PHYSICAL REVIEW D 108, 024041 (2023)

Worldtube excision method for intermediate-mass-ratio inspirals:
Scalar-field model in 3+ 1 dimensions

Nikolas A. Wittek ,1 Mekhi Dhesi ,2 Leor Barack ,2 Harald P. Pfeiffer ,1 Adam Pound ,2 Hannes R. Riiter ,3
Marceline S. Bonilla ,4 Nils Deppe > Lawrence E. Kidder ,6 Prayush Kumar .’ Mark A. Scheel ,5
William Throwe ,6 and Nils L. Vu®™!

'Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Miihlenberg 1, 14476 Potsdam, Germany
2School of Mathematical Sciences and STAG Research Centre, University of Southampton,
Southampton, SO17 1BJ, United Kingdom
3CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
*Nicholas and Lee Begovich Center for Gravitational-Wave Physics and Astronomy,
California State University Fullerton, Fullerton, California 92831, USA
>Theoretical Astrophysics, Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, California 91125, USA
SCornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA
"International Centre for Theoretical Sciences, Tata Institute of Fundamental Research,
Bangalore 560089, India

® (Received 12 April 2023; accepted 26 May 2023; published 20 July 2023)

Binary black hole simulations become increasingly more computationally expensive with smaller mass
ratios, partly because of the longer evolution time, and partly because the lengthscale disparity dictates
smaller time steps. The program initiated by Dhesi et al. [Phys. Rev. D 104, 124002 (2021)] explores a
method for alleviating the scale disparity in simulations with mass ratios in the intermediate astrophysical
range (107 < g < 1072), where purely perturbative methods may not be adequate. A region (“worldtube™)
much larger than the small black hole is excised from the numerical domain, and replaced with an analytical
model approximating a tidally deformed black hole. Here we apply this idea to a toy model of a scalar
charge in a fixed circular geodesic orbit around a Schwarzschild black hole, solving for the massless Klein-
Gordon field. This is a first implementation of the worldtube excision method in full 3 + 1 dimensions. We
demonstrate the accuracy and efficiency of the method, and discuss the steps toward applying it for
evolving orbits and, ultimately, in the binary black-hole scenario. Our implementation is publicly

accessible in the SPECTRE numerical relativity code.
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I. INTRODUCTION

Inspiraling binary black holes (BBHs) are the most
numerous source of gravitational wave signals detected
by the LIGO and Virgo observatories [1-4]. The mass ratio
is one of the most important characteristics of these
binaries, and observations so far [3,5-8] predominantly
find mass ratios close to unity. However, GW190814 and
GW200210_092254 have mass ratios g = m,/m; ~0.11
[4,9], and GW191219_163120—where the secondary’s
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mass suggests it is a neutron star—is estimated to have
q ~0.04 [4].

It is likely that upcoming observing runs by ground-
based detectors will continue to record binaries with small
mass-ratios. Future ground-based detectors like the
Einstein Telescope [10] and Cosmic Explorer [11], featur-
ing an improved low-frequency sensitivity, will be able to
detect the capture of stellar-mass black holes (BHs) by
intermediate-mass BHs, with mass-ratios down to ¢ ~ 1073
[12]. Moreover, space-borne detectors, like the LISA
observatory [13,14], will be sensitive to binaries with mass
ratios in the entire range from g ~ 1 to extreme mass-ratio
inspirals with ¢ ~ 107 [12,15-17].

In anticipation of this remarkable expansion in obser-
vational reach, it is important to develop accurate theo-
retical waveform templates that reliably cover the entire
relevant range of mass ratios. Standard numerical relativity
(NR) methods [18] work well for mass ratios in the range
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0.1 < g <1 (see,e.g., [19]). However, simulations become
progressively less tractable at smaller g, and few numerical
simulations have been performed at g < 0.1 so far. The root
cause is a problematic scaling of the required simulation
time with g. Fundamentally, one expects the required
simulation time to grow in proportion to g~2, where one
factor of ¢! is associated with the number of in-band
orbital cycles, and the second factor g~' comes from the
Courant-Friedrich-Lewy (CFL) stability limit on the time
step of the numerical simulation, arising from the require-
ment to resolve the smaller black hole. The state of the art
in small-g NR is represented by the recent simulations
performed at RIT of the last 13 orbital cycles prior to
merger of a black-hole binary system with ¢ = 1/128
[20,21]. Head-on simulations, where the needed evolution
time is orders of magnitudes shorter than for inspirals, are
possible at even smaller mass-ratios [22,23]. While these
simulations represent an important proof of concept, their
computational cost is extremely high, and it is presently
impossible to explore the full parameter space including
spin and eccentricity.

Binaries with extreme mass-ratios, say ¢ < 107%, corre-
sponding to a compact object orbiting a massive black hole
in a galactic nucleus, can be modeled with a perturbative
expansion in ¢. This “gravitational self-force” (GSF)
approach [24,25] incorporates order-by-order in ¢ the small
deviations of the motion of the small body away from the
geodesic motion that applies for test-bodies. The GSF
approach is the only method for modeling extreme-mass-
ratio inspirals, and development is ongoing toward waveform
models suitable for signal identification and interpretation
with LISA [26-31]. With NR being well-suited to compa-
rable masses and the GSF approach to extreme mass-ratios,
the question arises of how to model the intermediate mass-
ratio regime. For simple binary systems (of nonspinning
black holes in quasicircular or eccentric inspirals) NR
simulations suggest [32,33] that GSF calculations may be
sufficiently accurate even at mass-ratios reaching the NR
regime. “Postadiabatic” GSF waveforms [31] for nonspin-
ning, quasicircular binaries have shown those predictions
were somewhat overoptimistic in the ¢ > 0.1 range [34], but
they have borne out the prediction for smaller mass ratios
<0.1. However, it remains unclear whether the two methods,
separately applied, can achieve reliable waveform models of
intermediate-mass-ratio inspirals over the full astrophysi-
cally relevant parameter space.

In this paper we continue the work of [35] to develop a
new approach to the simulation of intermediate-mass-ratio
systems, combining NR techniques with black hole per-
turbation theory. The general idea is to excise a large region
around the smaller black hole. Inside this region—a “world-
tube” in spacetime—an approximate analytical solution is
prescribed for the spacetime metric, arising from the
perturbation theory of compact objects in a tidal environ-
ment. An NR simulation is set up for the binary, in which

the worldtube’s interior is excised from the numerical
domain, and replaced with the analytical solution. At each
time step of the numerical evolution, the numerical solution
(outside the worldtube) and analytical solution inside are
matched across the worldtube’s boundary, in a process that
fixes a priori unknown tidal coefficients in the analytical
solution, gauge degrees of freedom, and also provides
boundary conditions to the NR evolution. The intended
effect of this construction is to partially alleviate the scale
disparity that thwarts the efficiency of the numerical
evolution at small ¢g: The smallest length scales on the
numerical domain is now that of the worldtube-radius R,
rather than the scale m, of the smaller body. As a result, the
CFL limit is expected to increase by a factor R/m, > 1,
with a comparable gain in computational efficiency.

In Ref. [35], as also in the present work, we consider a
linear scalar-field toy model where the small black hole is
replaced with a pointlike scalar charge moving on a circular
geodesic around a Schwarzschild black hole. Instead of
tackling the full Einstein’s equations, one solves the less
complicated massless linear Klein-Gordon equation for a
scalar field. Our previous work [35] decomposed the scalar
field into spherical harmonics and solved the resulting
1 4 1-dimensional (1 4 1D) partial differential equation
for each mode separately. Such a modal decomposition will
not be possible in the fully nonlinear BBH case. As a step
toward the BBH case, in this paper, we derive and implement
a generalized matching scheme in full 3 + 1D. Our imple-
mentation is publicly accessible as part of the SPECTRE
platform [36], a new general-relativistic code developed by
the SXS collaboration, which employs a nodal discontinuous
Galerkin method with task-based parallelism. The input file
for the simulations presented in this paper is given as
Supplemental Material [37]. (An evolution of the scalar
field equation in 3 + 1D with a point source was performed
in [38] using a different method.)

The paper is organized as follows. In Sec. II we describe
our scalar-field model, and formulate it as an initial-
boundary evolution problem suitable for implementation
on SPECTRE. Section III describes the construction of the
approximate analytical solution inside the worldtube. In
Sec. IV, we show how the unknown parameters of this local
solution can be continuously determined from the evolution
data on the worldtube boundary, using a set of ordinary
differential equations (in time) derived from the Klein-
Gordon equations. The fully specified solution inside the
worldtube is then used to formulate boundary conditions
for the evolution system. We present the results of our
simulations in Sec. V, and demonstrate a good agreement
with both analytical solutions in limiting cases, and
numerical results from other simulations. We explore the
convergence of our numerical solutions with worldtube
size, and show that its rate matches our theoretical expect-
ations. Finally, in Sec. VI, we summarize our findings and
discuss the next steps in our program. We use geometrized
units throughout the text with G = ¢ = 1.
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II. NUMERICAL FIELD EVOLUTION OUTSIDE
THE WORLDTUBE

We place a pointlike particle with scalar charge ¢ on a
fixed, geodesic circular orbit around a Schwarzschild black
hole of mass M. The evolution of the scalar field ¥ is
governed by the massless Klein-Gordon equation,

X —x3(7))

¢V NV = —4 /54(
Y =—4r
! K V=9

Here ¢ is the inverse Schwarzschild metric, and V# is the
covariant derivative compatible with it. x§(z) is the
particle’s geodesic worldline parameterized in terms of
proper time 7. In Kerr-Schild coordinates x* = (1, x"),
parametrized by coordinate time ¢, the worldline with
orbital radius r, and angular velocity @ = (M/r3)"/? is
given by

dr. (1)

x4 (t) = (t,r, cos(wt), r, sin(wt), 0), (2)

where we have fixed the orbital plane and phase without
loss of generality.
We excise the interior of a sphere with constant Kerr-

Schild radius R = \/ 8;j(x" —x%)(x/ — x}), centered on the
particle’s position, from the numerical domain. We refer to
this excision region as the worldtube and elaborate in
Sec. IV how boundary conditions are provided to the
evolution domain.

Outside the worldtube, the numerical evolution of the
scalar-field variable WV (“A for “numerical,” to contrast
with the analytical solution inside the worldtube, to be
introduced below) is governed by the source-free Klein-
Gordon equation on the fixed background spacetime:

¢V, V,¥N = 0. (3)
The background spacetime is given in the usual 3 + 1 split,
ds? = —a?di* +y,;(dx" + pidr)(dx/ + pidr),  (4)

where a is the lapse, ' is the shift and y; ; is the spatial
metric on ¢t = const hypersurfaces. The background space-
time of our simulations is a single Schwarzschild black hole
in Kerr-Schild coordinates.

The Klein-Gordon equation is transformed into the
standard first-order form by introducing the auxiliary
variables [39]

M=—a (0¥ - pio, V), (5a)
O, = 9, PV, (5b)

This introduces two constraint fields [40],

Ci - 5,‘1’/\[ - CDI', (6)

which must vanish for any solution to the original, second-
order evolution equation. Following [41], we write the first-
order evolution equations for the vacuum Klein-Gordon
equation (3) as

OV — (1 +7)po ¥ = —all —y,f®;, (8a)

OI1 — Ao, T1 + ay™ 0,®; — y,7,5'0, ¥V
= aKTl + ol '®; — yijq>i5j06 - 1172'®;, (8b)

0,®; — fr0,®; + ad,I1 — y,a0, ¥V

The lapse a, shift ', spatial metric vij» inverse spatial
metric y*, trace of the extrinsic curvature K := y”K;;, and
trace of the spatial Christoffel symbol I" := y/*T; appear-
ing in Eqgs. (8) depend only on the background
Schwarzschild spacetime. Explicitly, they read as follows
in Kerr-Schild coordinates:

2MN\ —1/2
a= (1 +—> , (9a)
r
. 2Mo*
p= 2 (9b)
2Ma* | |
Vij = 61/ 3 XX 5ik6jl’ (9C)
2
yil = 8 = S5 xixd, (9d)
2Ma? 3IM
K= 14+—1, 9
r? ( + r> (%)
) 8M?* +3Mr .
R L) of
(Mr+ 322" o)

where r = 1/5,~jx"xk is the areal radius from the central

black hole. The variables y; and y, appearing in Egs. (8) are
constraint damping parameters. Compared to the first-order
reduction presented in [40], the additional term y,y,4'C; in
Eq. (8b) ensures that the system is symmetric hyberbolic
for any values of y; and y, [41]. For y,, we found that a
central Gaussian profile y, = Ae~)’ 4 ¢ with A = 10,
6=10""/M and ¢ = 107* results in a long-term stable
evolution for all tested systems. We choose y; =0
throughout.
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The evolution equations (8) are in the general symmetric
hyperbolic form

o + Ay oyb = Fe, (10)

with w4 := (P, I1, ®;) representing the set of first-order
variables, enumerated by the indices a and b. For the
imposition of boundary conditions at a boundary with
normal co-vector 71;, we solve the (left) eigenvalue problem

eaaﬁiAmb = U(a)eab (11)

for the eigenvalues v, and eigenvectors e?,, enumerated
by the index a. The v, are known as the characteristic
speeds, and the parentheses indicate that there is no implicit
sum convention on the right hand side of Eq. (11). The
covector 71; is normalized with respect to the three metric,
ie. yYa;A; =1, and we define 2’ = y"7;. The character-
istic fields w? are obtained by projecting the evolved
variables y“ onto the set of eigenvectors e?,:

pl = eyt (12)

For the evolution system (8), the characteristic fields are
wi = (Z',73,Ut,U") with

7' =N, (13a)
7} = Pto,, (13b)
Ut =TI+ ai®, — y, ¥V, (13c)

A

Here, P¥ =% —fikA; denotes the projection operator
orthogonal to 7', so that Z? carries only two degrees of
freedom. The corresponding characteristic speeds are
vy = =Bl +71), v =—-a;p and vy = - £ a.
We note that the fields U* reduce to the known physical
retarded/advanced derivatives 0,% + 9,¥ in flat space with
yo> = 0. The other characteristic fields result from the
reduction of the PDE system to first order.

Boundary conditions must be specified at the external
boundaries of the domain for each characteristic field, if
and only if it is flowing into the domain, specifically those
with negative characteristic speeds. There are three external
boundaries in our domain: one excision sphere within the
central black hole, one excision sphere around the scalar
charge (the surface of the worldtube), and the outer
boundary.

At the black hole excision sphere, all characteristic
fields are flowing out of the computational domain into
the excised domain, so no boundary conditions need to
be applied. For the outer boundary and at the world-
tube boundary, the fields Z', Z? may require boundary

conditions, while U~ always requires ones and U™ never
requires ones.

Boundary conditions for the physical characteristic field
U~ at the outer boundary are derived from the second-order
Bayliss-Turkel radiation condition [42]. These boundary
conditions are applied with the method of Bjorhus [43].
At the worldtube boundary, the local solution inside the
worldtube is used to provide boundary conditions for U™,
as explained in detail in Sec. IV.

Boundary conditions for Z' and Z? can be derived by
requiring that there are no constraint violations flowing
into the domain [44], as described in Appendix A. These
constraint-preserving boundary conditions are applied with
the method of Bjorhus [43] at the worldtube boundary and
at the outer boundary; see Eq. (A11).

The evolution equations (8) are solved with SPECTRE
[36], which employs a nodal discontinuous Galerkin (DG)
scheme in 3 4 1 dimensions. The domain is built up of
several hundred DG elements, each endowed with a tensor
product of Legendre polynomials using Gauss-Lobatto
quadrature. The elements are deformed from unit cubes
to fit the domain structure using a series of smooth maps
as illustrated in Fig. 1. Discontinuous Galerkin methods
require a choice of numerical flux that dictates how fields
are evolved on element boundaries where they are multiply
defined [45]. Here we employ an upwind flux.

SPECTRE uses dual coordinate frames [46] to solve the
evolution equations. The components of the tensors in the
evolution Eqgs. (8) are constructed in Kerr-Schild coordi-
nates x’. We refer to these as the inertial frame because the
coordinates are not rotating with respect to the asymptotic

FIG. 1. Tllustration of the computational domain: Shown is the
equatorial plane, with height-deformation proportional to the
value of the scalar field. The grid lines correspond to the DG-
element boundaries of the 3-D numerical evolution. The central
blue/green peak represents the region inside the worldtube, where
the approximate solution is dominated by the singularity of the
scalar field at the point-charge. Left of the peak an excision region
is cut out within the horizon of the central black hole. A zoomed-
out view of the entire domain is shown in Fig. 2.
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frame at spatial infinity. The evolution equations for the
inertial components are solved as functions of corotating
coordinates (7, x') = (7, X, y,Zz) given by the transformation

=1, (14a)
X = xcos(wr) + ysin(wr), (14b)
y = —xsin(wt) + y cos(wt), (14c)
7=1z (14d)

Tensor components in this frame we denote with a bar, as
in g 3. For more demanding situations (e.g., binary black
hole simulations), the transformation x’ — x’ can take a
much more complicated form [47,48]. The grid points of
the DG domain, as well as the particle position x}, =
(r 0, 0) are constant in space in these coordinates, which
we will refer to as grid coordinates. The internal worldtube
solution is evolved in the grid frame directly, which
considerably simplifies the formulation of the matching
scheme in Sec. IV.

A Dormand-Prince time stepper is used to advance the
solution of the numerical fields with a global time step. We
apply a weak exponential filter to the evolution fields after
every time step to ensure stability of the evolution.

The code is parallelized using the heterogeneous task-
based parallelism framework CHARM++ [49]. The inclusion
of the worldtube does not adversely impact the parallel
efficiency, as its computational cost is negligible compared
to even a single DG element evaluation, and no additional
communication between cores is introduced.

III. APPROXIMATE SOLUTION INSIDE
THE WORLDTUBE

Inside the worldtube, the scalar field is given by an
analytical expansion in powers of coordinate distance from
the particle’s worldline x,. We use WA to denote this
analytical solution, and we use a formal parameter € = 1 to
count powers of the separation between the worldline and
the field point.

As in Ref. [35], we split the field ¥4 into a puncture field
W7 and a regular field ¥®:

P — PP | PR, (15)

W7 is an approximate particular solution to the inhomo-
geneous equation (1), and it will be fully determined
in advance; W® is an approximate smooth solution to
the homogeneous equation, and it will be determined
dynamically through matching ¥4 to ¥V at the worldtube
boundary.

We express both ¥7 and W* in terms of the coordinate
distance Ax® := x* — X%, where X” is a reference point on

x,. For a given field point x* at coordinate time 7, we let
X == x§(t) be the point on x,, at the same value of ¢, such
that At = 0. Tensors evaluated at X* are written with a tilde,
as in g,,. To facilitate matching P4 to ¥V, we ultimately
express both W7 and WX in the corotating grid coordinates
(t,x") introduced in Eq. (14), but most of this section
applies in both inertial and corotating coordinates.
Unlike in Ref. [35], for ¥7 we use an approximation to
the Detweiler-Whiting singular field [50]; this choice
ensures that we can calculate the scalar self-force directly
from the regular field W*. Covariant expansions of the
Detweiler-Whiting singular field are readily available to
high order in ¢; see Refs. [51-53], for example, with [51]
deriving the scalar singular field to the highest order in the
literature, O(e*). These covariant expressions contain
several ingredients. First among them is Synge’s world
function o(x, %) [54], which is equal to half the squared
geodesic distance between x and X. Its gradient, 6, :=

V,o(x,%), is a directed measure of distance from X to x.
The projection of &, tangent to the worldline has magnitude

0= G,il%, (16)

and the projection normal to the worldline has magnitude

s =\ (@ + 1W)6,5. (17)

where i1 is the particle’s four-velocity at time ¢. In terms of
these quantities, the covariant expansion of ¥” through
order € is given by [51,53]

1 € -
\IJP — _ (22 C
q{€s+6s3 (0" = 5%)Cuouo

2
€ ~ ~
+ W [(92 - 352)Qcmﬂw\u - (Q2 - sz)cuo'uzﬂﬁ]

+ O(e%) } (18)
Here
Cuouo = Cop, 1P 16", (19)

Cusuole =V, Copy 176 155 (20)
are contractions of the Weyl tensor C,z,, and its derivative
evaluated at the reference point ¥ on the particle’s
worldline.

We now express the covariant expansion (18) in terms of
Kerr-Schild coordinates. To achieve this we follow the
method in [53], which begins from an expansion of &(x, X)
in powers of Ax?%,
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1._ -
o= Ega/}Axanﬁ + Ay, Ax“AXP Ax
+B aﬁyﬁAx”’Axﬁ Ax? AxP

+ Copyop DX AXP AXY AXOAXP + ... (21)

Differentiating this with respect to X%, we obtain

1 -
[P —f]aﬁAxﬁ + <§ gﬂ}/,(l - 3Aaﬁy> AxﬂAxy

4B 5,5) AxP Ax? Ax®
SC(I/)’J/(S/))AXIJAXYAX(SAX/) + ... (22)

+ (Apsoa —
+ (B[)’yﬁ/),a -

We then use the 1dent1ty 20 = 6,6% to recursively deter-
mine the coefficients A,,,;y, aﬁﬂ;, C{,/M,, and so on. This
yields, for example, Aaﬂy 4g<aﬂ »)- We now contract &,
with the four-velocity, metric and Weyl tensor to get the
coordinate expressions for o, 5, C,pu0, and Cm,m,k, as per
their definitions (16), (17), (19), and (20). Our final
expression for W7 is obtained by substituting all of these
results into Eq. (18) and reexpanding in powers of Ax“.
We write the result in the style of [55]:

1 P3(Ax%) ePg(Ax®)  €?Py(Ax?)
‘szq[;—k St ot +0(e?)].
1 1 1 1

(23)

Here s, = \/ (Gup + Etaﬁ/,)Ax"Ax/’ is the leading coordi-
nate approximation to s, and P,(Ax%) is a polynomial in
Ax®* of homogeneous order 7.

The form (23) is valid in any coordinate system. In the
corotating grid coordinates, the reference point on x, is
iafx?,gt) (t.r,,0,0), and the coordinate separation
Ax! = X! —x,,(t) is Ax=X-r,, Ay=79, and Az =7Z.
The distance s; then reduces to

2M
(51)? = <1 +—> Ax? + Ay? + AZ?

Tp

2M Ax 2
+ (iu)2< ; + rpa)Ay> , (24)
P

where @' = (1 —3M/r,)~"/2. The polynomials P;(Ax?),
Ps(Ax*), and Po(Ax®) are too long to be included
here. Instead we have made them available online as
Mathematica code."

We now turn to the regular field W®. Because it
approximates a smooth homogeneous solution, we can
write it as a Taylor series around . In the grid coordinates,
such an expansion reads

"https://github.com/nikwit/Puncture-Field-KS-Coords.

WR(1,x") = W (1) + e¥R (1) Ax' + * PR (1) Ax'Ax

+ O(e?), (25)

with the notation Wi (1) := WX (¢, x},), WF (1) := o, ¥R (z, x}),
PR (1) = 10,0;¥R (1, x%), and so on. The coefficients ¥L° _;

in this serles contain the full freedom in the approx1mate
solution ¥4, However, not all of these coefficients are
independent; the field equation imposes relationships
between them. As shown in Ref. [56], once the field equation
is enforced, only the trace-free piece of each T?l?.jk is left
undetermined. An nth-order approximate solution ¥* con-
tains Y 7 (2k+1) = (n+1)* of these undetermined
functions. All other functions of ¢ in W* are related to these
by ordinary differential equations (ODEs) that result from the
field equations. In the next section we show how all the
functions W ; () can be determined through the combi-
nation of (i) matching ¥ to PN and (ii) solving the ODEs in
t that follow from the field equation.

IV. MATCHING METHOD

The idea behind the matching method is straightforward.
We numerically solve the scalar wave equation on a
Schwarzschild background, excising the worldtube con-
taining the scalar charge from the numerical domain. Inside
the worldtube, the solution is given by the analytical
approximation ¥4 = W7 + WR described above. Outside
the worldtube we have the numerical field ¥V, We demand

gV L wPr o gr (26)

where = henceforth represents an equality that holds on
the (2 4+ 1D) worldtube’s boundary I'. We will show that
this matching condition, together with the scalar wave
equation, fully determine the regular field W® inside the
worldtube. This solution, in turn, provides boundary
conditions for the evolution of the numerical field, spe-
cifically for U~.

We formulate the matching scheme in the comoving
grid coordinates x' introduced in Eq. (14). The Euclidean

distance to the particle is defined as p := |/6;;Ax'Ax/ =

\/6;;Ax' Ax/. The boundary of the worldtube is located at

p = R, with normal vector n’ := Ax'/p. We note that n’ is
normalized with respect to &;;, whereas A’ in Sec. II is
normalized with respect to the 3-metric y;;.

We now introduce the details of our matching scheme for
order n =0, 1 and 2, which are the expansion orders
implemented numerically in this work. The matching
scheme for an expansion of arbitrary order n is given in
Appendix B. We start by rewriting the Taylor expansion

in Eq. (25) in terms of the quantities p and n’, and we
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introduce an analogous expansion for the time derivative of
the regular field:

WR(1,x") = Wi (1) + p¥E ()" + p™WE(1)n'n + O(p?),
(27a)

WR (1 27) = WR(1) + p¥R ()T + PR (1)’ + O(p).
(27b)

where we now drop the order-counting parameter € = 1.
The set of coefficients {W[(r), WJ(), WE(r)} have one,
three, and six independent components, respectively, for a
total of ten. We will show that all of these can be uniquely
determined at each time step from (i) the numerical field
WV (z,x7) at the worldtube boundary, and (ii) the Klein-
Gordon equation (3).

A. Worldtube boundary data

At each time step 7, we enforce the continuity condition

W (1 00) = WY (1, 07) = WP G 60).(28)
both for the field itself and its time derivative. In the
following section we will omit explicit expressions which
enforce continuity between the time derivative of the
regular field W™ (¢, x') and the numerical field 0,%" (7, x')
because they are completely analogous to the expressions for
the fields themselves.

We will utilize symmetric trace-free (STF) tensors,
indicated with angular brackets, e.g. A%1-%) Note that
A<klmk’>Bk1"'k1 = Aklmk!B(’ﬂ"'kt) = A<klmk1>B<k1“'k1>; more
details about STF tensors are given in Appendix B.
Transforming Eq. (27a) to a STF basis using (B7) yields,
at order n = 2,

1, .-
+2p? 8T +p¥E nt

R 1
‘P (tS"x) 3 <

=WE(1,) ) 4R i),

"
(29)

with n® = n’ and n'n? = nin’ — %577. Equation (29) will
be used on the left-hand side in Eq. (28).

The right-hand side of Eq. (28) is obtained by evaluating
the puncture field of Eq. (23) and its time derivative at
the coordinates of the DG collocation points on the
worldtube surface, and subtracting them pointwise from
the corresponding values of ¥V (z,,x) and 9,9V (z,,x").
This expression is then projected numerically onto the set
of spherical harmonics defined on the worldtube I' with
constant radius p,

n=2 1
PN (1, x7) = WP(1,, x7) LZZ t)Y 1, (n'), (30)

=0 m=-1

where

R (1) = 74 BN (1, 37) WP (1, 2], ()R (31)

are the spherical harmonic coefficients of the numerical,
regular field WV (1,,x') — WP (1,,x) and dQ is the area
element of the flat-space unit 2-sphere. In practice we use
real-valued spherical harmonics and evaluate the integral
with the Gauss-Lobatto quadrature used by the DG method.

Both the spherical harmonics Y;,, and the STF normal
vector n'k1 . .. n*1) provide an orthogonal basis for functions
on a sphere. They can be transformed into each other using
Egs. (BY),

n=2 1
D ™ 12)Y (o) = W (1) +

1=0 m=-—1

W (1)
+ W (1)), (32)

We have thus expressed both sides of the continuity
condition (28) in a basis of STF normal vectors, using
Egs. (29) and (32). Orthogonality of the STF basis allows
us to match order by order in the STF expansion:

|

W (1) = R (1) + 5?0 (), (33)

PR (1) = pPR 33b
(7) (ts) P z(ts)7 ( )
PVR (1) = p? ¥R (1) (33¢)
ayp \Is) = P Faps):

We emphasise that Egs. (33) contain two distinct sets of
coefficients: The W/'® on the left-hand-sides are expansion
coefficients on the surface I', whereas the % on the right-
hand side are the Taylor expansion coefficients of the
solution in the interior, Eq. (27a). The continuity conditions
for a field expanded to arbitrary order are given in
Eq. (B14). For expansion orders n = 0 or n = 1 the second
term in Eq. (33a) falls away. The regular field inside the
worldtube is then fully determined by the continuity
condition and can directly be used to provide boundary
conditions for the future evolution. In one dimension, this is
equivalent to a linear polynomial in an interval being fully
determined by its two endpoints.

For n = 2, Egs. (33) provide only 9 equations for the 10

coefficients of W (z,,x’) because the monopole of the

regular numerical field ‘I‘%R

both the zeroth-order coefficient W} and the trace of the
second-order coefficient, 5'7%%. More generally, for arbi-
trary order, the STF expansion on the worldtube, Eq. (B14),

provides only the trace-free components of WV-R| so that
boundary-matching determines only the trace-free parts of

in Eq. (33a) contributes to
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the expansion W(z,,x") but not its traces. Therefore, for
expansions of order n > 2, additional equations are needed
to fully determine the regular field inside the worldtube.
These are provided by a series expansion of the Klein-
Gordon equation, as we describe below in Sec. IV B.

The coefficients of the regular field’s time derivative are
determined completely analogously, with the continuity
condition

athR(ts’ xi) g allPN(ts’ xi) - at\PP(ts’ xi)' (34)

0, ¥V (,, x') is evaluated using its evolution equation (8a)
and then transformed into the comoving grid frame by
adding the advective term vgdi‘lﬂ\/ , where v} is the
instantaneous local grid velocity. The matching conditions
for the time derivative of the regular field ¥*(z,) are then
just the time derivative of the matching conditions for
WR(¢,), Egs. (33).

B. Klein-Gordon equation

We rewrite the Klein-Gordon equation (3) in grid
coordinates

0= gﬁp()p(?,;‘{”2 - rﬁaﬁ‘{'R, (35)

where 7 := gﬁﬂl“,’::,;. The metric quantities ¢** and T* are
expanded in the grid coordinates x to the same order n as
the regular field at each time step f,. For n =2 these
expansions read
G5 2) = g7 (1) + g7 (1,) A
+ (L) AX A + O(p%),  (36)

i (1, x') = Tj(,) + TV (1) Ax'
+ 105 (1,) AX' AXT + O(p?). (37)

The expansion coefficients are given by g5 = ¢"7(t,.x),
‘%w = aigﬁp(ts: XJP_)’ and _gj;jy(ts) = %dla]gpp(ts’ x;)’ and
similarly for I'f, I/, and I'};. Due to the spherical symmetry
of the Schwarzschild spacetime, and our circular-orbit
setup, these expansion coefficients are in fact independent
of ;.

We now expand the Klein-Gordon equation in powers of
p by inserting the expansions for Y%, ¢ and T'* from
Egs. (27a), (36) and (37), respectively, into Eq. (35). The
O(p°) piece of the equation reads

g (15) + 20597 (1,) + 295 PR (1) = TH¥E (1)
~ TR (1,) = 0. %)

This ODE provides an additional, independent relation

between the expansion coefficients ¥}, ¥ and ‘I’S which

enables us to determine the remaining, trace degree of
freedom of the regular field at n = 2. Specifically, combin-
ing Eq. (38) with the continuity conditions (33), and using

R _— wR 1 sThqpR
PR = WR 4 151FWRs,

7 77, We obtain

VR (1) + 2058 R (1) + 296 1R (1)

28,395
+ pjz 0 (\PO ’R(ts) - \PZJQ(Z‘S))
- FglilZ)z(ts) - FBT?/'R(%) =0. (39)

We reduce this ODE to first order and use a Dormand-
Prince time stepper to advance the zeroth-order coefficient
‘I‘Zf and its time derivative to the next time step #, |, taking
the same global time step as the DG evolution. Together
with the continuity conditions (33) at time step f,, this
completely determines all components of the second-order
expansion of WR(t,x’) in Eq. (27a) at t,, ;.

The coefficients of the numerical, regular field ‘I’@-{f,—m

are updated each substep. As initial conditions of the ODE
(39) we take WR(1,) = Wi () = 0.

In Appendix B we formulate the generalization of this
method to an arbitrary order n, and in particular we derive
the generalized form of the ODE on I'.

C. Boundary conditions for pN

Once the expansion of the regular field has been fully
determined, it can be used to provide boundary con-
ditions to the DG elements neighboring the worldtube.
DG methods commonly formulate boundary conditions
between elements using the numerical flux, and these
conditions are applied to each of the characteristic fields
defined in Egs. (13). We use the internal solution WA of the
worldtube to provide boundary conditions for the character-
istic field U~ as if the interior of the worldtube were simply
another DG element. From the definition of U~ in Eq. (13c)
and the definitions in Eq. (5), we obtain the boundary
condition

U™(1,) = —a™'0,94(1,) + (F — iN)OWA(1,) — 1, PA(1,).
(40)

The analytical solution W (z,) was defined in Eq. (15) as
the sum of the regular field ¥* and the puncture field ¥7,
both of which are now fully determined. The time and
spatial derivative are simply obtained from 0,¥(z,) =
0,V (1,) + %7 (1,) and 0¥ (1,) = 3V (1,) + 0¥ (1,).
The fields ¥®(z,) and 9,¥%(,) are given by Eq. (27) and
its time derivative. The derivative normal to the world-
tube boundary is similarly obtained by taking the appro-
priate spatial derivative of W™ in Eq. (27a) analytically.
The expression for the puncture field W7 (¢,) is given in
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Eq. (25), and its time and normal derivative are computed
analytically. We evaluate all of these expressions at the grid
coordinates x’ of all DG grid points that lie on element faces
abutting the worldtube to formulate pointwise boundary
conditions. The value of U~ (1) at the boundary is used to
apply a correction to the time derivative of the evolution
equations using the upwind flux [45].

We initially tried to provide boundary conditions
in the above fashion for all characteristic fields entering
the numerical domain, including Z' and Z?. However, we
found that this caused substantial constraint violations
entering the numerical domain at the worldtube boundary.
Instead, we use constraint-preserving boundary conditions
for Z' and Z? as described in Appendix A.

D. Roll-on function

The initial conditions we use for the simulations are ¥ =
0,¥ = 0 for both the DG fields outside the worldtube and
the regular field inside it. The puncture field ¥ added to
the regular field in Eq. (40) initially creates a discontinuity
at the worldtube boundary, due to the unphysical instanta-
neous appearance of the scalar charge source t = 0. DG
methods are very inefficient at resolving discontinuities
within elements, due to the Gibbs phenomenon.

To alleviate this, we multiply the puncture field ¥ with
aroll-on function w(z) that smoothly grows from 0 to 1 (up
to double precision) between ¢t = 0 and ¢ = t.,4. We found
that this effectively stretches out the initial discontinuity
and causes the fields to settle more smoothly to their final
values.

We tested two different roll-on functions: w(t) =
sin[zt/(2tenq)] and  w(t) = erf(12¢/t,0 — 6)/2 + 1/2,
where erf is the Gaussian error function. There was little
difference in the long term evolution between the two
choices.

The roll-on function ensures a smooth settling of the
solution corresponding to the scalar charge slowly being
turned on over its first 4 orbits. We found f7.,q = 300M
to be a good choice for the simulations with orbital
radius r, = 5M.

E. Error estimates

To estimate the errors that our matching method incurs,
we apply the same analysis as we did for the 1 + 1D case
in [35]. The estimates follow from a Kirchhoff representa-
tion of the scalar field. We first consider the field in the
numerical domain, outside the tube I'. Call this region V.
Inside V, our field ¥V satisfies the same homogeneous
field equation as the exact solution P, g””VMV,}I’N =0,
but it inherits errors that propagate out from I'. We
introduce a retarded Green’s function G(x, x’) satisfying

OG(x,x') = O'G(x,x') = 8*(x, %), (41)

where x and x' denote any two points, primes denote

.. 54 u_
quantities at x’, O = ¢**V,V,, and §*(x,x’) := % If
we now take any point x € V, then the equations (41) and

OWN = 0 imply the identity
PV ()64 (x, ') = PN ()G (x, x') — Gx, ¥ ) PN (x').
(42)

Integrating this equation over all x’ € V and then integrat-
ing by parts, we obtain the Kirchhoff representation

¥V (x) —//[‘PN(x’)D’G(x,x’) —G(x,x )TN (x)]dV’

:[)V [‘PN(x’)V”/G(x,x’)—G(x,x’)Vﬂ/‘PN(x’)]de‘/.

(43)

Here d3/ is the outward-directed surface element on 9V.
For us the relevant portion of dV is the tube boundary I,
where dX* = O(R?)dtdQ. As in Eq. (31), here dQ is the
area element of the unit 2-sphere.

In the integral over I', we may replace PN with WA, Our
truncated expansion of ¥ introduces an inherent O(R"™*!)
error in WV (x') and O(R") error in Vﬂ/\PN (x") on the
worldtube. Equation (43) implies that the O(R") error in
V¥V (x') dominates. Accounting for the O(R?) surface

element, we see that this creates an O(R"+2) error in ¥ (x).

An important takeaway from this analysis is that the error
in the numerical domain is suppressed by the small spatial
size of I'. As a consequence, the error converges two orders
faster than the analogous error in the 1 + 1D problem in [35].

However, we note that this analysis applies only at a
fixed location x outside the worldtube. At a point on the
worldtube boundary T, the errors in ¥V are inherently
O(R™"), and the errors in V, ¥ are inherently O(R").
There is no suppression due to the small spatial size of the
worldtube in this case. The same is true of the errors at a
point outside the worldtube if we consider a point x that is
at a fixed multiple of R away from the worldline rather than
at a fixed physical location.

We also note that in applications, we require outputs
other than ¥ the regular field on the particle’s worldline
and the self-force, for example. The omitted terms in our
expansion (25) scale with a power of distance from the
worldline, which might make us expect that we incur no
error in ¥*(x,) and 9,%¥"(x,) (and therefore in the self-
force). However, we can see this is incorrect by referring
again to a Kirchhoff representation of the field. Our method
enforces the field equation (1) on pA up to an error ~R""!
(two derivatives of the truncation error in WA4). If we
momentarily ignore that error term in the field equation,
and if we consider V to be the interior of I" and repeat the
steps that led to Eq. (43), then we obtain the Kirchhoff
representation
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YA (x) = —47rq/G(x,xp(r))dr+A[‘I’A(x’)VM/G(x,x’)
— G(x. ¥V, WAz . (44)

If we now take x to be a point x, on the worldline and
consider the integral over I', then we have G(x,x’) ~ 1/R
and V,,G(x,x') ~ 1/R%. We can combine this with d¥ ~
R? and with the errors O(R"™!) in WA(x') and O(R") in
V,,¥4(x') to deduce that the error in W4 (x ) is O(R"™1). If
we take a derivative of Eq. (44), we find that the error in
0,¥4(x,) is O(R"). These error estimates apply immedi-
ately to ¥®(x,) as well.

It is also straightforward to see that these estimates are
not altered by the O(R"™!) error in the field equation,
which we neglected in deriving Eq. (44). That error con-
tributes an error ~ [ R"'G(x,,x')dV' ~ R™ to ¥R (x,),
consistent with the error from the boundary integral.

In summary, we expect that for an nth-order analytical
approximation, our method introduces the following errors:

Error in ¥V (x): O(R"*?), (45)
Error inW®(x,): O(R"), (46)
Error in 9, %% (x,): O(R"), (47)

where x is a point outside I' and x, is a point on the
particle’s worldline. Our numerical results in the next
section will bear out these predictions. The error in
0,¥%(x,), and hence in the self-force, will be particularly
relevant when we allow the system to evolve (as opposed to
keeping the particle on a fixed geodesic orbit). We defer
discussion of this to the Conclusion.

Finally, before proceeding, we note that our error
estimate for d,%™(x,) might be too pessimistic in some
instances. Specifically, time-antisymmetric components,
linked to the dissipative pieces of the self-force, might
converge more rapidly with R. This is because these
components arise from the radiative piece of the field,
equal to half the retarded solution minus half the advanced
solution [57]. For these pieces of the field, we can replace
the Green’s function G in Eq. (44) with its radiative piece,
GRd = 1 (GR — GAY). GR* is smooth when its two
arguments coincide (because singularities cancel between
GR® and GA%), meaning it does not introduce the negative
powers of R that GR® introduces in Eq. (44). We therefore
might expect that errors scale with a higher power of R in
the dissipative components of d,%%(x,). That could be
extremely beneficial in practice because dissipative effects
dominate over conservative ones on the long timescale of
an inspiral [58], and dissipative effects must therefore be
computed with higher accuracy. However, our numerical
experiments in the next section do not entirely bear out this

expectation of more rapid convergence, and we leave
further investigation of it to future work.

V. RESULTS

We use a central black hole of mass M for the
simulations. The excision sphere inside the black hole
has radius 1.9M. The outer boundary is placed at 400M.
We use a CFL safety factor of 0.4. The scalar charge is
placed on a circular orbit with radius r, = SM with angular
velocity @ = M"/2r,*? ~ 0.09M~".

The expansion terms of the puncture field converge more
quickly with larger orbital radii of the scalar charge.
The truncation error of the puncture field and hence of
the worldtube solution is therefore particularly large at the
relatively small orbital radius of r, =5M used in our
simulations. This ensures that the scheme is tested in an
extreme region, comparable to binary black holes close to
merger. Because the error due to the worldtube is com-
paratively large for a small r, it can be resolved with a
lower resolution in the numerical domain, lowering the
computational cost of the simulations.

We have implemented the worldtube scheme with the
local solution expanded to orders n =0, 1 and 2. The
radius of the worldtube was varied between 0.2M and
1.6M. The simulations were run until the field had settled to
its steady state solution over the entire domain, which took
between 3000M and 7000M, depending on the magnitude
of the settled error. Figure 2 shows a cut through the
equatorial plane of the computational domain.

p

FIG. 2. The equatorial plane of the domain, depicting the
steady-state solution of the scalar field W. The scalar charge
creates an outward propagating spiral as it orbits the central black
hole. Figure 1 shows a tilted perspective zoomed into the center
of the same plane with the spiral arms visible in the background.
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FIG. 3. The steady-state solution of the scalar field pN along
the comoving x-axis and z-axis of the domain.

Figure 3 plots the steady state solution along two lines
cut through the domain at late, constant Kerr-Schild times #:
one along the comoving x-axis connecting the central black
hole center and the scalar charge and one along the z-axis
normal to the charge’s orbital plane. The undulations of
the scalar field on the x-axis correspond to the arms of
the spiral in Fig. 2. The missing part of the x-axis line
corresponds to the worldtube; the field increases strongly
near the worldtube, because of the scalar charge contained
at the center of the worldtube.

We verify the validity and convergence of our simula-
tions in three different ways: First, in Sec. VA, we compare
the value of the regular field W* and its spatial derivative
0-PR at the position of the charge to published numerical
results obtained using frequency-domain self-force meth-
ods. Second, in Sec. VB we compare with the known
axially symmetric analytical solution along the z-axis,
given below in Eq. (54). Finally, we perform an internal
convergence test along the comoving x-axis in Sec. V C.
For each simulation in the following sections, the resolution
of the DG domain was increased until it no longer affected
the steady-state solution. This guaranteed that the error
measured was due to the worldtube, not the numerical
evolution.

A. Regular field W% at the charge’s position

The value of the regular field for a scalar charge in a
circular geodesic orbit in Schwarzschild spacetime has
been calculated in self-force literature. We compare the
regular field of our simulations with the results of [59], who
quote the value W%, (0) = —0.01023418¢/M for a circular
orbit with radius SM.

For expansion orders n = 0 and n = 1, the regular field

at the charge position is given directly by the monopole of

the numerical field ‘I‘%‘R(ts) in Eq. (33a) (the second term

on the right-hand side is absent for n = 0, 1). For n = 2, it
is determined by solving the ODE (39) inside the
worldtube.

P o
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= o . -
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FIG. 4. Top panel: the relative error of the regular field at the
position of the charge compared to the value computed in [59].
Each cross represents the settled error at the final simulation time.
The dashed lines are best fits for the relation ¢ x R*. Bottom
panel: the local convergence order between simulations of
neighboring worldtube radii.

The relative error &= |¥%(0) — WYZ.(0)|/|¥%(0)],
where WR(0) is the final value of the regular field at the
scalar charge, is shown in the top panel of Fig. 4, with each
marker representing a simulation. The dashed lines show
fits of the data, for each expansion order n, to a relation of
the form & oc R*, where R (recall) is the worldtube radius.
The bottom panel displays the local convergence order,

defined through

1 =1 .
Aoei = og(gl) Og(&'l_]) , (48)

log(R;) — log(R;_;)

where R; are the worldtube radii in our sample, and ¢; are
the corresponding errors. We find that the error always
decreases with smaller worldtube radius or higher order n
of the local solution as expected. Equation (46) indicated a
convergence order inside the worldtube of a =n+ 1 at
sufficiently small worldtube radii. For n = 1 and 2 we find
that this prediction is confirmed quite well, with global
convergence orders measured as ~2.07 and ~3.08, respec-
tively, and local convergence order uniformly close to this
value. At n = 0 we measure a global convergence order of
~1.72 and alocal convergence order that appears to decrease
with the worldtube radius. This suggests that for n = 0 the
scheme is not fully in the convergent regime for the values of
R we consider; rather, there are still significant contributions
from higher-order terms. At smaller worldtube radii R, these
higher-order-in-R contributions become less significant and
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the local convergence rate approaches the expected value
of 1.

We also compare the gradient of W% at the position of
the particle, which enters the expression for the self-force
acting on the particle due to back-reaction from the scalar
field. The value of the radial derivative is given in [59]
as 0, YX,(0) = 0.0004149937g/M? using Schwarzschild
coordinates (¢, ry, 0, ;). We are not aware of any
works which report the angular derivative of the scalar
field at r, = SM. Instead, it was computed for us to be

0, ¥X.(0) = —0.01009125769g/M?* using the frequency
domain code of [60]. The coordinate transformation from

Kerr-Schild time ¢ to Schwarzschild time ¢, is given by

-
= 2MIn [ ——1 4
t,=1+ n<2M ) (49)

which makes the conversion between arS‘PR and the
Kerr—Schild radial derivative 0, ¥*

0, =0+t 5
T aM -
2M ox'
=0, +=—— (0 +—0
,+2M_r(,+at ) (50)

where in the second line we have transformed into
the comoving coordinate frame given in Eqs. (14). The
reference values of the regular field’s gradient at the
particle’s position are then given by

2Mw PR (0),

0, %% (0) = 0. %% (0) =0, ¥X.(0) —————9
r () X () T () 2M—I”p @5 © ref

ref ref ref
(51)

0¢‘I’Z§f(0) = rpay‘{’zgf(O) = a%‘l‘zgf(O), (52)
which we use to compare to our simulation values.

Figure 5 compares the radial and azimuthal derivative of
YR obtained by our worldtube evolutions against these
reference values. Shown are the differences from the
reference values for orders n = 1 and 2, with power-law
fits xR“. At zeroth order, the regular field is constant across
the worldtube so the derivatives cannot be computed. The
lower panel of Fig. 5 plots the local convergence order o,
defined in (48).

We argued in Eq. (47) that the error of the regular field’s
derivatives at the particle position should scale with the
worldtube radius as «R". For n = 1, this behavior is
confirmed by the local convergence «y,. of our simulations
with the exception of worldtube radius R = 1.6M, which is
anomalously lower than expected and skews the global
convergence order. For n = 2, the radial derivative 0,%%
(linked to the conservative, time-symmetric piece of the self-
force) shows a local convergence that approaches the
expected order of R? at smaller worldtube radii. This suggests
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FIG. 5. Top panel: the absolute difference between the radial
and angular derivatives of the regular field at the position of the
particle and the reference values of Egs. (51) and (52). Each cross
represents the final value of a simulation. The dashed lines are
best fits to the power-law relation xR“*. Bottom panel: the local
convergence order between the simulations of adjacent worldtube
radii as defined in Eq. (48). The simulations at order n = 1 show
a convergence order consistent with the predicted rate « = 1. The
n = 2 simulations show a higher convergence rate likely due to
dominant higher order terms. Some anomalies are not visible.

that the error is just entering the regime where the O(R")
contribution becomes dominant. For the angular derivative
6,/,‘1’72 (linked to the dissipative, time-antisymmetric piece of
the self-force), the local convergence order is larger than 3 for
all simulations. This could indicate that the error is still
dominated by higher-order contributions at the sampled
worldtube radii. Alternatively, it could indicate that dissipa-
tive quantities converge more rapidly with R than con-
servative one, as suggested in Sec. IV E; however, the results
for n = 1 do not support that proposal, showing the same
convergence rate for 9, ¥® as for 9, ¥. We stress that in any
case, the convergence is at least as rapid as predicted
in Eq. (47).

B. Solution along the z-axis

The spherical symmetry of the Schwarzschild back-
ground allows for the Klein-Gordon Eq. (3) to be decom-
posed into separately evolving spherical harmonic modes
W, (r, 1), where the spherical harmonic decomposition is
centered on the black hole (different to the spherical
harmonics introduced in Eq. (30), which are centered on
the worldtube). On the polar axis (x =y = 0) all modes
vanish except the axially symmetric ones, i.e., those
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FIG. 6. The relative error of the scalar field ¥ along the z-axis
compared to the analytical solution ¥, given by Eq. (54). We
show two simulations with worldtube radii 1.6M and 0.6M for
each order, 0, 1 and 2. The error decreases with higher order or
smaller worldtube radius, as expected. A small region is cut out
around z = r, = 5M, where Eq. (54) converges too slowly to be
calculated to sufficient accuracy in practice.

with m = 0. These modes are also static and admit
simple analytical solutions [35]. Along the polar axis these
solutions read

dn\/1=3M/r, .
TYIO(” )

x (Qy(r,/M = 1)P)(z/M - 1)0(r, - 2)

+ Qi(z/M = 1)Pi(r,/M = 1)B(z—r,)). (53)

Py(z) =

where P; and Q; are Legendre functions of the first and
second kind, respectively, n* is the normal vector pointing
in the direction of the x coordinate axis, and ® is the
Heaviside function. The full solution along the z-axis is
then given by

W2 = > Wl Yaln). (54)
=0

where n° is normal vector pointing in the coordinate z
direction. The expansion (54) converges exponentially in /
everywhere except in the neighborhood of z = r,,, where
the convergence is too slow to yield good results in
practice. We therefore ignore this region and cut it out
of plots when comparing with the analytical solution ¥,.

Figure 6 shows the relative error [#V — ¥_| /¥, between
our numerical worldtube solutions ¥V and Eq. (54),
computed at late evolution time, after PV has settled into
its steady state. The error is fairly constant along the axis. It
is immediately clear that smaller R and higher n lead to
improved agreement.

To investigate convergence with worldtube radius, we
define the L;-norm
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FIG. 7. Top panel: the relative difference between the numeri-
cal, retarded field ¥ along the z-axis and the analytical solution
Y, given in Eq. (54), integrated between z = 10M and z = 100M
using the L;-norm of Eq. (55). Each cross represents the final
value of a simulation. The straight lines are a best fit to the power-
law relation € x R?. Bottom panel: the local convergence order
between the simulations of adjacent worldtube radii as defined in
Eq. (48). The simulations with n = 1 and n = 2 show a constant
convergence order consistent with the predicted rate a = n + 2.
The n = 0 simulations show a higher convergence rate at larger
worldtube radii but approach the expected value at smaller radii.

1FG)] = / OMM () ldx. (55)

which we use to integrate the relative error shown in Fig. 6
between z = 10M and z = 100M for each simulation.
Using this norm, the top panel of Fig. 7 plots the relative
differences between the analytical solution Eq. (54) and
numerical solutions ¥ using various R and n and evalua-
ted at late time in steady state. Each symbol represents the
integrated, relative error of a simulation’s final value. Also
plotted is a best fit of the error convergence «R*, where R is
the worldtube radius and « is the global convergence order.
The lower panel of Fig. 7 shows the local convergence
order o, as defined in Eq. (48).

As explained in Sec. IV E, we expect the convergence
order @ = n + 2 in the volume outside the worldtube. At
order n = 2, the global convergence order is best fit to a =
4.07 which matches the predicted error. Order 1 has a fitted
global convergence order of 3.14 and a local convergence
order close to this value across the worldtube radii sampled.
For the zeroth-order expansion, a global value of 2.33 is
calculated, but the local order consistently decreases with
smaller worldtube radii, which suggests that the error might
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FIG. 8. The relative error along the x-axis between x = 10M

and x = 100M for two sample simulations of each order. The
worldtube is centered at x = SM and cut out from the plots.

still get contributions from higher-order terms at the larger
worldtube radii, similar to the zeroth-order expansion
in Fig. 4.

C. Solution along the x-axis

The tests of our method so far compared to previously
known data, either at the position of the charge or on the
z-axis. We now evaluate the convergence with worldtube
radius in the volume, at locations where no analytic
solution is available. To this end, we evaluate our numerical
solutions WV along the corotating X-axis, which passes
through the center of the Schwarzschild black hole and the
point charge. The settled field along this axis is shown as
the blue curve in Fig. 3. The simulation with n =2 and
R =0.4M is used as a reference solution, denoted V¥ .,
since it has the lowest error inside the worldtube and along
the z-axis, as demonstrated above.

Figure 8 shows the relative difference with respect to the
reference solution between x = 1.9M and x = 100M for
two sample simulations at each order. The field along the
x-axis has more features as it lies in the orbital plane of the
charge. The error along the x-axis is therefore not quite as
smooth as along the z-axis; for instance at x ~ 80M some
features are apparent, which coincide to a wave-crest in PV
(see Fig. 3). The error decreases with both a higher
expansion order n and a decreasing worldtube radius R
as is expected.

To quantify the convergence with respect to R we
compute the norm Eq. (55) integrated along the comoving
x-axis, [PV (x) — Wr(x)|. This difference, normalized, is
plotted in Fig. 9, where each marker represents an indi-
vidual simulation. The straight lines show power law fits
«R“. In the bottom panel we show the local convergence
order . as defined in Eq. (48). The convergence rates in
worldtube radius R are close to the expectation from
Eq. (45), a =n+2, with global convergence order «
equal to 2.25, 3.18, 4.29 for orders 0, 1 and 2, respectively.
For n =0, the local convergence order ay,. is steadily
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FIG. 9. Top panel: the relative error ¢ integrated along the
comoving x-axis compared to a reference solution W.; with
n =2 and R = 0.4M. Each cross represents a simulation, and the
straight lines are a best fit of the relation € o« R*. Bottom panel:
the local convergence order as defined in Eq. (48). At first and
second order, the simulations reproduce the expected conver-
gence order of o = n + 2. At zeroth order, the local convergence
approaches the expected order for smaller worldtube radii, likely
indicating that the error still has contributions from higher-order
terms in this regime.

decreasing with the worldtube radius R toward the expected
value of a =2, which suggests it is just entering the
convergent regime here. The local convergence rate of the
n = 2 simulations appears to jump slightly at the smallest
worldtube radius sampled, which we attribute to numeri-
cal error.

VI. CONCLUSIONS

In this paper we continue the work of [35] and explore a
novel approach to simulating high mass-ratio binary black
holes. A large region (worldtube) is excised from the
numerical domain around the smaller black hole, to alleviate
the limiting CFL condition due to small grid spacing in this
region. The solution inside the worldtube is represented by a
perturbative approximation that is determined by the numeri-
cal solution on the boundary and in turn provides boundary
conditions to the numerical evolution.

We test this method using the toy problem of a scalar
charge in circular orbit around a central black hole. The
simulations are carried out in 3 + 1D using SPECTRE, the
new discontinuous Galerkin code developed by the SXS
collaboration. In order to develop algorithms that general-
ize to the full GR problem, we do not decompose our
solution into spherical harmonics as is the usual approach.

024041-14



WORLDTUBE EXCISION METHOD FOR ...

PHYS. REV. D 108, 024041 (2023)

We split the solution near the scalar charge into a puncture
field, which is fully determined as a local expansion in
Sec. II1, and a regular field, which is a smooth Taylor series
with undetermined coefficients. The expansion coefficients
in the regular field are determined by (i) the numerical
solution on the worldtube boundary and (ii) the scalar wave
equation as described in Sec. IV. Our puncture is con-
structed from the Detweiler-Whiting singular field,
allowing us to calculate the scalar self-force from our
regular field.

We implement the described matching scheme for orders
n =20, 1 and 2 and perform numerical simulations for a
circular orbit of radius r, = SM for a variety of worldtube
radii. In Sec. IV E we make a theoretical argument for how
the error introduced by the excision should converge
with the excision radius in- and outside the worldtube.
We confirm these results in Sec. V and show that the
scheme solves the scalar wave equation with high accuracy
even at relatively large worldtube radii. We further validate
our method by comparing against known values of the
Detweiler-Whiting regular field and its first derivatives on
the particle’s worldline.

The ultimate goal of the worldtube method is to speed up
BBH simulations at large mass-ratios by alleviating the
CFL condition. Figure 10 considers the time steps sizes At
taken by our primary simulations. Plotted is Az/R vs the
worldtube radius R. Note that the resolutions of our
simulations were adjusted such that for each simulation,
numerical truncation error is subdominant compared to the
worldtube error, resulting in differences in At for simu-
lations with different expansion orders at the same world-
tube radius. Nevertheless, it is apparent that for fixed order,
the time step is roughly proportional to the worldtube
radius. Therefore, the promise that larger worldtube radii
allow larger time steps xR indeed holds. Ideally, the
worldtube error should be comparable to or somewhat
smaller than the NR error. Our results show that this can be
achieved by either decreasing the worldtube radius or by
increasing the expansion order. The former, of course,

0.010
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< 0.004 ‘\/‘———A\‘
—— pn=0
0.002 —— n=1
—_—r— =2

0.000

02 04 06 08 10 12 14 16
worldtube radius R [M]

FIG. 10. Time steps At of the worldtube simulations presented
here.

would lead to a smaller grid-spacing and a more signi-
ficant CFL condition, whereas the latter has no noticeable
performance cost. We have discussed the next steps toward
tackling BBH simulations using the worldtube method
in [35].

Before tackling the full BBH problem, our next step will
be to include the backreaction of the scalar field onto the
charged particle [61]. In the present work we have com-
puted the first derivatives of the Detweiler-Whiting regular
field, from which we can construct the scalar self-force, but
we have so far ignored the effect of that force. Once it is
accounted for, the equations of motion for the scalar charge
q of bare mass y are given by [62]

uﬂv/i(/'lua) = qaaLPRv (56)
H=—q¥* + p. (57)

Allowing the particle’s trajectory to evolve dynamically in
this way will be an important step toward the full gravity
problem. SPECTRE uses a series of control systems which
adjust certain time-dependent parameters of smooth coor-
dinate maps to deform the grid [46]. While they usually
ensure that excision spheres stay inside a black hole’s
apparent horizon, we will use these control systems to
enable the worldtube to track the inspiraling scalar charge.
The control systems are needed for the binary black hole
case and such a scalar evolution will ensure they work as
expected.
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APPENDIX A: CONSTRAINT-PRESERVING
BOUNDARY CONDITIONS

The domain features two boundaries which require
boundary conditions on the characteristic fields flowing
into the domain: the worldtube boundary and the outer
boundary. For the fields Z' and Z? (arising from reduction
to first-order form), we use constraint-preserving boundary
conditions which are formulated analogously to [44] and
applied using the Bjorhus condition. We begin by rewriting
Eq. (6) in terms of the characteristic fields with respect to a
boundary with normal vector 7',

Ci - 0,‘1’ - q)i (Al)

1
=0,Z' - 5(U+ - U7 ), — 272

1

(A2)
The normal component of this constraint is given by

ﬁiCi — fliaizl - (l]+ - U_) - fl’ZZ

; (A3)
Vanishing of the constraints implies in particular that the
normal component vanishes, A'C; = 0, we interpret as a
boundary condition on Z':

(A'0,Z")pe = %(UJF - U™) +'Z3. (A4)
Applying the same procedure to Eq. (7) yields
AC; = fz"(),Z? +%ﬁiﬁjdi(U+ -U")
- Ea,(U+ -U")—n'0,Z? (AS)
and
(A10,27)pc = —%ﬁiﬁja,(w -U")
+ %aj(w +U™)+1'0,Z;. (A6)

In order to implement Eqgs. (A4) and (A6), we return to
the evolution equations in first order form,

o + Aoyl = F°. (A7)
Projecting onto the characteristic fields, one finds
o (0" + Ajfoy’) = e F°, (A8)

o’ + e A (P} + ') oy’ = e F. (A9)

o + v Aot + € Al Pioy” = € F*.  (A10)

Boundary conditions are now applied by modifying
the term v(&)ﬁkaky/&: Iff v) <0 at a grid-point on the
boundary, then the following modified evolution equation
is used at that grid-point:

dy® = Dy + vy (W0 — (A'0%) p).- (All)

Here

Dyl =—e® Altoy® + e F4 (A12)
represents the volume time-derivative of the characteristic
fields. In other words, the time-derivative arising from the
volume equations is corrected with a term that ensures the
desired boundary condition. Summing Eqs. (A3) and (A4)
yields

70,2" — (#10,2") g = RIC;. (A13)

Analogously, combining Egs. (AS) and (A6) results in

ﬁ16123 - (i’\liaiZJZ->Bc - ﬁ’CU (A14)
Finally, we insert this into the Bjorhus condition (A11) to
obtain

dZ' = D,Z' + v, HiC, (A15)

d,Z> = D,Z? + vphiC; (A16)

j
where boundary corrections are only imposed when the
corresponding characteristic speeds are negative.

APPENDIX B: MATCHING METHOD
AT ARBITRARY ORDER

The main text in Sec. IV develops our matching scheme
up to order n =2. Here we show how this can be
generalized to arbitrary order n.

First, we introduce some notation and useful identities.
We make use of multi-index notation according to [78]
where a capital index L stands for a collection of [ indices,

AL — Aklkg--~k,' (Bl)
The tensor product of / coordinate vectors or / normal
vectors is abbreviated as

ky . .

xb = xkixk ok (B2)

nt = nkipk...pk (B3)
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and the tensor product of / Kronecker symbols is written as

S*L = skikaskaka .. . Ska-ikar <B4)
Symmetric, trace-free (STF) tensors are written with
angular brackets around the indices. The combination of /

STF normal vectors is defined as [79]

L1/2]

n<L> = n<kl . nkl> f— Z 525(21{”1‘_21()’ (BS)
k=0
where
11(21 = 2k — 1)!!
&l = (1) . (B
e TS VTV TATTGTATY (B6)

The parentheses in Eq. (BS5) indicate indices to be sym-
metrized and [//2] is the largest integer less than or equal
to [/2. The inverse expression is given by [80]

1/2]

nl = nkioopk — Z cié(an@‘ZK)) (B7)
=0
with
120 —4k+ 1)!!
¢} = 24kt 1) (BS)

(21 =2k + NI = 2k)1(2k)1

The n‘Y) provide an orthogonal basis for functions on a
sphere, and each n{Y) is an eigenfunction of the Laplacian
V2 := §%9,0,, satisfying V2n'l) —@nm.
fixed /, the STF tensors n‘‘) span the same functions as
the set of spherical harmonics Y, (6, ¢) of rank I. This can
be seen by expressing the normal vector as
n' = (sin@cos ¢, sin O sin ¢, cos A), leading to [78]

For a

Ylm = y;f/lL>l’l<L>, (B9a)
S
=N D VY, (B9b)
m=-1
where

1 .

Vi = N e nlbys dQ, (B9c)
4l

Nj= . B9d
T i+ 1) (B9d)

We start by expanding the regular scalar field W*(z, x')
and its time derivative in a power series around the charge’s
position to arbitrary order n as shown in Eq. (B10). We will
show that all free components of the expansion can be

uniquely determined at each time step from (i) numerical
data from the worldtube boundary and (ii) the Klein-
Gordon equation (3).

1. Worldtube boundary data

We carry the Taylor expansion of the regular field given
in Eq. (25) to nth order and give an analogous expansion
for the time derivative

le’ x4 O(p™1),  (B10a)

@TR t x ]_("+O(,0n+1),

Z‘P k(z‘

which has 137 ((i4+2)(i+ 1)
components.

The continuity condition at the worldtube boundary is
given by Eq. (28). Both sides of this equation can be expres-
sed in a basis of STF normal vectors. The regular field
WR(¢,,x") on the left is transformed using Eq. (B7) to give

(B10b)

:é(n+3)(n—|—2)(n—|— 1)

1/2]

WR(1,.x1) = " pWR (1) " 5K n=2K) (B11)
=0 k=0
n |1/2] o
= 30D A g (1 (B2
=0 k=0

Asin Sec. IV, the right-hand side of Eq. (28) is calculated by
projecting the numerical, regular field onto spherical har-

monics up to order n to obtain the coefficients aﬁfnﬁ. This
expansion is then transformed to STF normal vectors using
Eq. (B%a),

n

ZTNR i Zzalm K Ylm

=0 =0 m=-1

(B13)

The orthogonality of the STF normal vectors allows us to
match Egs. (B12) and (B13) order by order, yielding a system
of algebraic equations:

17!

N R _ 1+2k l+2k R
\P@) (ts) - Zp * k lPLzlll lklk(ts)’
k=0

0<Il<n.

(B14)

Each tensor component in the set {‘I‘é\Lf)R}l with0<I<n

fixes one degree of freedom of the Taylor coefficients {‘P?} ;
for a total of (n + 1)? equations. The matching equations for

the time derivative coefficients {¥X}, are derived com-
pletely analogously.
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2. Klein-Gordon equation

The remaining components of {¥%} are fixed by the

Klein-Gordon equation (35). The metric quantities ¢** and
I'* are expanded to the same order n as the regular field in
the grid frame x’,

n

Pt x) = il + O(p), (B15)
=0
I(t,x7) = > Thak 4 O(pmh), (B16)
1=0
where the expansion coefficients are given by
av,_ 1 fiv 1
g’g = ﬁa—g (ts,xp), (B17)
r -—la—rﬂ(t ) (B18)
L= s )

Here, recall, xip = (rp, 0,0). Substituting these expansions
into the Klein-Gordon equation, we obtain

(S Yo (S

=0 =0
+ (Z rﬁxL>a,-, (Z qﬂij>. (B19)
=0 =0

We now split the partial derivative into its time part d, and
spatial part ¢; and solve order by order in p. The kth-order
equation reads

1=0
1] R
+(+2)(1+ 1)gy_WE -t 9]
7 R
~(+ ) ¥R) 0<k<n-2, (B20)

where we have made use of the identity da;(t)xt =

la;_;(1)xE=! for a; completely symmetric ai) = ag.
The set of equations (B20) fixes & (n + 1)n(n—1) com-
ponents of W® which, when combined with equations
Eq. (B14), fixes all components of the expansion (B10).
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