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Mating with another species is often maladaptive because it generally results
in no or low-fitness offspring. When hybridization is sufficiently costly, indi-
viduals should avoid mating with heterospecifics even if it reduces their
ability to mate with high-quality conspecifics that resemble heterospecifics.
Here, we used spadefoot toads, Spea multiplicata, to evaluate whether females
alter their preferences for conspecific male sexual signals (call rate) depending
on heterospecific presence. When presented with conspecific signals against a
background including both conspecific and heterospecific signals, females pre-
ferred male traits that were most dissimilar to heterospecifics—even though
these signals are potentially associated with lower-quality mates. However,
when these same females were presented with a background that included
only conspecific signals, some females switched their preferences, choosing
conspecific signals that were exaggerated and indicative of high-quality
conspecific mates. Because only some females switched their preferences
between these two chorus treatments, there was no population-level pre-
ference for exaggerated conspecific male signals in the absence of
heterospecifics. These results show that hybridization risk can alter patterns
of mate choice and, consequently, sexual selection on male signals. Moreover,
they emphasize that the strength and expression of reproductive barriers
between species (such as mate choice) can be context-dependent.

1. Introduction

When choosing mates from among conspecifics, individuals (often females) are
expected to prefer sexual signals that identify those mates that provide them or
their offspring with fitness benefits (hereafter ‘high-quality’ mates) and disfavour
sexual signals associated with conspecifics that provide relatively fewer fitness
benefits (hereafter low-quality” mates) [1,2]. However, if sexual signals of high-
quality conspecifics resemble those of heterospecifics, then female preferences for
those signals can enhance hybridization risk [3-5]. Thus, a trade-off can arise between
the benefits of mating with high-quality conspecific mates versus the risks and costs
of hybridization: preferences for signals of high-quality conspecifics enhance hybrid-
ization risk, but preferences for signals that differ from heterospecifics enhance the
likelihood of mating with relatively low-quality conspecifics [3,6-15].

The evolutionary consequences of this trade-off are threefold. First, if the
benefits of choosing high-quality mates are low relative to the costs of hybridiz-
ation, preference for high-quality conspecifics could be lost. Second, mate
preferences might constitutively diverge between populations where heterospeci-
fics are present (sympatric populations) versus absent (allopatric populations),
including the refinement of preferences [16] or evolution of preferences for alterna-
tive signals in sympatry [3,7,11,15,17,18]. Third, selection could favour the
facultative expression of mate preferences in sympatry that depend on whether
heterospecifics are physically present at the time of mating (i.e. when hybridization
is an immediate risk). Such plasticity in mate preferences could arise if individuals
learn to avoid heterospecifics [19-23] or, alternatively, if aspects of the environment
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reliably predict hybridization risk (sensu [24-28]). Such context-
dependent mate preferences are expected to evolve when the
benefits of choosing high-quality conspecifics are high, and
an individual’'s risk of encountering heterospecifics varies
from one mating opportunity to another [29,30].

The evolution of context-dependent preferences allows
individuals to navigate the fitness trade-off described above
because individuals express preferences that optimize the fit-
ness benefits of mate choice given their circumstances [31].
However, context-dependent mate choice has important
implications for sexual selection’s role in the origins and main-
tenance of species boundaries. Indeed, facultative mate
preferences would cause the direction and strength of selection
on sexual signals in sympatry to vary depending on encounters
with heterospecifics. If such preferences diminish the level of
divergent selection on sexual signals in sympatry versus
allopatry, then divergence in sexual signals between sympatric
and allopatric populations is less likely relative to what would
arise from divergent constitutive preferences [17,32]. Given
that divergence between such populations is a proposed mech-
anism of speciation [17,33-37], factors that reduce divergence
also reduce the likelihood of speciation [17,32,35].

We evaluated whether heterospecific presence affects female
mate preferences in Mexican spadefoot toads (Spea multiplicata)
where they potentially co-occur with Spea bombifrons in the
southwestern USA [38,39]. Female S. multiplicata evaluate call
rate in choosing a mate [7]. In allopatry, where there is no risk
of mating with S. bombifrons (or hybrids), females prefer faster-
calling conspecifics which are in better condition, have higher
fertilization success and produce fitter offspring [7,15,40,41].
However, in sympatry, S. multiplicata females risk costly matings
with faster-calling S. bombifrons (electronic supplementary
material, figure S1) or sterile hybrid males [7,42,43]. Thus, sym-
patric S. multiplicata females prefer slower-calling conspecifics
whose calls are more dissimilar from heterospecifics’ [7,18],
even though these slow-calling males might be relatively low-
quality [7,15,40,41]. This divergence in constitutive preferences
is expected if females trade off the benefits of mating with
high-quality mates versus the risks and costs of hybridization.

Yet, facultative mate preferences might also be favoured in
this system. Heterospecific and hybrid male frequencies vary
across time and space [38,43]; so a given female might encoun-
ter heterospecifics during some breeding events but not others.
Thus, context-dependent mate preferences could enable S. mul-
tiplicata females to optimize their mate preferences when cues
indicating the current risk of hybridization are available. To
test this possibility, we measured female preferences for call
rate in two-choice phonotaxis tests under conditions that
resembled mating aggregations in nature where hybridization
risk is present versus absent. If females alter their preferences
depending on the risk of mating with heterospecifics, we pre-
dicted that females would prefer slow-calling conspecific
calls only when hybridization risk was present.

2. Methods

Using a two-choice phonotaxis experiment, we tested 53
S. multiplicata females from sympatric populations in the south-
western USA for preferences of conspecific calls at a fast call rate
(37 calls min™") versus a slow call rate (26 calls min™") against
two background choruses of male calls: (1) a chorus of
S. multiplicata calls only (i.e. “pure-species background’), and (2)
the same S. multiplicata chorus, to which S. bombifrons calls had

been added (ie. ‘mixed-species background’; electronic sup-
plementary material; [7,18,44]). Females were designated as
choosing a call rate stimulus when they came within one body
length of the speaker playing that stimulus [7,18,24,44,45]. If
30 min elapsed without a choice, a female was considered unre-
sponsive (electronic supplementary material, figure S3). We
recorded each female’s time to choose (latency), mass and snout—
vent length (SVL; electronic supplementary material). Females
were tested with pure versus mixed-species chorus backgrounds
on separate days, and whether a female was first tested with the
pure-conspecific or mixed-species chorus background was ran-
domized. Call stimuli were switched between speakers after each
trial and the leading call stimulus was switched every four trials.

To evaluate the effect of a chorus background (versus no chorus)
on mate preference for conspecific call rate, we compared prefer-
ences for conspecific call rate from the chorus background
experiment described above with preferences by the same females
for conspecific call rate in tests without any chorus background
(electronic supplementary material). Specifically, prior to the exper-
iment above, we carried out two tests in which some of the same
females used above were evaluated for their call rate preference of
S. multiplicata calls of: (1) 26 calls min™" versus 37 calls min™" (the
same stimuli in our chorus background study), and (2) 31 calls
min~" versus 37 calls min~" (electronic supplementary material).

Data were analysed in R [46]. We calculated scaled mass index
from mass and SVL as a measure of female body condition [47,48].
We used exact binomial tests to test whether females had signifi-
cant preferences in either chorus treatment. We fitted generalized
mixed-effects models using the glmer function (package Ime4:
[49]) with the predictors chorus treatment, treatment order, body
size and condition as fixed effects, and female ID as a random
intercept. We modelled how these fixed effects predicted mate
choice as a binomially distributed response, and in separate
models, how the same set of fixed effects predicted latency
(time to choose) as a negative-binomially distributed response
(electronic supplementary material). To assess significance of pre-
dictors on responses (mate choice or latency), we compared each
model with a null model without the predictor, using likelihood
ratio tests (LRT; electronic supplementary material).

To compare female preferences for fast versus slow conspeci-
fic calls with no background versus each chorus background, we
fitted a binomial mixed model of female choice. We included
chorus background treatment as a fixed effect and individual
female as a random intercept. We tested for differences between
the effects of chorus treatment levels, using the glht function
(package multcomp: [50]) to correct for multiple comparisons
using the joint normal distribution.

3. Results

Female preferences depended on the presence of heterospecifics
in the chorus background. In the mixed-chorus background,
females preferred the slower call rate (15 chose fast, 29 chose
slow; exact binomial test: probability of choosing slow = 0.66,
p=0.049). In the pure-conspecific chorus treatment, however,
females as a group did not express a preference (22 chose fast,
18 chose slow; exact binomial test: probability of choosing
fast=0.55, p=0.64). Indeed, females” probability of choosing
the slow call differed between the chorus background treat-
ments (figure 1, table 1a). Neither female size nor condition
predicted female choice (table 1a). Moreover, females’ testing
order in each chorus treatment did not predict their choices
(LRT: chisq=1.359, d.f. =1, p=0.24). Finally, females’ latency
to choose was not affected by chorus treatments or female
phenotype (table 1b), though our power to detect a body
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Figure 1. Female choice as a function of background chorus. (a) With a back-
ground of conspeific calls only, females as a group showed no preference;
with a background including heterospecifics, females preferred slower calls.
(b) Individual female preferences varied across choruses (lines/points
(which are offset from each other on the y-axis to reveal individual female
data) connect each individual’s choices between choruses).

size effect might have been insufficient (table 1b; electronic
supplementary material, figure S4).

Without any chorus background, female preferences
were similar to their preferences with a pure-species chorus
background (z=-0.93, p=0.35, adjusted p=0.57). Thus, a
background chorus per se did not appear to impact female pre-
ferences. However, these females significantly preferred slow
calls in the mixed-species chorus treatment. Indeed, prefer-
ences in the mixed-species chorus differed from preferences
in absence of the chorus, but this difference was not statistically
significant at o = 0.05 after correction for two post-hoc
comparisons (z=—2.10, p = 0.04, adjusted p = 0.07).

4, Discussion

When the sexual signals of high-quality conspecifics resemble
those of heterospecifics, females face a trade-off between the
benefits of identifying high-quality mates versus the risks

and costs of hybridization [7]. Although such trade-offs can E

be resolved in different ways (e.g. using multiple traits
[3,7,11]), one solution is for females to facultatively switch
their preferences depending on whether heterospecifics
are present. Consistent with this possibility, we found that
female S. multiplicata preferred slower male calls that were
more different from heterospecifics, but only when hetero-
specific calls were present. In the absence of heterospecific
calls, females were more likely to choose faster conspecific
calls that are more like those of heterospecifics and hybrids
(figure 1), but that potentially reflect higher conspecific
mate quality.

In the pure S. multiplicata chorus background, females as a
group did not significantly prefer faster call rates (figure 1; elec-
tronic supplementary material). Generally, lack of group-level
preference arises either because individual females have no
preference for the stimuli and simply choose at random
(i.e. females are not ‘choosy’: [51,52]), or because individuals
express preferences, but these preferences vary enough
among individuals that no group-level preference is detectable
(e.g.: [24,53]). Our data are consistent with the latter expla-
nation. Specifically, some females maintained their preference
for slow calls regardless of chorus background whereas
others switched to preferring faster calls in the pure-species
background (the adaptive switching pattern; figure 1b).
If females were simply choosing a stimulus at random, those
that switched preference across treatments should have been
equally likely to switch to preferring slower calls in the pure-
species background (the maladaptive switching pattern),
which was rarely observed (figure 1b).

Previous work found that sympatric females preferred
slower calls in the absence of any background [7,18], which
differs from our results. One explanation for this difference
is that a novel mate choice behaviour might be evolving:
rather than constitutively expressing preferences for slow-
calling males (as detected in the past [7,18]), females might
optimize the fitness benefits of their mate choice decisions
by modifying their preferences for call rate in the presence
of heterospecifics. Given the fitness benefits of preferring
fast call rates [7,15,40,41], selection would favour females
that facultatively preferred the fastest-calling males when
hybridization was not an immediate risk. If the behaviour
is new, it could explain why some females expressed faculta-
tive preferences for fast call rates whereas others expressed
constitutive preferences for slow call rates (figure 1).

If this behaviour is novel, identifying the mechanism(s)
underlying it could provide insight into the behaviour’s origins
and evolution. In other systems, learning from encounters with
heterospecifics can modify female preferences for conspecifics
([2], e.g. [20,21,23]). Spadefoots do not appear to learn mate
preferences [54,55], but more work is needed to examine
whether and how experience impacts subsequent preferences.
A further mechanism for the change in female preferences is
differential acoustic interference in the presence versus absence
of heterospecifics [56-60]. If females detect slower calls
better than faster ones when S. bombifrons is present, females
could express stronger preferences for slow calls in the
mixed-species chorus background. Although our experimental
design minimizes interference as an artefact in our choice tests
(see electronic supplementary material), we cannot rule out all
effects of acoustic masking. Indeed, natural breeding choruses
are noisy environments [61], and a preferential response to
slower calls mediated by masking would also minimize
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Table 1. (a) Binomial mixed-effects models of females' choice of call rate stimulus (fast versus slow call rates), and (b) negative binomial mixed-effects models n

of females’ latency to choose, for females that made choices. Likelihood ratio tests comparing each model with a null model with only a random intercept of

female ID are shown.

model fixed effect estimate + s.e. 7 df. p

(a)
cll rate choice~chorus + (1|ID) ~1.01 +0.54 120 o 004
aall rate choice~snout—vent length + (1|ID) —0.06 £ 0.07 0.70 1 0.40
all rate choice~condition + (1]ID) 0.08 +0.10 0.70 1 0.40

(b)
latency~chorus + (1]ID) 0.04 £0.17 0.07 1 0.79
latency~snout-vent length + (1]ID) —0.17 £ 0.09 3.14 1 0.076
Iatency~condiﬁ0n + (1|ID) 0.05 + 0.04 1.74 ‘ 1 ' 0.19

mating with heterospecifics. If so, selection might not favour
traits that minimize masking’s effects. More work is needed
to determine how heterospecific signalling impacts female
mate choice.

Our results suggest that the nature and strength of sexual
selection vary depending on the immediate presence of hetero-
specifics. Previous work has focused on how the risk of mating
with heterospecifics impacts divergence in sexual signals
between sympatric and allopatric populations [9,33,62,63]. Our
study indicates that sexual selection exerted by females can
become variable within populations depending on heterospeci-
fics” actual presence. Temporal variation in mate preferences
could reduce the strength of sexual selection on male signals
[64], promote polymorphism in these signals [65,66], and/or
reduce differentiation in signals between sympatric and allopa-
tric populations. In spadefoots, for example, male calls do not
diverge between sympatry and allopatry as expected if females
constitutively express divergent preferences [44].

Facultative preferences that depend on the presence of het-
erospecifics potentially diminish the likelihood that sympatric
and allopatric populations will become reproductively isolated
if they reduce divergent selection between the populations.
Generally, the risk of hybridization in sympatry will drive
divergence in sexual signals between sympatric and allopatric
populations (e.g. [9,18,33,67]). Consequently, sympatric and
allopatric populations are expected to become reproductively
isolated, especially when individuals reject potential mates
from the alternative population type [17,34,35,37,68,69]. If,
however, females facultatively adjust their preferences when
heterospecifics are present, the likelihood (and strength) of
divergence between sympatric versus allopatric populations
is potentially reduced. More broadly, female preferences
serve as barriers to gene flow during species formation and
maintenance [17,70]. That females might modify their prefer-
ences depending on heterospecific mating risk assessed at the
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