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Binary black hole simulations become increasingly more computationally expensive with smaller mass

ratios, partly because of the longer evolution time, and partly because the lengthscale disparity dictates

smaller time steps. The program initiated by Dhesi et al. [Phys. Rev. D 104, 124002 (2021)] explores a

method for alleviating the scale disparity in simulations with mass ratios in the intermediate astrophysical

range (10−4 ≲ q≲ 10−2), where purely perturbative methods may not be adequate. A region (“worldtube”)

much larger than the small black hole is excised from the numerical domain, and replaced with an analytical

model approximating a tidally deformed black hole. Here we apply this idea to a toy model of a scalar

charge in a fixed circular geodesic orbit around a Schwarzschild black hole, solving for the massless Klein-

Gordon field. This is a first implementation of the worldtube excision method in full 3þ 1 dimensions. We

demonstrate the accuracy and efficiency of the method, and discuss the steps toward applying it for

evolving orbits and, ultimately, in the binary black-hole scenario. Our implementation is publicly

accessible in the SPECTRE numerical relativity code.

DOI: 10.1103/PhysRevD.108.024041

I. INTRODUCTION

Inspiraling binary black holes (BBHs) are the most

numerous source of gravitational wave signals detected

by the LIGO and Virgo observatories [1–4]. The mass ratio

is one of the most important characteristics of these

binaries, and observations so far [3,5–8] predominantly

find mass ratios close to unity. However, GW190814 and

GW200210_092254 have mass ratios q≡m2=m1 ∼ 0.11

[4,9], and GW191219_163120—where the secondary’s

mass suggests it is a neutron star—is estimated to have

q ∼ 0.04 [4].
It is likely that upcoming observing runs by ground-

based detectors will continue to record binaries with small

mass-ratios. Future ground-based detectors like the
Einstein Telescope [10] and Cosmic Explorer [11], featur-

ing an improved low-frequency sensitivity, will be able to

detect the capture of stellar-mass black holes (BHs) by

intermediate-mass BHs, with mass-ratios down to q ∼ 10−3

[12]. Moreover, space-borne detectors, like the LISA

observatory [13,14], will be sensitive to binaries with mass
ratios in the entire range from q ∼ 1 to extreme mass-ratio

inspirals with q ∼ 10−5 [12,15–17].

In anticipation of this remarkable expansion in obser-

vational reach, it is important to develop accurate theo-

retical waveform templates that reliably cover the entire

relevant range of mass ratios. Standard numerical relativity

(NR) methods [18] work well for mass ratios in the range
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0.1≲ q ≤ 1 (see, e.g., [19]). However, simulations become

progressively less tractable at smaller q, and few numerical

simulations have been performed at q < 0.1 so far. The root

cause is a problematic scaling of the required simulation

time with q. Fundamentally, one expects the required

simulation time to grow in proportion to q−2, where one

factor of q−1 is associated with the number of in-band

orbital cycles, and the second factor q−1 comes from the

Courant-Friedrich-Lewy (CFL) stability limit on the time

step of the numerical simulation, arising from the require-

ment to resolve the smaller black hole. The state of the art

in small-q NR is represented by the recent simulations

performed at RIT of the last 13 orbital cycles prior to

merger of a black-hole binary system with q ¼ 1=128
[20,21]. Head-on simulations, where the needed evolution

time is orders of magnitudes shorter than for inspirals, are

possible at even smaller mass-ratios [22,23]. While these

simulations represent an important proof of concept, their

computational cost is extremely high, and it is presently

impossible to explore the full parameter space including

spin and eccentricity.

Binaries with extreme mass-ratios, say q ≲ 10−4, corre-

sponding to a compact object orbiting a massive black hole

in a galactic nucleus, can be modeled with a perturbative

expansion in q. This “gravitational self-force” (GSF)

approach [24,25] incorporates order-by-order in q the small

deviations of the motion of the small body away from the

geodesic motion that applies for test-bodies. The GSF

approach is the only method for modeling extreme-mass-

ratio inspirals, anddevelopment is ongoing towardwaveform

models suitable for signal identification and interpretation

with LISA [26–31]. With NR being well-suited to compa-

rable masses and the GSF approach to extreme mass-ratios,

the question arises of how to model the intermediate mass-

ratio regime. For simple binary systems (of nonspinning

black holes in quasicircular or eccentric inspirals) NR

simulations suggest [32,33] that GSF calculations may be

sufficiently accurate even at mass-ratios reaching the NR

regime. “Postadiabatic” GSF waveforms [31] for nonspin-

ning, quasicircular binaries have shown those predictions

were somewhat overoptimistic in the q > 0.1 range [34], but

they have borne out the prediction for smaller mass ratios

≲0.1. However, it remains unclear whether the twomethods,

separately applied, can achieve reliable waveform models of

intermediate-mass-ratio inspirals over the full astrophysi-

cally relevant parameter space.

In this paper we continue the work of [35] to develop a

new approach to the simulation of intermediate-mass-ratio

systems, combining NR techniques with black hole per-

turbation theory. The general idea is to excise a large region

around the smaller black hole. Inside this region–a “world-

tube” in spacetime–an approximate analytical solution is

prescribed for the spacetime metric, arising from the

perturbation theory of compact objects in a tidal environ-

ment. An NR simulation is set up for the binary, in which

the worldtube’s interior is excised from the numerical

domain, and replaced with the analytical solution. At each

time step of the numerical evolution, the numerical solution

(outside the worldtube) and analytical solution inside are

matched across the worldtube’s boundary, in a process that

fixes a priori unknown tidal coefficients in the analytical

solution, gauge degrees of freedom, and also provides

boundary conditions to the NR evolution. The intended

effect of this construction is to partially alleviate the scale

disparity that thwarts the efficiency of the numerical

evolution at small q: The smallest length scales on the

numerical domain is now that of the worldtube-radius R,
rather than the scalem2 of the smaller body. As a result, the

CFL limit is expected to increase by a factor R=m2 ≫ 1,

with a comparable gain in computational efficiency.
In Ref. [35], as also in the present work, we consider a

linear scalar-field toy model where the small black hole is
replaced with a pointlike scalar charge moving on a circular
geodesic around a Schwarzschild black hole. Instead of
tackling the full Einstein’s equations, one solves the less
complicated massless linear Klein-Gordon equation for a
scalar field. Our previous work [35] decomposed the scalar
field into spherical harmonics and solved the resulting
1þ 1-dimensional (1þ 1D) partial differential equation
for each mode separately. Such a modal decomposition will
not be possible in the fully nonlinear BBH case. As a step
toward theBBHcase, in this paper, we derive and implement
a generalized matching scheme in full 3þ 1D. Our imple-
mentation is publicly accessible as part of the SPECTRE

platform [36], a new general-relativistic code developed by
the SXS collaboration,which employs a nodal discontinuous
Galerkin method with task-based parallelism. The input file
for the simulations presented in this paper is given as
Supplemental Material [37]. (An evolution of the scalar
field equation in 3þ 1D with a point source was performed
in [38] using a different method.)

The paper is organized as follows. In Sec. II we describe

our scalar-field model, and formulate it as an initial-

boundary evolution problem suitable for implementation

on SPECTRE. Section III describes the construction of the

approximate analytical solution inside the worldtube. In

Sec. IV, we show how the unknown parameters of this local

solution can be continuously determined from the evolution

data on the worldtube boundary, using a set of ordinary

differential equations (in time) derived from the Klein-

Gordon equations. The fully specified solution inside the

worldtube is then used to formulate boundary conditions

for the evolution system. We present the results of our

simulations in Sec. V, and demonstrate a good agreement

with both analytical solutions in limiting cases, and

numerical results from other simulations. We explore the

convergence of our numerical solutions with worldtube

size, and show that its rate matches our theoretical expect-

ations. Finally, in Sec. VI, we summarize our findings and

discuss the next steps in our program. We use geometrized

units throughout the text with G ¼ c ¼ 1.
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II. NUMERICAL FIELD EVOLUTION OUTSIDE

THE WORLDTUBE

We place a pointlike particle with scalar charge q on a

fixed, geodesic circular orbit around a Schwarzschild black

hole of mass M. The evolution of the scalar field Ψ is

governed by the massless Klein-Gordon equation,

gμν∇μ∇νΨ ¼ −4πq

Z

δ4ðxα − xαpðτÞÞ
ffiffiffiffiffiffi

−g
p dτ: ð1Þ

Here gμν is the inverse Schwarzschild metric, and ∇μ is the

covariant derivative compatible with it. xαpðτÞ is the

particle’s geodesic worldline parameterized in terms of

proper time τ. In Kerr-Schild coordinates xα ¼ ðt; xiÞ,
parametrized by coordinate time t, the worldline with

orbital radius rp and angular velocity ω ¼ ðM=r3pÞ1=2 is

given by

xαpðtÞ ¼ ðt; rp cosðωtÞ; rp sinðωtÞ; 0Þ; ð2Þ

where we have fixed the orbital plane and phase without

loss of generality.

We excise the interior of a sphere with constant Kerr-

Schild radius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δijðxi − xipÞðxj − x
j
pÞ

q

, centered on the

particle’s position, from the numerical domain. We refer to

this excision region as the worldtube and elaborate in

Sec. IV how boundary conditions are provided to the

evolution domain.

Outside the worldtube, the numerical evolution of the

scalar-field variable ΨN (“N ” for “numerical,” to contrast

with the analytical solution inside the worldtube, to be

introduced below) is governed by the source-free Klein-

Gordon equation on the fixed background spacetime:

gμν∇μ∇νΨ
N ¼ 0: ð3Þ

The background spacetime is given in the usual 3þ 1 split,

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð4Þ

where α is the lapse, βi is the shift and γij is the spatial

metric on t ¼ const hypersurfaces. The background space-

time of our simulations is a single Schwarzschild black hole

in Kerr-Schild coordinates.

The Klein-Gordon equation is transformed into the

standard first-order form by introducing the auxiliary

variables [39]

Π ¼ −α−1ð∂tΨN − βi∂iΨ
N Þ; ð5aÞ

Φi ¼ ∂iΨ
N : ð5bÞ

This introduces two constraint fields [40],

Ci ¼ ∂iΨ
N −Φi; ð6Þ

Cij ¼ ∂iΦj − ∂jΦi; ð7Þ

which must vanish for any solution to the original, second-

order evolution equation. Following [41], we write the first-

order evolution equations for the vacuum Klein-Gordon

equation (3) as

∂tΨ
N − ð1þ γ1Þβi∂iΨN ¼ −αΠ − γ1β

iΦi; ð8aÞ

∂tΠ − βk∂kΠþ αγik∂iΦk − γ1γ2β
i
∂iΨ

N

¼ αKΠþ α�iΦi − γijΦi∂jα − γ1γ2β
iΦi; ð8bÞ

∂tΦi − βk∂kΦi þ α∂iΠ − γ2α∂iΨ
N

¼ −Π∂iαþΦj∂iβ
j − γ2αΦi: ð8cÞ

The lapse α, shift βi, spatial metric γij, inverse spatial

metric γij, trace of the extrinsic curvature K ≔ γijKij, and

trace of the spatial Christoffel symbol �i ≔ γjk�i
jk appear-

ing in Eqs. (8) depend only on the background

Schwarzschild spacetime. Explicitly, they read as follows

in Kerr-Schild coordinates:

α ¼
"

1þ 2M

r

"

−1=2

; ð9aÞ

βi ¼ 2Mα2

r2
xi; ð9bÞ

γij ¼ δij þ
2Mα2

r3
xkxlδikδjl; ð9cÞ

γij ¼ δij −
2Mα2

r3
xixj; ð9dÞ

K ¼ 2Mα3

r2

"

1þ 3M

r

"

; ð9eÞ

�i ¼ 8M2 þ 3Mr

ð2Mrþ 3r2Þ2 x
i; ð9fÞ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

δijx
ixk

q

is the areal radius from the central

black hole. The variables γ1 and γ2 appearing in Eqs. (8) are

constraint damping parameters. Compared to the first-order

reduction presented in [40], the additional term γ1γ2β
iCi in

Eq. (8b) ensures that the system is symmetric hyberbolic

for any values of γ1 and γ2 [41]. For γ2, we found that a

central Gaussian profile γ2 ¼ Ae−ðσrÞ
2 þ c with A ¼ 10,

σ ¼ 10−1=M and c ¼ 10−4 results in a long-term stable

evolution for all tested systems. We choose γ1 ¼ 0

throughout.
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The evolution equations (8) are in the general symmetric

hyperbolic form

∂tψ
a þ Aia

b∂iψ
b ¼ Fa; ð10Þ

with ψa ≔ ðΨ;Π;ΦiÞ representing the set of first-order

variables, enumerated by the indices a and b. For the

imposition of boundary conditions at a boundary with

normal co-vector n̂i, we solve the (left) eigenvalue problem

eâan̂iA
ia
b ¼ vðâÞe

â
b ð11Þ

for the eigenvalues vðâÞ and eigenvectors eâb, enumerated

by the index â. The vðâÞ are known as the characteristic

speeds, and the parentheses indicate that there is no implicit

sum convention on the right hand side of Eq. (11). The

covector n̂i is normalized with respect to the three metric,

i.e. γijn̂in̂j ¼ 1, and we define n̂i ¼ γijn̂j. The character-

istic fields ψ â are obtained by projecting the evolved

variables ψa onto the set of eigenvectors eâa:

ψ â ¼ eâaψ
a: ð12Þ

For the evolution system (8), the characteristic fields are

ψ â ¼ ðZ1; Z2
i ; U

þ; U−Þ with

Z1 ¼ ΨN ; ð13aÞ

Z2
i ¼ Pk

iΦk; ð13bÞ

U� ¼ Π� n̂iΦi − γ2Ψ
N : ð13cÞ

Here, Pk
i ¼ δki − n̂kn̂i denotes the projection operator

orthogonal to n̂i, so that Z2
i carries only two degrees of

freedom. The corresponding characteristic speeds are

vZ1 ¼ −n̂iβ
ið1þ γ1Þ, vZ2 ¼ −n̂iβ

i and vU� ¼ −n̂iβ
i � α.

We note that the fields U� reduce to the known physical

retarded/advanced derivatives ∂tΨ� ∂rΨ in flat space with

γ2 ¼ 0. The other characteristic fields result from the

reduction of the PDE system to first order.

Boundary conditions must be specified at the external

boundaries of the domain for each characteristic field, if

and only if it is flowing into the domain, specifically those

with negative characteristic speeds. There are three external

boundaries in our domain: one excision sphere within the

central black hole, one excision sphere around the scalar

charge (the surface of the worldtube), and the outer

boundary.

At the black hole excision sphere, all characteristic

fields are flowing out of the computational domain into

the excised domain, so no boundary conditions need to

be applied. For the outer boundary and at the world-

tube boundary, the fields Z1, Z2
i may require boundary

conditions, while U− always requires ones and Uþ never

requires ones.

Boundary conditions for the physical characteristic field

U− at the outer boundary are derived from the second-order

Bayliss-Turkel radiation condition [42]. These boundary

conditions are applied with the method of Bjorhus [43].

At the worldtube boundary, the local solution inside the

worldtube is used to provide boundary conditions for U−,

as explained in detail in Sec. IV.

Boundary conditions for Z1 and Z2
i can be derived by

requiring that there are no constraint violations flowing

into the domain [44], as described in Appendix A. These

constraint-preserving boundary conditions are applied with

the method of Bjorhus [43] at the worldtube boundary and

at the outer boundary; see Eq. (A11).

The evolution equations (8) are solved with SPECTRE

[36], which employs a nodal discontinuous Galerkin (DG)

scheme in 3þ 1 dimensions. The domain is built up of

several hundred DG elements, each endowed with a tensor

product of Legendre polynomials using Gauss-Lobatto

quadrature. The elements are deformed from unit cubes

to fit the domain structure using a series of smooth maps

as illustrated in Fig. 1. Discontinuous Galerkin methods

require a choice of numerical flux that dictates how fields

are evolved on element boundaries where they are multiply

defined [45]. Here we employ an upwind flux.

SPECTRE uses dual coordinate frames [46] to solve the

evolution equations. The components of the tensors in the

evolution Eqs. (8) are constructed in Kerr-Schild coordi-

nates xi. We refer to these as the inertial frame because the

coordinates are not rotating with respect to the asymptotic

FIG. 1. Illustration of the computational domain: Shown is the

equatorial plane, with height-deformation proportional to the

value of the scalar field. The grid lines correspond to the DG-

element boundaries of the 3-D numerical evolution. The central

blue/green peak represents the region inside the worldtube, where

the approximate solution is dominated by the singularity of the

scalar field at the point-charge. Left of the peak an excision region

is cut out within the horizon of the central black hole. A zoomed-

out view of the entire domain is shown in Fig. 2.
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frame at spatial infinity. The evolution equations for the

inertial components are solved as functions of corotating

coordinates ðt̄; x{̄Þ ¼ ðt̄; x̄; ȳ; z̄Þ given by the transformation

t̄ ¼ t; ð14aÞ

x̄ ¼ x cosðωtÞ þ y sinðωtÞ; ð14bÞ

ȳ ¼ −x sinðωtÞ þ y cosðωtÞ; ð14cÞ

z̄ ¼ z: ð14dÞ

Tensor components in this frame we denote with a bar, as

in gᾱ β̄. For more demanding situations (e.g., binary black

hole simulations), the transformation xi → x{̄ can take a

much more complicated form [47,48]. The grid points of

the DG domain, as well as the particle position x{̄p ¼
ðrp; 0; 0Þ are constant in space in these coordinates, which

we will refer to as grid coordinates. The internal worldtube

solution is evolved in the grid frame directly, which

considerably simplifies the formulation of the matching

scheme in Sec. IV.

A Dormand-Prince time stepper is used to advance the

solution of the numerical fields with a global time step. We

apply a weak exponential filter to the evolution fields after

every time step to ensure stability of the evolution.

The code is parallelized using the heterogeneous task-

based parallelism framework CHARM++ [49]. The inclusion

of the worldtube does not adversely impact the parallel

efficiency, as its computational cost is negligible compared

to even a single DG element evaluation, and no additional

communication between cores is introduced.

III. APPROXIMATE SOLUTION INSIDE

THE WORLDTUBE

Inside the worldtube, the scalar field is given by an

analytical expansion in powers of coordinate distance from

the particle’s worldline xp. We use ΨA to denote this

analytical solution, and we use a formal parameter ϵ ¼ 1 to

count powers of the separation between the worldline and

the field point.

As in Ref. [35], we split the fieldΨA into a puncture field

ΨP and a regular field ΨR:

ΨA ¼ ΨP þ ΨR: ð15Þ

ΨP is an approximate particular solution to the inhomo-

geneous equation (1), and it will be fully determined

in advance; ΨR is an approximate smooth solution to

the homogeneous equation, and it will be determined

dynamically through matching ΨA to ΨN at the worldtube

boundary.

We express both ΨP and ΨR in terms of the coordinate

distance �xα ≔ xα − x̃α, where x̃α is a reference point on

xp. For a given field point xα at coordinate time t, we let

x̃α ≔ xαpðtÞ be the point on xp at the same value of t, such

that�t ¼ 0. Tensors evaluated at x̃α are written with a tilde,

as in g̃μν. To facilitate matching ΨA to ΨN , we ultimately

express both ΨP and ΨR in the corotating grid coordinates

ðt; x{̄Þ introduced in Eq. (14), but most of this section

applies in both inertial and corotating coordinates.

Unlike in Ref. [35], for ΨP we use an approximation to

the Detweiler-Whiting singular field [50]; this choice

ensures that we can calculate the scalar self-force directly

from the regular field ΨR. Covariant expansions of the

Detweiler-Whiting singular field are readily available to

high order in ϵ; see Refs. [51–53], for example, with [51]

deriving the scalar singular field to the highest order in the

literature, Oðϵ4Þ. These covariant expressions contain

several ingredients. First among them is Synge’s world

function σðx; x̃Þ [54], which is equal to half the squared

geodesic distance between x and x̃. Its gradient, σ̃α ≔

∇̃ασðx; x̃Þ, is a directed measure of distance from x̃ to x.
The projection of σ̃α tangent to the worldline has magnitude

ϱ ≔ σ̃αũ
α; ð16Þ

and the projection normal to the worldline has magnitude

s ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg̃αβ þ ũαũβÞσ̃ασ̃β
q

; ð17Þ

where ũα is the particle’s four-velocity at time t. In terms of

these quantities, the covariant expansion of ΨP through

order ϵ2 is given by [51,53]

ΨP ¼ q

�

1

ϵs
þ ϵ

6s3
ðϱ2 − s2ÞC̃uσuσ

þ ϵ2

24s3
½ðϱ2 − 3s2ÞϱC̃uσuσju − ðϱ2 − s2ÞC̃uσuσjσ�

þOðϵ3Þ
�

: ð18Þ

Here

C̃uσuσ ≔ C̃αβμνũ
ασ̃βũμσ̃ν; ð19Þ

C̃uσuσjσ ≔ ∇̃γC̃αβμνũ
ασ̃βũμσ̃νσ̃γ ð20Þ

are contractions of the Weyl tensor Cαβμν and its derivative

evaluated at the reference point x̃ on the particle’s

worldline.

We now express the covariant expansion (18) in terms of

Kerr-Schild coordinates. To achieve this we follow the

method in [53], which begins from an expansion of σðx; x̃Þ
in powers of �xα,
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σ ¼ 1

2
g̃αβ�x

α�xβ þ Ãαβγ�x
α�xβ�xγ

þ B̃αβγδ�x
α�xβ�xγ�xδ

þ C̃αβγδρ�x
α�xβ�xγ�xδ�xρ þ… ð21Þ

Differentiating this with respect to x̃α, we obtain

σ̃α ¼ −g̃αβ�x
β þ

"

1

2
g̃βγ;α − 3Ãαβγ

"

�xβ�xγ

þ ðÃβγδ;α − 4B̃αβγδÞ�xβ�xγ�xδ

þ ðB̃βγδρ;α − 5C̃αβγδρÞ�xβ�xγ�xδ�xρ þ… ð22Þ

We then use the identity 2σ ¼ σ̃ασ̃
α to recursively deter-

mine the coefficients Ãαβγ , B̃αβγδ, C̃αβγδρ and so on. This

yields, for example, Ãαβγ ¼ 1

4
g̃ðαβ;γÞ. We now contract σ̃α

with the four-velocity, metric and Weyl tensor to get the

coordinate expressions for ϱ, s, C̃uσuσ , and C̃uσuσjσ as per

their definitions (16), (17), (19), and (20). Our final

expression for ΨP is obtained by substituting all of these

results into Eq. (18) and reexpanding in powers of �xα.
We write the result in the style of [55]:

ΨP ¼q

�

1

ϵs1
þP3ð�xαÞ

s3
1

þϵP6ð�xαÞ
s5
1

þϵ2P9ð�xαÞ
s7
1

þOðϵ3Þ
�

:

ð23Þ

Here s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg̃αβ þ ũαũβÞ�xα�xβ
q

is the leading coordi-

nate approximation to s, and Pnð�xαÞ is a polynomial in

�xα of homogeneous order n.
The form (23) is valid in any coordinate system. In the

corotating grid coordinates, the reference point on xp is

x̃ᾱ ¼ xᾱpðtÞ ¼ ðt; rp; 0; 0Þ, and the coordinate separation

�x{̄ ≔ x{̄ − x{̄pðtÞ is �x ¼ x̄ − rp, �y ¼ ȳ, and �z ¼ z̄.

The distance s1 then reduces to

ðs1Þ2 ¼
"

1þ 2M

rp

"

�x2 þ �y2 þ �z2

þ ðũtÞ2
"

2M�x

rp
þ rpω�y

"

2

; ð24Þ

where ũt ¼ ð1 − 3M=rpÞ−1=2. The polynomials P3ð�xαÞ,
P6ð�xαÞ, and P9ð�xαÞ are too long to be included

here. Instead we have made them available online as

Mathematica code.
1

We now turn to the regular field ΨR. Because it

approximates a smooth homogeneous solution, we can

write it as a Taylor series around x̃α. In the grid coordinates,
such an expansion reads

ΨRðt; x{̄Þ ¼ Ψ
R
0
ðtÞ þ ϵΨR

i ðtÞ�x{̄ þ ϵ2ΨR
{̄ |̄ðtÞ�x{̄�x|̄

þOðϵ3Þ; ð25Þ

with the notationΨR
0
ðtÞ≔ΨRðt; x{̄pÞ,ΨR

{̄ ðtÞ ≔ ∂{̄Ψ
Rðt; x|̄pÞ,

Ψ
R
{̄ |̄ðtÞ ≔ 1

2
∂{̄∂|̄Ψ

Rðt; xk̄pÞ, and so on. The coefficientsΨR
{̄1…{̄k

in this series contain the full freedom in the approximate

solution ΨA. However, not all of these coefficients are

independent; the field equation imposes relationships

between them.As shown inRef. [56], once the field equation

is enforced, only the trace-free piece of each Ψ
R
{̄1…{̄k

is left

undetermined. An nth-order approximate solution ΨR con-

tains
P

n
k¼0

ð2kþ 1Þ ¼ ðnþ 1Þ2 of these undetermined

functions. All other functions of t in ΨR are related to these

byordinary differential equations (ODEs) that result from the

field equations. In the next section we show how all the

functions ΨR
{̄1…{̄k

ðtÞ can be determined through the combi-

nation of (i)matchingΨR toΨN and (ii) solving theODEs in

t that follow from the field equation.

IV. MATCHING METHOD

The idea behind the matching method is straightforward.

We numerically solve the scalar wave equation on a

Schwarzschild background, excising the worldtube con-

taining the scalar charge from the numerical domain. Inside

the worldtube, the solution is given by the analytical

approximation ΨA ¼ ΨP þΨR described above. Outside

the worldtube we have the numerical field ΨN . We demand

ΨN ¼� ΨP þΨR; ð26Þ

where ¼� henceforth represents an equality that holds on

the (2þ 1D) worldtube’s boundary �. We will show that

this matching condition, together with the scalar wave

equation, fully determine the regular field ΨR inside the

worldtube. This solution, in turn, provides boundary

conditions for the evolution of the numerical field, spe-

cifically for U−.

We formulate the matching scheme in the comoving

grid coordinates x{̄ introduced in Eq. (14). The Euclidean

distance to the particle is defined as ρ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ{̄ |̄�x
{̄�x|̄

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δij�x
i�xj

q

. The boundary of the worldtube is located at

ρ ¼ R, with normal vector n{̄ ≔ �x{̄=ρ. We note that n{̄ is

normalized with respect to δ{̄ |̄, whereas n̂i in Sec. II is

normalized with respect to the 3-metric γij.

We now introduce the details of our matching scheme for

order n ¼ 0, 1 and 2, which are the expansion orders

implemented numerically in this work. The matching

scheme for an expansion of arbitrary order n is given in

Appendix B. We start by rewriting the Taylor expansion

in Eq. (25) in terms of the quantities ρ and n{̄, and we1
https://github.com/nikwit/Puncture-Field-KS-Coords.
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introduce an analogous expansion for the time derivative of

the regular field:

ΨRðt; x{̄Þ ¼ Ψ
R
0
ðtÞ þ ρΨR

{̄ ðtÞn{̄ þ ρ2ΨR
{̄ |̄ðtÞn{̄n|̄ þOðρ3Þ;

ð27aÞ

_Ψ
Rðt; x{̄Þ ¼ _Ψ

R
0 ðtÞ þ ρ _Ψ

R
{̄ ðtÞn{̄ þ ρ2 _Ψ

R
{̄ |̄ðtÞn{̄n|̄ þOðρ3Þ;

ð27bÞ

where we now drop the order-counting parameter ϵ ¼ 1.

The set of coefficients fΨR
0
ðtÞ;ΨR

{̄ ðtÞ;ΨR
{̄ |̄ðtÞg have one,

three, and six independent components, respectively, for a

total of ten. We will show that all of these can be uniquely

determined at each time step from (i) the numerical field

ΨN ðt; x{̄Þ at the worldtube boundary, and (ii) the Klein-

Gordon equation (3).

A. Worldtube boundary data

At each time step ts we enforce the continuity condition

ΨRðts; x{̄Þ ¼
�
ΨN ðts; x{̄Þ − ΨPðts; x{̄Þ; ð28Þ

both for the field itself and its time derivative. In the

following section we will omit explicit expressions which

enforce continuity between the time derivative of the

regular field _Ψ
Rðt; x{̄Þ and the numerical field ∂tΨ

N ðt; x{̄Þ
because they are completely analogous to the expressions for

the fields themselves.

We will utilize symmetric trace-free (STF) tensors,

indicated with angular brackets, e.g. Ahk1…kli. Note that

Ahk1���kliBk1���kl ¼ Ak1���klBhk1���kli ¼ Ahk1���kliBhk1���kli; more

details about STF tensors are given in Appendix B.

Transforming Eq. (27a) to a STF basis using (B7) yields,

at order n ¼ 2,

ΨRðts;x{̄Þ¼Ψ
R
0
ðtsÞþ

1

3
ρ2δ{̄ |̄ΨR

{̄ |̄þρΨR
h{̄in

h{̄iþρ2ΨR
h{̄ |̄in

h{̄n|̄i;

ð29Þ

with nh{̄i ¼ n{̄ and nh{̄n|̄i ¼ n{̄n|̄ − 1

3
δ{̄ |̄. Equation (29) will

be used on the left-hand side in Eq. (28).

The right-hand side of Eq. (28) is obtained by evaluating

the puncture field of Eq. (23) and its time derivative at

the coordinates of the DG collocation points on the

worldtube surface, and subtracting them pointwise from

the corresponding values of ΨN ðts; x{̄Þ and ∂tΨ
N ðts; x{̄Þ.

This expression is then projected numerically onto the set

of spherical harmonics defined on the worldtube � with

constant radius ρ,

ΨN ðts; x{̄Þ −ΨPðts; x{̄Þ ¼
�
X

n¼2

l¼0

X

l

m¼−l

aN ;R
lm ðtsÞYlmðn{̄Þ; ð30Þ

where

aN ;R
lm ðtsÞ ¼

I

�

½ΨN ðts; x{̄Þ −ΨPðts; x{̄Þ�Y�
lmðn{̄ÞdΩ ð31Þ

are the spherical harmonic coefficients of the numerical,

regular field ΨN ðts; x{̄Þ −ΨPðts; x{̄Þ and dΩ is the area

element of the flat-space unit 2-sphere. In practice we use

real-valued spherical harmonics and evaluate the integral

with the Gauss-Lobatto quadrature used by the DGmethod.

Both the spherical harmonics Ylm and the STF normal

vector nhk̄1 � � � nk̄li provide an orthogonal basis for functions
on a sphere. They can be transformed into each other using

Eqs. (B9),

X

n¼2

l¼0

X

l

m¼−l

aN ;R
lm ðtsÞYlmðn{̄Þ ¼ Ψ

N ;R
h0i ðtsÞ þΨ

N ;R
h{̄i ðtsÞnh{̄i

þΨ
N ;R
h{̄ |̄i ðtsÞnh{̄n|̄i: ð32Þ

We have thus expressed both sides of the continuity

condition (28) in a basis of STF normal vectors, using

Eqs. (29) and (32). Orthogonality of the STF basis allows

us to match order by order in the STF expansion:

Ψ
N ;R
h0i ðtsÞ ¼ Ψ

R
0
ðtsÞ þ

1

3
ρ2δ{̄ |̄ΨR

{̄ |̄ðtsÞ; ð33aÞ

Ψ
N ;R
h{̄i ðtsÞ ¼ ρΨR

{̄ ðtsÞ; ð33bÞ

Ψ
N ;R
h{̄ |̄i ðtsÞ ¼ ρ2ΨR

h{̄ |̄iðtsÞ: ð33cÞ

We emphasise that Eqs. (33) contain two distinct sets of

coefficients: TheΨN ;R on the left-hand-sides are expansion

coefficients on the surface �, whereas the ΨR on the right-

hand side are the Taylor expansion coefficients of the

solution in the interior, Eq. (27a). The continuity conditions

for a field expanded to arbitrary order are given in

Eq. (B14). For expansion orders n ¼ 0 or n ¼ 1 the second

term in Eq. (33a) falls away. The regular field inside the

worldtube is then fully determined by the continuity

condition and can directly be used to provide boundary

conditions for the future evolution. In one dimension, this is

equivalent to a linear polynomial in an interval being fully

determined by its two endpoints.

For n ¼ 2, Eqs. (33) provide only 9 equations for the 10

coefficients of ΨRðts; x{̄Þ because the monopole of the

regular numerical field Ψ
N ;R
h0i in Eq. (33a) contributes to

both the zeroth-order coefficient ΨR
0

and the trace of the

second-order coefficient, δ{̄ |̄ΨR
{̄ |̄. More generally, for arbi-

trary order, the STF expansion on the worldtube, Eq. (B14),

provides only the trace-free components of ΨN ;R, so that

boundary-matching determines only the trace-free parts of
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the expansion ΨRðts; x{̄Þ but not its traces. Therefore, for
expansions of order n ≥ 2, additional equations are needed

to fully determine the regular field inside the worldtube.

These are provided by a series expansion of the Klein-

Gordon equation, as we describe below in Sec. IV B.

The coefficients of the regular field’s time derivative are

determined completely analogously, with the continuity

condition

∂tΨ
Rðts; xiÞ ¼

�
∂tΨ

N ðts; xiÞ − ∂tΨ
Pðts; xiÞ: ð34Þ

∂tΨ
N ðts; xiÞ is evaluated using its evolution equation (8a)

and then transformed into the comoving grid frame by

adding the advective term vig∂iΨ
N , where vig is the

instantaneous local grid velocity. The matching conditions

for the time derivative of the regular field _Ψ
RðtsÞ are then

just the time derivative of the matching conditions for

ΨRðtsÞ, Eqs. (33).

B. Klein-Gordon equation

We rewrite the Klein-Gordon equation (3) in grid

coordinates

0 ¼ gμ̄ ν̄∂μ̄∂ν̄Ψ
R − �ρ̄

∂ρ̄Ψ
R; ð35Þ

where �ρ̄ ≔ gμ̄ ν̄�
ρ̄
μ̄ ν̄. The metric quantities gμν and �μ are

expanded in the grid coordinates x{̄ to the same order n as

the regular field at each time step ts. For n ¼ 2 these

expansions read

gμ̄ ν̄ðts; x{̄Þ ¼ g
μ̄ ν̄
0
ðtsÞ þ g

μ̄ ν̄
{̄ ðtsÞ�x{̄

þ g
μ̄ ν̄
{̄ |̄ ðtsÞ�x{̄�x|̄ þOðρ3Þ; ð36Þ

�μ̄ðts; x{Þ ¼ �
μ̄
0
ðtsÞ þ �

μ̄
{̄ ðtsÞ�x{̄

þ �
μ̄
{̄ |̄ðtsÞ�x{̄�x|̄ þOðρ3Þ: ð37Þ

The expansion coefficients are given by g
μ̄ ν̄
0

≔ gμ̄ ν̄ðts; x{̄pÞ,
g
μ̄ ν̄
{̄ ≔ ∂{̄g

μ̄ ν̄ðts; x|̄pÞ, and g
μ̄ ν̄
{̄ |̄ ðtsÞ ≔ 1

2
∂{̄∂|̄g

μ̄ ν̄ðts; xk̄pÞ, and

similarly for �
μ̄
0
, �

μ̄
{̄ , and �

μ̄
{̄ |̄. Due to the spherical symmetry

of the Schwarzschild spacetime, and our circular-orbit

setup, these expansion coefficients are in fact independent

of ts.
We now expand the Klein-Gordon equation in powers of

ρ by inserting the expansions for ΨR, gμν and �μ from

Eqs. (27a), (36) and (37), respectively, into Eq. (35). The

Oðρ0Þ piece of the equation reads

gtt
0
Ψ̈

R
0 ðtsÞ þ 2gt{̄

0
_Ψ
R
{̄ ðtsÞ þ 2g

{̄ |̄
0
Ψ

R
{̄ |̄ðtsÞ − �t

0
_Ψ
R
0 ðtsÞ

− �{̄
0
Ψ

R
{̄ ðtsÞ ¼ 0: ð38Þ

This ODE provides an additional, independent relation

between the expansion coefficientsΨR
0
, ΨR

{̄ andΨR
{̄ |̄, which

enables us to determine the remaining, trace degree of

freedom of the regular field at n ¼ 2. Specifically, combin-

ing Eq. (38) with the continuity conditions (33), and using

Ψ
R
{̄ |̄ ¼ Ψ

R
h{̄ |̄i þ 1

3
δl̄ k̄ΨR

l̄ k̄
δ{̄ |̄, we obtain

gtt
0
Ψ̈

R
0
ðtsÞ þ 2gt{̄

0
_Ψ
N ;R
{̄ ðtsÞ þ 2g

{̄ |̄
0
Ψ

N ;R
h{̄ |̄i ðtsÞ

þ 2δ{̄ |̄g
{̄ |̄
0

ρ2
ðΨN ;R

0
ðtsÞ −Ψ

R
0
ðtsÞÞ

− �0
0
_Ψ
R
0 ðtsÞ − �{̄

0
Ψ

N ;R
{̄ ðtsÞ ¼ 0: ð39Þ

We reduce this ODE to first order and use a Dormand-

Prince time stepper to advance the zeroth-order coefficient

Ψ
R
0
and its time derivative to the next time step tsþ1, taking

the same global time step as the DG evolution. Together

with the continuity conditions (33) at time step tsþ1, this

completely determines all components of the second-order

expansion of ΨRðt; x{̄Þ in Eq. (27a) at tsþ1.

The coefficients of the numerical, regular field Ψ
N ;R

hk̄0���k̄li
are updated each substep. As initial conditions of the ODE

(39) we take Ψ
R
0
ðt0Þ ¼ _Ψ

R
0 ðt0Þ ¼ 0.

In Appendix B we formulate the generalization of this

method to an arbitrary order n, and in particular we derive

the generalized form of the ODE on �.

C. Boundary conditions for ΨN

Once the expansion of the regular field has been fully

determined, it can be used to provide boundary con-

ditions to the DG elements neighboring the worldtube.

DG methods commonly formulate boundary conditions

between elements using the numerical flux, and these

conditions are applied to each of the characteristic fields

defined in Eqs. (13). We use the internal solution ΨA of the

worldtube to provide boundary conditions for the character-

istic field U− as if the interior of the worldtube were simply

another DG element. From the definition ofU− in Eq. (13c)

and the definitions in Eq. (5), we obtain the boundary

condition

U−ðtsÞ ¼
�

− α−1∂tΨ
AðtsÞ þ ðβ{̄ − n̂{̄Þ∂{̄ΨAðtsÞ − γ2Ψ

AðtsÞ:
ð40Þ

The analytical solution ΨAðtsÞ was defined in Eq. (15) as

the sum of the regular field ΨR and the puncture field ΨP ,

both of which are now fully determined. The time and

spatial derivative are simply obtained from ∂tΨ
AðtsÞ ¼

∂tΨ
N ðtsÞ þ ∂tΨ

PðtsÞ and ∂{̄ΨAðtsÞ ¼ ∂{̄Ψ
N ðtsÞ þ ∂{̄Ψ

PðtsÞ.
The fields ΨRðtsÞ and ∂tΨ

RðtsÞ are given by Eq. (27) and

its time derivative. The derivative normal to the world-

tube boundary is similarly obtained by taking the appro-

priate spatial derivative of ΨR in Eq. (27a) analytically.

The expression for the puncture field ΨPðtsÞ is given in
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Eq. (25), and its time and normal derivative are computed

analytically. We evaluate all of these expressions at the grid

coordinates x{̄ of all DG grid points that lie on element faces

abutting the worldtube to formulate pointwise boundary

conditions. The value of U−ðtsÞ at the boundary is used to

apply a correction to the time derivative of the evolution

equations using the upwind flux [45].

We initially tried to provide boundary conditions

in the above fashion for all characteristic fields entering

the numerical domain, including Z1 and Z2
i . However, we

found that this caused substantial constraint violations

entering the numerical domain at the worldtube boundary.

Instead, we use constraint-preserving boundary conditions

for Z1 and Z2
i as described in Appendix A.

D. Roll-on function

The initial conditions we use for the simulations are Ψ ¼
∂tΨ ¼ 0 for both the DG fields outside the worldtube and

the regular field inside it. The puncture field ΨP added to

the regular field in Eq. (40) initially creates a discontinuity

at the worldtube boundary, due to the unphysical instanta-

neous appearance of the scalar charge source t ¼ 0. DG

methods are very inefficient at resolving discontinuities

within elements, due to the Gibbs phenomenon.

To alleviate this, we multiply the puncture field ΨP with

a roll-on function wðtÞ that smoothly grows from 0 to 1 (up

to double precision) between t ¼ 0 and t ¼ tend. We found

that this effectively stretches out the initial discontinuity

and causes the fields to settle more smoothly to their final

values.

We tested two different roll-on functions: wðtÞ ¼
sin½πt=ð2tendÞ� and wðtÞ ¼ erfð12t=tend − 6Þ=2þ 1=2,
where erf is the Gaussian error function. There was little

difference in the long term evolution between the two

choices.

The roll-on function ensures a smooth settling of the

solution corresponding to the scalar charge slowly being

turned on over its first 4 orbits. We found tend ¼ 300M
to be a good choice for the simulations with orbital

radius rp ¼ 5M.

E. Error estimates

To estimate the errors that our matching method incurs,

we apply the same analysis as we did for the 1þ 1D case

in [35]. The estimates follow from a Kirchhoff representa-

tion of the scalar field. We first consider the field in the

numerical domain, outside the tube �. Call this region V.

Inside V, our field ΨN satisfies the same homogeneous

field equation as the exact solution Ψ, gμν∇μ∇νΨ
N ¼ 0,

but it inherits errors that propagate out from �. We

introduce a retarded Green’s function Gðx; x0Þ satisfying

□Gðx; x0Þ ¼ □
0Gðx; x0Þ ¼ δ4ðx; x0Þ; ð41Þ

where x and x0 denote any two points, primes denote

quantities at x0, □ ≔ gμν∇μ∇ν, and δ4ðx; x0Þ ≔ δ4ðxμ−xμ0 Þ
ffiffiffiffi

−g
p . If

we now take any point x ∈ V, then the equations (41) and

□ΨN ¼ 0 imply the identity

ΨN ðx0Þδ4ðx; x0Þ ¼ ΨN ðx0Þ□0Gðx; x0Þ −Gðx; x0Þ□0ΨN ðx0Þ:
ð42Þ

Integrating this equation over all x0 ∈ V and then integrat-

ing by parts, we obtain the Kirchhoff representation

ΨN ðxÞ¼
Z

V

½ΨN ðx0Þ□0Gðx;x0Þ−Gðx;x0Þ□0ΨN ðx0Þ�dV 0

¼
Z

∂V

½ΨN ðx0Þ∇μ0Gðx;x0Þ−Gðx;x0Þ∇μ0Ψ
N ðx0Þ�dΣμ0 :

ð43Þ
Here dΣμ0 is the outward-directed surface element on ∂V.
For us the relevant portion of ∂V is the tube boundary �,

where dΣμ0 ¼ OðR2ÞdtdΩ. As in Eq. (31), here dΩ is the
area element of the unit 2-sphere.

In the integral over �, we may replace ΨN with ΨA. Our

truncated expansion of ΨA introduces an inherent OðRnþ1Þ
error in ΨN ðx0Þ and OðRnÞ error in ∇μ0Ψ

N ðx0Þ on the

worldtube. Equation (43) implies that the OðRnÞ error in

∇μ0Ψ
N ðx0Þ dominates. Accounting for the OðR2Þ surface

element, we see that this creates anOðRnþ2Þ error inΨN ðxÞ.
An important takeaway from this analysis is that the error

in the numerical domain is suppressed by the small spatial
size of �. As a consequence, the error converges two orders
faster than the analogous error in the 1þ 1Dproblem in [35].

However, we note that this analysis applies only at a

fixed location x outside the worldtube. At a point on the

worldtube boundary �, the errors in ΨN are inherently

OðRnþ1Þ, and the errors in ∇μΨ
N are inherently OðRnÞ.

There is no suppression due to the small spatial size of the

worldtube in this case. The same is true of the errors at a

point outside the worldtube if we consider a point x that is

at a fixed multiple of R away from the worldline rather than

at a fixed physical location.

We also note that in applications, we require outputs

other than ΨN : the regular field on the particle’s worldline

and the self-force, for example. The omitted terms in our

expansion (25) scale with a power of distance from the

worldline, which might make us expect that we incur no

error in ΨRðxpÞ and ∂μΨ
RðxpÞ (and therefore in the self-

force). However, we can see this is incorrect by referring

again to a Kirchhoff representation of the field. Our method

enforces the field equation (1) on ΨA up to an error ∼Rn−1

(two derivatives of the truncation error in ΨA). If we

momentarily ignore that error term in the field equation,

and if we consider V to be the interior of � and repeat the

steps that led to Eq. (43), then we obtain the Kirchhoff

representation

WORLDTUBE EXCISION METHOD FOR … PHYS. REV. D 108, 024041 (2023)

024041-9



ΨAðxÞ ¼ −4πq

Z

γ

Gðx; xpðτÞÞdτ þ
Z

�

½ΨAðx0Þ∇μ0Gðx; x0Þ

−Gðx; x0Þ∇μ0Ψ
Aðx0Þ�dΣμ0 : ð44Þ

If we now take x to be a point xp on the worldline and

consider the integral over �, then we have Gðx; x0Þ ∼ 1=R

and ∇μ0Gðx; x0Þ ∼ 1=R2. We can combine this with dΣμ0 ∼

R2 and with the errors OðRnþ1Þ in ΨAðx0Þ and OðRnÞ in

∇μ0Ψ
Aðx0Þ to deduce that the error inΨAðxpÞ isOðRnþ1Þ. If

we take a derivative of Eq. (44), we find that the error in

∂μΨ
AðxpÞ is OðRnÞ. These error estimates apply immedi-

ately to ΨRðxpÞ as well.
It is also straightforward to see that these estimates are

not altered by the OðRn−1Þ error in the field equation,

which we neglected in deriving Eq. (44). That error con-

tributes an error ∼
R

Rn−1Gðxp; x0ÞdV 0 ∼ Rnþ1 to ΨRðxpÞ,
consistent with the error from the boundary integral.

In summary, we expect that for an nth-order analytical
approximation, our method introduces the following errors:

Error inΨN ðxÞ∶ OðRnþ2Þ; ð45Þ

Error inΨRðxpÞ∶ OðRnþ1Þ; ð46Þ

Error in ∂αΨ
RðxpÞ∶ OðRnÞ; ð47Þ

where x is a point outside � and xp is a point on the

particle’s worldline. Our numerical results in the next

section will bear out these predictions. The error in

∂αΨ
RðxpÞ, and hence in the self-force, will be particularly

relevant when we allow the system to evolve (as opposed to

keeping the particle on a fixed geodesic orbit). We defer

discussion of this to the Conclusion.

Finally, before proceeding, we note that our error

estimate for ∂αΨ
RðxpÞ might be too pessimistic in some

instances. Specifically, time-antisymmetric components,

linked to the dissipative pieces of the self-force, might

converge more rapidly with R. This is because these

components arise from the radiative piece of the field,

equal to half the retarded solution minus half the advanced

solution [57]. For these pieces of the field, we can replace

the Green’s function G in Eq. (44) with its radiative piece,

GRad ¼ 1

2
ðGRet − GAdvÞ. GRad is smooth when its two

arguments coincide (because singularities cancel between

GRet and GAdv), meaning it does not introduce the negative

powers of R that GRet introduces in Eq. (44). We therefore

might expect that errors scale with a higher power of R in

the dissipative components of ∂αΨ
RðxpÞ. That could be

extremely beneficial in practice because dissipative effects

dominate over conservative ones on the long timescale of

an inspiral [58], and dissipative effects must therefore be

computed with higher accuracy. However, our numerical

experiments in the next section do not entirely bear out this

expectation of more rapid convergence, and we leave

further investigation of it to future work.

V. RESULTS

We use a central black hole of mass M for the

simulations. The excision sphere inside the black hole

has radius 1.9M. The outer boundary is placed at 400M.

We use a CFL safety factor of 0.4. The scalar charge is

placed on a circular orbit with radius rp ¼ 5M with angular

velocity ω ¼ M1=2r
−3=2
p ≈ 0.09M−1.

The expansion terms of the puncture field converge more

quickly with larger orbital radii of the scalar charge.

The truncation error of the puncture field and hence of

the worldtube solution is therefore particularly large at the

relatively small orbital radius of rp ¼ 5M used in our

simulations. This ensures that the scheme is tested in an

extreme region, comparable to binary black holes close to

merger. Because the error due to the worldtube is com-

paratively large for a small rp, it can be resolved with a

lower resolution in the numerical domain, lowering the

computational cost of the simulations.

We have implemented the worldtube scheme with the

local solution expanded to orders n ¼ 0, 1 and 2. The

radius of the worldtube was varied between 0.2M and

1.6M. The simulations were run until the field had settled to

its steady state solution over the entire domain, which took

between 3000M and 7000M, depending on the magnitude

of the settled error. Figure 2 shows a cut through the

equatorial plane of the computational domain.

FIG. 2. The equatorial plane of the domain, depicting the

steady-state solution of the scalar field Ψ. The scalar charge

creates an outward propagating spiral as it orbits the central black

hole. Figure 1 shows a tilted perspective zoomed into the center

of the same plane with the spiral arms visible in the background.
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Figure 3 plots the steady state solution along two lines

cut through the domain at late, constant Kerr-Schild times t:
one along the comoving x-axis connecting the central black
hole center and the scalar charge and one along the z-axis
normal to the charge’s orbital plane. The undulations of

the scalar field on the x-axis correspond to the arms of

the spiral in Fig. 2. The missing part of the x-axis line

corresponds to the worldtube; the field increases strongly

near the worldtube, because of the scalar charge contained

at the center of the worldtube.

We verify the validity and convergence of our simula-

tions in three different ways: First, in Sec. VA, we compare

the value of the regular field ΨR and its spatial derivative

∂{̄Ψ
R at the position of the charge to published numerical

results obtained using frequency-domain self-force meth-

ods. Second, in Sec. V B we compare with the known

axially symmetric analytical solution along the z-axis,
given below in Eq. (54). Finally, we perform an internal

convergence test along the comoving x-axis in Sec. V C.

For each simulation in the following sections, the resolution

of the DG domain was increased until it no longer affected

the steady-state solution. This guaranteed that the error

measured was due to the worldtube, not the numerical

evolution.

A. Regular field ΨR at the charge’s position

The value of the regular field for a scalar charge in a

circular geodesic orbit in Schwarzschild spacetime has

been calculated in self-force literature. We compare the

regular field of our simulations with the results of [59], who

quote the value ΨR
refð0Þ ¼ −0.01023418q=M for a circular

orbit with radius 5M.

For expansion orders n ¼ 0 and n ¼ 1, the regular field

at the charge position is given directly by the monopole of

the numerical field Ψ
N ;R
h0i ðtsÞ in Eq. (33a) (the second term

on the right-hand side is absent for n ¼ 0, 1). For n ¼ 2, it

is determined by solving the ODE (39) inside the

worldtube.

The relative error ε ¼ jΨRð0Þ −Ψ
R
refð0Þj=jΨR

refð0Þj,
where ΨRð0Þ is the final value of the regular field at the

scalar charge, is shown in the top panel of Fig. 4, with each

marker representing a simulation. The dashed lines show

fits of the data, for each expansion order n, to a relation of

the form ε ? Rα, where R (recall) is the worldtube radius.

The bottom panel displays the local convergence order,

defined through

αloc;i ¼
logðεiÞ − logðεi−1Þ
logðRiÞ − logðRi−1Þ

; ð48Þ

where Ri are the worldtube radii in our sample, and εi are

the corresponding errors. We find that the error always

decreases with smaller worldtube radius or higher order n
of the local solution as expected. Equation (46) indicated a

convergence order inside the worldtube of α ¼ nþ 1 at

sufficiently small worldtube radii. For n ¼ 1 and 2 we find

that this prediction is confirmed quite well, with global

convergence orders measured as ∼2.07 and ∼3.08, respec-

tively, and local convergence order uniformly close to this

value. At n ¼ 0 we measure a global convergence order of

∼1.72 and a local convergence order that appears to decrease

with the worldtube radius. This suggests that for n ¼ 0 the

scheme is not fully in the convergent regime for the values of

Rwe consider; rather, there are still significant contributions

from higher-order terms. At smaller worldtube radii R, these
higher-order-in-R contributions become less significant and

FIG. 3. The steady-state solution of the scalar field Ψ
N along

the comoving x-axis and z-axis of the domain.

FIG. 4. Top panel: the relative error of the regular field at the

position of the charge compared to the value computed in [59].

Each cross represents the settled error at the final simulation time.

The dashed lines are best fits for the relation ε ? Rα. Bottom

panel: the local convergence order between simulations of

neighboring worldtube radii.
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the local convergence rate approaches the expected value

of 1.

We also compare the gradient of ΨR at the position of

the particle, which enters the expression for the self-force

acting on the particle due to back-reaction from the scalar

field. The value of the radial derivative is given in [59]

as ∂rs
Ψ

R
refð0Þ ¼ 0.0004149937q=M2 using Schwarzschild

coordinates ðts; rs; θs;φsÞ. We are not aware of any

works which report the angular derivative of the scalar

field at rp ¼ 5M. Instead, it was computed for us to be

∂φs
Ψ

R
refð0Þ ¼ −0.01009125769q=M2 using the frequency

domain code of [60]. The coordinate transformation from

Kerr-Schild time t to Schwarzschild time ts is given by

ts ¼ tþ 2M ln

"

r

2M
− 1

"

; ð49Þ

which makes the conversion between ∂rs
ΨR and the

Kerr–Schild radial derivative ∂rΨ
R

∂rs
¼ ∂r þ

2M

2M − r
∂t

¼ ∂r þ
2M

2M − r

"

∂t̄ þ
∂x{̄

∂t
∂{̄

"

; ð50Þ

where in the second line we have transformed into

the comoving coordinate frame given in Eqs. (14). The

reference values of the regular field’s gradient at the

particle’s position are then given by

∂rΨ
R
refð0Þ ¼ ∂x̄Ψ

R
refð0Þ ¼ ∂rs

Ψ
R
refð0Þ −

2Mω

2M − rp
∂φs

Ψ
R
refð0Þ;

ð51Þ

∂φΨ
R
refð0Þ ¼ rp∂ȳΨ

R
refð0Þ ¼ ∂φs

Ψ
R
refð0Þ; ð52Þ

which we use to compare to our simulation values.

Figure 5 compares the radial and azimuthal derivative of

ΨR obtained by our worldtube evolutions against these

reference values. Shown are the differences from the

reference values for orders n ¼ 1 and 2, with power-law

fits ?Rα. At zeroth order, the regular field is constant across

the worldtube so the derivatives cannot be computed. The

lower panel of Fig. 5 plots the local convergence order αloc
defined in (48).

We argued in Eq. (47) that the error of the regular field’s

derivatives at the particle position should scale with the

worldtube radius as ?Rn. For n ¼ 1, this behavior is

confirmed by the local convergence αloc of our simulations

with the exception of worldtube radius R ¼ 1.6M, which is

anomalously lower than expected and skews the global

convergence order. For n ¼ 2, the radial derivative ∂rΨ
R

(linked to the conservative, time-symmetric piece of the self-

force) shows a local convergence that approaches the

expected order ofR2 at smallerworldtube radii. This suggests

that the error is just entering the regime where the OðRnÞ
contribution becomes dominant. For the angular derivative

∂φΨ
R (linked to the dissipative, time-antisymmetric piece of

the self-force), the local convergence order is larger than 3 for

all simulations. This could indicate that the error is still

dominated by higher-order contributions at the sampled

worldtube radii. Alternatively, it could indicate that dissipa-

tive quantities converge more rapidly with R than con-

servative one, as suggested in Sec. IV E; however, the results

for n ¼ 1 do not support that proposal, showing the same

convergence rate for ∂φΨ
R as for ∂rΨ

R. We stress that in any

case, the convergence is at least as rapid as predicted

in Eq. (47).

B. Solution along the z-axis

The spherical symmetry of the Schwarzschild back-

ground allows for the Klein-Gordon Eq. (3) to be decom-

posed into separately evolving spherical harmonic modes

Ψlmðr; tÞ, where the spherical harmonic decomposition is

centered on the black hole (different to the spherical

harmonics introduced in Eq. (30), which are centered on

the worldtube). On the polar axis (x ¼ y ¼ 0) all modes

vanish except the axially symmetric ones, i.e., those

FIG. 5. Top panel: the absolute difference between the radial

and angular derivatives of the regular field at the position of the

particle and the reference values of Eqs. (51) and (52). Each cross

represents the final value of a simulation. The dashed lines are

best fits to the power-law relation ?Rα. Bottom panel: the local

convergence order between the simulations of adjacent worldtube

radii as defined in Eq. (48). The simulations at order n ¼ 1 show

a convergence order consistent with the predicted rate α ¼ 1. The

n ¼ 2 simulations show a higher convergence rate likely due to

dominant higher order terms. Some anomalies are not visible.
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with m ¼ 0. These modes are also static and admit

simple analytical solutions [35]. Along the polar axis these

solutions read

Ψl0ðzÞ ¼
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3M=rp
p

M
Yl0ðnxÞ

× ðQlðrp=M − 1ÞPlðz=M − 1ÞΘðrp − zÞ
þQlðz=M − 1ÞPlðrp=M − 1ÞΘðz − rpÞÞ; ð53Þ

where Pl and Ql are Legendre functions of the first and

second kind, respectively, nx is the normal vector pointing

in the direction of the x coordinate axis, and Θ is the

Heaviside function. The full solution along the z-axis is

then given by

ΨzðzÞ ¼ q
X

@

l¼0

Ψl0ðzÞYl0ðnzÞ; ð54Þ

where nz is normal vector pointing in the coordinate z

direction. The expansion (54) converges exponentially in l
everywhere except in the neighborhood of z ¼ rp, where

the convergence is too slow to yield good results in

practice. We therefore ignore this region and cut it out

of plots when comparing with the analytical solution Ψz.

Figure 6 shows the relative error jΨN −Ψzj=Ψz between

our numerical worldtube solutions ΨN and Eq. (54),

computed at late evolution time, after ΨN has settled into

its steady state. The error is fairly constant along the axis. It

is immediately clear that smaller R and higher n lead to

improved agreement.

To investigate convergence with worldtube radius, we

define the L1-norm

kfðxÞk ≔

Z

100M

10M

jfðxÞjdx; ð55Þ

which we use to integrate the relative error shown in Fig. 6

between z ¼ 10M and z ¼ 100M for each simulation.

Using this norm, the top panel of Fig. 7 plots the relative

differences between the analytical solution Eq. (54) and

numerical solutions ΨN using various R and n and evalua-

ted at late time in steady state. Each symbol represents the

integrated, relative error of a simulation’s final value. Also

plotted is a best fit of the error convergence?Rα, where R is

the worldtube radius and α is the global convergence order.

The lower panel of Fig. 7 shows the local convergence

order αloc as defined in Eq. (48).

As explained in Sec. IV E, we expect the convergence

order α ¼ nþ 2 in the volume outside the worldtube. At

order n ¼ 2, the global convergence order is best fit to α ¼
4.07 which matches the predicted error. Order 1 has a fitted

global convergence order of 3.14 and a local convergence

order close to this value across the worldtube radii sampled.

For the zeroth-order expansion, a global value of 2.33 is

calculated, but the local order consistently decreases with

smaller worldtube radii, which suggests that the error might

FIG. 6. The relative error of the scalar field Ψ along the z-axis
compared to the analytical solution Ψz given by Eq. (54). We

show two simulations with worldtube radii 1.6M and 0.6M for

each order, 0, 1 and 2. The error decreases with higher order or

smaller worldtube radius, as expected. A small region is cut out

around z ¼ rp ¼ 5M, where Eq. (54) converges too slowly to be

calculated to sufficient accuracy in practice.

FIG. 7. Top panel: the relative difference between the numeri-

cal, retarded field ΨN along the z-axis and the analytical solution
Ψz given in Eq. (54), integrated between z ¼ 10M and z ¼ 100M
using the L1-norm of Eq. (55). Each cross represents the final

value of a simulation. The straight lines are a best fit to the power-

law relation ε ? Rα. Bottom panel: the local convergence order

between the simulations of adjacent worldtube radii as defined in

Eq. (48). The simulations with n ¼ 1 and n ¼ 2 show a constant

convergence order consistent with the predicted rate α ¼ nþ 2.

The n ¼ 0 simulations show a higher convergence rate at larger

worldtube radii but approach the expected value at smaller radii.
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still get contributions from higher-order terms at the larger

worldtube radii, similar to the zeroth-order expansion

in Fig. 4.

C. Solution along the x-axis

The tests of our method so far compared to previously

known data, either at the position of the charge or on the

z-axis. We now evaluate the convergence with worldtube

radius in the volume, at locations where no analytic

solution is available. To this end, we evaluate our numerical

solutions ΨN along the corotating x̄-axis, which passes

through the center of the Schwarzschild black hole and the

point charge. The settled field along this axis is shown as

the blue curve in Fig. 3. The simulation with n ¼ 2 and

R ¼ 0.4M is used as a reference solution, denoted Ψref ,

since it has the lowest error inside the worldtube and along

the z-axis, as demonstrated above.

Figure 8 shows the relative difference with respect to the

reference solution between x ¼ 1.9M and x ¼ 100M for

two sample simulations at each order. The field along the

x-axis has more features as it lies in the orbital plane of the

charge. The error along the x-axis is therefore not quite as
smooth as along the z-axis; for instance at x ≈ 80M some

features are apparent, which coincide to a wave-crest inΨN

(see Fig. 3). The error decreases with both a higher

expansion order n and a decreasing worldtube radius R
as is expected.

To quantify the convergence with respect to R we

compute the norm Eq. (55) integrated along the comoving

x-axis, kΨN ðxÞ −ΨrefðxÞk. This difference, normalized, is

plotted in Fig. 9, where each marker represents an indi-

vidual simulation. The straight lines show power law fits

?Rα. In the bottom panel we show the local convergence

order αloc as defined in Eq. (48). The convergence rates in

worldtube radius R are close to the expectation from

Eq. (45), α ¼ nþ 2, with global convergence order α

equal to 2.25, 3.18, 4.29 for orders 0, 1 and 2, respectively.

For n ¼ 0, the local convergence order αloc is steadily

decreasing with the worldtube radius R toward the expected

value of α ¼ 2, which suggests it is just entering the

convergent regime here. The local convergence rate of the

n ¼ 2 simulations appears to jump slightly at the smallest

worldtube radius sampled, which we attribute to numeri-

cal error.

VI. CONCLUSIONS

In this paper we continue the work of [35] and explore a

novel approach to simulating high mass-ratio binary black

holes. A large region (worldtube) is excised from the

numerical domain around the smaller black hole, to alleviate

the limiting CFL condition due to small grid spacing in this

region. The solution inside the worldtube is represented by a

perturbative approximation that is determined by the numeri-

cal solution on the boundary and in turn provides boundary

conditions to the numerical evolution.

We test this method using the toy problem of a scalar

charge in circular orbit around a central black hole. The

simulations are carried out in 3þ 1D using SPECTRE, the

new discontinuous Galerkin code developed by the SXS

collaboration. In order to develop algorithms that general-

ize to the full GR problem, we do not decompose our

solution into spherical harmonics as is the usual approach.

FIG. 8. The relative error along the x-axis between x ¼ 10M
and x ¼ 100M for two sample simulations of each order. The

worldtube is centered at x ¼ 5M and cut out from the plots.

FIG. 9. Top panel: the relative error ε integrated along the

comoving x-axis compared to a reference solution Ψref with

n ¼ 2 and R ¼ 0.4M. Each cross represents a simulation, and the

straight lines are a best fit of the relation ε ? Rα. Bottom panel:

the local convergence order as defined in Eq. (48). At first and

second order, the simulations reproduce the expected conver-

gence order of α ¼ nþ 2. At zeroth order, the local convergence

approaches the expected order for smaller worldtube radii, likely

indicating that the error still has contributions from higher-order

terms in this regime.

NIKOLAS A. WITTEK et al. PHYS. REV. D 108, 024041 (2023)

024041-14



We split the solution near the scalar charge into a puncture

field, which is fully determined as a local expansion in

Sec. III, and a regular field, which is a smooth Taylor series

with undetermined coefficients. The expansion coefficients

in the regular field are determined by (i) the numerical

solution on the worldtube boundary and (ii) the scalar wave

equation as described in Sec. IV. Our puncture is con-

structed from the Detweiler-Whiting singular field,

allowing us to calculate the scalar self-force from our

regular field.

We implement the described matching scheme for orders

n ¼ 0, 1 and 2 and perform numerical simulations for a

circular orbit of radius rp ¼ 5M for a variety of worldtube

radii. In Sec. IV E we make a theoretical argument for how

the error introduced by the excision should converge

with the excision radius in- and outside the worldtube.

We confirm these results in Sec. V and show that the

scheme solves the scalar wave equation with high accuracy

even at relatively large worldtube radii. We further validate

our method by comparing against known values of the

Detweiler-Whiting regular field and its first derivatives on

the particle’s worldline.

The ultimate goal of the worldtube method is to speed up

BBH simulations at large mass-ratios by alleviating the

CFL condition. Figure 10 considers the time steps sizes �t
taken by our primary simulations. Plotted is �t=R vs the

worldtube radius R. Note that the resolutions of our

simulations were adjusted such that for each simulation,

numerical truncation error is subdominant compared to the

worldtube error, resulting in differences in �t for simu-

lations with different expansion orders at the same world-

tube radius. Nevertheless, it is apparent that for fixed order,

the time step is roughly proportional to the worldtube

radius. Therefore, the promise that larger worldtube radii

allow larger time steps ?R indeed holds. Ideally, the

worldtube error should be comparable to or somewhat

smaller than the NR error. Our results show that this can be

achieved by either decreasing the worldtube radius or by

increasing the expansion order. The former, of course,

would lead to a smaller grid-spacing and a more signi-

ficant CFL condition, whereas the latter has no noticeable

performance cost. We have discussed the next steps toward

tackling BBH simulations using the worldtube method

in [35].

Before tackling the full BBH problem, our next step will

be to include the backreaction of the scalar field onto the

charged particle [61]. In the present work we have com-

puted the first derivatives of the Detweiler-Whiting regular

field, from which we can construct the scalar self-force, but

we have so far ignored the effect of that force. Once it is

accounted for, the equations of motion for the scalar charge

q of bare mass μ0 are given by [62]

uβ∇βðμuαÞ ¼ q∂αΨ
R; ð56Þ

μ ¼ −qΨR þ μ0: ð57Þ

Allowing the particle’s trajectory to evolve dynamically in

this way will be an important step toward the full gravity

problem. SPECTRE uses a series of control systems which

adjust certain time-dependent parameters of smooth coor-

dinate maps to deform the grid [46]. While they usually

ensure that excision spheres stay inside a black hole’s

apparent horizon, we will use these control systems to

enable the worldtube to track the inspiraling scalar charge.

The control systems are needed for the binary black hole

case and such a scalar evolution will ensure they work as

expected.
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APPENDIX A: CONSTRAINT-PRESERVING

BOUNDARY CONDITIONS

The domain features two boundaries which require

boundary conditions on the characteristic fields flowing

into the domain: the worldtube boundary and the outer

boundary. For the fields Z1 and Z2
i (arising from reduction

to first-order form), we use constraint-preserving boundary

conditions which are formulated analogously to [44] and

applied using the Bjorhus condition. We begin by rewriting

Eq. (6) in terms of the characteristic fields with respect to a

boundary with normal vector n̂i,

Ci ¼ ∂iΨ −Φi ðA1Þ

¼ ∂iZ
1 −

1

2
ðUþ −U−Þn̂i − Z2

i : ðA2Þ

The normal component of this constraint is given by

n̂iCi ¼ n̂i∂iZ
1 −

1

2
ðUþ −U−Þ − n̂iZ2

i : ðA3Þ

Vanishing of the constraints implies in particular that the

normal component vanishes, n̂iCi ¼ 0, we interpret as a

boundary condition on Zi:

ðn̂i∂iZ1ÞBC ¼ 1

2
ðUþ −U−Þ þ n̂iZ2

i : ðA4Þ

Applying the same procedure to Eq. (7) yields

n̂iCij ¼ n̂i∂iZ
2
j þ

1

2
n̂in̂j∂iðUþ −U−Þ

−
1

2
∂jðUþ − U−Þ − n̂i∂jZ

2
i ðA5Þ

and

ðn̂i∂iZ2
jÞBC ¼ −

1

2
n̂in̂j∂iðUþ − U−Þ

þ 1

2
∂jðUþ þU−Þ þ n̂i∂jZ

2
i : ðA6Þ

In order to implement Eqs. (A4) and (A6), we return to

the evolution equations in first order form,

∂tψ
α þ Aiα

β ∂iψ
β ¼ Fα: ðA7Þ

Projecting onto the characteristic fields, one finds

eâað∂tψa þ Aia
b ∂iψ

bÞ ¼ eâaF
a; ðA8Þ

∂tψ
â þ eâaA

ia
b ðPk

i þ n̂kn̂iÞ∂kψb ¼ eâaF
a; ðA9Þ

∂tψ
â þ vðâÞn̂

k
∂kψ

â þ eâaA
ia
b P

k
i ∂kψ

b ¼ eâaF
a: ðA10Þ

Boundary conditions are now applied by modifying

the term vðâÞn̂
k
∂kψ

â: Iff vðâÞ < 0 at a grid-point on the

boundary, then the following modified evolution equation

is used at that grid-point:

dtψ
â ¼ Dtψ

â þ vðâÞðn̂i∂iψ â − ðn̂i∂iψ âÞBCÞ: ðA11Þ

Here

Dtψ
â ≡ −eâaA

ia
b ∂iψ

b þ eâaF
a ðA12Þ

represents the volume time-derivative of the characteristic

fields. In other words, the time-derivative arising from the

volume equations is corrected with a term that ensures the

desired boundary condition. Summing Eqs. (A3) and (A4)

yields

n̂i∂iZ
1 − ðn̂i∂iZ1ÞBC ¼ n̂iCi: ðA13Þ

Analogously, combining Eqs. (A5) and (A6) results in

n̂i∂iZ
2
j − ðn̂i∂iZ2

jÞBC ¼ n̂iCij: ðA14Þ

Finally, we insert this into the Bjorhus condition (A11) to

obtain

dtZ
1 ¼ DtZ

1 þ vZ1 n̂iCi; ðA15Þ

dtZ
2
i ¼ DtZ

2
i þ vZ2 n̂iCij; ðA16Þ

where boundary corrections are only imposed when the

corresponding characteristic speeds are negative.

APPENDIX B: MATCHING METHOD

AT ARBITRARY ORDER

The main text in Sec. IV develops our matching scheme

up to order n ¼ 2. Here we show how this can be

generalized to arbitrary order n.
First, we introduce some notation and useful identities.

We make use of multi-index notation according to [78]

where a capital index L stands for a collection of l indices,

AL ¼ Ak1k2���kl : ðB1Þ

The tensor product of l coordinate vectors or l normal

vectors is abbreviated as

xL ¼ xk1xk2 � � � nkl ; ðB2Þ

nL ¼ nk1nk2 � � � nkl ; ðB3Þ
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and the tensor product of l Kronecker symbols is written as

δ2L ¼ δk1k2δk3k4 � � � δk2l−1k2l : ðB4Þ

Symmetric, trace-free (STF) tensors are written with

angular brackets around the indices. The combination of l
STF normal vectors is defined as [79]

nhLi ¼ nhk1 � � � nkli ¼
X

bl=2c

k¼0

c̃lkδ
ð2KnL−2KÞ; ðB5Þ

where

c̃lk ¼ ð−1Þk l!ð2l − 2k − 1Þ!!
ð2l − 1Þ!!ðl − 2kÞ!ð2kÞ!! : ðB6Þ

The parentheses in Eq. (B5) indicate indices to be sym-

metrized and bl=2c is the largest integer less than or equal

to l=2. The inverse expression is given by [80]

nL ¼ nk1 � � � nkl ¼
X

bl=2c

k¼0

clkδ
ð2KnhL−2KiÞ ðB7Þ

with

clk ¼
l!ð2l − 4kþ 1Þ!!

ð2l − 2kþ 1Þ!!ðl − 2kÞ!ð2kÞ!! : ðB8Þ

The nhLi provide an orthogonal basis for functions on a

sphere, and each nhLi is an eigenfunction of the Laplacian

∇2 ≔ δab∂a∂b, satisfying ∇2nhLi ¼ −
lðlþ1Þ

ρ2
nhLi. For a

fixed l, the STF tensors nhLi span the same functions as

the set of spherical harmonics Ylmðθ;ϕÞ of rank l. This can
be seen by expressing the normal vector as

ni ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, leading to [78]

Ylm ¼ Y
�hLi
lm nhLi; ðB9aÞ

nhLi ¼ Nl

X

l

m¼−l

Y
hLi
lm Ylm; ðB9bÞ

where

Y
hLi
lm ≔

1

Nl

Z

S2
nhLiY�

lmdΩ; ðB9cÞ

Nl ≔
4πl!

ð2lþ 1Þ!! : ðB9dÞ

We start by expanding the regular scalar field ΨRðt; xiÞ
and its time derivative in a power series around the charge’s

position to arbitrary order n as shown in Eq. (B10). We will

show that all free components of the expansion can be

uniquely determined at each time step from (i) numerical

data from the worldtube boundary and (ii) the Klein-

Gordon equation (3).

1. Worldtube boundary data

We carry the Taylor expansion of the regular field given

in Eq. (25) to nth order and give an analogous expansion

for the time derivative

ΨRðt; x{̄Þ ¼
X

n

l¼0

Ψ
R
k̄1���k̄n

ðtÞxk̄1 � � � xk̄n þOðρnþ1Þ; ðB10aÞ

∂tΨ
Rðt;x{̄Þ¼

X

n

l¼0

_Ψ
R
k̄1���k̄nðtÞx

k̄1 � � �xk̄n þOðρnþ1Þ; ðB10bÞ

which has 1

2

P

n
i¼0

ðiþ 2Þðiþ 1Þ ¼ 1

6
ðnþ 3Þðnþ 2Þðnþ 1Þ

components.

The continuity condition at the worldtube boundary is

given by Eq. (28). Both sides of this equation can be expres-

sed in a basis of STF normal vectors. The regular field

ΨRðts; x{̄Þ on the left is transformed using Eq. (B7) to give

ΨRðts;xiÞ¼
X

n

l¼0

ρlΨR
L̄
ðtsÞ

X

bl=2c

k¼0

clkδ
ð2K̄nhL̄−2K̄iÞ ðB11Þ

¼
X

n

l¼0

X

bl=2c

k¼0

ρlclkΨ
R
L̄−2K̄{̄1 {̄1���{̄k {̄kðtsÞn

hL̄−2K̄i: ðB12Þ

As in Sec. IV, the right-hand side of Eq. (28) is calculated by

projecting the numerical, regular field onto spherical har-

monics up to order n to obtain the coefficients aN ;R
lm . This

expansion is then transformed to STF normal vectors using

Eq. (B9a),

X

n

l¼0

Ψ
N ;R

hL̄i ðtsÞnhL̄i ¼
X

n

l¼0

X

l

m¼−l

almðtsÞYlmðx{̄Þ: ðB13Þ

The orthogonality of the STF normal vectors allows us to

matchEqs. (B12) and (B13) order by order, yielding a system

of algebraic equations:

Ψ
N ;R

hL̄i ðtsÞ ¼
X

bn−l
2
c

k¼0

ρlþ2kclþ2k
k Ψ

R
L̄{̄1 {̄1���{̄k {̄kðtsÞ; 0 ≤ l ≤ n:

ðB14Þ

Each tensor component in the set fΨN ;R

hL̄i g
l
with 0 ≤ l ≤ n

fixes one degree of freedom of the Taylor coefficients fΨR
L̄
g
l

for a total of ðnþ 1Þ2 equations. The matching equations for

the time derivative coefficients f _ΨR
L̄ gl are derived com-

pletely analogously.
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2. Klein-Gordon equation

The remaining components of fΨR
L̃
g
l
are fixed by the

Klein-Gordon equation (35). The metric quantities gμν and
�μ are expanded to the same order n as the regular field in

the grid frame x{̄,

gμ̄ ν̄ðts; x{̄Þ ¼
X

n

l¼0

g
μ̄ ν̄

L̄
xL̄ þOðρnþ1Þ; ðB15Þ

�μ̄ðts; x{̄Þ ¼
X

n

l¼0

�
μ̄

L̄
xL̄ þOðρnþ1Þ; ðB16Þ

where the expansion coefficients are given by

g
μ̄ ν̄

L̄
≔

1

l!
∂L̄g

μ̄ ν̄ðts; x{̄pÞ; ðB17Þ

�
μ̄

L̄
≔

1

l!
∂L̄�

μ̄ðts; x{̄pÞ: ðB18Þ

Here, recall, x{̄p ¼ ðrp; 0; 0Þ. Substituting these expansions

into the Klein-Gordon equation, we obtain

0 ¼
"

X

n

l¼0

g
μ̄ ν̄

L̄
xL̄
"

∂μ̄∂ν̄

"

X

n

l¼0

Ψ
R
L̄
xL̄
"

þ
"

X

n

l¼0

�
μ̄

L̄
xL̄
"

∂μ̄

"

X

n

l¼0

Ψ
R
L̄
xL̄
"

: ðB19Þ

We now split the partial derivative into its time part ∂t and

spatial part ∂{̄ and solve order by order in ρ. The kth-order
equation reads

0 ¼
X

k

l¼0

ðgtt
K̄−L̄

Ψ̈
R
L̄
þ 2ðlþ 1Þgt{̄

K̄−L̄
_Ψ
R
L̄ {̄

þ ðlþ 2Þðlþ 1Þg{̄ |̄
K̄−L̄

Ψ
R
L̄ {̄ |̄

− �t
K̄−L̄

_Ψ
R
L̄

− ðlþ 1Þ�{̄
K̄−L̄

Ψ
R
L̄ {̄
Þ 0 ≤ k ≤ n − 2; ðB20Þ

where we have made use of the identity ∂{̄aL̄ðtÞxL̄ ¼
laL̄−1{̄ðtÞxL̄−1 for aL̄ completely symmetric aðL̄Þ ¼ aL̄.

The set of equations (B20) fixes 1

6
ðnþ 1Þnðn − 1Þ com-

ponents of ΨR which, when combined with equations

Eq. (B14), fixes all components of the expansion (B10).
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