier decompositions in algebraic signal processing [11]. With
all these concepts at hand we are ready to introduce the following
definition.

Definition 14 (Fourier Decomposition): For an algebraic sig-
nal model (A, M, p) we say that there is a spectral or Fourier
decomposition of (M, p) if

M.p= P

(U; i) lr{ A}

U, gi) oM (46)

where the ({4;, ¢;) are irreducible subrepresentations of (M, p).
Any signal x € M can be therefore represented by the map A
given by

A M— @(ui,qsi)em{A} Ui, ¢i)$m(u"’M)

X=X “7)

known as the Fourier decomposition of x and the projection of
X in each U; are the Fourier components represented by x(7).

Notice that in eqn. (46) there are two sums, one dedicated
to the non isomorphic subrepresentations (external) and another
one (internal) dedicated to subrepresentations that are isomor-
phic. In this context, the sum for non isomorphic representations
indicates the sum on the frequencies of the representation while
the sum for isomorphic representations a sum of components
associated to a given frequency. It is also worth pointing out
that A is an interwining operator, therefore, we have that
A(p(a)x) = p(a)A(x). As pointed out in [8] this can be used
to define a convolution operator as p(a)x = A~ (p(a)A(x)).
The projection of a filtered signal p(a)x on each U; is given
by ¢;(a)x(i) and the collection of all this projections is known
as the spectral representation of the operator p(a). Notice that
¢i(a)x(i) translates to different operations depending on the
dimension of U;. For instance, if dim(l4;) = 1, x(¢) and ¢;(a)
are scalars while if dim(Z4;) > 1 and finite ¢;(a)x (%) is obtained
as a matrix product.

Remark 5: The spectral representation of an operator in-
dicated as ¢;(a)%x(i) and eqns. (46) and (47) highlight one
important fact that is essential for the discussion of the re-
sults in Section VII. For a completely reducible representation
(M, p) € Rep{A} the connection between the algebra .4 and
the spectral representation is exclusively given by ¢;(a) which
is acting on x(i), therefore, it is not possible by the selection
of elements or subsets of the algebra to do any modification
on the spaces U; associated to the irreducible components in
eqn.(46). As a consequence, when measuring the similarities
between two operators p(a) and p(a) associated to (M, p) and
(M, p), respectively, there will be two sources of error. One
source of error that can be modified by the selection of a € A
and another one that will be associated with the differences
between spaces U/; and Z;{l which are associated to the direct
sum decomposition of (M, p) and (M, p), respectively. This
point was first elucidated in [7] for the particular case of GNNss,
but it is part of a much more general statement that becomes
more clear in the language of algebraic signal processing.

Example 10 (Discrete signal processing): In CNNs the filter-
ing is defined by the polynomial algebra A = C[t]/(t" — 1),
therefore, in a given layer the spectral representation of the filters
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is given by
N K-1
pla)x = ¢ (Z h,ﬂ) x(i)u
i=1 k=0
K-1 N K-1 ok
=33 w0k =33 ((f N) %(i)w,
i=1 k=0 i—1 k=0
with a = S5 hyt* and where the u;(v) = \/%ez%m are the

column vectors of the traditional DFT matrix, while ¢;(t) =
e~ %" is the eigenvalue associated to u;. Here X represents the
DFT of x.

Example 11 (Graph signal processing): Taking into account
that the filtering in each layer of a GNN is defined by a poly-
nomial algebra, the spectral representation of the filter is given
by

=1 k=0
N K-1 K-1

=D > heti(®)Fx(Dui =D AR (i)
i=1 k=0 i=1 k=0

(48)

with a = 5;01 hit®, and where the u; are given by the
eigenvector decomposition of p(t) = S, where S could be the
adjacency matrix or the Laplacian of the graph, while ¢; () = \;
being \; the eigenvalue associated to u;. The projection of
x in each subspace U; is given by x(i) = (u;,x), and if U
is the matrix of eigenvectors of S we have the widely known
representation x = UTx [23].

Example 12 (Group signal processing): Considering the
Fourier decomposition on general groups [16]-[18], we obtain
the spectral representation of the algebraic filters as

axx= Z a(uh™) Z Cgffi (<P(k)>i7j QOEZ)(h)hua

u,heG N

where %(¢(*)) represents the Fourier components asso-
ciated to the kth irreducible representation with dimen-
sion d;, and @(®) is the associated unitary element. We
can see that the kth element in this decomposition is
525 X ® )iy o fraluh )l (R)hu.

Example 13 (Graphon signal processing): According to the
spectral theorem [31], [32], it is possible to represent the action
of a compact normal operator S as Sx = Y. A; (¢, X)p,; where
A; and ¢, are the eigenvalues and eigenvectors of .S, respectively,
and (-) indicates an inner product. Then, the spectral represen-
tation of the filtering of a signal in the layer ¢ is given by

pe (p(t) x = Zp(&-ﬂx, i), = Z 6i(p(t))%ip;,

where ¢;(p(t)) = p(Ai)-

VII. PROOF OF THEOREMS

notation.  Let
that represents

Let us
7Ta1,.‘.,ar (Ala e

start  defining  some
,A,) be the operator
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the sum of all the products of the operators Aq,..., A,
that appear aj,as,...,a, times respectively. For instance,
721(A,B) = AAB + ABA + BAA. Additionally, when
considering all summation and product symbols the following
convention is used Z?:a F(i) = 0ifb < a,and H?:a F@i)=0
if b < a. In what follows || - || represents the £2 norm and || - || »
the Frobenius norm.

A. Proof of Theorems I and 3

Proof: We say that p(S) as a function of S is Fréchet dif-
ferentiable at S if there exists a bounded linear operator D,, :
End(M)™ — End(M) such that [33], [34]

EEY €l
which in Landau notation can be written as
p(S+&) =p(S) + Dy(S) {&} + o([[€]])- (50)

Calculating the norm in eqn. (50) and applying the triangle
inequality we have:

Ip(S + &) —p(S)| < ID(S){&}HI + O (I€l*) 51

for all £ =(&;,...,&,,) € End(M)™. Now, taking into ac-
count the properties of a Fréchet derivative for a function of
multiple variables (see [35] pages 69-70) we have

1Dp(S) {€} | < Z [Dpis. (S){&: 1 (52)

and therefore
(S +&) = p(S)| < Y | Dyis. (S) {&:3]| + O (II€11*)
=1

where Dy, (S) is the partial Frechet derivative of p(S) on S;.
Then, taking into account that

Ip(S + &)x — p(S)x|| < [Ix[[ Ip(S + &) — p(S)||
and selecting &; = T(S;) we complete the proof. [ |

(53)

B. Proof of Theorem 2 and Theorem 4

Proof: Taking into account the definition of the Fréchet
derivative of p on S; (see Appendix B) we have

Z Ay, mi,-1 (T(S:),S:)

ki=1

1Dys, (S){T(S)}| =

and re-organizating terms we have

D> OSIIT(S) Y ARSHT ‘ .
=1 ki=¢
(54)

HDMSi (S) {T(Sl>}H =

Taking into account eqn. (26), it follows that
[ Dyis. (S) {T(S:)}]| =

> (ToeiSIT 487 Pos) Y Ay SH
/=1 k=t
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+> (T10iS!+ 8PS Y Ay SF (55)
=1

Applying the triangle inequality and distribuiting the sum we
have

[ Dpis, (S{TS)MH| < [Toe S D S 1A,
=1 k;=/¢
+ HDP‘Si(S) {Poz}H + || T1e,i Z Z Sk AL,
=1 k;=¢
+ HDP‘S%,(S) {Pl,isi}H (56)

Now, we analyze term by term in eqn. (56). For the first term we
take into account that

ZZS’“ A, = Z kiAg,S{!

0=1 k;=0 ki=1

(57)

and we apply the product norm property taking into account that
the filters belong to Ay,,, which leads to

o0

Toc,i Z i Sk AL,

0=1 k;=0

Zk:Ak

ki=1

< || Toe,il] < Lo||Tol- (58)

For the second term in eqn. (56) we take into account that the
Fréchet derivative acting on P ; can be equivalently expressed
as a linear operator acting on the left of a vectorized version of
Py ; (see [36] pages 61 and 331). Then,

| Dpis, (8) {Po,:}|| < LollPo.llr (59)
and with the fact that ||Pg ;|| <

HDp\Si(S) {PO,i}H < Lpd||To |- (60)
For the third term in eqn. (56), we take into account that

ZZS’“Ak—Z’fAMa Q)

(=1 k;=t

and we apply the norm product property taking into account that
the filters belong to .Ay,,, which leads to

T i i Sk Ay,

0=1 k; =0

i kiAy, Sk

ki=1

< | Trell < Ly ||T - (62)

Finally, for the fourth term we use the notation D(S){P1 ;} =
Dyis, (S){P1,:S;}. We start pointing out that (see [36] pages 61
and 331) the eigenvalues of the operator f)(S) represented as
(pq are given by

A)-pA)y

A=A, (63)
AP (Ap)
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Then, taking into account that the filters belong to Az, we
have ||D(S)|| < Ly, and therefore

1Dys.(8) {(PriS:}| = | D(S) {P1.:}
Additionally, with |Py ;|| < 6||'Ty ;|| it follows that
| Dyis, (S) {P1,iSi}|| < L1d]|I T

\ < Li|Piilr (64)

(65)
Putting all these results together into eqn. (56) we reach

| Dpjs, (8) {T(Si)}|| < (1+ ) Lol To.ill + (1+ 6) Ly || Ty ]|
<(1+9) (Lo sup [|T(S)] + L1 sup ||DT<si>||)
S, eS S, eS

C. Proof of Theorems 5 and 6

1) Proof of Theorem 5: Proof: Taking into account
eqns. (17), and (18) and the fact that the maps o, are Lipschitz
with constant C'; we have that

e p(Sexe1) = e (p(Sxi1) | < Coelxeall, (66)

where Ay = |[p(S¢) — p(S¢)||, and whose value is determined
by theorems 1 and 2. |

2) Proof of Theorem 6: Proof: Before starting the calcula-
tions let us introduce some notation. Let ¢ (¢, g) = pe(£79)
denote the image of the filter £/9 € A, that process the gth
feature coming from the layer £ — 1 and that is associated to fth
feature in layer /. As indicated before, o, indicates the Lipschitz
mapping from layer ¢ to layer £ + 1. The term xJ_; indicates
the gth feature in the layer ¢ — 1. Then, we have that:

[t =] < et 3 0ale =1 1)
ge-1
> o (6=2,g02) -0 quz
ge-2
Te-1 Z Pg, (£ = 1,90-1)00-2 Z Bger (€ —2,90-2)
ge-1 ge-2
1) Ge(ligi)x 67)
g1
In order to exapand eqn. (67) we start pointing out that:
Agpr04(a) — Agyro0(a) =
(A1 = Apni)oe(a) + Avir(o0(a) — o0(@))  (68)

where Ay and fl@rl indicate filter operators and their per-
turbed versions, respectively. Now, noticing that [|o,(a) —
O < Cella = bl [ Aess — Apsrll < Ay and [[Aes | <
By41 we have the following relations

S lla—all <3 (Allon1(@)ll + BiCyall - Bl
9k

9k

(69)

Z\lﬁ BI<Y D lla—al

9k gk-1

(70)
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(71)

[1x]]

k k-1
Sloca@l < ([ 7)) (T ¢B.
gk r=1 r=1

where v and & represent sequences of symbols in eqn. (67)
that start with a symbol of the type ¢, while g and B indicate
a sequence of symbols that start with a summation symbol,
and the tilde makes reference to symbols that are associated to
the perturbed representations. The term A, is associated to the
difference between the operators and their perturbed versions
(see definition 5) in the layer ¢ and whose values are given in
Theorems 1 and 2. Combining eqns. (69), (70) and (71) we have:

o) )
(H F) (H CFB) I,

F(r) = 01if b < a. Now taking into

(72)

where the products []"
account that

LYCNCATNEAT)

r=a

~ @ (x (Pt 80|

xL—xLH

we have

@ (e, (P ASeHE) -

@ (x {ml,{&}l)H
<\/17LZA, Hc) BT.

L-1
I
r=>~0
(73)

VIII. DISCUSSION

The mathematical form of the notion of stability introduced in
definition (5), eqn. (28) is uncannily similar to the expressions
associated to the stability conditions stated in [1], [2] when the
perturbation operator 7 considered was affecting directly the
domain of the signals. This is consistent with the fact that the
size of the perturbation on the operators is the size of an induced
diffeomorphism T acting on End(M). Measuring the size of
perturbations in this way, although less intuitive, provides an
alternative way to handle and interpret perturbations on irregular
domains.

The nature and severity of the perturbations, imposes restric-
tions on the behavior of the filters needed to guarantee stability.
The more complex and severe the perturbation is the more
conditions on the filters are necessary to guarantee stability.
This in particular has implications regarding to the selectivity
of the filters in some specific frequency bands. The trade-off
between stability and selectivity in the filters of the AIgNN can
be measured by the norm of the Fréchet derivative of the filters
| Dpis(S)||. Those filters with slow variation and low selectivity
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Fig. 3. Filter properties and stability for algebraic operators considering

algebras with a single generator. (Top) We depict a Lipschitz filter where it
is possible to see that an arbitrary degree of selectivity can be achieved in any
part of the spectrum. (bottom) We depict a Lipschitz integral filter where we
can see how the magnitude of the filters tends to a constant value as the size of
|\i| grows. As a consequence there is no discriminability in one portion of the
spectrum.

will be associated with a low value of || D g(S)|| while a filter
that high variation will lead to large values of || D, s(S)]|. This
is also reflected in the size of the upper bounds in Theorems 1
up to 6. In particular, the size of Ly and L; associated to the
boundedness of the derivatives of the elements in Arg and Ay .
The smaller the value of L, L; the more stable the operators but
the less selectivity we have. In Fig. (3) the properties in frequency
of Lipschtiz and Lipschitz integral filters are depicted, where it
is possible to see how the selectivity on portions of the spectrum
is affected by properties that at the same time provide stability
conditions for the perturbation models considered.

It is important to remark that the function oy = Py o 1, com-
posed by the projection operator P, and the nonlinearity function
ne relocates information from one layer to the other performing a
mapping between different portions of the spectrum associated
to each of the spaces M. As 7, maps elements of M, onto
itself, we can see in light of the decomposition of My in terms
of irreducible representations that 7, is nothing but a relocator
of information from one portion of the spectrum to the other.
Additionally, the simplicity of 7, provides a rich variety of
choices that can be explored in future research.

The notion of differentiability between metric spaces or
Banach spaces can be considered also using the notion of
Gateaux derivative which is considered a weak notion of dif-
ferentiability. Although Gateaux differentiability is in general
different from Fréchet differentiability, it is possible to show
that when dim(End(M)) < oo both notions are equivalent for
Lipschtiz functions, but substantial differences may exist if
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dim(End(M)) = oo even if the functions are Lipschitz [33],
[34].

IX. CONCLUSION

We considered algebraic neural networks (AIgNN) with com-
mutative algebras as a tool to unify convolutional architectures
like CNNs and GNNs, synthesizing the algebraic structure by
exploiting results from the representation theory of algebras
and algebraic signal processing. Within this framework, we
showed that AIgNNs can, in general, be stable to different types
of perturbations, and the conditions under which the AlgNN
operators are stable are determined by subsets of the algebra. We
pointed out that the perturbations of the domain of the signals
can be equivalently modeled as a perturbation of the representa-
tion or the signal model, and the degree of this perturbation
can be measured by means of the Fréchet derivative of two
functions, the image of the homomorhisms in End(M) and the
perturbation model T(S). The perturbation model considered
provides enough expressive power to represent a wide variety
of perturbations affecting the domain of the signals or the
operator themselves directly. In particular, when considering
the algebraic model for GNNs, the absolute and the relative
perturbation models can be considered particular cases of the
perturbation model used in this work.

An interesting and relevant future research direction is to
analyze stability of operators in signal models with non com-
mutative algebras. This is important since we do not have shift
invariance, and consequently there is the question of how this af-
fects the stability properties and the constants in a stability bound
if it exists. Another essential question to solve is how the ASP
theory can be extended to consider stability of convolutional
operators in signal models where the algebra is not of polynomial
type. This has implications when considering convolutions with
functions in Lo (R™), where the algebrais L1 (R™) and the notion
of generator set proposed in [8] is insufficient/inadequate to
capture the whole structure of the algebra.

APPENDIX A
PERTURBATION MODEL

Theorem 8: Let T,.,T., as specified in eqn. (26) for the
perturbation model with ||P,.||» < 6||T,|. Let e; a orthonormal
basis, (A;, v;) the eigenpairs of S and (u;, u;) the eigenpairs of
T,.. Then

§ <VNé (74)
where
0= (ITa—Ty[+1)" -1 (75)

and

T, = <Z ei<Vi7'>> ) Ty = (Z ei<ui7 >> : (76)

The terms (u;, -) and (u;, -) indicate the inner product operators
with u; and v; respectively.
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Proof: For our analysis we consider the following operators

Tv* = (Z Vi<'7ei>> ) Tu* = <Z ui<'7ei>> ) (77)

Ty = (Z Mz‘ei<ei7'>> ; (78)
and we remark that
T, =T,T,Ty, T, =T,T,T, (79)
with
[Tu || = [Tull = [Ty || = [Tv[| = 1 (80)
and
ITull = [T 81

Now, we start taking into account that T',. can be rewritten as
T, =T T,Ty + (Ty — Ty )T, (Ty —Ty)
+ Ty Ty(Ty—Ty)+ (Ty — Ty )T, Ty. (82)
Then, taking into account that T, = T, + P, we have that
P, =(Ty —Ty)Tu(Ty —Ty)

+ Ty Tp(Ty — Ty) + (T — Ty )T, Ty, (83)

Computing the norm on both sides of eqn. (83) and applying the
triangular inequality and the operator norm property it follows
that

[Pl < [T — T[T || T — T |

T Tl Tu = Tyl + [[Tur = Ty [Tl T |-
(84)

Taking into account the expressions in eqn. (80), eqn. (81), and

the fact that || Ty — Ty+|| = || Ty — Ty||, the eqn. (84) turns
into
o[ < [T = Ty[*[ Ty | + 2| T [ Tu = Ty || (85)
which finally can be written as
1P < T (1T = TV + D)7 = 1) . 36)

Now, from the relationship between the Frobenius norm and
the /o-norm we know that

[P 7
<||P, 87
T < Il )
Combining eqn. (87) and eqn. (86) it follows that
IPle < VN (1T = Toll + 1? = 1) T (88)

Notice that the term || T, — T'|| is a measure of the difference
between the eigenvectors of S and the eigenvectors of T,..
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APPENDIX B
FRECHET DERIVATIVE D,g, (S)
First, notice that p(S) = »7;° Py, SH Sf,;“ =
ZZ?:O Sf’Ak“ where Ak Z{k 1=0 hkl, K HJ 1 S
J#i
Then, it follows that
p(S+&) —p( Z (Si+&)F ZSkAk
k;=0 ki=0
(89)
for &=(0,...,&,,...,0). Considering the expansion
(Si+ &M =Sy + & + 371wk, (S0, &) for ki >2,
eqn. (89) takes the form
p(S + &) —p(S)
oo ki—1
=D ke (€5,8) Ag, + ZE Ay, (90)
k;=1r=1 ki=1
Separating the linear terms on &, eqn. (90) leads to
p(S+&) —p( Zﬂ'mq (€:,Si) A
ki=1
oo ki—1 00
Y Y w6080 Ag Y €A, OD)
ki=2 r=2 k=2

Therefore, taking into account the definition of Fréchet deriva-
tive (see Section 1) it follows that

Dys,(S){&:} = Zm,l (€:,8:) A 92)
k=1
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