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Convolutional Filters and Neural Networks With
Noncommutative Algebras

Alejandro Parada-Mayorga

Abstract—In this paper we introduce and study the alge-
braic generalization of non commutative convolutional neural
networks. We leverage the theory of algebraic signal processing
to model convolutional non commutative architectures, and we
derive concrete stability bounds that extend those obtained in
the literature for commutative convolutional neural networks.
We show that non commutative convolutional architectures can
be stable to deformations on the space of operators. We develop
the spectral representation of non commutative signal models to
show that non commutative filters process Fourier components
independently of each other. In particular we prove that although
the spectral decompositions of signals in non commutative models
are associated to eigenspaces of dimension larger than one,
there exists a trade-off between stability and selectivity, which is
controlled by matrix polynomial functions in spaces of matrices
of low dimension. This tradeoff shows how when the filters in
the algebra are restricted to be stable, there is a loss in discrim-
inability that is compensated in the network by the pointwise
nonlinearities. The results derived in this paper have direct
applications and implications in non commutative convolutional
architectures such as group neural networks, multigraph neural
networks, and quaternion neural networks, for which we provide
a set of numerical experiments showing their behavior when
perturbations are present.

Index Terms—Non commutative convolutional architectures,
algebraic neural networks (AIgNNs), algebraic signal process-
ing (ASP), representation theory of algebras, non commutative
algebras, non commutative operators, non commutative neural
networks, Fréchet differentiability.

I. INTRODUCTION

EEP learning relies on parameterizations given by the

composition of layers which are themselves compositions
of linear operators with pointwise nonlinearities. In problems
that involve high dimensional inputs it becomes necessary to
exploit their structure to reduce the complexity of the learn-
ing parametrization. This is often accomplished with the use
of particular instantiations of convolutional filter banks. The
most notable examples of this approach are the use of standard
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(Euclidean) convolutional filters for learning with time sig-
nals and images, graph convolutional filters for learning with
graphs and graph signals, and group convolutions for signals
with group symmetries. The success of convolutional neural
networks of different types — Euclidean, graph, and group —
is in part due to how convolutions leverage symmetries of
the domain and the signals. However, both filter banks and
convolutional neural networks are equally good at leveraging
these symmetries [1], [2], [3]. Yet, it is the latter that are more
successful at learning. This empirical observation prompts a
search for properties that explain the better performance of
convolutional neural networks relative to the corresponding
convolutional filter banks.

In the case of Euclidean convolutions and graph convolutions
part of the insight into the relative performance of convolutional
filter banks and neural networks follows from their respective
responses to deformations [4], [2] — deformations in the domain
of the signals in [4] and deformations on the space of graph
matrix representations in [2]. These works prove that stability
to deformations requires filters that do not distinguish different
high frequency components. It follows that convolutional neural
networks can better trade-off discriminability and stability as
the pointwise nonlinearity mixes frequency components across
layers. Recent analysis conducted on the operator space has
demonstrated that the shared stability properties of Euclidean
and graph convolutions are a consequence of their shared al-
gebraic structure [1]. It then follows that whenever we use
convolutional parameterizations in machine learning we can
expect convolutional neural networks with multiple layers to
outperform convolutional filter banks. These results build on
the theory of algebraic signal processing (ASP) which pro-
vides a common language for describing convolutional filters
of different types [5]. They apply to Euclidean, graph, and
group convolutions as well as to a large class of less ubiquitous
convolutional filters and neural networks [1], [6].

Although these results provide valuable insights, they are
limited to commutative operators. Namely, to signal processing
architectures in which filters commute. This is not true in gen-
eral as non commutative signal processing arises naturally in
multiple scenarios [7], [8], [9], [10], [11], [12], [13], [14], [15].
For instance, multigraphs arise when nodes are related by sev-
eral different types of edges [7], [16]. In this case it is natural to
define multigraph filters by combining diffusions across matrix
representations of the graphs defined by each individual type
(see Example 3 in the supplementary material). The resulting
filters do not commute except in the rare eventuality that the
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different matrix representations themselves commute. Filters
that do not commute also arise with signal models on groups
like E(n), or SO(n) [8], [9], [10], [17], or any nontrivial Lie
group [11], [12], [17], [18]. Non commutative filters appear here
because filters are associated with group symmetries and it is
common for groups to have symmetries that do not commute —
such as rotations in SO(3).

Existing stability results do not apply to any of these non
commutative settings but empirical results show the usual ad-
vantage of layered neural networks with respect to filter banks
[11], [12], [15], [16], [17]. Such an empirical observation poses
the question of whether similar stability results hold for non
commutative convolutional architectures. That is, whether con-
volutional versions of architectures such as multigraph neural
networks [16], [19], neural networks on groups [15], [17],
quaternion (graph) neural networks [14], [20], [21], [22], [23],
[24], [25], hypercomplex algebras neural networks [26], hyper-
bolic neural networks [27], [28], octonion neural networks [29],
and Clifford algebras neural networks [30], [31], [32] can be
stable to deformations and, more to the point, whether stability
requires spectral restrictions analogous to those of Euclidean,
graph, and commutative group neural networks. The goal of this
paper is to answer this question in the affirmative. To do so our
first two contributions are the following:

(C1) We define convolutional filters (Section II) and neural

networks (Section IV) with non commutative algebras.

(C2) We develop the spectral representation of non commu-

tative signal models (Section III).

Non commutative filters are just a particular case of algebraic
filters [S] and the construction of algebraic neural networks
with non commutative filters is a close to verbatim exten-
sion of algebraic neural networks [1], [6]. The development of
spectral representations, however, has substantial differences.
Commutative signal models define Fourier decompositions as
projections on single dimensional subspaces and, consequently,
frequencies are defined as scalars. In non commutative signal
models Fourier decompositions are projections in multidimen-
sional subspaces and frequencies are, consequently, matrices of
corresponding dimensions (Definition 5). Despite this signifi-
cant difference we can still prove the equivalent of an spectral
representation theorem of non commutative algebraic filters:

(C3) Non commutative algebraic filters process Fourier

components independently of each other (Theorem 1).

Contribution (C3) is the equivalent of the claim that com-
mutative algebraic filters process frequency components inde-
pendently of each other. As in the case of commutative filters,
Contribution (C3) implies that non commutative algebraic fil-
ters are completely characterized by their frequency responses.
The difference is that in non commutative filters the frequency
response is a matrix polynomial (Definition 6). This is in con-
trast to the scalar polynomials that define frequency represen-
tations in commutative signal models and a consequence of the
fact that frequencies are matrices, not scalars.

It is this difference between frequency representations of
commutative and non commutative filters — matrix versus scalar
polynomials — that prevents the results derived in [1] to be ap-
plied to non commutative convolutional architectures. The main
technical contribution of this paper is to generalize the analysis
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Fig. 1. Non commutative algebraic signal model. The algebraic filters th
and ht are realized physically in End(M) to process the signals x which are
modeled as elements of M.

of [1] to show that analogous results hold for non commutative
algebraic signal models. In particular, we prove that:

(C4) Non commutative algebraic convolutional filters can
be stable to additive and multiplicative perturbations
of the algebraic signal model (Section VI).

Non commutative algebraic neural networks inherit
the stability properties of algebraic convolutional fil-
ters (Section VI-A).

The proof of Contribution (C4) and (C5) requires that filters
have two spectral properties (Definition 9). The first property is
a generalized Lipschitz condition in which changes in the filter’s
frequency response are upper bounded by a linear function of
the frequency’s norm. The second condition is that the Fréchet
derivative of the filter’s response acting on a frequency matrix
has bounded norm. These two conditions limit the discrim-
inability of non commutative filters. They respectively imply
that: (i) The variability of a stable filter must be bounded by
the norm of the difference between frequency matrices. (ii)
The variability of stable filters must decrease with the norm of
the frequency matrix. Stability of commutative filters requires
analogous conditions on scalar frequencies. Since imposing
conditions on frequency matrices is more stringent, our stability
results suggest that non commutative filters require more strin-
gent filter restrictions to attain the same level of stability.

To illustrate our theoretical results we provide a set of numer-
ical experiments for non commutative convolutional multigraph
and quaternion neural networks (Section VII).

(C5)

II. NON COMMUTATIVE FILTERS

In this section we introduce the generalization of non com-
mutative signal models on arbitrary domains under the lens of
algebraic signal processing (ASP). An algebraic signal model
(ASM) is defined as the triplet

(A, M, p), (1)

where A is a unital associative algebra, M is a vector space,
and p : A — End(M) is a homomorphism between the
algebra A and the set of endomorphisms in the vector space M
[5]. We recall that an algebra is a vector space with a closed
operation of product, the endomorphims of M are the set of
linear maps from M onto itself and a homomorphism is a linear
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map between algebras that preserves the product operation. We
refer the reader to Appendix A for a review of these concepts
and the discussion of some examples as well.

For our discussion we consider that .4 and M as vector
spaces are defined on an algebraically closed field F which for
the sake of simplicity will be considered F = C. However, we
remark that the material discussed is valid for any algebraically
closed Field. In the triplet (A, M, p) the pair (M, p) constitutes
a representation of A in the context of representation theory of
algebras.

The processing of information in the context of (1) is known
as algebraic signal processing (ASP). The signals are modeled
as elements of M, the filters are defined as elements of A and
their realization is given by p. The rules or laws governing the
operations are given by the structure of .4 and p translates those
operations into actions on the elements of M. Then, the filtering
of a signal x € M by an algebraic filter a € A is given by

y = pla)x. )

In (2) we have a generalized representation of the convolution
operation between a filter and a signal. Particular instantia-
tions of (2) lead to the traditional signal processing models of
time signals and images and more sophisticated models such
as graph signal processing (GSP), graphon signal processing
(WSP) among others [1], [6], [33].

Since it is .4 the algebraic object defining the structural rules
of information processing, the non commutativity in an alge-
braic model is associated to A. This is, any non commutative
convolutional signal model is given by (A, M, p) where A
is a non commutative algebra. For the reader unfamiliar with
algebraic concepts, we remark that one representative example
of this type of algebra is M,,«,,(C), which is the set of matrices
of dimension n x n with entries in C. It is an algebra, since it is
a vector space over C and the product of two matrices of size
n X n is again a matrix of the same size.

Now we recall the notion of generators in algebraic signal
models.

Definition 1: (Generators). For an associative algebra with
unity A we say the set G C A generates A if all a € A can
be represented as polynomial functions of the elements of G.
We say elements g € G are generators of 4 and we denote as
a = p(G) the polynomial that generates a.

Representing the elements of A as polynomial functions of
a set of generators highlights the fact that such generators char-
acterize the algebra, and can be conceived as a measure of the
degrees of freedom associated to the algebra. Consequently, the
realization of the generators by means of the homomorphism
p, called shift operators, play a central role when analyzing
algebraic signal models. We introduce its formal definition next.

Definition 2:  (Shift Operators). Let (A, M, p) be an alge-
braic signal model. Then, if G C A is a generator set of A, the
operators S = p(g) with g € G are called shift operators. The
set of all shift operators is denoted by S.

Then, we can express any element p(a) € End(M) as a poly-
nomial function of the shift operators. In particular, if a = p(G)
we have that

3)
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Fig. 2. Example of a multigraph signal processing model. The signal x €
RS defined on the multigraph G = (V, {£1, E2}) is associated to the nodes
V, while the shift operator S; is associated to the set of edges &;.

x(5)

where pas indicates the polynomial of form p but whose in-
dependent variables are the shift operators. For the sake of
simplicity we drop the subindex in p in our subsequent discus-
sion since it is clear where p is defined from the independent
variable.

To facilitate the understanding of these basic concepts we
present an example.

Example 1: (Multigraph signal processing). A multigraph
consists of a common set of vertices and multiple separate
sets of edges. Consider the specific case G = (V,{&1,&2})
consisting of a set of NV vertices V and two separate edge sets
&1 and & - see Fig. 2. Associated with each edge set we
consider matrix representations S; and S». This is an algebraic
signal processing model in which the vector space of signals
M = CV contains vectors in C"V with entries associated with
each node of the multigraph and the algebra A = Cl[tq,t] is
the set of non commutative polynomials of two variables. The
algebra C[ty, to] is generated by the monomials ¢; and ¢o. The
homomorphism p is defined by mapping the generators ¢; and
to to p(t1) = Sy and p(t2) = Sa, where the shift operators S;
are the matrix representations of the corresponding set of edges
;. Then, if p(t1,ta) = t3 + t1ta + 2tat1 + t3 + 1 the filtering
in (2) takes the form

p (11 + tita + 2taty +15 + 1) x

= (S% + S1So +2S5S; + S% + 1) X. 4)

We refer the reader to Appendix F in the supplementary
material for a more sophisticated example on multigraph signal
processing in the light of ASP. In Appendix B and Appendix C
of the paper it is shown how classical group signal processing
and convolutional quaternion signal processing can be seen as
particular cases of algebraic signal models.

Remark 1: Tt is important to highlight that the definition of
an algebraic signal model is independent of any norm that could
be associated to M, if any. As we will discuss in subsequent
sections (see Section VI) we will endow M with a norm in
order to analyze the size of perturbations, and doing this will not
affect the structure of the triplet (A, M, p). We also remark that
the algebra A is not associated to a norm, but it happens that A
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can be isomorphic to algebras that are naturally endowed with a
norm. This is something we exploit in Section III to characterize
subsets of the algebra and spectral representations.

III. SPECTRAL REPRESENTATIONS OF NON COMMUTATIVE
FILTERS

In this section we discuss spectral representations of filters
and signals. We will show that spectral representations in
non commutative signal models are determined by matrix
polynomials and that frequencies themselves are described
by matrices instead of scalars. This introduces technical
challenges, and yet we will also show that despite the
significant differences with respect to the commutative
scenario, spectral filtering is an analog of spectral filtering in
commutative signal models. Additionally, this analog behavior
extends to the norms of the operators, in particular the norm
of non commutative filters is determined by the norm of the
spectral responses which can be characterized in analogous
ways to those in commutative signal models when considering
induced norm on direct sums of spaces.

The notion of spectral decomposition descends from the
concepts of irreducible and completely reducible subrepresen-
tations of an algebra [5], [34], [35], [36], [37]. Widely known
notions of spectral decompositions used in graph signal pro-
cessing (GSP), discrete signal processing (DSP), and discrete
time signal processing (DTSP) among others, are obtained as
particular cases of a decomposition of representations of an
algebra as a sum of irreducible subrepresentations. Then, in
order to present a natural generalization of frequency decom-
positions in non commutative ASM, we discuss the concepts
of subrepresentation, irreducibility and decomposability. We
restrict our attention to algebras that have a finite number of
generators.

Definition 3: Let (M, p) be a representation of A. Then,
a representation (U, p) of A is a subrepresentation of (M, p)
if Y € M and U is invariant under all operators p(a) for all
a€ A ie. pla)u el forallu € Y and a € A.

The notion of subrepresentation is tied to the property of in-
variance since subrepresentations are invariant under the action
of the instantiations of elements of .4 in End(M). Notice that
when considering representations of an algebra with a single
generator, the spaces generated by subsets of eigenvectors of
p(a) determine the subrepresentations of (M, p).

Now, we introduce formally irreducible subrepresentations
which provide a minimal structural unit of invariance.

Definition 4: A representation (M, p) (with M # 0) is
irreducible or simple if the only subrepresentations of (M, p)
are (0, p) and (M, p).

The irreducibility property of a subrepresentation implies
that there is not a subspace that has its own invariance under
the action of the elements of the algebra. Additionally, notice
that one dimensional subrepresentations are always irreducible.
It is important to point out that the calculation of irreducible
subrepresentations entails a significant computational cost — see
Appendix K in the supplementary material.

As we will show in the next subsection, irreducibility can
be used to write a general representation as a decomposition
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in terms of irreducible subrepresentations. To show this we
introduce the notion of direct sum of representations. Given
two representations (M, p1) and (M, p2) of an algebra A
we can obtain a new representation, called the direct sum
representation, as (M @& My, p) where p(a)(u1 @ ug) =
p1(a)ur & p2(a)us.

A. Fourier Decompositions and Spectral Representation of
Filters

Using the ideas and concepts discussed above we intro-
duce the notion of Fourier decomposition in algebraic signal
processing.

Definition 5:  (Fourier Decomposition). For an algebraic
signal model (A, M, p) we say that there is a spectral or Fourier
decomposition if

D

U;,pi)elrr{A}

where the (U;, ¢;) are irreducible subrepresentations of (M, p).
Any signal x € M can be therefore represented by the map A

given by
D u
U, pi)elrr{A}
X — X, ©6)

A:M—

known as the Fourier decomposition of x and the projection of
X in each UY; are the Fourier components represented by x(i).

In Definition 5 it is assumed that each individual subrep-
resentation (U, ¢;) cannot be expressed as a direct sum of
irreducible subrepresentations isomorphic to (i;, ¢;). This as-
sumption is analogous to the assumption of not having repeated
eigenvalues when considering spectral decompositions where
the irreducible subrepresentations have dimension equal to 1.
This choice is done for the sake of simplicity and we refer the
reader to Appendix K of the supplementary material for a more
sophisticated formulation of the Fourier decompositions. We
remark that the decomposition in (5) and (6) is unique up to
isomorphism — see Appendix K in the supplementary material.

It is worth pointing out that the homomorphisms ¢; associ-
ated to each non isomorphic irreducible representation define
the frequency associated to the vector space U; [5] — see Fig. 3.
In commutative scenarios, like for instance in GSP, we have
dim(U;) = 1. In this case the term ¢; (a) is a scalar value which
corresponds to the eigenvalues of p(a) while I; is the space
spanned by the i-th eigenvector.! If dim(Z4;) > 1 then ¢;(a) is
a matrix. This last scenario is typical when non commutative
algebras are involved.

We synthesize the role of Fourier decompositions and the
filtering operation in the following theorem.

Theorem 1: (Filtering Spectral Theorem) Let (A, M, p) be
an algebraic signal model where .4 has generators {gx } 7", and

'We refer the reader to Appendix G in the supplementary material where
we show with more details how the Fourier transform in GSP can be obtained
as a particular case of Definition 5.
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Us
5>

Uz
5>

Uy

Fig. 3.
frequencies while each If; is an eigenspace. Notice that if a € A is
a polynomial in terms of the generators of A, then p(a) and ¢;(a) are
polynomial operators in terms of the shift operators in End(M) and End(l4;),
respectively. When dim(U;) = 1, ¢;(a) are polynomials in terms of the ith
eigenvalue of the operator p(a).

Spectral decomposition in an ASM: The maps ¢; indicate the

p(a) is the realization of a € A in End(M) by means of p. If
(M, p) = @(Zx{i,qbi)elrr{.A}(um ¢;) then

p(p(gl,7gm)) :p(Slvvsm)
=Y p(Avis o M) 2, @)
where Z; is the projection operator on U; and Ay ; = ¢;(gx)-
Additionally, if y = p (p(91,- - -, 9m)) X, then
Vi=pArise s Am i) X, (3)

where the sub index ¢ indicates a projection on ;.

Proof: See Appendix G in the supplementary material. [

Theorem 1 exhibits similarities in form with the classical
spectral theorem for commutative signal models but also sub-
stantial differences. Indeed, Theorem 1 is a generalization of the
classical spectral theorem where decompositions of operators
are expressed in terms of projections on spaces spanned by more
than just one vector. As indicated in Appendix G, Theorem 1
follows from the fact that the restriction of the homomorphism
p to an invariant subspace Uf; given by ¢; is again a homo-
morphism. Therefore, if p(g1,. .., gm) is a polynomial so it is
p(p(g1,...,9m)) and ¢;(p(g1,-..,9m)) — and they have the
same coefficients. Additionally, the dimensions of M and U;
will determine the dimensions of the independent variables in
p(p(gh ) 7gm)) and ¢i(p(gla v 7gm))

The algebraic filter a € A determines the form and properties
of the spectral response indicated by the homomorphisms ¢;.
Therefore, classes of filters in A lead to specific classes of filters
defined in the spectral domain. We use this fact and an auxiliary

matrix algebra, A4, to provide a concrete characterization of
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Schematic representation of the spectral representation C of a subset
of filters C C A algebraic signal model. The properties of p(C) are determined
by C which is characterized by the elements in C.

Fig. 4.

subsets of filters in A. A is endowed with a norm and is
isomorphic to A — see Fig. 4.

In A the generators can be considered as variables tak-
ing specific values on a vector space. In particular, given
any (A, M,p) with A generated by {g;}!”, we can asso-
ciate A = {p: M/™(C) + M,,(C)| p : polynomial }, where
M, (C) is the space of matrices of size r x r whose entries
belong to C, while M, (C) is the m-times Cartesian product
of M, ,.(C). Additionally, we endow A with a norm. It is
possible to see that there is a natural isomorphism ¢ between
A and A given by 1(g;) = A; € M, .(C). We attribute the
properties of a set of filters realized in the set C C A to the
set C = qa€ Al (a) € C . The value of 7 is selected as

r = max {d;} , where d; are the dimensions of the irreducible
subrepresentations of (M, p). It is worth pointing out that the
value of the d; depends on p, and in general d; < dim(M) [1],
[5], [35], [38]. Taking into account this, we formally introduce
the spectral representation of a filter.

Definition 6: Let (A, M,p) be an ASM where A is an
algebra with generators {g;}/,. Let A the matrix algebra iso-
morphic to A4 given by

— M, .(C) ’p : polynomial}, 9)

where r = max{d;}, and d; are the dimensions of the
irreducible  subrepresentations of (M, p). Then, we say

that p(Aq,...,A,,) € A is the spectral representation of
p(gla s ,gm) €A
Remark 2: It is important to remark that a substantial

part of the technical challenges that have made the analysis
of non commutative signal models and architectures elusive,
is precisely the difficulty associated to the use of the Fourier
representations. As we just discussed, some frequencies are not
described by scalars but instead by matrices. Part of our contri-
bution in this paper is precisely the fact that we have overcome
these technical challenges and as the reader can corroborate in
Appendix D the formal proof of our stability results make use
of tools different from those used in [1] for commutative signal
models where frequencies are associated to scalars.

As a final comment it is worth highlighting that the notion
of aliasing on the spectral domain for non commutative signal
models is analog to that one of commutative models. The dif-
ference is that the representation of the aliased information is
expressed in terms the basis of the U/; spaces where aliasing
takes place.
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Y1 z
Y1 = pl(al)x
(AlyMlypl)
X1
X1
Y2
Y2 = p2(a2)x1
(A2, M2, p2)
X2

Y3
y3 = p3(asz) x2
(-A3 ) M3 } p3)
L) X3
Fig.5. Algebraic Neural Network { (A, My, ps; O'g)}?zl with three layers

indicating how the input signal x is processed and mapped into x3. In each
layer the information is transformed by a convolutional filter p;(ay), followed
by a pointwise nonlinearity 77, and a pooling operator Pp.

IV. ALGEBRAIC NEURAL NETWORKS WITH NON
COMMUTATIVE ALGEBRAS

Algebraic neural networks (AlgNNs) are stacked layered
structures (see Fig. 5) where the processing of information in
each layer is carried out by means of filters of an algebraic
signal model and pointwise nonlinear operators. For a training
set T = {x,y} with inputs x and outputs y, it is possible to
learn the algebraic filters ay € Ay in each layer of the AlgNN to
produce a mapping representation. This allows an estimation of
the output to an unseen input X € 7. The data from the training
set T is used to find subsets of filters P, C A, that minimize a
cost function of the form }_, . 7, (x,y), where fp,(x,y)
is a fitting metric that penalizes the difference between y and
the output of the AlIgNN produced when the input is x. In the
{-th layer of the AlgNN, an incoming signal x,_; from the layer
¢ —1 is filtered by means of the convolution p;(as)x¢—1. Then,
a pointwise nonlinear operator 7, : My, — My, is applied
and finally a pooling operator P, : M, — M4 matches
information between M, and M 1. The output signal of the
layer ¢ can be written as

x¢ = 0y (pe(ag)xe—1) = ®(xe—1,Pr, S). (10)
We use the symbol ®(x¢_1, Py, Sy) to make emphasis in the
fact that the filters used in each layer belong to specific subsets
of the algebra and that a specific family of shift operators is
being used. If several features per layer are used, we use the
notation

an

Fo
oo (o))
g=1
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where the super index f indicates the fth feature and ¢ the
layer were information is being processed. To denote an AlgNN
with L layers we use {(Ag¢, My, pe; 04)}f, where o, = Pyny.
As pointed out in [1], traditional neural networks (CNNs),
graph neural networks (GNNs), and graphon neural networks
(WNNS5s) among others, can be obtained as particular instan-
tiations of a general AlgNN with a commutative algebra. For
our discussion we consider that o, = Pyny is Cy-Lipschitz and
0¢(0) = 0. The role of 7 is crucial for the performance of any
AlgNN, since it is the nonlinearity of 1, what allows the AIlgNN
to redistribute spectral information and compensate restrictions
imposed on the filters. There are many possible choices for 7,
that could improve the generalization capacity of the AIgNN.
Typically a low computational cost 7, is selected. The operator
Py My — M4y performs an operation of dimensionality
reduction. In particular instantiations of AlIgNNs like GNNs,
such operator can be associated to graph coarsening techniques
or optimal sampling strategies for bandlimited signals [39]. In
what follows we present some examples of concrete non com-
mutative convolutional architectures instantiated as particular
cases of non commutative algebraic neural networks (AIgNNs).

Remark 3: Note that the action of the pointwise nonlin-
earity, 1y, and the pooling operator, P, is defined in terms of

a basis of My. This is, given a basis b@}. of M, we have

ne (Siaitl”) = Symeapl”, and Py« span({{"};) —
span({bl(-”l)}i). In our analysis, the specifics of such basis are
not relevant as long as the operator o, = Py, is Lipschitz and
o¢(0) = 0. Notice also that since P, performs dimensionality
reduction, there are multiple choices for linear and nonlinear
versions of P, depending on the properties of M, [40], [41],
[42] and we consider those choices for which o, = Py is
Lipschitz and 04(0) = 0. We point out however, that the optimal
selection of such basis and the operators 7, and P, opens up an
interesting future research direction.

Example 2:  (Multigraph neural networks). Let us con-
sider a multigraph G = (V,{&,}7,) with set of nodes V,
|[V| = N and multiset of edges {&,}" ;. Let S; be a ma-
trix representation of the multigraph on the set of edges &;,
which could be the adjacency matrix or a Laplacian matrix of
the graph (V,&;). Then, the ¢-th layer of a multigraph neu-
ral network is composed by convolutional operators followed
by a pointwise nonlinearity and a pooling operator. The con-
volutional filters are given by the multivariable polynomials
(see Example 3 in the supplementary material): p(Sy, ..., S.,).
Then, given the input x, to the /-th layer of the multigraph
neural network, we leverage symmetries on the multigraph to
obtain yy = p(Si,...,Sm)x.. After this, we apply a point-
wise nonlinear operator 7, : RY — R to obtain z, =
ne (y¢), with z¢(u) = max {y,(u),0}, and where zy(u) is the
u-th component of z,. Besides the convolutional filter and the
pointwise nonlinear operator, an operation of pooling may be
considered to reduce the computational cost of processing with
multiple filters. For multigraph neural networks, the pooling
operator may be defined using the zeroing approach used for
GNNSs in [39], where the information is forced to be zero in
a subset of nodes. This is done under the hypothesis that the
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information in those nodes is less relevant or redundant. Then, if
zeroing is used the pooling operator is given by P, : RY — RY
with xp11 = Py(z¢) and x¢p41(u) = 0 forany u € U C V,
and where the subset I/ could be chosen according to a specific
heuristic or the minimization of a cost function. Notice that for
the sake of simplicity, in this example we considered one filter
per layer, but we can indeed use several filters.

We refer the reader to Appendix B and Appendix C for a
discussion on how convolutional group neural networks and
quaternion neural networks can be seen as particular cases of a
generic AIgNN.

Remark 4: The cost of the convolution in the ¢-th layer is
O(N}mX F,Gy), where N, = dim(M,) is the dimension of
the vector space, m is the number of generators in the algebra,
Fy is the number of input features, G is the number of output
features, and K is the order of the polynomial filters. The
number of learnable parameters in each layer is O(m® F,G,),
which does not depend on the dimension of the vector space.
It is important to remark that the complexity associated with
the learnable parameters can be reduced when adapting pruning
algorithms like the one proposed in [16], [19], which reduces
efficiently the number of monomials in an polynomial operator.

V. ALGEBRAIC PERTURBATION MODELS

For our discussion we consider perturbations of the generic
algebraic signal model (A, M, p) determined by a perturbation
of p. As discussed in [1], if the realization of algebraic filters
in the algebra is achieved by p, it is natural to consider that
mismatches in the model occur on p. In the following definition
we state formally the notion of perturbation in the context of
ASP.

Definition 7:  (ASP Model Perturbation [1]) Let (A, M, p)
be an ASP model with algebra elements generated by g € G
(Definition 1) and recall the definition of the shift operators S =
p(g) (Definition 2). We say that (A, M, p) is a perturbed ASP
model if for all @ = p(G) we have that

pla) = p(plg)) = p(S), (12)
where S is a set of perturbed shift operators of the form
S=8S+T(S), (13)

for all shift operators S € S.

From Definition 7 we can see that the effect of a perturbation
on the homomorphism p is expressed in terms of perturbations
of the shift operators, which at the same time produce a per-
turbed version of any algebraic filter. Notice that p is a general
map that is not necessarily a homomorphism, but it could be. As
shown in [1] this notion of perturbation is associated to practical
scenarios in GSP, WSP and group signal processing.

The notion of stability is tied to the concept of size of a
deformation. To measure the size of those deformations on
the space of operators we use norms. In particular, we use
the operator norms induced by a norm associated to M. If
dim(M) < oo the specifics of the norm in M are not relevant
since all norms are equivalent [43]. If M is infinite dimensional
we select a norm that guarantees that every bounded operator
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in End(M) is Hilbert-Schmidt and that the induced norm in a
direct sum of replicas of M satisfies the maximum property —
see Appendix H in the supplementary material. We remark
that this does not affect the structure of any algebraic signal
model (A, M, p). We now state the formal definition of stability
considered in our analysis.

Definition 8: (Operator Stability [1]). Given operators p(S)
and p(S) defined on the models (A, M, p) and (A, M, 5) (cf.
Definition 7) we say the operator p(S) is Lipschitz stable if there
exist constants Cy, C'; > 0 such that

o)~ i) < |cosup Imis))

+ Cysup | Dr(S)] +0 (||T(S)||2)} (-
Ses

for all x € M. In (14) D¢ (S) is the Fréchet derivative of the

perturbation operator T.

The right hand side of (14) provides a measure of the de-
formation produced by T(S). Then, Definition 8 states that a
given operator is stable to a perturbation T(S) if the deforma-
tion induced in the operator is proportional to the size of the
deformation. For our discussion we consider the perturbation
model given by

T(S;) =T + T1,S;, (15)

which is composed of an absolute or additive perturbation T'; o
and a relative or multiplicative perturbation T'; 1 S;. The family
of perturbations is ruled by the condition

”Ti,THF < d HTH’H ) (16)

where 6 > 0. This is, the Frobenius norm of the perturbation
operators is bounded by a scalar factor of the operator norm.
Remark 5: The notion of stability discussed here is stability
to deformations on the operator space. This is the same kind
of deformation that is studied in [1] for commutative algebraic
filters and in [2] for graph filters. It is not the same as the domain
deformations studied in [4]. Although different in principle,
both notions can be related [1]. For instance, a small defor-
mation of the time axis for time signals implies that signals
will not have translation symmetry but instead quasi translation
symmetry. This can be seen as a perturbation of the time delay
operator. It is important to point out that in all scenarios — do-
main and operator deformations — a stable operators must have
changes that are proportional in size to the given deformations.
This is done by using metrics used to measure the size of the
diffeomorphisms involved in each case [44], [45], [46].

VI. STABILITY THEOREMS

In the following definitions we state properties of algebraic
filters in A in terms of their spectral representations in A (see
Def. 6). This will be used in the derivation of the stability re-
sults. We start introducing the notions of Lipschitz and integral
Lipschitz filters.

Definition 9:  Let (A, M,p) be an ASM where A has
generators {g;}7,. Let A the algebra of matrices containing
the spectral representations of the elements in A (see Def. 6).
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We say that p(g1, ...
Lo > 0 such that

,gm) € A is Lo-Lipschitz if there exists

||p(131, cee 71‘7?7:) 7p(i17 ce 757777)“

< Loll(z1, . oy xm) = (Z1y- ooy Zm)]| a7

for all x;, Z; and where p(z1,...,2;,) € A. Additionally, it is
said that p(g1,...,9m) € A is L;-integral Lipschitz if there
exists L; > 0 such that

IDpja; (@1, - - @) {() i}]| < Ly, (18)

for all x;, where Dy, (21,...,7,) is the partial Fréchet
derivative of p(x1,...,Z;,) € A, and || - || is the operator norm.

From now on we denote the set of algebraic Lipschitz filters
by Ay, and the set of algebraic integral Lipschitz filters by Ay, .

Now we introduce the first stability theorem for algebraic
signal models with non commutative algebras with multiple
generators.

Theorem 2: Let (A, M, p) be an ASM where A is gen-
erated by {g;}/, and let p(g;) = S; € End(M) for all i. Let
p(g:) = S; € End(M), where (A, M, j) is a perturbed version
of (A, M, p) and S; is related with S; by the perturbation model
in (13). Then, for any p € A we have

Hp(Sl, ooy S )x — p(sl, A Sm)xH

< I3 (1Ppis. (St Sm)T(S) [ + O (IT(SIP))

19)

where Dy,s, (S) is the partial Fréchet derivative of p on S;.

Proof: See Appendix D-A. O

It is worth pointing out that in (19) the upper bound adds the
contributions of the deformation in each direction S; given by
the shift operators. Each individual contribution associated to
the perturbation of S; is determined by the Fréchet derivative of
the filters acting on the perturbation, and this is true no matter
what function T(S;) is being considered.

In the following theorems we provide the basic stability result
for algebraic filters showing how with a restriction of the filters
shaped by the functional form of the right hand side of (19)
leads to stability.

Theorem 3: Let (A, M, p) be an ASM where A is a non
commutative algebra with m generators {g; } ;. Let (A4, M, )
a perturbed version of (A, M, p) by means of the perturbation
model in (15). Then, if p € Ay, N Ay, it holds that

| Dpis, (Sts- - Sm)T(Si)|| < dLo sup [|T(S,)]|
S;eS
+ 6 Ly sup [|[Dz(S;)[|. (20)
S, €S

Proof: See Appendix D-B. |

From Theorems 2 and 3 we can state the stability results
for filters in algebraic models with multiple generators in the
following corollary.

Corollary 1: Let (A, M, p) be a non commutative ASM
where A has generators {g; }1™,. Let (A, M, p) be a perturbed
version of (A, M, p) associated to the perturbation model in
(15). If p € A, N AL, C A, the operator p(Si,...,Sn)
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is stable in the sense of Definition 8 with Cy = mdLy and
C 1= m5L1

Proof: Replacing (20) from Theorem 3 into (19) from
Theorem 2 and organizing the terms. O

Notice that the stability property of the algebraic filters comes
at the expense of their selectivity. A restriction on the subsets
of the algebra naturally limits the type of frequency repre-
sentations. Additionally, it is worth pointing out that it is the
functional form of T'(S;) the one feature that dictates the types
of restrictions imposed on the algebra, necessary to guarantee
stability.

Remark 6: We remark that the non commutativity imposes
multidimensional frequency representations, but even in this
scenario we have a trade-off between stability and selectivity.
We could therefore say that although the non commutativity of
the algebra does not change the fact that filters can be stable
and selective, the multidimensional nature of the frequency
representations leads to restrictions that can be captured only by
means of matrix algebras. This in itself implies that two filters
with identical functional form — symbolic expression — do not
have the same stability properties if one of them is associated to
a commutative model and the other to a non commutative one.

A. Stability of Non Commutative Algebraic Neural Networks

In this section we extend the stability results obtained
for algebraic filters to operators representing AIgNNs. Let
{(A¢, My, pe; ag)}le be an AlgNN with L layers, and whose
perturbed version is represented as {(Ag, My, py; Ug)}ZL:I. We
start stating formally how the algebraic operators are affected
by the functions that map information between layers.

Theorem 4:  Let {(As, My, pi;00)}i_, be an algebraic
neural network and { (A, My, p¢; 0¢) }ZL=1 its perturbed version
by means of the perturbation model in (15). We consider one
feature per layer and non commutative algebras A, with m
generators. If ® (x¢_1, Py, S¢) and D (xe_l, P, Sg) represent
the /-th mapping operators of the AIgNN and its perturbed
version, it follows that

H(I) (x¢-1,Pe; Sp) — @ (Xf—l’fpe’gl) H

< Crd|xe—1]m (L(()E) sup [ TU(S;,0)||

il

+ LY sup [ Deo <s,,e)||> 21)
il
where Cy is the Lipschitz constant of oy, and P, = A, NAp,
represents the domain of p,. The index (¢) makes reference to
quantities and constants associated to the layer ¢.
Proof: See Appendix J-Al in the supplementary material.
[
Theorem 4 highlights the role of the maps oy in the stability
of the algebraic operators. In particular, we can see that the
effect of such functions is only to scale the stability bound of
the algebraic operators. If Cy = 1, the stability bounds for the
operators in the layers of the AIgNN are identical to the stability
bounds for the algebraic filters. However, it is important to
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remark that the discriminability of the layer operators in the
AlgNN is enriched by the pointwise nonlinearities.

Notice that the resemblance between the results provided in
Theorem 4 and previous results for commutative architectures
is rooted in the fact that the same notion of stability and the
same type of perturbations are considered in both scenarios.
However, there is a substantial difference between the stability
bounds. In the non commutative scenario we have that the
restrictions on the subsets of the algebra are dictated by matrix
functions and not scalar maps. Additionally, as can be seen
in the proof of the theorems above, the estimate of the upper
bounds on the change of the operators requires a more general
representation of spectral responses not given by the traditional
spectral theorem.

Now we are ready to state the stability theorem for a general
AlgNN.

Theorem 5: Let {(Ag,/\/lg,pg;ag)}le be an algebraic
neural network and { (A, My, py; O'g)}le its perturbed version
by means of the perturbation model in (15). We consider one
feature per layer and non commutative algebras Ap with m

generators. If @ (x, {P¢}{, {S¢}1) and @ (x, {P,}{, {Sg}f)
represent the mapping operator and its perturbed version, it
follows that

| G Py ASE) — @ (. P ASHE) |

L L L -1
s a(Mle) (11 2 ) (Tien ) s
=1 r={ r=0+1 r=1
(22)
where Cj is the Lipschitz constant of oy, ||pe(a)]] < By
forall @ € Py, and P, = Ap, N Ap, represents the domain
of py. The functions A, are given by

i0 e

Ay =m (Lff) sup | T (Sy,0) || + L sup | Dy <su>||> :

(23)

with the index (¢) indicating quantities and constants associated
to the layer £.

Proof: See Section J-A2 in the supplementary material. [J

This final result highlights that the stability of an AIgNN
is inherited from the stability properties associated to the op-
erators in each layer. Each layer of the AIgNN contributes to
increase the size of the stability constants, and we can observe
that with the appropriate normalization of C'; and B,, we obtain
a stability bound that is in essence the same derived for filters
and for the mapping operators in each layer. However, the
discriminability power associated to the AIgNN is by far larger
than the one related with the operators in the layers and the
filters. This is a consequence of the pointwise nonlinearities
mapping information between layers. It is important to highlight
that the o, that map information between layers are identical
for commutative and non commutative architectures. However,
they way they redistribute spectral information is tied to the
nature of the spectral representations. While in commutative ar-
chitectures such redistribution is always done between spaces of
the same dimension — one dimensional representations —, in non
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commutative AIgNNs the redistribution of spectral information
occurs in general between spaces of different dimension.

VII. NUMERICAL EXPERIMENTS

In order to provide numerical evidence of the stability results
derived for AlgNN with non commutative algebras, we consider
two architectures: Multigraph Neural Networks (MultiGNN)
and Quaternion Convolutional Networks (QCN). For the first,
we propose an architecture for learning on multigraphs and
show that if the learned filters are penalized to be Integral
Lipschitz, the model is much more resilient to perturbations
enforced on the graph. This architecture is used for a rating
prediction task on the MovieLens-100K dataset [47]. We then
apply the quaternion architecture introduced in [14] to an image
classification task using the MNIST dataset [48] and observe
that model performance quickly diminishes when additive and
relative perturbations are applied to the quaternion filters. As we
will elaborate in Subsection VII-B, due to the cyclic nature of
the generators in the quaternion algebra, no filter in (26) can be
integral Lipschitz. As a consequence, no filter can be selected to
mitigate the perturbations that severely affect the performance
of the QCN.

A. Multigraph Neural Networks

We first consider the application of the Multigraph Neural
Network as a movie recommendation system [49]. Using the
MovieLens-100K dataset containing 100,000 ratings from 943
users, we model the system as a multigraph. Nodes represent
movies which are connected by two classes of edges: one
measuring the rating similarity and the other measuring the
genre similarity. The signals supported by this multigraph are
user ratings, with the task of inferring unseen ratings based on
ratings given to other movies. On this task, we carry out stability
experiments which measure robustness to estimation error from
the training set. We find that Multigraph Neural Networks that
are penalized to employ integral Lipschitz filters are most stable
to perturbations.

Multigraph Formation: From the 1582 movies available,
we use the 200 with the highest number of ratings. The movie
Toy Story is used as the target movie for predicted ratings. Of
users who rated this movie, we define a node signal as the
rating 1-5 they gave to each movie or O if they did not rate it.
These signals are divided with a 90%/10% train/test split. Using
the training set, we add rating edge weights between movies
using the Pearson correlation coefficient and genre edge weights
through the Jaccard similarity of overlapping genres. To appeal
to sparsity, the 20 highest weighted edges of both edge classes
are kept for each node, and the rest of the edges are removed.

Stability: In contrast with the scenario of the quaternion
algebras, multigraph signal models are associated with a very
rich algebra: the regular algebra of polynomials with multi-
ple independent variables. This guarantees the existence of
subclasses of filters that are Lipschitz and integral Lipschitz.
Therefore, it is possible to learn filters — Lipschitz and integral
Lipschitz — that can mitigate the effect of deformations on the
shift operators. We illustrate this in our experiments analyzing
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Stability to perturbations caused by estimation error for the Movie Recommendation problem. We demonstrate in (a) the difference in evaluation

measure as the ratio of training samples is increased, where the penalized MultiGNN maintains the smallest difference for all ratios. This trend is also held
in (b) where we showcase the difference in the output of the convolutional layer. Then, MultiGNN with IL filters provide more stable and consistent rating

predictions with respect to estimation error perturbations.

the magnitude of change in the filters and operators networks
when subjected to deformations.

Architectures and Training: In our stability experiments,
we consider three architectures. The first, MultiFilter, is a
learned linear multigraph filter. We also train a Multigraph
Neural Network (MultiGNN) and another which is regularized
by an estimate of the filter’s integral Lipschitz constant (Multi-
GNN IL), seeking to train filters that are integral Lipschitz. All
architectures employ a convolutional layer with 3 filter taps
and 64 output features, a ReLU nonlinearity function, and a
local linear readout layer mapping the output rating to a single
scalar rating estimate. We minimize the smooth L1 loss using
an ADAM optimizer for 40 epochs, and evaluate using the root
mean squared error (RMSE). Results are reported as the average
and standard deviation of performance across 5 random splits
of the dataset.

Estimation Error Experiment: To simulate perturbations
as a result of estimation error, we first train each architecture on
90% of the training set. At evaluation, we replace the underlying
multigraph support with an estimate generated by a training set
ranging from 10% to 90% of the size of the overall dataset.
First, we find the difference in RMSE between the trained and
evaluated models. The regularized MultiGNN maintains the
smallest difference for each training set size as demonstrated in
Fig. 6(a). We also compare the norm of the difference in output
of the convolutional layer. As can be seen in Fig. 6(b), the Multi-
GNN with integral Lipschitz filters is approximately an order
of magnitude more stable than the unregularized MultiGNN.

B. Quaternion Convolutional Networks

We now consider a non commutative AlgNN proposed in lit-
erature: Quaternion Convolutional Networks. Quaternions have
shown to be useful tools for modeling spatial transformations
with diverse applications to computer graphics, quantum me-
chanics, and signal processing. Gaudet and Maida [14] propose
a deep convolutional architecture for learning through use of
quaternion convolutions, quaternion batch-normalization, and

a quaternion weight initialization scheme. We use this archi-
tecture as the basis for our second stability experiment.

Architecture: Quaternion convolutions occur through con-
volving a quaternion filter matrix W = A + B + jC + kD
with a quaternion vector h = w + ix + jy + kz according
to (29) — see Appendix C. In forming a Quaternion Convo-
lutional Network, we compose layers of quaternion convolu-
tions, applying a nonlinear function to the output of each layer.
We then append quaternion dense layers, which are traditional
fully-connected neural networks applied component-wise. The
resultant embedding is shaped into the desired output shape
using a readout layer. Our particular architecture is composed of
three quaternion convolutional layers (with 32 channels each),
two quaternion dense layers (with 82 and 48), and a readout
layer, using the ReL.U function as the nonlinearity.

Stability: We recall that one of the requirements to guarantee
stability to the perturbations in (15) is the existence of sub-
classes of filters in (26) that are Lipschitz and integral Lipschitz.
Although in principle any filter in (26) can be written by consid-
ering arbitrary powers on the generators of the algebra, due to
the cyclic nature of {1, %, , k}, such representations reduce to
a linear combination of the generators. Therefore, the subclass
of integral Lipschitz filters in (26) is empty. Additionally, while
the filters in (26) can still be Lipschitz, the Lipschitz constants
will be large. Thus, the performance of the QCN architecture —
as defined in [14] — is expected to be severely affected by
perturbations, without the potential to design stable filters. We
demonstrate this vulnerability in our numerical experiments.

Synthetic Experiment: To corroborate these theoretical re-
sults, we first train an unperturbed architecture. Then, during
evaluation, we inject noise in the first quaternion convolutional
layer by perturbing A, a layer of the quaternion filter matrix
W. More precisely, we first consider additive perturbations
by replacing A with Al = A + T, where T has its compo-
nents sampled from the uniform distribution [—¢1, £1]. We also
observe relative perturbations by substituting A with A, =
A + T5A, where T5 has its values drawn from the uniform
distribution [g2, £2].
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TABLE I
STABILITY OF QUATERNION CONVOLUTIONAL NETWORKS TO ADDITIVE
AND RELATIVE PERTURBATION

Additive Perturbation Relative Perturbation

e1  First Con. Last Con. Acc. &2 First Con. Last Con. Acc.
0.005 27,813 4415 0991 0.05 24,986 6,316  0.991
0.01 55,467 9,542 0991 0.1 49,961 13,100  0.990
0.05 289,610 78,092 0.968 0.5 256,754 79,819  0.956
0.1 604,553 213,046 0.772 1 533,462 158,565 0.825
0.5 3,303,611 234,771 0222 5 2975365 1,361,751 0.321

We apply this architecture to the image classification task
using the MNIST dataset [48]. Following [50], we form the
quaternion input for each pixel by repeating the grayscale value
along each of the three imaginary components and zeroing out
the real component. We train the unperturbed architecture for 10
epochs using a batch size of 500. After training, we first evaluate
the performance of the unperturbed architecture on the test
samples. We then apply additive and multiplicative perturbation
to the first quaternion convolutional layer for various values of
€1 and €2, and observe the new accuracy (Acc.) and norm of
the difference between the perturbed and unperturbed architec-
tures of the output from the first quaternion convolutional layer
(First Con.) and the last quaternion convolutional layer (Last
Con.). Average results across 10 noise samplings are reported
in Table 1.

Our results find that Quaternion Convolutional Networks are
particularly sensitive to small additive and relative perturbations
applied in the first layer, as performance quickly diminishes as
€1 and e increases. These results indicate that an architecture
trained to strictly minimize loss not result in stable filters.

VIII. DISCUSSION AND CONCLUSIONS

We analyzed non commutative algebraic neural networks
(AlgNNs) providing general stability results applicable to con-
volutional architectures such as multigraph-CNNs, quaternion-
CNNs, quiver-CNNs, and Group-NNs (non commutative)
among others. We have shown that non commutative convo-
lutional neural networks can be stable. This property has an
analogous form to the stability bounds of commutative signal
models but with substantial differences. As we showed in previ-
ous sections, the restrictions necessary to guarantee stability are
defined by algebras of matrices, which highlights the fact that
the stability of filters in non commutative signal models is not a
trivial extension of the stability results for commutative models.
This is a consequence of the fact that spectral representations
in non commutative signal models are given by matrix and not
scalar functions.

As shown in Theorem 2, the size of the deformation of a
filter operator p(Sy,...,S,,) is bounded by the norm of the
Fréchet derivative of p acting on T(S;). This holds for any
arbitrary perturbationT(S;) indicated in (13) and it highlights
the versatility of the deformation model for the representation
of a large variety of perturbations.

Notice that non commutative models naturally embed prop-
erties of those signal frameworks where there are not shift op-
erator invariances, i.e. S;p(S1,...,S;,) # p(S1,...,Sm)S;.
The stability results derived in this paper show that despite the
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lack of this invariance, stability is possible and it comes at a
price on selectivity and with stronger restrictions on the spectral
responses of the filters.

We point out that our results can be extended to more elab-
orated versions of T(S;). This opens up interesting research
applications where T(S;) can be tailored to more specific
scenarios where stable filters could be designed for T(S;) =
>, TSI, and the restrictions imposed on the algebra will be
determined by the properties of the operators T',.

APPENDIX A
BASIC ALGEBRA CONCEPTS

Algebra: We say that the vector space A is an algebra if A is
equipped with a product. This is, there is an operation of product
between two elements of A that results in another element of
A [35]. Let us denote by ab the product between a and b with
a,b € A. Then, we say that the algebra A is unital if there exists
a multiplicative unit element 1 € A such that al = 1a = a for
all @ € A. Typical examples of algebras are:

o C: The set of complex numbers is a vector space over C
itself. Using as algebra product in C the ordinary product
between complex numbers we can see C as an algebra.

o C[t]: The set of polynomials with coefficients in C and
independent variable ¢ is a vector space over C. Using as
algebra product the ordinary product between polynomials
we can see Clt] as an algebra.

o M, (C): The space of matrices of size r x r with entries
in C is a vector space over C. Using as algebra product the
ordinary product between matrices we can see M, (C)
as an algebra.

It is important to remark that the formal definition of a
product is given by a bilinear map. We say that the map m 4 :
A x A — A is bilinear if m 4 is linear on each argument.
Then, talking about an operation that behaves like a product
we talk about a bilinear map that assigns the value of the given
product [35].

Endomorphisms: Let M be a vector space and let End(M)
be the space of linear maps from M onto itself. If dim(M) = n,
then End(M) is isomorphic to the space of matrices of size
n x n. This is, whenever the dimension of M is finite we can
think about End(M) as a space of matrices.

APPENDIX B
GROUP SIGNAL PROCESSING AND GROUP NEURAL NETWORKS

Classical convolutional information processing on locally
compact groups is given by the algebraic model (Ag, M, p),

where M = {deG x(9)g,

valued functions defined on the group G. The algebra Ag is
the group algebra, which is given by A = M. The homo-
morphism p is given by p(a) = L, with Ly,x = ax. Then, the
convolution between a group filter and a group signal takes the
form

p D algg | x=> alglgx=>_> a(g)x(h)gh.

geG geG geG heG

x(g) € (C} is the set of complex

(24)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:22:01 UTC from IEEE Xplore. Restrictions apply.



2694

Notice that the representation of the convolution can also be re
written making v = gh, which leads to [36]

Z a(g)x(h)gh = Z a(uh™)x(h)u.

g,heG u,h€G

(25)

We emphasize that the role of this example is to show that
classical group convolutions — as considered in [17] — are one
particular case of algebraic convolutions. What is more, it is
one particular case of the many algebraic convolutions that can
be associated to the same group algebra. This is, given a non
commutative group G and its associated group algebra A, it is
possible to define different convolutional models (Ag, M, p)
when different choices of M and p are made [15]. This implies
that it is possible to leverage the symmetries of the group under
a convolutional signal model in different ways and in vector
spaces of arbitrary dimension.

Notice that when convolutions are computed as in [17], a lift-
ing process is required to map the signals — usually not defined
on the group — on the group G. If GG is continuous — a Lie group —
computing the group convolution requires the approximation of
a Haar integral that generalizes (25) to locally compact groups
[34]. In [15] the computing of the convolutions — including
convolutions with Lie groups — is performed considering an
ASM (Ag, M, p), where Ag is the group algebra associated
to the group G, M is a vector space of arbitrary dimension
and p is the homomorphism that will translate approximations
of elements in Ag into concrete operators. In [15] lifting is
not necessary since the implementation of the filters in A¢ is
carried out by means of an efficient approximation of p.

A group convolutional neural network is a stacked layered
structure where information in each layer is processed using
group convolutions. With convolutions performed as in [15],
in each layer of the architecture information is processed ac-
cording to the triplet (A¢, My, p¢). The information is mapped
between layers by means of oy = Pyn, where 7, is a point-
wise nonlinearity and P is a dimensionality reduction operator.
When dealing with discrete scenarios we have dim(M) < oo
and the action of 7, is expressed in terms of a canonical basis
in Rdim(./\/l).

Notice that the processing of information with [17] can be
seen as a particular case of the convolutional architectures pro-
posed in [15] with the advantage that in [15] there is no need for
the discretization of the Haar integral since the implementation
of the filters relies on building an accurate approximation of py

in (Ag, My, pe).

APPENDIX C
QUATERNION SIGNAL PROCESSING AND QUATERNION
NEURAL NETWORKS

Let Q be the algebra on C generated by the symbols %,
4,k and the unit element 1, where i° = j% = k> = —1,4j =
—ji =k, jk = —kj = 1, ki = —ik = j. Q is known
as the algebra of quaternions [38]. Using Q is possible to
build quaternion-based algebras that can be used to define
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convolutional models. In [14] such models are build upon the
algebra

A= {p1(t)1 +p2(t)i +ps(t)g +pa(t)k|1,4,5,k € Q},
(26)

and where p;(t) = ZIZ:O h; i t* are elements of the algebra
of polynomials of a single variable. We can see that A is a
vector space when considering the sum component wise on
the quaternion elements, and the multiplication by scalars. The
product algebra in A follows the distribution product of the
quaternions. Then, we can define the quaternion convolutional
model (A, M, p), where

M ={x11+x28 +x35 +x4k|1,%,5,k € Q; x; ERN},

(27
while the homomorphism p is given according to
p (p1(t)1 + pa2(t)i + ps(t)j + pa(t)k)
= p1(C)1 + p2(C)i + p3(C)j + p4(C)k, (28)

where p(t) = C € RV*N is the discrete time delay operator.
Then, the convolutional action of a filter p(f) = F on u € M
is given by

Fu = (p1(C)x1 — p2(C)x2 — p3(C)x3 — pa(C)x4) 1
+ (p1(C)x2 — p2(C)x1 — p3(C)x4 — pa(C)x3)
+ (p1(C)x3 — p2(C)x4 — p3(C)x1 — pa(C)x2) j
+ (p1(C)x4 — p2(C)x3 — p3(C)x2 — pa(C)x1) ?2.9)

Notice that p;(C)x; is the ordinary Euclidean convolution in
RY between a filter and the signal x;. We emphasize that the
particular form of (29) is a consequence of the non commuta-
tivity of the filter operators from A in (26), which is inherited
from the quaternion algebra.

A quaternion neural network as introduced in [14] is a
stacked layered structure where information is processed in
each layer according to (29). The information processed in the
layer ¢ has the form u, = %11 + tx2 + jx3 + kx4, while the
convolutional filters are of the form F = A1+::B+jC+kD.
The action of the filter F on the signal w follows the ordinary
product between quaternions considering that A, B, C,D
act as Euclidean convolution operators on x; as indicated in
(29). Then, given an input u, to the ¢-th layer we leverage
the symmetries given by the quaternion algebra to obtain
ye¢ = Fuy. After this a point-wise nonlinear operator 7, is
applied to obtain z, = ny(y,) with z¢(u) = max {ys(u),0},
and where zy(u) is the wu-th component of z,. A
conventional pooling operator P, : RY — RM performs
traditional sampling on a quaternion signal according to
Po(ug) = 1Py(x1) + 1 Pp(x2) + 3 Pe(x3) + sz(X4).

APPENDIX D
PROOF OF THEOREMS
A. Proof of Theorem 2

Proof: To simplify notation we use S = (Sy,...,S;,),
and we start taking into account the definition of the Fréchet

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:22:01 UTC from IEEE Xplore. Restrictions apply.



PARADA-MAYORGA et al.: CONVOLUTIONAL FILTERS AND NEURAL NETWORKS WITH NONCOMMUTATIVE ALGEBRAS

derivative

p(S +&) = p(S) + Dp(S){&} + o([€])- (30)
Taking the norm on both sides of (30) and applying the triangle

inequality it follows that

Ip(S + &) —p(S)Il < [ID,(S) {&} + O (II€ll*)

for all & = (&,...,&,,) € End(M)™. Now, we use the

properties of the total derivative (see [51] pages 69-70) to obtain
1D,(S) {&} | < X212, || Dpis, (S , which leads to

” < Z HDP|S

(€19

Ip(S+€) - )& + O (IIglP)-

(32)

Then, taking into account that

[p(S + &)x — p(S)x|| < [Ix]| [p(S + &)

-p(S)I (33)

we have
[p(S + &)x — p(S)x||

< Il (Z [Dpis, (8){&:}]| +© (£|2)>, €2

and selecting &, = T(S;) we complete the proof. |

B. Proof of Theorem 3

Proof: We start evaluating the expression D,g, in terms of
the specific form of the perturbation to obtain

Sm) {T(Sl)} = Dp\si (Sla LR
+ Dp\Si(Sla cey

Sm){Tio}

Sm) {Tz,lsz}
(35

D,s(S1,. .,

Taking the norm in (35) and using the triangular inequality we
have

Dy, (St -, Sm) {T(S)}|
< ||Dypis; (S1, -+ Sm) {Tio}|

+ | Dpis, (St Sm) {Ti1Si} |- (36)

Now we analyze each term in (36). First, we start that the
Fréchet derivative of p(Sy,...,S,,) with respect to S; acting
on Ty; is a linear operator D g, from End(M) into End(M)
that can be expressed as

Dys,{To.i} = Z fr(S1,..0,

r=1

Sm)TO,ihr(Sla ey Sm),

(37
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where f.(S1,...,S;,) and h,.(Sq,...,
functions of Si,...,S,,. As stated in [43] (p. 267),
when the operator is assumed to be Hilbert-Schmidt
(finite Frobenius norm) there is a unique linear operator
D,s,(S1,....S) {-} € End(M)* ® End(M) with |Dys,
(S1,--,Sm) {1 = [IDys,(S1,--.,Sm) {-} ||, acting on a
vectorized version of T ;. In particular we have

Sm) = Zh:(sl7>
r=1

S,.) are polynomial

D,s,(S1,. .., Sim) ® fr(S1,...,Sm).

(38)

Now, we recall that since the representation (M, p) can be
expressed as a direct sum of the irreducible subrepresentations.
Then, any polynomial from A mapped into End(M) by p can be
expressed in terms of such direct sum by means of the spectral
theorem representation (Theorem 1), this is

q

Fr(S18m) =D e (Arky s As) Py (39)
k=1
q

hi(S1,.. . Sm) =Y hi (A, Apy) P (40)

k=1

Then, substituting (39) and (40) in (38) we have

oo q
D,s.(S1,...,8 :Z(Z (At s Amk) P
r=1 \k=1
q
@Y fr(Aig, s Ami) P
k=1

(41)

Taking into account the properties of the tensor product it fol-
lows that:

ﬁp‘si(Sl,... A k)

S0 ) (zm:ml,k,...,

r=1

Q fr (ALg, ey Amj)) («@k ® gzz))

(42)

where we have that
Z (h: (Al,k7 MR Am,k) ® f'r‘ (Al,fa MR Am,f))
r=1

— {DP|A1k (Al,]m L if kj = f

if k£

7Am,/c) (43)

where

Dyja, , (Ar, - S Ak)

B A’m,k))7

is uniquely associated to D4, , (A1 g, ..., Ay k), which is
the Fréchet derivative of p (A1, ..., Ay, ) with respect o
A, ;. Additionally, we point that the terms in the sum of (42)

(44)
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are unique, and consequently can be expressed as a direct sum.
This is,

q %)
Dys, (St 8m) = @ Y (b (Ark, ., M)
kt=1r=1
@ fr (Aies.o o, Amp)) (P @ P).
(45)
Then, if we calculate the norm of 51,‘& (S1,...,S,,) and we

take into account the maximum property (Definition 12), it
follows that

Hﬁmsi(sl,..., H _maX{HDplA H,| (46)

(k)

First, we recall that HﬁplAi.k || = HDplAi.k || and since p is Lg-

Lipschitz by Theorem 8 we have that ||Dp‘ A H < Lo. We

focus now on estimating the norm of I'y. First, we recall that
oo

> (hi (A,

r=1

Ty = Am’k)®f7« (Al,waaAml))v

(47)

with k& # ¢. Now, we notice that it is possible to define a ho-
momorphism 6 between the algebras of operators End(Uy,)* ®
End(Uy) and End(Uy)* @ End(Uy) with ¢ < k, which is given
by

(Z (hy (Ao M) @ fro (Ad gy 7Am7k)>>
=1

=2

r=1

Al N AR 7Am,k) b2 fr (Al,b ce 7Am,f))~ (48)

By means of Theorem 7 it follows that || T'xs| < HﬁP|Az‘,k ,
and therefore leads to ||| < Lo. Then, with the calculations
above we have HDplsi(Sl’ . ,Sm)H < Lg. We recall that for
bounded operators we have

|IDpys: (S1,-- -5 Sm) {Toi}|
< ||Dpis, (St1,-.-,Sm) {TO,i}HFv
and as stated in [43] (p. 267) we also have that
’|Dp\s7¢(sla s Sm) {T(),i}HF
< |IDys; (S1,- -+ Sm) || I Tosill -
Then, taking into account that ||Tq ;|| . < 0 ||To ||, we reach
Sum) {Toa}|| < Lodsup IT(S:)ll. - 49)

HDp|Si(Sl7 RN

Now, we turn our attention to the term ||Dyg, (S1, ...
{T1,:S;} | in (36). We start using the notation

»Sm)

D,s,(S1,.--,Sm) {T1,:S:} = ﬁp|Si(Slv oo Sy {Ta )
(50)
Now, we point out that
Dys {T1i} =Y fr(S1,. .-, Sm)T1ihn(S1, ..., Sm),
r=1
(51)
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where f.(S1,...,S,,) and h.(Si,...,S,,) are polynomial
functions of Sy,...,S,,. When the operator is assumed to
be Hilbert-Schmidt there is a unique linear operator given by
Dp|Si (Sl, ey Sm) {} S El’ld(M)* & EHd(M) with ||Dp\S7
(S1,--sSm) {3l = [Dps,(S1,---,8m) {-} |, acting on
a vectorized version of Ty ; [43] (p. 267). In particular we
have

]5;()|S1;(Sla~~'v Sm)®fT(Slvvsm)

(52)

Sm) = _ hi(Si,...,
r=1

Since (M, p) can be expressed as a direct sum of the irreducible
subrepresentations. Then, any polynomial from .4 mapped into
End(M) by p can be expressed in terms of such direct sum
by means of the spectral theorem representation (Theorem 1),
this is

fr(S1,...,Sm Zfr Avgro s M) Py (53)
q
WSty 8m) = > hi (Avgs o Ami) Pre (54)

k=1

Then, substituting (53) and (54) in (52) we have

— oo q
Dys,(S1,--.Sm) = > (Z hy (Avks s Amk) P
r=1 \k=1
q
®Zfr (A g, A) e@k>
=1

Taking into account the properties of the tensor product it
follows that:

— q o0
Dp|Si(Sl7 e Sm) = Z (Z (h: (Al,ka ceey Am,k‘)
k=1 \r=1
®fr (Al,éa-” mé)) (yk(g)fgé))
(55)
where we have that
Z (h: (Al,ka R Am,k) ® fr (Al,fa ey Am,f))
r=1
_)Dpa (Args o Apg) if k=1 (56)
| ) if k#/ ’
with
Dya,. k(Al ks A
= Z (A s M) @ fr (Avr s A k),
r=1
(57)

is uniquely associated to Dya, , (A1k, -5 A i) () Ai k)
Like in the scenarios discussed above, we point that the
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terms in the sum of (55) are unique, and consequently can be

expressed as a direct sum as follows

q oo
Dys, (S1,--,Sm) = @ D (hi (Avk,- o Amg)

If we calculate the norm of Bp\s,- (S1,...
maximum property (Definition 12), it follows that

[Bys (1. 8| = max {[Byia,. | IPwel} 69
Since HBMAM = Hf)plAm , and p is Ly-integral Lipschitz,

we have that ]51,‘ Air|| < Li1. Now we analyze the norm of

I';.,. First, we recall that

oo

Tpe =Y (hf (Avg, ...

r=1

7Am,k:) ® fr (Al,fv .

with k # £. We point out that it is possible to define a homomor-
phism 6 between the algebras of operators End (U}, )* @ End (U}, )

and End(U,)* ® End(U,) with k < ¢, which is given by

0> (hr(Avgs s Ak) @ fr (Argy s A))

r=1
= (0 (Avgs s Ak) @ fr (Argy o Ang)). (61)

r=1

By Theorem 7, it follows that || T'j,|| < Hﬁpmm
to ||Txe|| < Ly, and therefore Hf)p‘si(sl, .o, Sm)
Dys.(S1, ...

,Spm) is a bounded operator, we have

"ﬁp\sri(sla BERE) Sm) {Tl,i} ‘

< Hﬁp‘sl_(sh...,sm){Tl,i}

|
F

and as stated in [43] (p. 267) we also have that

s 15

< HDp\S7 (Sla R Sm)H HTl,i||F~

Taking into account that ||Ty ;|| . < 6 || Ty ]|, we reach
HDp|Si(S17 S {T S| < Lad | Tl

and since D¢ (S;) = T ;, this leads to

|Dyps; (St -5 Sm) {T1,iSi}]| < LlésngDT(si)H. (63)

A ) (P @ P).

, S, ) and we use the

aAm,E))v

, which leads

‘ng.If
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