)]
Check for
Updates

Checking Conformance of Applications against GUI Policies

Zhen Zhang Yu Feng Michael D. Ernst
University of Washington University of California, Santa University of Washington
Seattle, USA Barbara Seattle, USA
zgzhen@cs.washington.edu Santa Barbara, USA mernst@cs.washington.edu
yufeng@cs.ucsb.edu
Sebastian Porst Isil Dillig
Google University of Texas Austin
Mountain View, USA Austin, USA
sporst@google.com isil@cs.utexas.edu
ABSTRACT = Polili |c ; T

A good graphical user interface (GUI) is crucial for an application’s
usability, so vendors and regulatory agencies increasingly place
restrictions on how GUI elements should appear to and interact
with users. Motivated by this concern, this paper presents a new
technique (based on static analysis) for checking conformance be-
tween (Android) applications and GUI policies expressed in a formal
specification language. In particular, this paper (1) describes a spec-
ification language for formalizing GUI policies, (2) proposes a new
program abstraction called an event-driven layout forest, and (3)
describes a static analysis for constructing this abstraction and
checking it against a GUI policy. We have implemented the pro-
posed approach in a tool called VENUS, and we evaluate it on 2361
Android applications and 17 policies. Our evaluation shows that
VENUS can uncover malicious applications that perform ad fraud
and identify violations of GUI design guidelines and GDPR laws.

CCS CONCEPTS

- Software and its engineering — Software verification and
validation; « Security and privacy — Human and societal aspects
of security and privacy; Software security engineering,.

KEYWORDS

ad fraud, static analysis, user interface, Android, mobile app

ACM Reference Format:

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig.
2021. Checking Conformance of Applications against GUI Policies. In Pro-
ceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 21),
August 23-28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3468264.3468561

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468561

95

é‘ VENUS

S Android STATIC A
App ANALYSIS

Figure 1: Architecture of VENUs. A is an event-driven layout
forest (ELF) (defined in section 3.2) and x is a GUI policy writ-
ten in VESPER language (Section 4).

1 INTRODUCTION

Good graphical user interfaces (GUIs) are essential for the success
and popularity of mobile applications. A bad user interface can
significantly degrade the user’s overall experience, causing the app
to become unpopular even if it provides otherwise useful function-
ality. Beyond leading to poor user experience, bad GUI designs can
indicate malicious intent — for example, many ad fraud applications
provide a misleading user interface to trick their users into clicking
on unwanted links. Such behavior violates one of the advertisement
policies published by mobile platforms [1, 14, 19], and according to
arecent report [13], click fraud (a major type of ad policy violation)
accounts for more than 50% of all potentially harmful applications.
Furthermore, several companies and governmental agencies have
others types of policies concerning the user interface of mobile
apps. For instance, both Google and Apple publish UI design guide-
lines [2, 15], and the European Union’s General Data Protection
Regulation (GDPR) laws [10, 20] impose restrictions on how mobile
apps may interact with users via their user interfaces.

Despite the increasing importance of ensuring compliance be-
tween GUI policies and mobile applications, there are no existing
techniques that can be used to check whether an app conforms
to such GUI policies. This work aims to address this problem by
proposing a new technique, and its implementation in a tool called
VENUS (figure 1), for checking conformance between a mobile ap-
plication written in the Android framework and a GUI policy. We
envision such a tool being utilized in two different ways: First,
VENUSs can be used by developers to ensure that their user inter-
face is consistent with existing policies, thereby improving overall
user experience and ensuring compliance with applicable laws. Sec-
ond, VENUS can be used by security analysts to detect ad fraud
applications that trick users through a misleading user interface.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

In practice, checking conformance between an app and a GUI pol-
icy turns out to be challenging for two key reasons. First, Android
applications consist of several interacting activities, all of which pro-
vide a different and dynamically changing interface. Thus, checking
adherence to a GUI policy requires exploring the (possibly infinite)
ways that a user can interact with the app. Second, by studying
existing GUI policies, we found that many of them concern not only
the static appearance of the app, but also how the interface needs to
dynamically evolve as users interact with it. Thus, verifying an app
against a GUI policy requires reasoning about the dynamic behavior
of the app in relation to the GUI elements it provides.

In this paper, we address these challenges through an end-to-
end solution that statically reasons about an app’s GUI-related
behaviors. Our solution consists of three ingredients that make it
possible to specify and check such properties:

(1) Policy language: We present a formal policy language called
VESPER for expressing realistic GUI design guidelines. VESPER
allows specifying both spatial relations between GUI elements
as well as their behavioral properties, such as how a button
should react to a click event.

ELF abstraction: We propose a new program abstraction called
Event-driven Layout Forest (ELF) that summarizes spatial and
behavioral properties of GUI elements. While ELF bears resem-
blance to other Android abstractions like window transition
graph [46] and ICCG [11], it differs from them in that nodes
correspond to individual GUI elements (rather than activities)
and node labels (computed using numeric abstract domains and
pointer analysis) track GUI-related properties.

Conformance checking: To check whether an Android app
corresponds to a VESPER specification, VENUS needs to decide
whether a given ELF abstraction is a model of the input VESPER
specification. VENUs achieves this task by encoding both the
ELF abstraction and the VESPER policy as logical formulas and
reduces conformance checking to a satisfiability query.

To evaluate the effectiveness of our proposed approach, we per-
formed an extensive experimental evaluation on 2361 Android
applications. Specifically, we formalized existing GUI policies as
VESPER specifications and then used VENUS to check each Android
application against these policies. Our evaluation shows that VENUS
is able to accurately pinpoint violations of GUI policies with a low
false positive rate (around 6.9%). Furthermore, VENUs can identify
previously unknown ad fraud instances and detect violations of a
subset of GDPR (General Data Protection Regulation) regulations.

In short, this paper makes the following key contributions:

e We propose a policy language called VESPER for describing GUI
policies (Section 4).

e We introduce a new program abstraction called event-driven lay-
out forest that is suitable for checking such GUI policies and
present a static analysis technique for automatically constructing
the proposed ELF abstraction (Section 5)

e We implement VENUS, the first tool for statically checking con-
formance between Android applications and GUI specifications,
and we extensively evaluate VENUS by checking conformance
between 2361 Android applications and several existing GUI
policies (Section 6).

96

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig

Venus Demo

CoordinatorLayout

|AppBarLayout ConstraintLayout

Toolbar

A v

=

(a) (b) ©
Figure 2: Example demonstrating a typical event-driven

flow in Android apps. Listing 1 defines the layout shown in
(a) and (b). The transition from (b) to (c) is defined in listing 2.

1 <ConstraintLayout>

2 .

3 <TextView android:id="@+id/demo_title"

4 android:text="Default title" />

5 <ImageView app:layout_constraintTop_toBottomOf="@+
id/demo_title" />

6 <Button android:id="@+id/continue_button"

7 android: text="CONTINUE" />

8 </ConstraintLayout>

Listing 1: Activity layout for the app shown in figure 2(b).

1 class MainActivity extends Activity {

2 void onCreate(...) {

3

4 setContentView(R.layout.activity_main);

5 TextView demoTitle = findViewById(R.id.demo_title)

6 demoTitle.setText("Venus Demo");

7 Button continueButton = findViewById(R.id.
continue_button);

8 continueButton.setOnClickListener (new View.
OnClickListener () {

9 void onClick(View v) {

10 AlertDialog d = new d.Builder(...).create();

11 d.setButton(DialogInterface.BUTTON_POSITIVE,

12 "YES", new DialogInterface.OnClickListener

[OXRt

13 void onClick(...) { d.dismiss(); }

14 s

15 d.show(); } 1)

16 oo,

Listing 2: onCreate source code for activity from figure 2(b).

2 BACKGROUND ON ANDROID GUI

In Android, the basis of an app’s user interface is an activ-
ity, which always has a window associated with it. Activities can
start other activities by a message-passing system known as inter-
component communication (ICC). An Android ICC message is an
Intent, which can be thought of as a description of what the
launched component should do. An Intent object specifies both
the action to perform (e.g., view, edit, etc.) and provides the relevant
data.

The Android framework provides two types of basic GUI ele-
ments, namely Views and ViewGroups. A View element is a widget,
such as a button or progress bar, that the user can see and in-
teract with. A ViewGroup is an invisible container that stitches

Checking Conformance of Applications against GUI Policies

together Views and ViewGroups. Android provides different types
of ViewGroups, such a LinearLayout for arranging GUI elements
horizontally or vertically. The user interface of a GUI activity corre-
sponds to a tree data structure (figure 2(a)), where internal nodes are
ViewGroup elements and all leaves are View objects. Each Android
GUI element also has a set of attributes that define its properties,
including height, width, alignment, position etc.

Declaring and manipulating GUI elements. In Android, there
are two ways to declare GUI elements. The first option is to specify
the layout through an XML file. In addition to defining the hierar-
chical user interface of an activity, the XML file can also specify
the attribute values of each GUI element, such as the text attribute
“CONTINUE” of a button on line 5 of listing 1. During compilation,
the XML file is translated into a so-called layout resource that can be
loaded in the application’s source code by calling setContentView
(R.layout.layout_name) (e.g., line 4 of listing 2). An alternative way
to create a layout is to do so programmatically by calling methods
provided by the Android framework. For instance, rather than stat-
ically declaring the text attribute in the XML file, a program can do
this at run time by calling the setText method.

In practice, programmers often combine XML-based declaration
of GUI elements with programmatic modifications at run time. For
example, line 4 of listing 2 loads the layout declared in the XML file,
but the two subsequent lines modify the title of the nested TextView
element to “Venus Demo” from its original name (“Default title”)
declared in line 3 of listing 1. Hence, understanding an application’s
user interface requires analysis of both XML files and source code.

Interacting with GUI elements. To facilitate interaction with
users, GUI elements register callbacks that get invoked upon specific
types of user events (e.g., click, hover, etc.). In particular, Android
GUI elements can respond to events of type X by registering an
OnXListener object whose OnX method gets executed when event
X occurs. For instance, lines 8-15 in listing 2 cause the widget to pop
up a dialog box when the user clicks “CONTINUE”. This behavior
is illustrated in the transition from figure 2(b) to figure 2(c).

3 OVERVIEW

This section gives an overview of the VENUS framework through a
simple but realistic motivating example.

3.1 Example GUI Policy for AdFraud Detection

Fig. 3 shows the screenshot of an ad fraud application called “Super
Cleaner” that was recently submitted to the Google Play Store. This
app does not conform to a Google AdMob policy [17], which states
that transparent backgrounds should not display ads upon a click
event. However, as shown in parts (b) and (c) of figure 3, the Super
Cleaner application blatantly violates this policy.

In order to use VENUS to check conformance between this app
and the AdMob policies, the user first needs to formalize the policy
in VENUS’s specification language. In particular, figure 4 shows a
formalization for the policy “transparent backgrounds should not
display ads upon click events” in our policy language called VESPER.
Here, the first line declares a View element called bg. Next, the
assume statement stipulates that bg is the background of some other
View element. Then, on line 3, the let binding defines a custom
predicate called popAd(v), which evaluates to true if clicking on v

97

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Super Cleaner

Clickable
icon:
Launches
relevant
activity

Clickable
transparent

Launches
browser

(a) Main activity (b) Battery saver activity (c) Untrusted website

Figure 3: Clicking on the white space will (surprisingly) trig-
ger the display of untrusted website

1 public class MainActivity extends Activity implements
OnClickListener {

2 private Button saverBtn;

3 protected void onCreate(...) {

4 setContentView(R.layout.activity_main);
5 saverBtn = findViewById(R.id.btn_save);
6 saverBtn.setOnClickListener (this);
7%

8 public void onClick(View view) {

9 Intent intent = new Intent(

10 this, BatterySaver.class);

11 startActivity(intent);

12 3

13 }

Listing 3: Main activity

1 public class BatterySaver extends Activity {

2 public void onCreate(Bundle bundle) {

3 setContentView(R.layout.battery_saver_ad);

4 FrameLayout frameLayout = (FramelLayout)
findViewById(R.id.content);

new NativeAdViewBuild().f();

frameLayout.addView(a);

View a =

5

6
7}
83

9

10 class NativeAdViewBuild {

11 public View f() {

12 View adView = new UnifiedNativeAdView();
13 View bgView = findViewById(R.id.bg_view);
14 // set a transparent background

15 bgView.setOpacity(0);

16 bgView.setOnClickListener (this);
17 return adView;

18 }

20 public void onClick(View arg@) {

21 // suspicious URL

22 loadURL("http://funtest.afatwallet.com");
23}

24 }

Listing 4: Battery saver activity

shows a new window v’ that corresponds to an adView GUI element.
Finally, the assertion specifies the desired property. Section 4 will
present more about VESPER.

Given this VESPER policy and the source code of the Super
Cleaner application (shown in listing 3 and listing 4), we next ex-
plain how VENUS automatically identifies this policy violation.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

1. View bg

2. assume (Jv.(View(v) A background(bg,v)))

3. let popAd(v) = Jo’. (showWindow (o, click,v”) A
AdView(v"))

4. assert (transparent(bg) — —popAd(bg))

Figure 4: VESPER specification for the policy “Transparent
backgrounds should not be clickable”.

3.2

As mentioned earlier, VENUSs uses static analysis to construct an
even-driven layout forest(ELF) abstraction of the application. At a
high-level, this abstraction captures all relevant behavior of the app
with respect to the VEsPER policy language. For example, figure 5
shows the ELF abstraction for the Super Cleaner application. Here,
each node corresponds to a GUI element; node labels (e.g., for
bgView) indicate attribute values (e.g., opacity, width); and there
are two types of edges: (1) a spatial (solid) edge from node n to n’
indicates that GUI element n’ is nested inside n, and (2) a

behavioral (dashed) edge from n to n’ labeled with e indicates
that GUI element n launches another GUI element n” upon event
e. For example, in figure 5, there is a spatial (solid) edge from
MainActWindow to saverBtn since the latter is spatially nested
within the window of the main activity (see figure 3). On the
other hand, there is a behavioral (dashed) edge from saverBtn to
BatterySaverWindow labeled with showWindow(click) because
clicking on the saverBtn results in opening the window of the
BatterySaver activity (see code 3).

In practice, constructing a sufficiently precise ELF abstraction of
the application requires non-trivial static analysis. For example, the
construction of behavioral edges between GUI elements requires
reasoning about heap objects and callbacks as well as analysis of
inter-component communication (ICC). On the other hand, rea-
soning about GUI element attributes (e.g., height, width) requires
reasoning about numeric values.

ELF Generation via Static Analysis

3.3 Checking Conformance

Our method uses the computed ELF abstraction to check confor-
mance against any VESPER policy. At a high-level, we can think of
the ELF abstraction as defining a conjunction of ground predicates
in VESPER. Thus, checking conformance between the app and policy
boils down to determining whether the formula defined by the ErF
abstraction implies the specification. Going back to our example,
we can determine that Super Cleaner violates the VESPER policy
from Figure 4 using the following chain of inferences:

o First, since bgView is nested inside nativeAdView and has the
same width/height of its parent (figure 5), we determine that
bgView is the background of nativeAdView. Thus, bgView satis-
fies the assumption from line (2) of Figure 4.

o Next, because the opacity attribute of bgView is 0 (see figure 5),
transparent evaluates to true for bgView.

o In addition, bgView satisfies the popAd predicate because fig-
ure 5 contains a behavioral edge from bgView to adViewWindow
labeled with click.

98

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig

e Finally, because bgView satisfies both the assumption at line (2)
as well as the transparent and popAd predicates, the assertion at
line (4) of Figure 4 is violated.

Therefore, VENUS reports that the Super Cleaner app does not
conform to the VESPER policy from Figure 4.

4 VESPER SPECIFICATIONS

As shown in figure 6, a specification in VESPER starts with a set
of declarations, is followed by a sequence of statements (i.e., def-
initions and assumptions), and ends in a set of assertions. While
VESPER provides built-in predicates relevant to the spatial and be-
havioral properties of GUI elements (figure 7), the user can also de-
fine custom predicates through let bindings. For instance, in figure 4,
showWindow is an example of a built-in predicate, whereas popAd
is a custom predicate defined by the user. VESPER also provides a
way to define a set of GUI elements through the set comprehension
syntax {0 | ®}.

Expressions. In VESPER, the most basic expressions are variables
v, integer constants c, and pre-defined Android events ¢ such as
click or touch. VEsPER allows performing arithmetic operations
over integers as well as aggregation over sets. For instance, the
expression count(v) returns the number of elements in set v.

Built-in predicates. VESPER provides a core set of built-in pred-
icates that constrain spatial and behavioral properties of GUI el-
ements. Figure 7 shows examples of these predicates, which are
classified into three categories:

o Element type predicates describe the type of a GUI element (e.g.,
button, dialog). Note that, unlike the actual Android API, VESPER
does not differentiate between views and view groups, and every
GUI element is considered to be a view. Thus, views can contain
nested views under VESPER’s semantics.

o Spatial predicates refer to visual properties of GUI elements (e.g.,
height, width) as well as spatial relationships between different
GUI elements (e.g., containment).

e Behavioral predicates constrain how GUI elements react to user
events (e.g., what methods they can invoke, which other GUI
elements they can display, etc.).

ExampLE 1. Consider the following VESPER specification:
View w;
let LView(v) = 3x, y. (width(v, x) A x > 100A
height(v,y) A y > 100)
let LAds = {v | AdView(v) A contains(w,v) A LView(0)}
assert count(LAds) < 1

This specification requires that every window contains at most one
“large” ad, meaning that the width and height of the ad is above a
certain threshold. Here, the combination of set comprehension syn-
tax and the count function allows constraining the number of GUI
elements with a certain property.

We present the formal semantics of VESPER policies in Appendix
A. At a high level, the semantics of VESPER policies are defined
over execution traces, and we consider a predicate p(0) to be true
in an execution w if it holds on objects 0 at any time during w.
For example, the predicate startBrowser(e, v) evaluates to true in
execution o if v starts the browser at some point during . Given

Checking Conformance of Applications against GUI Policies

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

(batterySaverWindow)

v

saverBtn

frameLayout

adViewWindow
"uri": "funtest.afatwallet.com"

j A
click ;
L
bgView
. . "gravity": "center"
nativeAdView "width” : 100
"width" : 100 "height" : 400
"height" : 400 "opacity": 0

Figure 5: Simplified ELF for motivating example of Sec.3.1. Solid (resp. dashed) lines represent spatial (resp. behavioral) edges.

Policyy — D;S; A
Decd D — «to|D;D
Stmt S let o= {d | D}
| let p(v) = ® | assume @ | S;S
Assert A — assert ® | A;A
Expre — wolel|c]|f(er,....en)
Pred® — p(e) |- |d;Vd,
|‘D1/\‘D2 |q31 H‘DleUqDIEUq}
Evente — click | longClick | ... | touch
Typer — View | Dialog | ... | Button
a € Attributes, c €lnt f € Built-in fns
p € Built-in predicates U User-defined predicates

Figure 6: The VEsPER policy language

Element type predicates
Button(v), Dialog(v), ImageView(v), AdView(v) ...
Spatial predicates:

height (v, h) View v has height h

width (v, w) View v has width w
textSize (v, s) Text view o has text size s
transparent (o) View v is transparent

u contains v as a sub-view
u is the background container of v

contains(u, v)

background (u, v)

Behavioral predicates:
entryView (o) v is the top-level window that
is displayed when the app starts

invoke (u, e, m) User event e on GUI element u

directly causes invocation of method m
Event e on u results immediately

in display of element v

Window w’s event e causes new dialog v
to be immediately displayed

Event e on v results immediately

in starting a new marketplace window
Event e on v results immediately

in starting a new browser window

Figure 7: Examples of built-in predicates provided by VEsPER

showWindow (u, e, v)
launchDialog(w, e, v)
startMarketplace (e, v)

startBrowser (e, v)

the truth value of built-in predicates under w, evaluation of the full
policy under o largely follows the standard semantics of first-order
logic, with some modifications to handle set comprehension (see
Appendix A). Finally, we say that an app A conforms to a VESPER
policy P if P evaluates to true in all executions of A.

99

5 STATIC CONFORMANCE CHECKING

In this section, we introduce the ELF abstraction, describe our static
analysis for computing it, and then discuss how to use the ELF
abstraction to check conformance against VESPER policies.

5.1 The ELFr Abstraction

An event-driven layout forest (ELF) is a tuple G = (N, Ny, E, L)
where:

e N is a set of nodes where each node is a pair (o, 7) representing
an abstract heap object o of GUI element type 7.

e Nodes Ny C N are initial nodes that may correspond to the main
window of the application.

e Edges E = Es W Ep encode relationships between GUI elements.
We refer to edges (n,n’) € Es as spatial edges and (n,e,n”) € Ep
as behavioral edges.

e Labeling function L : N X Attrib — AbstractVal maps attributes
of GUI elements to their abstract values.

As mentioned in section 3, a spatial edge (n, n") encodes that GUI
element n is nested within n’, whereas a behavioral edge (n, ¢, n’)
indicates that user/system event ¢ on GUI element n directly results
in the display of element of n’. The labeling function L can refer to
both spatial and behavioral properties of GUI elements. For example,
the height attribute refers to a spatial property of the node, whereas
click is a behavioral property that identifies which methods may be
invoked upon a click event. In general, since VENUS cannot exactly
determine the values of node attributes using static analysis, the
labeling function L maps these attributes to abstract rather than
concrete values; however, the choice of abstract domain depends
on the type of the attribute (see Section 6).

5.2 XML Analysis for Layout Schema

As mentioned in section 2, GUI elements in Android are typically
declared via an XML file and then loaded by the application code at
run time. Thus, to facilitate static analysis, VENUs encodes the GUI-
related information declared in the XML file as a so-called layout
schema. As shown in figure 8, a layout schema ¥ maps each layout
name to its structure, represented as a multi-map from attributes
to their type T and default value c. Given a layout name N and
its definition ¥(N) = [a; + (Ti,c1),an — (T, cn)], we write
DefaultVal(N) to indicate an object with fields ay, ..., a, where
each field a; initialized to c;.

ExaMpLE 2. Consider the following layout XML:

<LinearLayout id="1lin" orientation="vertical">
<TextView id="txt1" width=100 height=200

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Schema¥ := LayoutName — A
Layout A = Attrib — (T,¢)
Type T := Int | String | Float | Builtin | LayoutName

Constantc¢ € Int U String U Float U DefaultVal(
LayoutName) U DefaultVal(Builtin)
{Button, TextView, ...}

{orientation, subview, ...}

Builtin €
Attrib €

Figure 8: Layout Schema Definition

text="Hello, I am a TextView" />
</LinearLayout>

We represent this as the following layout schema:
¥(lin) = {orientation + (string, "vertical"),
subview — (TextView, DefaultVal(txt1))}
¥(txt1) = {width — (Int, 100), height +— (Int, 200),-- -}

5.3 Static Analysis

In this section, we describe our static analysis for computing the
ELF abstraction using Datalog-style inference rules. Note that the
event-driven layout forest is a global abstraction of the entire ap-
plication; however, our static analysis for computing is both flow-
and context-sensitive. Our analysis leverages the layout schema
extracted from the XML file (Section. 5.2) as well as the results of
standard techniques like pointer analysis.

We formalize our static analysis using three different types of
predicates (summarized in table 1):

e Source code predicates refer to statements in the source code.
For instance, addView(l, m, v1, v2) indicates that there is an API
call of the form v;.addView(v2) at location [of method m.

e Pre-analysis predicates refer to program facts computed by
off-the-shelf static analyzers. For example, pointsTo(c, [, v, 0) in-
dicates that variable v points to heap object o at program location
I in calling context c. Similarly, aval(c, [, v, a) indicates that vari-
able v has abstract value a at location [in calling context c.

e Output predicates collectively define our ELF abstraction. For
example, the predicate sAttrib(o, a, val) indicates that the abstract
value for spatial attribute a of o0 is val, and bEdge(o, ¢, 0”) indi-
cates that there is a behavior edge between o and o’ labeled «.

As mentioned earlier, we present our static analysis (see figure 9)
using Datalog-style rules of the form:

H(xl,...,xn) CBl(...),...,Bk(..,).

The meaning of such a rule is that the predicate H(xy, ..., x,) is
true if all the of the predicates By, .. ., By in the rule body are sat-
isfied. We refer to H as the head predicate and the B;’s as body
predicates. In our case, the head predicates are either auxiliary or
output predicates computed by our analysis, whereas body pred-
icates also involve source code and pre-analysis predicates. If an
argument to a predicate does not matter, we use the symbol “_” to
indicate that it matches anything.
We now explain the rules from figure 9 in more detail.

Nodes. According to the first rule in figure 9, any (abstract) heap
object that corresponds to a GUI element (i.e., is subtype of View)
is a node in the event-driven layout forest abstraction.

100

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig

Table 1: Predicates used or computed by our analysis

Source code predicates

load layout N to v at location [of method m
v, is added as sub-view of v; at [in method m
add v, as content view of v; at [in method m
attribute a of v is set to ¢ at [in method m
Method m’ is set as ©’s X listener

Location [has a call to display window v
Perform ICC using intent at [of method m

loadView (I, m, v, N)
addView (I, m, vy, vp)
setContentView (I, m, vy, vp)
setAttrib(I, m, v, a, v’)
setXListener (I, m, v, m")
showWindow (I, m, v)

icc(l, m, intent)

mainAct(A) A is the app’s main activity
Pre-analysis predicates
inCtx(m, c) ¢ is a calling context of method m

o has abstract value a at location [in context ¢
0 points to object o at location [in context ¢
The f field of 0 points to 0" at [in context ¢
m directly or transitively calls m” in context ¢
Heap object o has type 7

aval(c, [, v, a)
pointsTo(c, , v, 0)
pointsTo(c, 1, o, f, 0’)
call* (¢, m,m’)
hasType(o, 7)

Output predicates
o0 is a GUI element node of type 7 in ELF
node o has spatial attribute as with value val
node o has behavioral attribute ap with val
v is a window shown on app startup
view 0 contains view 0
view 0 leads to view o’ under event ¢
01 has root view 0,

node (o, 7)
sAttrib(o, as, val)
bAttrib (o, ap, val)
entryView (v)
sEdge (o, 0")
bEdge (o, €, 0")
rootView (01, 02)

Root view. The second rule computes a predicate rootView(o, 0”)
indicating that Activity o sets its main window to be GUI element
o’. Since root views are set via an API call v.setContentView(v’),
this rule looks up the heap objects pointed to by variables v, v” at
the program location / (in method m) where the API call occurs.
Note that our analysis is context-sensitive in that we look up the
points to sets of v, 0’ in feasible calling contexts of m.

Entry view. The next rule marks the initial nodes of the ELF ab-
straction. To determine the initial nodes, we first identify all heap
objects o that are of instance of type A, where A is the main activity
of the application. We then mark all root views of o as initial nodes
using the auxiliary rootView predicate from rule (2).

Behavioral attributes. The next rule, (4), describes how we com-
pute behavioral attributes of each node. In particular, behavioral
attributes map each GUI event to a set of methods that can be
used to handle that event. Since event handlers are registered via
setListener methods, this rule uses the setXListener(l, m,v,m’)
source code predicate, which indicates that method m’ is registered
as the listener for event X for variable v, and I, m correspond to
the program location and method where the registration occurs
respectively. If v points to a heap object o that is a node in the ELF
abstraction, behavioral attribute X is mapped to method m’. Note
that, in general, there may be multiple methods my, . .., my that are
used to handle event X. In this case, our analysis computes multiple
facts of the form bAttrib(o, X, my), ..., bAttrib(o, X, m1) meaning
that behavioral attribute X is mapped to the set {my, ..., mg}.

Spatial attributes. The next three rules, (5)-(7), describe the com-
putation of spatial attributes. Unlike behavioral attributes that have
a finite domain (i.e., a set of methods), spatial attributes like height
have an infinite domain (i.e., all integers). Thus, our method uses
abstract interpretation to reason about such attributes. In particular,
rule (5) initializes all spatial attributes to L, as standard.

The next two rules essentially describe a fixed point computa-
tion where we take the join of existing values with a new value.

Checking Conformance of Applications against GUI Policies

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 2: GUI policies that we formalized as VESPER specifications.

Category Total | Description & Example
= Violation of policy often indicates ad fraud e.g. the size ratio between the ad and the screen is required to be greater than
8 | Fraudulent 8 —
= a minimum threshold (0.2) [8]
)
I Violation of policy considered annoying/aggressive e.g. activities that display full-screen ads should call the preload
S | Unwanted 3 -
< function of the ad when they are created. [16]
?: Appearance 4 Guidelines about the appearance / spacing of GUI elements e.g. the smallest recommended font size is 10sp [21]
'g GDPR Consent 5 GDPR laws about acquiring user consent e.g. applications that display personalized ads should get user consent when
V4 they are started [20]

node(o, 7) < pointsTo(_, _, v,0),
hasType(o, 7), 7 <: View. (1)
rootView (o, 0”) < setContentView (1, m, v,v’), inCtx(m, c)
pointsTo(c, 1, v, 0), pointsTo(c, 1, o', 0"). (2)
entryView(0) < mainAct(A), instanceOf(o, A),
rootView(o’, 0). 3)

bAttrib(o0, X, m) < node(o, _), setXListener ([, v, m),

()

®)

inCtx(m, c), pointsTo(c, 1, v, 0).
sAttrib(o, a, L) <node(o, View), a € Attribs(¥).
sAttrib(o, a, val') <loadView(l, m, v, N), inCtx(m, c),
pointsTo(c, I, v,0). a € Dom(¥(N)),
a # subview, ¥(N) (a) = (T, valy)
sAttrib(o, a, val), val' = val U a(valy) (6)
sAttrib(o, a, val”) < setAttrib(l, m, v, a, v’), inCtx(m, c),
pointsTo(c, I, v,0),aval(c, I, o, val’),
sAttrib(o, a, val), val” = val LU a(val'). 7)
sEdge(o, 0') «loadView(l, m, v, N),inCtx(m, c),
pointsTo(c, 1, v,0),0" € ¥(N) (subview). 8)
sEdge(01,02) < addView (I, m, vy, v2),inCtx(m, c),
pointsTo(e, 1, vy, 01), pointsTo(c, 1, v3, 02).)
bEdge (01, X, 02) < bAttrib(o1, X, m), inCtx(m, c), call*(c, m, m’),
inCtx(m’, ¢’), showWindow (I, m’, v),
(10)
bEdge (01, X, 02) & bAttrib(oy, X, m), inCtx(m,c’), call*(c’, m, m’),

pointsTo(c’, 1, v, 02).

inCtx(m’, ¢), icc(l, m’, i), pointsTo(c, I, i, 0)

(11)
Figure 9: Datalog-style inference rules describing ELF con-
struction. Here, « is an abstraction function for the underly-
ing abstract domain, and Ul is the corresponding join opera-
tor. ¥ refers to the layout schema from section 5.2.

pointsTo(c, I, 0, “tgt”, 0"), rootView (o', 02).

Specifically, in rule (6), we deal with API calls that load a view from
the XML file. In particular, suppose that we have determined that
attribute a of layout name N can have default value ¢ according to
the analysis from Section 5.2. Now, if we encounter an API call that
loads layout N into variable v, we first look-up the points-to target
o of v and add c to the set of possible values of 0.a by taking the
join with the old abstract value with c.

Next, rule (7) deals with spatial attributes that are set program-
matically via an API call. We represent such API calls using the

101

source code predicate setAttrib(l, m, v, a,v”) indicating that attribute
a of variable v is set to variable v’ at program location [inside
method m. To update the ELF abstraction, we first look up the ab-
stract value a of variable v” at program location ! in some calling
context ¢ of method m. If v points to heap object o at the same
program location [and calling context ¢, we then update o0.a to
be the join of a and o0.a’s old abstract value. Our implementation
uses the interval abstract domain for numeric attributes and the
so-called bounded set abstraction for strings.[7, 31]

Spatial edges. The next two rules, (8) and (9), describe the intro-
duction of spatial edges due to loading views from the XML file
and programmatically adding sub-views respectively. Since these
rules are very similar, we only focus on (9). Consider an API call for
adding view vy as a sub-view of v1 at program point ! in method m.
If v,0’ point to heap objects o0, 0’ at program location / in the same
calling context ¢ of method m, we introduce a spatial edge from
o0 to o’ in the ELF abstraction. In general, v,0’ can have multiple
points-to targets; thus, this rule can end up introducing multiple
spatial edges for the same source code statement.

Behavioral edges. The last two rules, (10) and (11), deal with the
introduction of behavioral edges. Recall that a behavioral edge
indicates that GUI element o launches GUI element o upon event
X. In general, o can launch o’ in one of two ways: The handler of
event X (transitively) calls a method that (a) either directly displays
o’ by calling an API (e.g., showNindow) or (b) indirectly displays
o’ by performing inter-component communication via an intent
object whose target has root view o’. In figure 9, rule (10) deals
with case (a), and rule (11) deals with case (b). Since both of these
rules rely on knowing the handler method for event X, the body
of the rule matches the bAttrib predicate computed by the other
rules.

5.4 Checking Conformance

Once VENUS generates the ELF abstraction, it translates attributes
and edges in the ELF abstraction to ground built-in predicates in the
VESPER specification language in the expected way. For instance,
the spatial edge (0,0”) in the ELF corresponds to the predicate
contains(o,0’) in the VEsPER DSL. Similarly, a behavioral edge
(0, ¢,0") corresponds to the VEsPER predicate showWindow (o, ¢, 0”)
if o’ is another window and, for instance, to startBrowser(¢, 0) if o’
is the browser. Thus, VENUs can directly convert the ELF abstraction
to a formula ¥ that is a conjunction of ground predicates.

Next, to decide whether the input program % entails specifica-
tion ¢/, VENUS checks whether ¥ implies . To do so, VENUS first

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

converts ¥ to a logical formula ¢ using the [-] function defined
in Appendix A and then checks the satisfiability of the formula
F A —¢ using a Datalog solver.If this formula is satisfiable, the
specification is violated under the computed EvrF abstraction, and
VENUs produces a model of ¥ A —¢ as a potential counterexam-
ple. On the other hand, the unsatisfiability of # A —¢ constitutes a
proof of conformance since # over-approximates the app’s relevant
behavior with respect to the VESPER specification language.

6 IMPLEMENTATION AND EVALUATION

We implemented our core static analysis on top of the Soot frame-
work [42] and the IC3 tool for Android [34]. We use the SPARK
framework [27] provided by Soot to perform pointer analysis and
construct a call-graph. Our implementation uses the interval ab-

stract domain for reasoning about numeric attributes and the bounded-

set abstraction for strings. VENUs also leverages the Soufflé [41]
Datalog solver for checking conformance between the ELF abstrac-
tion and the VESPER specification. As described in Section 5, our
analysis is context-sensitive and uses the call site representation
proposed in [35]. VENUS is openly available on Github. !
Experimental set-up. All of our experiments are conducted on
a shared 48-core server with Intel Xeon E7-8850 CPU and 500G
memory, running the CentOS 7.6 operating system.

6.1 Benchmarks

To evaluate VENUs, we collected 2361 Android applications from

three different sources:

o Google Play: We collected 1488 popular applications that were
available on the Google Play Store in Jan 2019.

e GPP benchmarks: The Google Play Protect (GPP) team pro-
vided us with a labeled data set consisting of 773 Android apps
and their label (benign or type of malware). All of these appli-
cations were flagged as potential malware by Google’s internal
tools and manually audited by Google security analysts.

o AdFraudBench: We also evaluate our approach on a dataset
taken for detecting ad fraud [8]. This dataset includes 57 ad fraud
samples and 43 benign applications.

6.2 Properties

To evaluate VENUS, we collected a total of 49 representative GUI
policies from Google Play Ads Policy [19], AdMob Help [14], Ma-
terial Design [18], and EU General Data Protection Regulation [9].
Among those 49 policies, 25 are too vague to formalize (e.g., “En-
sure that none of the ad attributes look like navigation features
within the app”). Among the remaining 24, seven of them cannot
be expressed in VESPER (e.g., require temporal logic). This leaves
us with a total of 17 policies that we formalized in VESPER. To give
the reader some intuition, table 2 shows a categorization of these
policies and provides some examples of the types of policies we
formalized. (See the Appendix for their VESPER formalizations.)

6.3 Results on Google Play Dataset

We evaluated VENUS on the 1488 Google Play apps by checking con-
formance against all 17 policies summarized in table 2. As shown

!Details are hidden for double-blind review purpose. The experimental artifact includ-
ing the tool will be submitted after acceptance.

102

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig

GPP dataset
1.0

N recall
B8 precision

Rate

Venus VirusTotal-a VirusTotal-b

Figure 10: Results on the GPP dataset

in the first row of table 3, VENUS reports a total of 1645 violations
across 711 apps, with an average running time of 465.3 seconds
per app. Among the 1645 reports, 1258 reports pertain to viola-
tions of ad-related policies, 127 reports concern GDPR regulations,
and the remaining 260 reports pertain to Material design guidelines.

Manual inspection. Since there is no ground truth label for the
apps in the Google Play dataset, we manually inspected 50 of the
711 apps for which VENUS reports at least one violation. For these
50 apps, VENUS reports a total of 195 warnings. We now report on
the findings from our manual inspection.

e GDPR violations: Among the 50 apps we inspected, VENUS
reports a total of 18 GDPR violations, and we manually confirmed
that 16 of them indeed access private user information without
ever displaying a user consent form.

o Ad-fraud: Across the 50 manually inspected apps, VENUS reports
40 of them to violate an ad-related property. In particular, 37 of
these are true positives, and 11 are previously unknown ad fraud
instances (confirmed by Google security auditors).

e Design guidelines: VENUS reports 24 of the 50 apps to violate a
Material design guideline-related property, and 18 of these indeed
violate the design guidelines we encoded.

False positive analysis. Among all 50 sampled apps, VENUS re-
ported 195 violations, of which 174 are true positives. Based on
our manual inspection, most of the false positives are due to impre-
cision in the pointer analysis. Using the estimation of proportion
method [24], we conclude that it is 95% likely that the false positive
rate for the whole dataset is between 4% and 18%.

Result #1: Among the 50 apps we manually inspected,
VENUSs identified 11 previously unknown ad fraud instances
(confirmed) and 16 Google Play apps that violate GDPR reg-
ulations. Furthermore, VENUS’s false positive rate for the
inspected apps is around 10%.

6.4 Results on GPP Dataset

The GPP dataset consists of 773 apps where each app is either la-
beled as benign or malicious. If the app is malicious, the label also
indicates the type of malware (e.g., ad fraud, spyware). For this
dataset, we used VENUS to detect ad fraud instances by checking

Checking Conformance of Applications against GUI Policies

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 3: Summary of VENUs results across all three datasets

#apps # violating apps # violations recall precision avg. time (s)
Google Play 1488 711 1645 N/A 89.2% 465.3
GPP 773 243 391 86.8% 94.7% 464.7
AdFraudBench 100 54 90 91.2% 96.3% 302.1
All 2361 1008 2126 N/A 91.3% 458.2
conformance between each app and the eight ad-fraud-related poli- Table 4: Results on AdFraudBench
cies that we formalized in VESPER. As summarized in the second
. . F i irusTotal- irusTotal-
row of table 3, the recall of VENUS on this dataset is 86.8% and the Venus FraudDroid VirusTotal-a VirusTotal-b
precision is 94.7%. The average running time is 464.7 seconds. precision 96.3% 91.8% 79.6% 75.0%
recall 91.2% 78.9% 75.4% 89.5%

Comparison against VirusTotal. To put these results in context,
we compare VENUS’s results with those of VirusTotal [43], which
is a widely-used service for detecting several types of malware.
VirusTotal uses more than sixty state-of-the-art malware detection
engines to analyze an app and shows the aggregate results.

Since VirusTotal does not report a single result and covers a
broader class of malware than just ad fraud, there is no “obviously
right" way to compare against it for the purposes of our evaluation.
Thus, we consider two different, but equally plausible, ways of
interpreting VirusTotal results:

e VirusTotal-a: As in prior work on ad fraud detection [8], we
consider VirusTotal to classify an app as ad fraud if at least two
of its underlying malware detection engines label it as ad fraud.

o VirusTotal-b: Since the security community typically uses Virus-
Total as a binary classifier [5], we consider an app to be ad fraud
if at least two of the underlying malware detectors label the app
as not benign. 2

The results of our comparison are shown in figure 10. Here, blue
bars (with “\” pattern) show recall, whereas dark magenta bars (with
“/” pattern) indicate precision. As we can see from this bar chart,
both variants of VirusTotal yield much lower recall and precision
compared to VENUS.

Analysis of false positives and negatives. We manually inspected
the apps that are incorrectly classified by VENUS to better under-
stand the root causes of false positives and false negatives. Most of
the false positives are caused by imprecision in the pointer analysis
(e.g., additional spurious methods are identified as event handlers).
On the other hand, false negatives are mainly caused by foreign
binary code that our static analyzer cannot reason about. For in-
stance, the “Casino Classic” app from the GPP dataset employs the
Unity framework that contains code in the Common Intermediate
Language (CIL) binary format. Since our tool cannot analyze CIL
binary, it fails to understand some ad-related functionality, and this
leads to false negatives.

Result #2: On 773 apps flagged as potentially malicious by
Google’s internal tools and manually labeled by security an-
alysts, VENUS has a precision of 94.7% and recall of 86.8%.
Furthermore, VENUS outperforms VirusTotal by a factor of 2.7
in terms of precision and by a factor of 12.8 in terms of recall.

ZRecall that all applications in these datasets are either benign or ad fraud.

103

6.5 Results on AdFraudBench Dataset

In our next experiment, we evaluate VENUS on the AdFraudBench
dataset used in prior work [8]. Since this data set is specifically
targeted for ad fraud detection, we check these apps against the
eight ad-fraud-related policies formalized in VESPER. As shown in
table 3, VENUs has a precision of 96.3% and recall 91.2% on this
dataset, and its average running time per app is 302.1 seconds.

To put these results in context, we also compare VENUS’s results
against those of VirusTotal as well as FraudDroid, which is a dy-
namic analysis tool specifically for detecting ad fraud [8]. > The
results of this comparison are shown in table 4, which shows that
VENUS outperforms VirusTotal and FraudDroid both in terms of
precision and recall. 4

Result #3: VENUS outperforms FraudDroid (a dynamic anal-
ysis tool for ad fraud detection) significantly in terms of
recall, while also attaining better precision.

6.6 Evaluation of the ELr Abstraction

In our final experiment, we evaluate the benefits of our proposed
ELF abstraction by performing ablation studies and comparing it
against the windown transition graph (WTG) abstraction proposed
in prior work [46].

WTG abstraction. As mentioned earlier, the WTG abstraction
from the GATOR tool [39] is somewhat similar to ELF in that it is
a graph abstraction of Android applications where nodes are win-
dows, and edges (annotated with events) represent communication
between them. However, WTG differs from our proposed ELF ab-
straction in two important ways: First, nodes in a WTG correspond
to main windows of activities, so it does not contain nodes for
any nested GUI elements. Second, a WTG does not contain any
information about spatial attributes of windows. To use the WTG
abstraction to check VESPER specifications, we use the following

3FraudDroid is not available, so we cannot evaluate it on GPP apps.

“Dong et al. ([8]) report 92% recall on 100 apps from the AdFraudBench instead of
the 12000 apps dataset. After we manually inspected the ground truth for those 100
apps, we noticed that FraudDroid actually mislabeled 7 malicious apps as benign. To
resolve this discrepancy, we further confirmed our results by uploading those 7 apps
to VirusTotal, which also marked those apps as malware. We further contacted the
co-authors of FraudDroid and they also agreed that those 7 apps should all be ad fraud.
That is why the actual recall is around 80%.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 5: Evaluation of our abstraction. Prec. is “Precision”

Tool ‘ GPP ‘ AdFraudBench

‘ Prec. Recall F-1 ‘ Prec. Recall F-1
GATOR 100.0% 1.2% 0.024 | 92.3% 24.5% 0.387
VENUS™ 53.8% 85.2% 0.660 | 63.8% 84.6% 0.727
Venus B 69.0% 80.9% 0.745 | 79.6% 75.0% 0.772
VENUS 94.7% 86.8% 0.906 | 96.3% 91.2% 0.937

methodology: First, since WTG only contains main windows of
activities, we consider any GUI element mentioned in the VESPER
specification but not in the WTG as being non-existent in the app. >
Clearly, this may result in GATOR reporting false negatives. Second,
since a WTG does not contain any information about spatial at-
tributes, we consider the abstract value of any spatial attribute to
be T, which can result in false positives. Thus, in principle, using
GATOR to check for VESPER specifications can suffer from both false
positives as well as false negatives.

Ablations of ELF. In this evaluation, we also compare our pro-
posed ELF abstraction against two of its own ablations. Since one
of our claims is that many GUI policies require reasoning about
both spatial and behavioral properties in practice, we consider the
following two ablations of ELF:

o VeNus ~5: This is a variant of VENUS that does not contain spatial
attributes. In other words, we do not perform abstract interpreta-
tion to reason about values of spatial attributes such as height,
size etc., and simply map all of them to T.

VENUs ~B: This is a variant of VENUS that does not contain any be-
havioral edges or attributes. In particular, we do not reason about
event handlers of GUI elements (i.e., behavioral attributes), and
we also do not reason about communication between different
GUI elements (i.e., behavioral edges).

At first glance, it might seem that VENus ~ should have only
false positives whereas VENus ~B would suffer from only false
negatives. However, since VESPER predicates may appear negated

B can have

in the specification, in principle, VExus ~% and Venus ~
both false negatives and false positives.

Table 5 presents the results of our evaluation of the ELF abstrac-
tion by comparing it against WTG, VENUs ~5, and VEnus ~B on
both the GPP and AdFraudBench datasets for which we know the
ground truth. Our first observation is that GATor has high preci-
sion but very poor recall. While the poor recall is perhaps expected,
the high precision is surprising since we treat spacial attributes
as T when using the WTG abstraction to check VESPER policies.
However, the reason for this is that GATOR reports a grand total of 3
violations (among the 258 actual violations) in the GPP dataset, and
all of these three reports turn out to be real violations. However, the
recall is extremely poor, resulting in F1-scores of 0.024 and 0.387
on the GPP and AdFraudBench datasets compared to that of 0.906
and 0.937 of VENUS.

Next, we compare VENUSs against its two ablations. While the
recall of both ablations are significantly higher than the WTG ab-
straction, the overall F1-scores of substantially worse than VENUS.

5 Alternatively, we could consider a node to represent all views nested within it;
however, this requires doing significant additional analysis that GATOR does not
perform.

104

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig

These results indicate that our proposed ELF abstraction is highly
beneficial for checking apps against GUI policies.

Result #4: Our proposed ELF abstraction significantly out-
performs the WTG abstraction in terms of recall, and it also
outperforms its own ablations in terms of F1-score.

7 RELATED WORK

7.1 Program Analysis for User Interfaces

GUI analysis for mobile apps. In the space of GUI analysis tools
of mobile apps, the most related one is Gator [39], which statically
analyzes Android applications to build models of their GUI-related
behavior. These models include so-called constraint graphs [40] and
(more related to this work) window transition graphs [46]. How-
ever, as shown in Section 6.6, the models produced by Gator do
not provide sufficient information to check an app against VEs-
PER specifications. Another static analyzer that is related to this
work is the BackStage tool [25] for identifying which sensitive API
functions can be invoked through which UI elements. BackStage
checks for specific unintended behaviors of GUI elements, such
as leaking a user’s location when she clicks the “upload picture”
button. In contrast to BackStage, VENUS supports a general class of
policies expressed in the VESPER policy language and also reasons
about spatial properties of GUI elements as well as communication
patterns between them.

There are also some GUI-related analysis tools based on dy-
namic techniques. For instance, Cornidroid [29] tests an applica-
tion against a set of Ul constraints given by the user. As another
example, GVT [32] dynamically checks whether the user interface
of a mobile app is implemented according to its design mock-up
by monitoring its visual appearance. Similarly, REMAUI [33] can
automatically identify certain types of Ul elements (e.g., images
and text) using optical character recognition (OCR) and computer
vision techniques. Compared to these dynamic techniques, static
techniques like VENUSs provide complementary advantages such
as higher coverage for behaviors that are hard to trigger at run-time.

GUI analysis for web applications. Beyond mobile applications,
GUI analysis has also attracted some interest in the context of web
applications. For example, Cilla [30] finds unused CSS selectors by
dynamically monitoring the relationship between CSS rules and
webpage elements selected by those rules. Another related work in
this space is the Cassius framework [36, 37] for building semantics-
aware CSS tools. Specifically, Cassius formalizes the semantics of
CSS in first-order logic and can be used to check spatial proper-
ties of GUI elements displayed on a webpage. However, since the
user interface of web applications is rendered exclusively based on
declarative HTML and CSS code, Cassius does not need to analyze
JavaScript programs. In contrast, checking an Android application
against a VESPER specification requires both precise reasoning about
Java code as well as the declarative layout definitions provided in
XML files. Besides Cassius, there are other tools specifically built for
addressing accessibility problems in web pages [38, 44]. Compared
to these tools that are typically based on dynamic testing, VENUS
has the potential to cover code that is hard to reach by dynamic

Checking Conformance of Applications against GUI Policies

analysis. Furthermore, accessibility tools can only check spatial
properties of GUI elements while VENUS reasons about both spatial
and behavioral properties.

7.2 Static Analysis of Android Applications

Due to the popularity and security-critical nature of Android appli-
cations, there is a rich literature of program analysis techniques for
the Android framework [4, 6, 11, 22, 23, 28, 34, 47]. A key challenge
in statically analyzing Android applications is reasoning about de-
pendencies between different components, such as activities and
services. Thus, several papers focus on inter-component communi-
cation (ICC) analysis for Android [11, 34]. In this work, we leverage
the ICC analysis techniques proposed in prior research.

Among techniques for analyzing Android applications, a par-
ticularly relevant work is the Apposcopy system for malware de-
tection [11]. Similar to VENUs, Apposcopy provides a specification
language for describing semantic behaviors of Android apps and
allows statically checking an app against such a specification. How-
ever, the specification language of Apposcopy is tailored for spy-
ware detection and does not allow referring to GUI elements. Thus,
beyond ICC analysis, the underlying static analyses performed by
Apposcopy and VENUS are quite different.

7.3 Android Malware Detection

Since one of the use cases for VENUS is to detect ad fraud, VENUS
is also related to a long line of work on Android malware detec-
tion [3, 8, 11, 12, 26, 45]. Most malware detection tools in this space
focus on information leakage [11, 28], rather than GUI-related be-
havior and are therefore not suitable for accurately detecting ad
fraud applications. As mentioned earlier, the most relevant work
in this space is the FraudDroid tool [8] for detecting malware in
the ad fraud category. However, unlike VENUS, FraudDroid is based
on dynamic analysis, and, as demonstrated in section 6.5, it has
significantly worse recall compared to VENUS.

8 CONCLUSION

We introduced a new framework called VEnus for checking con-
formance between Android apps and GUI policies expressed in a
policy language called VESPER. We manually studied GUI policies
from multiple different sources, and, among English policies that
are precise enough to be formalized, we showed that around 70%
are expressible in the VESPER policy language. We used VENUS to
check conformance between these policies and over 2000 Android
applications and showed that VENUs can uncover previously un-
known ad fraud instances as well as violations of GDPR regulations.
Our comparison against VirusTotal and FraudDroid indicates that
VENUSs advances the state-of-the-art in ad fraud detection in terms
of both precision and recall. Finally, our comparison against GATOR
as well as the two ablation studies highlight the benefits of our
proposed ELF abstraction.

ACKNOWLEDGEMENTS

This work was partially supported by NSF Grants #1908494, #1908304,
CCF-#2005889, and CNS-#1822251 as well as a Google Faculty Re-
search Award.

105

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

REFERENCES

[1] Alibaba. 2020. Alibaba UC Market Ads Guide. http://aliapp.open.uc.cn/wiki/?p=
140. [Online; accessed 13-Mar-2020].

Apple. 2020. iOS Design. https://developer.apple.com/design/tips.
accessed 13-Mar-2020].

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23-26. https://doi.org/10.14722/ndss.
2014.23247

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Edinburgh, United King-
dom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
259-269. https://doi.org/10.1145/2594291.2594299

Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds: Mass
Vetting for New Threats at the Google-Play Scale. In Proceedings of the 24th
USENIX Conference on Security Symposium (Washington, D.C.) (SEC’15). USENIX
Association, USA, 659-674.

Kevin Zhijie Chen, Noah M Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara,
Thomas R Magrino, Edward XueJun Wu, Martin Rinard, and Dawn Xiaodong
Song. 2013. Contextual policy enforcement in android applications with permis-
sion event graphs.. In NDSS. 234.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. 238-252. https://doi.org/10.1145/512950.512973
Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tian-
ming Liu, Guoai Xu, and Jacques Klein. 2018. FraudDroid: Automated Ad
Fraud Detection for Android Apps. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 257-268.
https://doi.org/10.1145/3236024.3236045

EU. 2020. Art. 7 GDPR - Conditions for consent. https://gdpr-info.eu/art-7-gdpr/.
[Online; accessed 4-Apr-2020].

EU. 2020. Article 5: Principles relating to processing of personal
data. https://www.privacy-regulation.eu/en/article-5-principles-relating-to-
processing-of-personal-data-GDPR htm. [Online; accessed 13-Mar-2020].

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
Based Detection of Android Malware through Static Analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery,
New York, NY, USA, 576-587. https://doi.org/10.1145/2635868.2635869

Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. 2017.
Automatically learning android malware signatures from few samples. In Pro-
ceedings of the 2017 Annual Network and Distributed System Security Symposium
(NDSS)(San Diego, California, USA.

Google. 2018. Android Security & Privacy 2018 Year In Review.
https://source.android.com/security/reports/Google_Android_Security_
2018_Report_Final.pdf. [Online; accessed 13-Mar-2020].

Google. 2020. AdMob policies and restrictions. https://support.
google.com/admob/answer/6128543?hl=en&ref_topic=2745287&visit_id=
637149126866279343-1579955165&rd=1. [Online; accessed 13-Mar-2020].
Google. 2020. Android Developer - Design. https://developer.android.com/design.
[Online; accessed 13-Mar-2020].

Google. 2020. Disallowed interstitial implementations. https://support.google.
com/admob/answer/6201362?hl=en. [Online; accessed 13-Mar-2020].

Google. 2020. Guidelines for programmatic native ads using app code. https:
//support.google.com/admanager/answer/7031536%hl=en. [Online; accessed
4-Apr-2020].

Google. 2020. Material Design. https://material.io/. [Online; accessed 13-Mar-
2020].

Google. 2020. Play Store Ads Guide. https://play.google.com/intl/en-GB_ALL/
about/monetization-ads/ads/. [Online; accessed 13-Mar-2020].

Google. 2020. Requesting Consent from European Users. https://developers.
google.com/admob/android/eu-consent. [Online; accessed 13-Mar-2020].
Google. 2020. The type system. https://material.io/design/typography/the-type-
system.html. [Online; accessed 4-Apr-2020].

Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of android applications in
droidsafe. In NDSS, Vol. 15. 110. https://doi.org/10.14722/ndss.2015.23089
Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint
Analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article 102 (Oct. 2017), 28 pages.
https://doi.org/10.1145/3133926

[Online;

—
)

[9

(10]

[11

[12

(13

=
)

™
=

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

[24

[25]

[26

™~
=

[28]

[29

[30

[31]

[33

[34

)
S

Peter J Huber et al. 1972. The 1972 wald lecture robust statistics: A review. The
Annals of Mathematical Statistics 43, 4 (1972), 1041-1067.

Konstantin Kuznetsov, Vitalii Avdiienko, Alessandra Gorla, and Andreas Zeller.
2018. Analyzing the User Interface of Android Apps. In Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems (Gothenburg,
Sweden) (MOBILESoft °18). Association for Computing Machinery, New York,
NY, USA, 84-87. https://doi.org/10.1145/3197231.3197232

Sungho Lee, Julian Dolby, and Sukyoung Ryu. 2016. HybriDroid: Static Analysis
Framework for Android Hybrid Applications. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
250-261. https://doi.org/10.1145/2970276.2970368

Ondfej Lhoték and Laurie Hendren. 2003. Scaling Java points-to analysis using S
park. In International Conference on Compiler Construction. Springer, 153-169.
Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280-291. https://doi.org/10.1109/ICSE.2015.48

Chafik Meniar, Florence Opalvens, and Sylvain Hallé. 2017. Runtime Verification
of User Interface Guidelines in Mobile Devices. In International Conference on
Runtime Verification. Springer, 410-415. https://doi.org/10.1007/978-3-319-67531-
227

Ali Mesbah and Shabnam Mirshokraie. 2012. Automated analysis of CSS rules
to support style maintenance. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 408-418. https://doi.org/10.1109/ICSE.2012.6227174
Ramon E Moore. 1966. Interval analysis. Vol. 4. Prentice-Hall Englewood Cliffs.
Kevin Moran, Boyang Li, Carlos Bernal-Cardenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated Reporting of GUI Design Violations for Mobile Apps. In
Proceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 165-175. https://doi.org/10.1145/3180155.3180246

Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUL In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (Lincoln, Nebraska)
(ASE ’15). IEEE Press, 248-259. https://doi.org/10.1109/ASE.2015.32

Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to android inter-
component communication analysis. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 77-88. https://doi.org/10.1109/
ICSE.2015.30

Rohan Padhye and Uday P. Khedker. 2013. Interprocedural Data Flow Analysis in
Soot Using Value Contexts. In Proceedings of the 2nd ACM SIGPLAN International

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig

Workshop on State Of the Art in Java Program Analysis (Seattle, Washington)
(SOAP ’13). Association for Computing Machinery, New York, NY, USA, 31-36.
https://doi.org/10.1145/2487568.2487569

Pavel Panchekha, Adam Timothy Geller, Shoaib Kamil, Michael Ernst, Zachary
Tatlock, and Emina Torlak. 2020. The Cassius Framework. https://cassius.uwplse.
org/. [Online; accessed 13-Mar-2020].

Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page
Layout. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Amsterdam,
Netherlands) (OOPSLA 2016). Association for Computing Machinery, New York,
NY, USA, 181-194. https://doi.org/10.1145/2983990.2984010

Raghavendra Satish Peri. 2021. 18 Free Mobile Accessibility Testing Tools. https://
www.digitalally.com/free-mobile-accessibility-testing-tools/. [Online; accessed
13-Feb-2021].

PRESTO. 2017. GATOR: Program Analysis Toolkit For {Android}. , 12 pages.
http://web.cse.ohio-state.edu/presto/software/gator/

Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI Objects
in Android Software. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization (Orlando, FL, USA) (CGO ’14). Association
for Computing Machinery, New York, NY, USA, 143-153. https://doi.org/10.
1145/2581122.2544159

Soufflé Developers. 2020. Soufflé - Datalog. https://souffle-lang.github.io/datalog.
[Online; accessed 13-Mar-2020].

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. IBM Corp., 214-224.

VirusTotal. 2020. VirusTotal. https://www.virustotal.com/. [Online; accessed
13-Mar-2020].

W3C. 2021. Web Accessibility Evaluation Tools List. https://www.w3.org/WAI/
ER/tools/. [Online; accessed 13-Feb-2021].

Guangliang Yang and Jeff Huang. 2018. Automated generation of event-oriented
exploits in android hybrid apps. In Proc. of the Network and Distributed System
Security Symposium (NDSS’18). https://doi.org/10.14722/ndss.2018.23241
Shenggian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-

nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition
graphs for Android. Automated Software Engineering 25, 4 (2018), 833-873.

https://doi.org/10.1109/ASE.2015.76

Yifei Zhang, Yulei Sui, and Jingling Xue. 2018. Launch-Mode-Aware Context-
Sensitive Activity Transition Analysis. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 598-608. https://doi.org/10.
1145/3180155.3180188

	Abstract
	1 Introduction
	2 Background on Android GUI
	3 Overview
	3.1 Example GUI Policy for AdFraud Detection
	3.2 Elf Generation via Static Analysis
	3.3 Checking Conformance

	4 Vesper Specifications
	5 Static Conformance Checking
	5.1 The Elf Abstraction
	5.2 XML Analysis for Layout Schema
	5.3 Static Analysis
	5.4 Checking Conformance

	6 Implementation and Evaluation
	6.1 Benchmarks
	6.2 Properties
	6.3 Results on Google Play Dataset
	6.4 Results on GPP Dataset
	6.5 Results on AdFraudBench Dataset
	6.6 Evaluation of the Elf Abstraction

	7 Related work
	7.1 Program Analysis for User Interfaces
	7.2 Static Analysis of Android Applications
	7.3 Android Malware Detection

	8 Conclusion
	References

