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ABSTRACT

A good graphical user interface (GUI) is crucial for an application’s

usability, so vendors and regulatory agencies increasingly place

restrictions on how GUI elements should appear to and interact

with users. Motivated by this concern, this paper presents a new

technique (based on static analysis) for checking conformance be-

tween (Android) applications and GUI policies expressed in a formal

specification language. In particular, this paper (1) describes a spec-

ification language for formalizing GUI policies, (2) proposes a new

program abstraction called an event-driven layout forest, and (3)

describes a static analysis for constructing this abstraction and

checking it against a GUI policy. We have implemented the pro-

posed approach in a tool called Venus, and we evaluate it on 2361

Android applications and 17 policies. Our evaluation shows that

Venus can uncover malicious applications that perform ad fraud

and identify violations of GUI design guidelines and GDPR laws.
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· Software and its engineering → Software verification and

validation; · Security and privacy→ Human and societal aspects

of security and privacy; Software security engineering.
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Figure 1: Architecture of Venus.A is an event-driven layout

forest (Elf) (defined in section 3.2) and 𝜋 is a GUI policy writ-

ten in Vesper language (Section 4).

1 INTRODUCTION

Good graphical user interfaces (GUIs) are essential for the success

and popularity of mobile applications. A bad user interface can

significantly degrade the user’s overall experience, causing the app

to become unpopular even if it provides otherwise useful function-

ality. Beyond leading to poor user experience, bad GUI designs can

indicate malicious intent Ð for example, many ad fraud applications

provide a misleading user interface to trick their users into clicking

on unwanted links. Such behavior violates one of the advertisement

policies published by mobile platforms [1, 14, 19], and according to

a recent report [13], click fraud (a major type of ad policy violation)

accounts for more than 50% of all potentially harmful applications.

Furthermore, several companies and governmental agencies have

others types of policies concerning the user interface of mobile

apps. For instance, both Google and Apple publish UI design guide-

lines [2, 15], and the European Union’s General Data Protection

Regulation (GDPR) laws [10, 20] impose restrictions on how mobile

apps may interact with users via their user interfaces.

Despite the increasing importance of ensuring compliance be-

tween GUI policies and mobile applications, there are no existing

techniques that can be used to check whether an app conforms

to such GUI policies. This work aims to address this problem by

proposing a new technique, and its implementation in a tool called

Venus (figure 1), for checking conformance between a mobile ap-

plication written in the Android framework and a GUI policy. We

envision such a tool being utilized in two different ways: First,

Venus can be used by developers to ensure that their user inter-

face is consistent with existing policies, thereby improving overall

user experience and ensuring compliance with applicable laws. Sec-

ond, Venus can be used by security analysts to detect ad fraud

applications that trick users through a misleading user interface.
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In practice, checking conformance between an app and a GUI pol-

icy turns out to be challenging for two key reasons. First, Android

applications consist of several interacting activities, all of which pro-

vide a different and dynamically changing interface. Thus, checking

adherence to a GUI policy requires exploring the (possibly infinite)

ways that a user can interact with the app. Second, by studying

existing GUI policies, we found that many of them concern not only

the static appearance of the app, but also how the interface needs to

dynamically evolve as users interact with it. Thus, verifying an app

against a GUI policy requires reasoning about the dynamic behavior

of the app in relation to the GUI elements it provides.

In this paper, we address these challenges through an end-to-

end solution that statically reasons about an app’s GUI-related

behaviors. Our solution consists of three ingredients that make it

possible to specify and check such properties:

(1) Policy language:We present a formal policy language called

Vesper for expressing realistic GUI design guidelines. Vesper

allows specifying both spatial relations between GUI elements

as well as their behavioral properties, such as how a button

should react to a click event.

(2) ELF abstraction:Wepropose a new program abstraction called

Event-driven Layout Forest (Elf) that summarizes spatial and

behavioral properties of GUI elements. While Elf bears resem-

blance to other Android abstractions like window transition

graph [46] and ICCG [11], it differs from them in that nodes

correspond to individual GUI elements (rather than activities)

and node labels (computed using numeric abstract domains and

pointer analysis) track GUI-related properties.

(3) Conformance checking: To check whether an Android app

corresponds to a Vesper specification, Venus needs to decide

whether a given Elf abstraction is a model of the input Vesper

specification. Venus achieves this task by encoding both the

Elf abstraction and the Vesper policy as logical formulas and

reduces conformance checking to a satisfiability query.

To evaluate the effectiveness of our proposed approach, we per-

formed an extensive experimental evaluation on 2361 Android

applications. Specifically, we formalized existing GUI policies as

Vesper specifications and then used Venus to check each Android

application against these policies. Our evaluation shows that Venus

is able to accurately pinpoint violations of GUI policies with a low

false positive rate (around 6.9%). Furthermore, Venus can identify

previously unknown ad fraud instances and detect violations of a

subset of GDPR (General Data Protection Regulation) regulations.

In short, this paper makes the following key contributions:

• We propose a policy language called Vesper for describing GUI

policies (Section 4).

• We introduce a new program abstraction called event-driven lay-

out forest that is suitable for checking such GUI policies and

present a static analysis technique for automatically constructing

the proposed Elf abstraction (Section 5)

• We implement Venus, the first tool for statically checking con-

formance between Android applications and GUI specifications,

and we extensively evaluate Venus by checking conformance

between 2361 Android applications and several existing GUI

policies (Section 6).

(a) (b)

CoordinatorLayout

ButtonImageViewTextView

AppBarLayout ConstraintLayout

Toolbar

(c)

click

Figure 2: Example demonstrating a typical event-driven

flow in Android apps. Listing 1 defines the layout shown in

(a) and (b). The transition from (b) to (c) is defined in listing 2.

1 <ConstraintLayout >

2 ...

3 <TextView android:id="@+id/demo_title"

4 android:text=" Default title" ... />

5 <ImageView app:layout_constraintTop_toBottomOf ="@+

id/demo_title" ... />

6 <Button android:id="@+id/continue_button"

7 android:text=" CONTINUE" ... />

8 </ConstraintLayout >

Listing 1: Activity layout for the app shown in figure 2(b).

1 class MainActivity extends Activity {

2 void onCreate (...) {

3 ...

4 setContentView(R.layout.activity_main);

5 TextView demoTitle = findViewById(R.id.demo_title)

;

6 demoTitle.setText("Venus Demo");

7 Button continueButton = findViewById(R.id.

continue_button);

8 continueButton.setOnClickListener(new View.

OnClickListener () {

9 void onClick(View v) {

10 AlertDialog d = new d.Builder (...).create ();

...

11 d.setButton(DialogInterface.BUTTON_POSITIVE ,

12 "YES", new DialogInterface.OnClickListener

() {

13 void onClick (...) { d.dismiss (); }

14 });

15 d.show(); } });

16 } ...

Listing 2: onCreate source code for activity from figure 2(b).

2 BACKGROUND ON ANDROID GUI

In Android, the basis of an app’s user interface is an activ-

ity, which always has a window associated with it. Activities can

start other activities by a message-passing system known as inter-

component communication (ICC). An Android ICC message is an

Intent, which can be thought of as a description of what the

launched component should do. An Intent object specifies both

the action to perform (e.g., view, edit, etc.) and provides the relevant

data.

The Android framework provides two types of basic GUI ele-

ments, namely Views and ViewGroups. A View element is a widget,

such as a button or progress bar, that the user can see and in-

teract with. A ViewGroup is an invisible container that stitches
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together Views and ViewGroups. Android provides different types

of ViewGroups, such a LinearLayout for arranging GUI elements

horizontally or vertically. The user interface of a GUI activity corre-

sponds to a tree data structure (figure 2(a)), where internal nodes are

ViewGroup elements and all leaves are View objects. Each Android

GUI element also has a set of attributes that define its properties,

including height, width, alignment, position etc.

Declaring and manipulating GUI elements. In Android, there

are two ways to declare GUI elements. The first option is to specify

the layout through an XML file. In addition to defining the hierar-

chical user interface of an activity, the XML file can also specify

the attribute values of each GUI element, such as the text attribute

łCONTINUEž of a button on line 5 of listing 1. During compilation,

the XML file is translated into a so-called layout resource that can be

loaded in the application’s source code by calling setContentView

(R.layout.layout_name) (e.g., line 4 of listing 2). An alternative way

to create a layout is to do so programmatically by calling methods

provided by the Android framework. For instance, rather than stat-

ically declaring the text attribute in the XML file, a program can do

this at run time by calling the setText method.

In practice, programmers often combine XML-based declaration

of GUI elements with programmatic modifications at run time. For

example, line 4 of listing 2 loads the layout declared in the XML file,

but the two subsequent lines modify the title of the nested TextView

element to łVenus Demož from its original name (łDefault titlež)

declared in line 3 of listing 1. Hence, understanding an application’s

user interface requires analysis of both XML files and source code.

Interacting with GUI elements. To facilitate interaction with

users, GUI elements register callbacks that get invoked upon specific

types of user events (e.g., click, hover, etc.). In particular, Android

GUI elements can respond to events of type X by registering an

OnXListener object whose OnX method gets executed when event

X occurs. For instance, lines 8ś15 in listing 2 cause the widget to pop

up a dialog box when the user clicks łCONTINUEž. This behavior

is illustrated in the transition from figure 2(b) to figure 2(c).

3 OVERVIEW

This section gives an overview of the Venus framework through a

simple but realistic motivating example.

3.1 Example GUI Policy for AdFraud Detection
Fig. 3 shows the screenshot of an ad fraud application called łSuper

Cleanerž that was recently submitted to the Google Play Store. This

app does not conform to a Google AdMob policy [17], which states

that transparent backgrounds should not display ads upon a click

event. However, as shown in parts (b) and (c) of figure 3, the Super

Cleaner application blatantly violates this policy.

In order to use Venus to check conformance between this app

and the AdMob policies, the user first needs to formalize the policy

in Venus’s specification language. In particular, figure 4 shows a

formalization for the policy łtransparent backgrounds should not

display ads upon click eventsž in our policy language called Vesper.

Here, the first line declares a View element called bg. Next, the

assume statement stipulates that bg is the background of some other

View element. Then, on line 3, the let binding defines a custom

predicate called popAd(𝑣), which evaluates to true if clicking on 𝑣

Clickable 
transparent 
background:

Launches
browser 

Clickable
icon:

Launches
relevant 
activity

(a) Main activity (b) Battery saver activity (c) Untrusted website

Figure 3: Clicking on the white space will (surprisingly) trig-

ger the display of untrusted website

1 public class MainActivity extends Activity implements

OnClickListener {

2 private Button saverBtn;

3 protected void onCreate (...) {

4 setContentView(R.layout.activity_main);

5 saverBtn = findViewById(R.id.btn_save);

6 saverBtn.setOnClickListener(this);

7 }

8 public void onClick(View view) {

9 Intent intent = new Intent(

10 this , BatterySaver.class);

11 startActivity(intent);

12 }

13 }

Listing 3: Main activity

1 public class BatterySaver extends Activity {

2 public void onCreate(Bundle bundle) {

3 setContentView(R.layout.battery_saver_ad);

4 FrameLayout frameLayout = (FrameLayout)

findViewById(R.id.content);

5 View a = new NativeAdViewBuild ().f();

6 frameLayout.addView(a);

7 }

8 }

9

10 class NativeAdViewBuild {

11 public View f() {

12 View adView = new UnifiedNativeAdView ();

13 View bgView = findViewById(R.id.bg_view);

14 // set a transparent background

15 bgView.setOpacity (0);

16 bgView.setOnClickListener(this);

17 return adView;

18 }

19

20 public void onClick(View arg0) {

21 // suspicious URL

22 loadURL("http :// funtest.afatwallet.com");

23 }

24 }

Listing 4: Battery saver activity

shows a newwindow 𝑣 ′ that corresponds to an adViewGUI element.

Finally, the assertion specifies the desired property. Section 4 will

present more about Vesper.

Given this Vesper policy and the source code of the Super

Cleaner application (shown in listing 3 and listing 4), we next ex-

plain how Venus automatically identifies this policy violation.
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1. View𝑏𝑔

2. assume (∃𝑣 .(View(𝑣) ∧ background(𝑏𝑔, 𝑣)))

3. let popAd(𝑣) = ∃𝑣 ′. (showWindow(𝑣, click, 𝑣 ′) ∧

AdView(𝑣 ′))

4. assert (transparent(𝑏𝑔) → ¬popAd(𝑏𝑔))

Figure 4: Vesper specification for the policy łTransparent

backgrounds should not be clickablež.

3.2 Elf Generation via Static Analysis

As mentioned earlier, Venus uses static analysis to construct an

even-driven layout forest(Elf) abstraction of the application. At a

high-level, this abstraction captures all relevant behavior of the app

with respect to the Vesper policy language. For example, figure 5

shows the Elf abstraction for the Super Cleaner application. Here,

each node corresponds to a GUI element; node labels (e.g., for

bgView) indicate attribute values (e.g., opacity, width); and there

are two types of edges: (1) a spatial (solid) edge from node 𝑛 to 𝑛′

indicates that GUI element 𝑛′ is nested inside 𝑛, and (2) a

behavioral (dashed) edge from 𝑛 to 𝑛′ labeled with 𝑒 indicates

that GUI element 𝑛 launches another GUI element 𝑛′ upon event

𝑒 . For example, in figure 5, there is a spatial (solid) edge from

MainActWindow to saverBtn since the latter is spatially nested

within the window of the main activity (see figure 3). On the

other hand, there is a behavioral (dashed) edge from saverBtn to

BatterySaverWindow labeled with showWindow(click) because

clicking on the saverBtn results in opening the window of the

BatterySaver activity (see code 3).

In practice, constructing a sufficiently precise Elf abstraction of

the application requires non-trivial static analysis. For example, the

construction of behavioral edges between GUI elements requires

reasoning about heap objects and callbacks as well as analysis of

inter-component communication (ICC). On the other hand, rea-

soning about GUI element attributes (e.g., height, width) requires

reasoning about numeric values.

3.3 Checking Conformance

Our method uses the computed Elf abstraction to check confor-

mance against any Vesper policy. At a high-level, we can think of

the Elf abstraction as defining a conjunction of ground predicates

in Vesper. Thus, checking conformance between the app and policy

boils down to determining whether the formula defined by the Elf

abstraction implies the specification. Going back to our example,

we can determine that Super Cleaner violates the Vesper policy

from Figure 4 using the following chain of inferences:

• First, since bgView is nested inside nativeAdView and has the

same width/height of its parent (figure 5), we determine that

bgView is the background of nativeAdView. Thus, bgView satis-

fies the assumption from line (2) of Figure 4.

• Next, because the opacity attribute of bgView is 0 (see figure 5),

transparent evaluates to true for bgView.

• In addition, bgView satisfies the popAd predicate because fig-

ure 5 contains a behavioral edge from bgView to adViewWindow

labeled with click.

• Finally, because bgView satisfies both the assumption at line (2)

as well as the transparent and popAd predicates, the assertion at

line (4) of Figure 4 is violated.

Therefore, Venus reports that the Super Cleaner app does not

conform to the Vesper policy from Figure 4.

4 VESPER SPECIFICATIONS

As shown in figure 6, a specification in Vesper starts with a set

of declarations, is followed by a sequence of statements (i.e., def-

initions and assumptions), and ends in a set of assertions. While

Vesper provides built-in predicates relevant to the spatial and be-

havioral properties of GUI elements (figure 7), the user can also de-

fine custom predicates through let bindings. For instance, in figure 4,

showWindow is an example of a built-in predicate, whereas popAd

is a custom predicate defined by the user. Vesper also provides a

way to define a set of GUI elements through the set comprehension

syntax {𝑣 | Φ}.

Expressions. In Vesper, the most basic expressions are variables

𝑣 , integer constants 𝑐 , and pre-defined Android events 𝜀 such as

click or touch. Vesper allows performing arithmetic operations

over integers as well as aggregation over sets. For instance, the

expression count(𝑣) returns the number of elements in set 𝑣 .

Built-in predicates. Vesper provides a core set of built-in pred-

icates that constrain spatial and behavioral properties of GUI el-

ements. Figure 7 shows examples of these predicates, which are

classified into three categories:

• Element type predicates describe the type of a GUI element (e.g.,

button, dialog). Note that, unlike the actual Android API, Vesper

does not differentiate between views and view groups, and every

GUI element is considered to be a view. Thus, views can contain

nested views under Vesper’s semantics.

• Spatial predicates refer to visual properties of GUI elements (e.g.,

height, width) as well as spatial relationships between different

GUI elements (e.g., containment).

• Behavioral predicates constrain how GUI elements react to user

events (e.g., what methods they can invoke, which other GUI

elements they can display, etc.).

Example 1. Consider the following Vesper specification:

View𝑤 ;

let LView(𝑣) = ∃𝑥,𝑦. (width(𝑣, 𝑥) ∧ 𝑥 > 100∧

height(𝑣,𝑦) ∧ 𝑦 > 100)

let LAds = {𝑣 | AdView(𝑣) ∧ contains(𝑤, 𝑣) ∧ LView(𝑣)}

assert count(LAds) ≤ 1

This specification requires that every window contains at most one

łlargež ad, meaning that the width and height of the ad is above a

certain threshold. Here, the combination of set comprehension syn-

tax and the count function allows constraining the number of GUI

elements with a certain property.

We present the formal semantics of Vesper policies in Appendix

A. At a high level, the semantics of Vesper policies are defined

over execution traces, and we consider a predicate 𝑝 (𝑜) to be true

in an execution 𝜔 if it holds on objects 𝑜 at any time during 𝜔 .

For example, the predicate startBrowser(𝑒, 𝑣) evaluates to true in

execution 𝜔 if 𝑣 starts the browser at some point during 𝜔 . Given
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adViewWindow
"uri": "funtest.afatwallet.com"

batterySaverWindow

frameLayout  

nativeAdView
"width"  : 100

"height" : 400

bgView
  "gravity": "center"  

  "width"  : 100

  "height" : 400

  "opacity": 0

mainActWindow

… saverBtn

click

…

click

Figure 5: Simplified Elf for motivating example of Sec.3.1. Solid (resp. dashed) lines represent spatial (resp. behavioral) edges.

Policy𝜓 → 𝐷 ; 𝑆 ; 𝐴

Decl 𝐷 → 𝜏 𝑣 | 𝐷 ;𝐷

Stmt 𝑆 → let 𝑣 = {𝑣′ | Φ}

| let 𝑝 (𝑣) = Φ | assume Φ | 𝑆 ;𝑆

Assert 𝐴 → assert Φ | 𝐴;𝐴

Expr 𝑒 → 𝑣 | 𝜀 | 𝑐 | 𝑓 (𝑒1, ..., 𝑒𝑛)

Pred Φ → 𝑝 (𝑒) | ¬Φ | Φ1 ∨ Φ2

| Φ1 ∧ Φ2 | Φ1 → Φ2 | ∀𝑣. Φ | ∃𝑣. Φ

Event 𝜀 → click | longClick | . . . | touch

Type 𝜏 → View | Dialog | ... | Button

𝑎 ∈ Attributes, 𝑐 ∈ Int 𝑓 ∈ Built-in fns

𝑝 ∈ Built-in predicates ∪ User-defined predicates

Figure 6: The Vesper policy language

Element type predicates

Button(v), Dialog(v), ImageView(v), AdView(v) . . .

Spatial predicates:

height(𝑣,ℎ) View 𝑣 has height ℎ

width(𝑣, 𝑤) View 𝑣 has width 𝑤

textSize(𝑣, 𝑠) Text view 𝑣 has text size 𝑠

transparent(𝑣) View 𝑣 is transparent

contains(𝑢, 𝑣) 𝑢 contains 𝑣 as a sub-view

background(𝑢, 𝑣) 𝑢 is the background container of 𝑣

Behavioral predicates:

entryView(𝑣) 𝑣 is the top-level window that

is displayed when the app starts

invoke(𝑢, 𝑒,𝑚) User event 𝑒 on GUI element 𝑢

directly causes invocation of method𝑚

showWindow(𝑢, 𝑒, 𝑣) Event 𝑒 on 𝑢 results immediately

in display of element 𝑣

launchDialog(𝑤, 𝑒, 𝑣) Window 𝑤’s event 𝑒 causes new dialog 𝑣

to be immediately displayed

startMarketplace(𝑒, 𝑣) Event 𝑒 on 𝑣 results immediately

in starting a new marketplace window

startBrowser(𝑒, 𝑣) Event 𝑒 on 𝑣 results immediately

in starting a new browser window

Figure 7: Examples of built-in predicates provided by Vesper

the truth value of built-in predicates under 𝜔 , evaluation of the full

policy under 𝜔 largely follows the standard semantics of first-order

logic, with some modifications to handle set comprehension (see

Appendix A). Finally, we say that an app 𝐴 conforms to a Vesper

policy 𝑃 if 𝑃 evaluates to true in all executions of 𝐴.

5 STATIC CONFORMANCE CHECKING

In this section, we introduce the Elf abstraction, describe our static

analysis for computing it, and then discuss how to use the Elf

abstraction to check conformance against Vesper policies.

5.1 The Elf Abstraction

An event-driven layout forest (Elf) is a tuple G = (𝑁, 𝑁0, 𝐸, 𝐿)

where:

• 𝑁 is a set of nodes where each node is a pair ⟨𝑜, 𝜏⟩ representing

an abstract heap object 𝑜 of GUI element type 𝜏 .

• Nodes 𝑁0 ⊆ 𝑁 are initial nodes that may correspond to the main

window of the application.

• Edges 𝐸 = 𝐸S ⊎ 𝐸B encode relationships between GUI elements.

We refer to edges (𝑛, 𝑛′) ∈ 𝐸S as spatial edges and (𝑛, 𝜀, 𝑛′) ∈ 𝐸B
as behavioral edges.

• Labeling function 𝐿 : 𝑁 × Attrib → AbstractVal maps attributes

of GUI elements to their abstract values.

As mentioned in section 3, a spatial edge (𝑛, 𝑛′) encodes that GUI

element 𝑛 is nested within 𝑛′, whereas a behavioral edge (𝑛, 𝜀, 𝑛′)

indicates that user/system event 𝜀 on GUI element 𝑛 directly results

in the display of element of 𝑛′. The labeling function 𝐿 can refer to

both spatial and behavioral properties of GUI elements. For example,

the height attribute refers to a spatial property of the node, whereas

click is a behavioral property that identifies which methods may be

invoked upon a click event. In general, since Venus cannot exactly

determine the values of node attributes using static analysis, the

labeling function 𝐿 maps these attributes to abstract rather than

concrete values; however, the choice of abstract domain depends

on the type of the attribute (see Section 6).

5.2 XML Analysis for Layout Schema
As mentioned in section 2, GUI elements in Android are typically

declared via an XML file and then loaded by the application code at

run time. Thus, to facilitate static analysis, Venus encodes the GUI-

related information declared in the XML file as a so-called layout

schema. As shown in figure 8, a layout schema Ψ maps each layout

name to its structure, represented as a multi-map from attributes

to their type 𝑇 and default value 𝑐 . Given a layout name 𝑁 and

its definition Ψ(𝑁 ) = [𝑎1 ↦→ (𝑇1, 𝑐1), 𝑎𝑛 ↦→ (𝑇𝑛, 𝑐𝑛)], we write

DefaultVal(𝑁 ) to indicate an object with fields 𝑎1, . . . , 𝑎𝑛 where

each field 𝑎𝑖 initialized to 𝑐𝑖 .

Example 2. Consider the following layout XML:

<LinearLayout id="lin" orientation="vertical">

<TextView id="txt1" width=100 height=200
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Schema Ψ := LayoutName → Δ

Layout Δ := Attrib → (𝑇, 𝑐)

Type𝑇 := Int | String | Float | Builtin | LayoutName

Constant 𝑐 ∈ Int ∪ String ∪ Float ∪ DefaultVal(

LayoutName) ∪ DefaultVal(Builtin)

Builtin ∈ {Button, TextView, . . .}

Attrib ∈ {orientation, subview, . . .}

Figure 8: Layout Schema Definition

text="Hello, I am a TextView" />

</LinearLayout>

We represent this as the following layout schema:

Ψ(lin) = {orientation ↦→ (string, "vertical"),

subview ↦→ (TextView,DefaultVal(txt1))}

Ψ(txt1) = {width ↦→ (Int, 100), height ↦→ (Int, 200), · · · }

5.3 Static Analysis

In this section, we describe our static analysis for computing the

Elf abstraction using Datalog-style inference rules. Note that the

event-driven layout forest is a global abstraction of the entire ap-

plication; however, our static analysis for computing is both flow-

and context-sensitive. Our analysis leverages the layout schema

extracted from the XML file (Section. 5.2) as well as the results of

standard techniques like pointer analysis.

We formalize our static analysis using three different types of

predicates (summarized in table 1):

• Source code predicates refer to statements in the source code.

For instance, addView(𝑙,𝑚, 𝑣1, 𝑣2) indicates that there is an API

call of the form 𝑣1 .addView(𝑣2) at location 𝑙 of method𝑚.

• Pre-analysis predicates refer to program facts computed by

off-the-shelf static analyzers. For example, pointsTo(𝑐, 𝑙, 𝑣, 𝑜) in-

dicates that variable 𝑣 points to heap object 𝑜 at program location

𝑙 in calling context 𝑐 . Similarly, aval(𝑐, 𝑙, 𝑣, 𝑎) indicates that vari-

able 𝑣 has abstract value 𝑎 at location 𝑙 in calling context 𝑐 .

• Output predicates collectively define our Elf abstraction. For

example, the predicate sAttrib(𝑜, 𝑎, val) indicates that the abstract

value for spatial attribute 𝑎 of 𝑜 is val, and bEdge(𝑜, 𝜀, 𝑜 ′) indi-

cates that there is a behavior edge between 𝑜 and 𝑜 ′ labeled 𝜀.

As mentioned earlier, we present our static analysis (see figure 9)

using Datalog-style rules of the form:

𝐻 (𝑥1, . . . , 𝑥𝑛) ⇐ 𝐵1 (. . .), . . . , 𝐵𝑘 (. . .) .

The meaning of such a rule is that the predicate 𝐻 (𝑥1, . . . , 𝑥𝑛) is

true if all the of the predicates 𝐵1, . . . , 𝐵𝑘 in the rule body are sat-

isfied. We refer to 𝐻 as the head predicate and the 𝐵𝑖 ’s as body

predicates. In our case, the head predicates are either auxiliary or

output predicates computed by our analysis, whereas body pred-

icates also involve source code and pre-analysis predicates. If an

argument to a predicate does not matter, we use the symbol ł_ž to

indicate that it matches anything.

We now explain the rules from figure 9 in more detail.

Nodes. According to the first rule in figure 9, any (abstract) heap

object that corresponds to a GUI element (i.e., is subtype of View)

is a node in the event-driven layout forest abstraction.

Table 1: Predicates used or computed by our analysis

Source code predicates
loadView(𝑙,𝑚, 𝑣, 𝑁 ) load layout 𝑁 to 𝑣 at location 𝑙 of method𝑚
addView(𝑙,𝑚, 𝑣1, 𝑣2) 𝑣2 is added as sub-view of 𝑣1 at 𝑙 in method𝑚
setContentView(𝑙,𝑚, 𝑣1, 𝑣2) add 𝑣2 as content view of 𝑣1 at 𝑙 in method𝑚
setAttrib(𝑙,𝑚, 𝑣, 𝑎, 𝑣′) attribute 𝑎 of 𝑣 is set to 𝑣′ at 𝑙 in method𝑚
set𝑋Listener(𝑙,𝑚, 𝑣,𝑚′) Method𝑚′ is set as 𝑣’s 𝑋 listener
showWindow(𝑙,𝑚, 𝑣) Location 𝑙 has a call to display window 𝑣
icc(𝑙,𝑚, intent) Perform ICC using intent at 𝑙 of method𝑚
mainAct(𝐴) 𝐴 is the app’s main activity

Pre-analysis predicates
inCtx(𝑚,𝑐) 𝑐 is a calling context of method𝑚
aval(𝑐, 𝑙, 𝑣, 𝑎) 𝑣 has abstract value 𝑎 at location 𝑙 in context 𝑐
pointsTo(𝑐, 𝑙, 𝑣, 𝑜) 𝑣 points to object 𝑜 at location 𝑙 in context 𝑐
pointsTo(𝑐, 𝑙, 𝑜, 𝑓 , 𝑜′) The 𝑓 field of 𝑜 points to 𝑜′ at 𝑙 in context 𝑐
call∗ (𝑐,𝑚,𝑚′) 𝑚 directly or transitively calls𝑚′ in context 𝑐
hasType(𝑜, 𝜏) Heap object 𝑜 has type 𝜏
... ...

Output predicates
node(𝑜, 𝜏) 𝑜 is a GUI element node of type 𝜏 in Elf

sAttrib(𝑜, 𝑎𝑠 , val) node 𝑜 has spatial attribute 𝑎𝑠 with value val
bAttrib(𝑜, 𝑎𝑏 , 𝑣𝑎𝑙) node 𝑜 has behavioral attribute 𝑎𝑏 with val
entryView(𝑣) 𝑣 is a window shown on app startup
sEdge(𝑜, 𝑜′) view 𝑜 contains view 𝑜′

bEdge(𝑜, 𝜀, 𝑜′) view 𝑜 leads to view 𝑜′ under event 𝜀
rootView(𝑜1, 𝑜2) 𝑜1 has root view 𝑜2

Root view. The second rule computes a predicate rootView(𝑜, 𝑜 ′)

indicating that Activity 𝑜 sets its main window to be GUI element

𝑜 ′. Since root views are set via an API call v.setContentView(v’),

this rule looks up the heap objects pointed to by variables 𝑣, 𝑣 ′ at

the program location 𝑙 (in method𝑚) where the API call occurs.

Note that our analysis is context-sensitive in that we look up the

points to sets of 𝑣, 𝑣 ′ in feasible calling contexts of𝑚.

Entry view. The next rule marks the initial nodes of the Elf ab-

straction. To determine the initial nodes, we first identify all heap

objects 𝑜 that are of instance of type𝐴, where𝐴 is the main activity

of the application. We then mark all root views of 𝑜 as initial nodes

using the auxiliary rootView predicate from rule (2).

Behavioral attributes. The next rule, (4), describes how we com-

pute behavioral attributes of each node. In particular, behavioral

attributes map each GUI event to a set of methods that can be

used to handle that event. Since event handlers are registered via

setListener methods, this rule uses the 𝑠𝑒𝑡𝑋𝐿𝑖𝑠𝑡𝑒𝑛𝑒𝑟 (𝑙,𝑚, 𝑣,𝑚′)

source code predicate, which indicates that method𝑚′ is registered

as the listener for event 𝑋 for variable 𝑣 , and 𝑙,𝑚 correspond to

the program location and method where the registration occurs

respectively. If 𝑣 points to a heap object 𝑜 that is a node in the Elf

abstraction, behavioral attribute 𝑋 is mapped to method𝑚′. Note

that, in general, there may be multiple methods𝑚1, . . . ,𝑚𝑘 that are

used to handle event𝑋 . In this case, our analysis computes multiple

facts of the form bAttrib(𝑜, 𝑋,𝑚1), . . . , bAttrib(𝑜, 𝑋,𝑚1) meaning

that behavioral attribute 𝑋 is mapped to the set {𝑚1, . . . ,𝑚𝑘 }.

Spatial attributes. The next three rules, (5)ś(7), describe the com-

putation of spatial attributes. Unlike behavioral attributes that have

a finite domain (i.e., a set of methods), spatial attributes like height

have an infinite domain (i.e., all integers). Thus, our method uses

abstract interpretation to reason about such attributes. In particular,

rule (5) initializes all spatial attributes to ⊥, as standard.

The next two rules essentially describe a fixed point computa-

tion where we take the join of existing values with a new value.
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Table 2: GUI policies that we formalized as Vesper specifications.

Category Total Description & Example

A
d
-r
e
la
te
d

Fraudulent 8
Violation of policy often indicates ad fraud e.g. the size ratio between the ad and the screen is required to be greater than

a minimum threshold (0.2) [8]

Unwanted 3
Violation of policy considered annoying/aggressive e.g. activities that display full-screen ads should call the preload

function of the ad when they are created. [16]

N
o
n
-A

d Appearance 4 Guidelines about the appearance / spacing of GUI elements e.g. the smallest recommended font size is 10sp [21]

GDPR Consent 2
GDPR laws about acquiring user consent e.g. applications that display personalized ads should get user consent when

they are started [20]

node(𝑜, 𝜏) ⇐ pointsTo(_, _, 𝑣, 𝑜),

hasType(𝑜, 𝜏), 𝜏 <: View. (1)

rootView(𝑜, 𝑜′) ⇐ setContentView(𝑙,𝑚, 𝑣, 𝑣′), inCtx(𝑚,𝑐)

pointsTo(𝑐, 𝑙, 𝑣, 𝑜), pointsTo(𝑐, 𝑙, 𝑣′, 𝑜′) . (2)

entryView(𝑜) ⇐mainAct(𝐴), instanceOf(𝑜,𝐴),

rootView(𝑜′, 𝑜) . (3)

bAttrib(𝑜,𝑋,𝑚) ⇐ node(𝑜, _), set𝑋Listener(𝑙, 𝑣,𝑚),

inCtx(𝑚,𝑐), pointsTo(𝑐, 𝑙, 𝑣, 𝑜) . (4)

sAttrib(𝑜, 𝑎,⊥) ⇐ node(𝑜,View), 𝑎 ∈ Attribs(Ψ) . (5)

sAttrib(𝑜, 𝑎, val′) ⇐ loadView(𝑙,𝑚, 𝑣, 𝑁 ), inCtx(𝑚,𝑐),

pointsTo(𝑐, 𝑙, 𝑣, 𝑜) . 𝑎 ∈ Dom(Ψ(𝑁 )),

𝑎 ≠ subview,Ψ(𝑁 ) (𝑎) = (𝑇, val0)

sAttrib(𝑜, 𝑎, val), val′ = val ⊔ 𝛼 (val0) (6)

sAttrib(𝑜, 𝑎, val′′) ⇐ setAttrib(𝑙,𝑚, 𝑣, 𝑎, 𝑣′), inCtx(𝑚,𝑐),

pointsTo(𝑐, 𝑙, 𝑣, 𝑜), aval(𝑐, 𝑙, 𝑣′, val′),

sAttrib(𝑜, 𝑎, val), val′′ = val ⊔ 𝛼 (val′) . (7)

sEdge(𝑜, 𝑜′) ⇐ loadView(𝑙,𝑚, 𝑣, 𝑁 ), inCtx(𝑚,𝑐),

pointsTo(𝑐, 𝑙, 𝑣, 𝑜), 𝑜′ ∈ Ψ(𝑁 ) (subview) . (8)

sEdge(𝑜1, 𝑜2) ⇐ addView(𝑙,𝑚, 𝑣1, 𝑣2), inCtx(𝑚,𝑐),

pointsTo(𝑐, 𝑙, 𝑣1, 𝑜1), pointsTo(𝑐, 𝑙, 𝑣2, 𝑜2) . (9)

bEdge(𝑜1, 𝑋, 𝑜2) ⇐ bAttrib(𝑜1, 𝑋,𝑚), inCtx(𝑚,𝑐), call∗ (𝑐,𝑚,𝑚′),

inCtx(𝑚′, 𝑐′), showWindow(𝑙,𝑚′, 𝑣),

pointsTo(𝑐′, 𝑙, 𝑣, 𝑜2) . (10)

bEdge(𝑜1, 𝑋, 𝑜2) ⇐ bAttrib(𝑜1, 𝑋,𝑚), inCtx(𝑚,𝑐′), call∗ (𝑐′,𝑚,𝑚′),

inCtx(𝑚′, 𝑐), icc(𝑙,𝑚′, 𝑖), pointsTo(𝑐, 𝑙, 𝑖, 𝑜)

pointsTo(𝑐, 𝑙, 𝑜, łtgtž, 𝑜′), rootView(𝑜′, 𝑜2) . (11)

Figure 9: Datalog-style inference rules describing Elf con-

struction. Here, 𝛼 is an abstraction function for the underly-

ing abstract domain, and ⊔ is the corresponding join opera-

tor. Ψ refers to the layout schema from section 5.2.

Specifically, in rule (6), we deal with API calls that load a view from

the XML file. In particular, suppose that we have determined that

attribute 𝑎 of layout name 𝑁 can have default value 𝑐 according to

the analysis from Section 5.2. Now, if we encounter an API call that

loads layout 𝑁 into variable 𝑣 , we first look-up the points-to target

𝑜 of 𝑣 and add 𝑐 to the set of possible values of 𝑜.𝑎 by taking the

join with the old abstract value with 𝑐 .

Next, rule (7) deals with spatial attributes that are set program-

matically via an API call. We represent such API calls using the

source code predicate 𝑠𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏 (𝑙,𝑚, 𝑣, 𝑎, 𝑣 ′) indicating that attribute

𝑎 of variable 𝑣 is set to variable 𝑣 ′ at program location 𝑙 inside

method𝑚. To update the Elf abstraction, we first look up the ab-

stract value 𝑎 of variable 𝑣 ′ at program location 𝑙 in some calling

context 𝑐 of method 𝑚. If 𝑣 points to heap object 𝑜 at the same

program location 𝑙 and calling context 𝑐 , we then update 𝑜.𝑎 to

be the join of 𝑎 and 𝑜.𝑎’s old abstract value. Our implementation

uses the interval abstract domain for numeric attributes and the

so-called bounded set abstraction for strings.[7, 31]

Spatial edges. The next two rules, (8) and (9), describe the intro-

duction of spatial edges due to loading views from the XML file

and programmatically adding sub-views respectively. Since these

rules are very similar, we only focus on (9). Consider an API call for

adding view 𝑣2 as a sub-view of 𝑣1 at program point 𝑙 in method𝑚.

If 𝑣, 𝑣 ′ point to heap objects 𝑜, 𝑜 ′ at program location 𝑙 in the same

calling context 𝑐 of method𝑚, we introduce a spatial edge from

𝑜 to 𝑜 ′ in the Elf abstraction. In general, 𝑣, 𝑣 ′ can have multiple

points-to targets; thus, this rule can end up introducing multiple

spatial edges for the same source code statement.

Behavioral edges. The last two rules, (10) and (11), deal with the

introduction of behavioral edges. Recall that a behavioral edge

indicates that GUI element 𝑜 launches GUI element 𝑜 ′ upon event

𝑋 . In general, 𝑜 can launch 𝑜 ′ in one of two ways: The handler of

event 𝑋 (transitively) calls a method that (a) either directly displays

𝑜 ′ by calling an API (e.g., showWindow) or (b) indirectly displays

𝑜 ′ by performing inter-component communication via an intent

object whose target has root view 𝑜 ′. In figure 9, rule (10) deals

with case (a), and rule (11) deals with case (b). Since both of these

rules rely on knowing the handler method for event 𝑋 , the body

of the rule matches the bAttrib predicate computed by the other

rules.

5.4 Checking Conformance

Once Venus generates the Elf abstraction, it translates attributes

and edges in the Elf abstraction to ground built-in predicates in the

Vesper specification language in the expected way. For instance,

the spatial edge (𝑜, 𝑜 ′) in the Elf corresponds to the predicate

contains(𝑜, 𝑜 ′) in the Vesper DSL. Similarly, a behavioral edge

(𝑜, 𝜀, 𝑜 ′) corresponds to theVesper predicate showWindow(𝑜, 𝜀, 𝑜 ′)

if 𝑜 ′ is another window and, for instance, to startBrowser(𝜀, 𝑜) if 𝑜 ′

is the browser. Thus, Venus can directly convert the Elf abstraction

to a formula F that is a conjunction of ground predicates.

Next, to decide whether the input program P entails specifica-

tion𝜓 , Venus checks whether F implies𝜓 . To do so, Venus first
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converts 𝜓 to a logical formula 𝜙 using the J·K function defined

in Appendix A and then checks the satisfiability of the formula

F ∧ ¬𝜙 using a Datalog solver.If this formula is satisfiable, the

specification is violated under the computed Elf abstraction, and

Venus produces a model of F ∧ ¬𝜙 as a potential counterexam-

ple. On the other hand, the unsatisfiability of F ∧ ¬𝜙 constitutes a

proof of conformance since F over-approximates the app’s relevant

behavior with respect to the Vesper specification language.

6 IMPLEMENTATION AND EVALUATION

We implemented our core static analysis on top of the Soot frame-

work [42] and the IC3 tool for Android [34]. We use the SPARK

framework [27] provided by Soot to perform pointer analysis and

construct a call-graph. Our implementation uses the interval ab-

stract domain for reasoning about numeric attributes and the bounded-

set abstraction for strings. Venus also leverages the Soufflé [41]

Datalog solver for checking conformance between the ELF abstrac-

tion and the Vesper specification. As described in Section 5, our

analysis is context-sensitive and uses the call site representation

proposed in [35]. Venus is openly available on Github. 1

Experimental set-up. All of our experiments are conducted on

a shared 48-core server with Intel Xeon E7-8850 CPU and 500G

memory, running the CentOS 7.6 operating system.

6.1 Benchmarks

To evaluate Venus, we collected 2361 Android applications from

three different sources:

• Google Play: We collected 1488 popular applications that were

available on the Google Play Store in Jan 2019.

• GPP benchmarks: The Google Play Protect (GPP) team pro-

vided us with a labeled data set consisting of 773 Android apps

and their label (benign or type of malware). All of these appli-

cations were flagged as potential malware by Google’s internal

tools and manually audited by Google security analysts.

• AdFraudBench: We also evaluate our approach on a dataset

taken for detecting ad fraud [8]. This dataset includes 57 ad fraud

samples and 43 benign applications.

6.2 Properties

To evaluate Venus, we collected a total of 49 representative GUI

policies from Google Play Ads Policy [19], AdMob Help [14], Ma-

terial Design [18], and EU General Data Protection Regulation [9].

Among those 49 policies, 25 are too vague to formalize (e.g., łEn-

sure that none of the ad attributes look like navigation features

within the app.ž). Among the remaining 24, seven of them cannot

be expressed in Vesper (e.g., require temporal logic). This leaves

us with a total of 17 policies that we formalized in Vesper. To give

the reader some intuition, table 2 shows a categorization of these

policies and provides some examples of the types of policies we

formalized. (See the Appendix for their Vesper formalizations.)

6.3 Results on Google Play Dataset

We evaluated Venus on the 1488 Google Play apps by checking con-

formance against all 17 policies summarized in table 2. As shown

1Details are hidden for double-blind review purpose. The experimental artifact includ-
ing the tool will be submitted after acceptance.

Figure 10: Results on the GPP dataset

in the first row of table 3, Venus reports a total of 1645 violations

across 711 apps, with an average running time of 465.3 seconds

per app. Among the 1645 reports, 1258 reports pertain to viola-

tions of ad-related policies, 127 reports concern GDPR regulations,

and the remaining 260 reports pertain to Material design guidelines.

Manual inspection. Since there is no ground truth label for the

apps in the Google Play dataset, we manually inspected 50 of the

711 apps for which Venus reports at least one violation. For these

50 apps, Venus reports a total of 195 warnings. We now report on

the findings from our manual inspection.

• GDPR violations: Among the 50 apps we inspected, Venus

reports a total of 18 GDPR violations, and wemanually confirmed

that 16 of them indeed access private user information without

ever displaying a user consent form.

• Ad-fraud:Across the 50manually inspected apps,Venus reports

40 of them to violate an ad-related property. In particular, 37 of

these are true positives, and 11 are previously unknown ad fraud

instances (confirmed by Google security auditors).

• Design guidelines: Venus reports 24 of the 50 apps to violate a

Material design guideline-related property, and 18 of these indeed

violate the design guidelines we encoded.

False positive analysis. Among all 50 sampled apps, Venus re-

ported 195 violations, of which 174 are true positives. Based on

our manual inspection, most of the false positives are due to impre-

cision in the pointer analysis. Using the estimation of proportion

method [24], we conclude that it is 95% likely that the false positive

rate for the whole dataset is between 4% and 18%.

Result #1: Among the 50 apps we manually inspected,

Venus identified 11 previously unknown ad fraud instances

(confirmed) and 16 Google Play apps that violate GDPR reg-

ulations. Furthermore, Venus’s false positive rate for the

inspected apps is around 10%.

6.4 Results on GPP Dataset

The GPP dataset consists of 773 apps where each app is either la-

beled as benign or malicious. If the app is malicious, the label also

indicates the type of malware (e.g., ad fraud, spyware). For this

dataset, we used Venus to detect ad fraud instances by checking
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Table 3: Summary of Venus results across all three datasets

# apps # violating apps # violations recall precision avg. time (s)

Google Play 1488 711 1645 N/A 89.2% 465.3

GPP 773 243 391 86.8% 94.7% 464.7

AdFraudBench 100 54 90 91.2% 96.3% 302.1

All 2361 1008 2126 N/A 91.3% 458.2

conformance between each app and the eight ad-fraud-related poli-

cies that we formalized in Vesper. As summarized in the second

row of table 3, the recall of Venus on this dataset is 86.8% and the

precision is 94.7%. The average running time is 464.7 seconds.

Comparison against VirusTotal. To put these results in context,

we compare Venus’s results with those of VirusTotal [43], which

is a widely-used service for detecting several types of malware.

VirusTotal uses more than sixty state-of-the-art malware detection

engines to analyze an app and shows the aggregate results.

Since VirusTotal does not report a single result and covers a

broader class of malware than just ad fraud, there is no łobviously

right" way to compare against it for the purposes of our evaluation.

Thus, we consider two different, but equally plausible, ways of

interpreting VirusTotal results:

• VirusTotal-a: As in prior work on ad fraud detection [8], we

consider VirusTotal to classify an app as ad fraud if at least two

of its underlying malware detection engines label it as ad fraud.

• VirusTotal-b: Since the security community typically uses Virus-

Total as a binary classifier [5], we consider an app to be ad fraud

if at least two of the underlying malware detectors label the app

as not benign. 2

The results of our comparison are shown in figure 10. Here, blue

bars (with ł\ž pattern) show recall, whereas dark magenta bars (with

ł/ž pattern) indicate precision. As we can see from this bar chart,

both variants of VirusTotal yield much lower recall and precision

compared to Venus.

Analysis of false positives andnegatives.Wemanually inspected

the apps that are incorrectly classified by Venus to better under-

stand the root causes of false positives and false negatives. Most of

the false positives are caused by imprecision in the pointer analysis

(e.g., additional spurious methods are identified as event handlers).

On the other hand, false negatives are mainly caused by foreign

binary code that our static analyzer cannot reason about. For in-

stance, the łCasino Classicž app from the GPP dataset employs the

Unity framework that contains code in the Common Intermediate

Language (CIL) binary format. Since our tool cannot analyze CIL

binary, it fails to understand some ad-related functionality, and this

leads to false negatives.

Result #2: On 773 apps flagged as potentially malicious by

Google’s internal tools and manually labeled by security an-

alysts, Venus has a precision of 94.7% and recall of 86.8%.

Furthermore, Venus outperforms VirusTotal by a factor of 2.7

in terms of precision and by a factor of 12.8 in terms of recall.

2Recall that all applications in these datasets are either benign or ad fraud.

Table 4: Results on AdFraudBench

Venus FraudDroid VirusTotal-a VirusTotal-b

precision 96.3% 91.8% 79.6% 75.0%

recall 91.2% 78.9% 75.4% 89.5%

6.5 Results on AdFraudBench Dataset

In our next experiment, we evaluate Venus on the AdFraudBench

dataset used in prior work [8]. Since this data set is specifically

targeted for ad fraud detection, we check these apps against the

eight ad-fraud-related policies formalized in Vesper. As shown in

table 3, Venus has a precision of 96.3% and recall 91.2% on this

dataset, and its average running time per app is 302.1 seconds.

To put these results in context, we also compare Venus’s results

against those of VirusTotal as well as FraudDroid, which is a dy-

namic analysis tool specifically for detecting ad fraud [8]. 3 The

results of this comparison are shown in table 4, which shows that

Venus outperforms VirusTotal and FraudDroid both in terms of

precision and recall. 4

Result #3: Venus outperforms FraudDroid (a dynamic anal-

ysis tool for ad fraud detection) significantly in terms of

recall, while also attaining better precision.

6.6 Evaluation of the Elf Abstraction

In our final experiment, we evaluate the benefits of our proposed

Elf abstraction by performing ablation studies and comparing it

against the windown transition graph (WTG) abstraction proposed

in prior work [46].

WTG abstraction. As mentioned earlier, the WTG abstraction

from the Gator tool [39] is somewhat similar to Elf in that it is

a graph abstraction of Android applications where nodes are win-

dows, and edges (annotated with events) represent communication

between them. However, WTG differs from our proposed Elf ab-

straction in two important ways: First, nodes in a WTG correspond

to main windows of activities, so it does not contain nodes for

any nested GUI elements. Second, a WTG does not contain any

information about spatial attributes of windows. To use the WTG

abstraction to check Vesper specifications, we use the following

3FraudDroid is not available, so we cannot evaluate it on GPP apps.
4Dong et al. ([8]) report 92% recall on 100 apps from the AdFraudBench instead of
the 12000 apps dataset. After we manually inspected the ground truth for those 100
apps, we noticed that FraudDroid actually mislabeled 7 malicious apps as benign. To
resolve this discrepancy, we further confirmed our results by uploading those 7 apps
to VirusTotal, which also marked those apps as malware. We further contacted the
co-authors of FraudDroid and they also agreed that those 7 apps should all be ad fraud.
That is why the actual recall is around 80%.
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Table 5: Evaluation of our abstraction. Prec. is łPrecisionž

Tool
GPP AdFraudBench

Prec. Recall F-1 Prec. Recall F-1

Gator 100.0% 1.2% 0.024 92.3% 24.5% 0.387

Venus
−𝑆 53.8% 85.2% 0.660 63.8% 84.6% 0.727

Venus
−𝐵 69.0% 80.9% 0.745 79.6% 75.0% 0.772

Venus 94.7% 86.8% 0.906 96.3% 91.2% 0.937

methodology: First, since WTG only contains main windows of

activities, we consider any GUI element mentioned in the Vesper

specification but not in the WTG as being non-existent in the app. 5

Clearly, this may result in Gator reporting false negatives. Second,

since a WTG does not contain any information about spatial at-

tributes, we consider the abstract value of any spatial attribute to

be ⊤, which can result in false positives. Thus, in principle, using

Gator to check for Vesper specifications can suffer from both false

positives as well as false negatives.

Ablations of Elf. In this evaluation, we also compare our pro-

posed Elf abstraction against two of its own ablations. Since one

of our claims is that many GUI policies require reasoning about

both spatial and behavioral properties in practice, we consider the

following two ablations of Elf:

• Venus
−𝑆 : This is a variant of Venus that does not contain spatial

attributes. In other words, we do not perform abstract interpreta-

tion to reason about values of spatial attributes such as height,

size etc., and simply map all of them to ⊤.

• Venus
−𝐵 : This is a variant ofVenus that does not contain any be-

havioral edges or attributes. In particular, we do not reason about

event handlers of GUI elements (i.e., behavioral attributes), and

we also do not reason about communication between different

GUI elements (i.e., behavioral edges).

At first glance, it might seem that Venus −𝑆 should have only

false positives whereas Venus −𝐵 would suffer from only false

negatives. However, since Vesper predicates may appear negated

in the specification, in principle, Venus −𝑆 and Venus
−𝐵 can have

both false negatives and false positives.

Table 5 presents the results of our evaluation of the Elf abstrac-

tion by comparing it against WTG, Venus −𝑆 , and Venus
−𝐵 on

both the GPP and AdFraudBench datasets for which we know the

ground truth. Our first observation is that Gator has high preci-

sion but very poor recall. While the poor recall is perhaps expected,

the high precision is surprising since we treat spacial attributes

as ⊤ when using the WTG abstraction to check Vesper policies.

However, the reason for this is that Gator reports a grand total of 3

violations (among the 258 actual violations) in the GPP dataset, and

all of these three reports turn out to be real violations. However, the

recall is extremely poor, resulting in F1-scores of 0.024 and 0.387

on the GPP and AdFraudBench datasets compared to that of 0.906

and 0.937 of Venus.

Next, we compare Venus against its two ablations. While the

recall of both ablations are significantly higher than the WTG ab-

straction, the overall F1-scores of substantially worse than Venus.

5Alternatively, we could consider a node to represent all views nested within it;
however, this requires doing significant additional analysis that Gator does not
perform.

These results indicate that our proposed Elf abstraction is highly

beneficial for checking apps against GUI policies.

Result #4: Our proposed Elf abstraction significantly out-

performs the WTG abstraction in terms of recall, and it also

outperforms its own ablations in terms of F1-score.

7 RELATED WORK

7.1 Program Analysis for User Interfaces

GUI analysis for mobile apps. In the space of GUI analysis tools

of mobile apps, the most related one is Gator [39], which statically

analyzes Android applications to build models of their GUI-related

behavior. These models include so-called constraint graphs [40] and

(more related to this work) window transition graphs [46]. How-

ever, as shown in Section 6.6, the models produced by Gator do

not provide sufficient information to check an app against Ves-

per specifications. Another static analyzer that is related to this

work is the BackStage tool [25] for identifying which sensitive API

functions can be invoked through which UI elements. BackStage

checks for specific unintended behaviors of GUI elements, such

as leaking a user’s location when she clicks the łupload picturež

button. In contrast to BackStage, Venus supports a general class of

policies expressed in the Vesper policy language and also reasons

about spatial properties of GUI elements as well as communication

patterns between them.

There are also some GUI-related analysis tools based on dy-

namic techniques. For instance, Cornidroid [29] tests an applica-

tion against a set of UI constraints given by the user. As another

example, GVT [32] dynamically checks whether the user interface

of a mobile app is implemented according to its design mock-up

by monitoring its visual appearance. Similarly, REMAUI [33] can

automatically identify certain types of UI elements (e.g., images

and text) using optical character recognition (OCR) and computer

vision techniques. Compared to these dynamic techniques, static

techniques like Venus provide complementary advantages such

as higher coverage for behaviors that are hard to trigger at run-time.

GUI analysis for web applications. Beyond mobile applications,

GUI analysis has also attracted some interest in the context of web

applications. For example, Cilla [30] finds unused CSS selectors by

dynamically monitoring the relationship between CSS rules and

webpage elements selected by those rules. Another related work in

this space is the Cassius framework [36, 37] for building semantics-

aware CSS tools. Specifically, Cassius formalizes the semantics of

CSS in first-order logic and can be used to check spatial proper-

ties of GUI elements displayed on a webpage. However, since the

user interface of web applications is rendered exclusively based on

declarative HTML and CSS code, Cassius does not need to analyze

JavaScript programs. In contrast, checking an Android application

against aVesper specification requires both precise reasoning about

Java code as well as the declarative layout definitions provided in

XML files. Besides Cassius, there are other tools specifically built for

addressing accessibility problems in web pages [38, 44]. Compared

to these tools that are typically based on dynamic testing, Venus

has the potential to cover code that is hard to reach by dynamic
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analysis. Furthermore, accessibility tools can only check spatial

properties of GUI elements while Venus reasons about both spatial

and behavioral properties.

7.2 Static Analysis of Android Applications

Due to the popularity and security-critical nature of Android appli-

cations, there is a rich literature of program analysis techniques for

the Android framework [4, 6, 11, 22, 23, 28, 34, 47]. A key challenge

in statically analyzing Android applications is reasoning about de-

pendencies between different components, such as activities and

services. Thus, several papers focus on inter-component communi-

cation (ICC) analysis for Android [11, 34]. In this work, we leverage

the ICC analysis techniques proposed in prior research.

Among techniques for analyzing Android applications, a par-

ticularly relevant work is the Apposcopy system for malware de-

tection [11]. Similar to Venus, Apposcopy provides a specification

language for describing semantic behaviors of Android apps and

allows statically checking an app against such a specification. How-

ever, the specification language of Apposcopy is tailored for spy-

ware detection and does not allow referring to GUI elements. Thus,

beyond ICC analysis, the underlying static analyses performed by

Apposcopy and Venus are quite different.

7.3 Android Malware Detection

Since one of the use cases for Venus is to detect ad fraud, Venus

is also related to a long line of work on Android malware detec-

tion [3, 8, 11, 12, 26, 45]. Most malware detection tools in this space

focus on information leakage [11, 28], rather than GUI-related be-

havior and are therefore not suitable for accurately detecting ad

fraud applications. As mentioned earlier, the most relevant work

in this space is the FraudDroid tool [8] for detecting malware in

the ad fraud category. However, unlike Venus, FraudDroid is based

on dynamic analysis, and, as demonstrated in section 6.5, it has

significantly worse recall compared to Venus.

8 CONCLUSION

We introduced a new framework called Venus for checking con-

formance between Android apps and GUI policies expressed in a

policy language called Vesper. We manually studied GUI policies

from multiple different sources, and, among English policies that

are precise enough to be formalized, we showed that around 70%

are expressible in the Vesper policy language. We used Venus to

check conformance between these policies and over 2000 Android

applications and showed that Venus can uncover previously un-

known ad fraud instances as well as violations of GDPR regulations.

Our comparison against VirusTotal and FraudDroid indicates that

Venus advances the state-of-the-art in ad fraud detection in terms

of both precision and recall. Finally, our comparison against Gator

as well as the two ablation studies highlight the benefits of our

proposed Elf abstraction.
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