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Convolutional Filters and Neural Networks With

Noncommutative Algebras
Alejandro Parada-Mayorga , Landon Butler , and Alejandro Ribeiro

Abstract—In this paper we introduce and study the alge-
braic generalization of non commutative convolutional neural
networks. We leverage the theory of algebraic signal processing
to model convolutional non commutative architectures, and we
derive concrete stability bounds that extend those obtained in
the literature for commutative convolutional neural networks.
We show that non commutative convolutional architectures can
be stable to deformations on the space of operators. We develop
the spectral representation of non commutative signal models to
show that non commutative filters process Fourier components
independently of each other. In particular we prove that although
the spectral decompositions of signals in non commutative models
are associated to eigenspaces of dimension larger than one,
there exists a trade-off between stability and selectivity, which is
controlled by matrix polynomial functions in spaces of matrices
of low dimension. This tradeoff shows how when the filters in
the algebra are restricted to be stable, there is a loss in discrim-
inability that is compensated in the network by the pointwise
nonlinearities. The results derived in this paper have direct
applications and implications in non commutative convolutional
architectures such as group neural networks, multigraph neural
networks, and quaternion neural networks, for which we provide
a set of numerical experiments showing their behavior when
perturbations are present.

Index Terms—Non commutative convolutional architectures,
algebraic neural networks (AlgNNs), algebraic signal process-
ing (ASP), representation theory of algebras, non commutative
algebras, non commutative operators, non commutative neural
networks, Fréchet differentiability.

I. INTRODUCTION

DEEP learning relies on parameterizations given by the

composition of layers which are themselves compositions

of linear operators with pointwise nonlinearities. In problems

that involve high dimensional inputs it becomes necessary to

exploit their structure to reduce the complexity of the learn-

ing parametrization. This is often accomplished with the use

of particular instantiations of convolutional filter banks. The

most notable examples of this approach are the use of standard

Manuscript received 7 July 2022; revised 15 February 2023 and 17
June 2023; accepted 5 July 2023. Date of publication 14 July 2023; date
of current version 16 August 2023. This work was supported by NSF-
Simons MoDL Award #2031985. The associate editor coordinating the review
of this manuscript and approving it for publication was Ivan Dokmanić.
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(Euclidean) convolutional filters for learning with time sig-

nals and images, graph convolutional filters for learning with

graphs and graph signals, and group convolutions for signals

with group symmetries. The success of convolutional neural

networks of different types – Euclidean, graph, and group –

is in part due to how convolutions leverage symmetries of

the domain and the signals. However, both filter banks and

convolutional neural networks are equally good at leveraging

these symmetries [1], [2], [3]. Yet, it is the latter that are more

successful at learning. This empirical observation prompts a

search for properties that explain the better performance of

convolutional neural networks relative to the corresponding

convolutional filter banks.

In the case of Euclidean convolutions and graph convolutions

part of the insight into the relative performance of convolutional

filter banks and neural networks follows from their respective

responses to deformations [4], [2] – deformations in the domain

of the signals in [4] and deformations on the space of graph

matrix representations in [2]. These works prove that stability

to deformations requires filters that do not distinguish different

high frequency components. It follows that convolutional neural

networks can better trade-off discriminability and stability as

the pointwise nonlinearity mixes frequency components across

layers. Recent analysis conducted on the operator space has

demonstrated that the shared stability properties of Euclidean

and graph convolutions are a consequence of their shared al-

gebraic structure [1]. It then follows that whenever we use

convolutional parameterizations in machine learning we can

expect convolutional neural networks with multiple layers to

outperform convolutional filter banks. These results build on

the theory of algebraic signal processing (ASP) which pro-

vides a common language for describing convolutional filters

of different types [5]. They apply to Euclidean, graph, and

group convolutions as well as to a large class of less ubiquitous

convolutional filters and neural networks [1], [6].

Although these results provide valuable insights, they are

limited to commutative operators. Namely, to signal processing

architectures in which filters commute. This is not true in gen-

eral as non commutative signal processing arises naturally in

multiple scenarios [7], [8], [9], [10], [11], [12], [13], [14], [15].

For instance, multigraphs arise when nodes are related by sev-

eral different types of edges [7], [16]. In this case it is natural to

define multigraph filters by combining diffusions across matrix

representations of the graphs defined by each individual type

(see Example 3 in the supplementary material). The resulting

filters do not commute except in the rare eventuality that the
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different matrix representations themselves commute. Filters

that do not commute also arise with signal models on groups

like E(n), or SO(n) [8], [9], [10], [17], or any nontrivial Lie

group [11], [12], [17], [18]. Non commutative filters appear here

because filters are associated with group symmetries and it is

common for groups to have symmetries that do not commute –

such as rotations in SO(3).
Existing stability results do not apply to any of these non

commutative settings but empirical results show the usual ad-

vantage of layered neural networks with respect to filter banks

[11], [12], [15], [16], [17]. Such an empirical observation poses

the question of whether similar stability results hold for non

commutative convolutional architectures. That is, whether con-

volutional versions of architectures such as multigraph neural

networks [16], [19], neural networks on groups [15], [17],

quaternion (graph) neural networks [14], [20], [21], [22], [23],

[24], [25], hypercomplex algebras neural networks [26], hyper-

bolic neural networks [27], [28], octonion neural networks [29],

and Clifford algebras neural networks [30], [31], [32] can be

stable to deformations and, more to the point, whether stability

requires spectral restrictions analogous to those of Euclidean,

graph, and commutative group neural networks. The goal of this

paper is to answer this question in the affirmative. To do so our

first two contributions are the following:

(C1) We define convolutional filters (Section II) and neural

networks (Section IV) with non commutative algebras.

(C2) We develop the spectral representation of non commu-

tative signal models (Section III).

Non commutative filters are just a particular case of algebraic

filters [5] and the construction of algebraic neural networks

with non commutative filters is a close to verbatim exten-

sion of algebraic neural networks [1], [6]. The development of

spectral representations, however, has substantial differences.

Commutative signal models define Fourier decompositions as

projections on single dimensional subspaces and, consequently,

frequencies are defined as scalars. In non commutative signal

models Fourier decompositions are projections in multidimen-

sional subspaces and frequencies are, consequently, matrices of

corresponding dimensions (Definition 5). Despite this signifi-

cant difference we can still prove the equivalent of an spectral

representation theorem of non commutative algebraic filters:

(C3) Non commutative algebraic filters process Fourier

components independently of each other (Theorem 1).

Contribution (C3) is the equivalent of the claim that com-

mutative algebraic filters process frequency components inde-

pendently of each other. As in the case of commutative filters,

Contribution (C3) implies that non commutative algebraic fil-

ters are completely characterized by their frequency responses.

The difference is that in non commutative filters the frequency

response is a matrix polynomial (Definition 6). This is in con-

trast to the scalar polynomials that define frequency represen-

tations in commutative signal models and a consequence of the

fact that frequencies are matrices, not scalars.

It is this difference between frequency representations of

commutative and non commutative filters – matrix versus scalar

polynomials – that prevents the results derived in [1] to be ap-

plied to non commutative convolutional architectures. The main

technical contribution of this paper is to generalize the analysis

Fig. 1. Non commutative algebraic signal model. The algebraic filters th
and ht are realized physically in End(M) to process the signals x which are
modeled as elements of M.

of [1] to show that analogous results hold for non commutative

algebraic signal models. In particular, we prove that:

(C4) Non commutative algebraic convolutional filters can

be stable to additive and multiplicative perturbations

of the algebraic signal model (Section VI).

(C5) Non commutative algebraic neural networks inherit

the stability properties of algebraic convolutional fil-

ters (Section VI-A).

The proof of Contribution (C4) and (C5) requires that filters

have two spectral properties (Definition 9). The first property is

a generalized Lipschitz condition in which changes in the filter’s

frequency response are upper bounded by a linear function of

the frequency’s norm. The second condition is that the Fréchet

derivative of the filter’s response acting on a frequency matrix

has bounded norm. These two conditions limit the discrim-

inability of non commutative filters. They respectively imply

that: (i) The variability of a stable filter must be bounded by

the norm of the difference between frequency matrices. (ii)

The variability of stable filters must decrease with the norm of

the frequency matrix. Stability of commutative filters requires

analogous conditions on scalar frequencies. Since imposing

conditions on frequency matrices is more stringent, our stability

results suggest that non commutative filters require more strin-

gent filter restrictions to attain the same level of stability.

To illustrate our theoretical results we provide a set of numer-

ical experiments for non commutative convolutional multigraph

and quaternion neural networks (Section VII).

II. NON COMMUTATIVE FILTERS

In this section we introduce the generalization of non com-

mutative signal models on arbitrary domains under the lens of

algebraic signal processing (ASP). An algebraic signal model

(ASM) is defined as the triplet

(A,M, ρ), (1)

where A is a unital associative algebra, M is a vector space,

and ρ : A → End(M) is a homomorphism between the

algebra A and the set of endomorphisms in the vector space M
[5]. We recall that an algebra is a vector space with a closed

operation of product, the endomorphims of M are the set of

linear maps from M onto itself and a homomorphism is a linear
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map between algebras that preserves the product operation. We

refer the reader to Appendix A for a review of these concepts

and the discussion of some examples as well.

For our discussion we consider that A and M as vector

spaces are defined on an algebraically closed field F which for

the sake of simplicity will be considered F = C. However, we

remark that the material discussed is valid for any algebraically

closed Field. In the triplet (A,M, ρ) the pair (M, ρ) constitutes

a representation of A in the context of representation theory of

algebras.

The processing of information in the context of (1) is known

as algebraic signal processing (ASP). The signals are modeled

as elements of M, the filters are defined as elements of A and

their realization is given by ρ. The rules or laws governing the

operations are given by the structure of A and ρ translates those

operations into actions on the elements of M. Then, the filtering

of a signal x ∈ M by an algebraic filter a ∈ A is given by

y = ρ(a)x. (2)

In (2) we have a generalized representation of the convolution

operation between a filter and a signal. Particular instantia-

tions of (2) lead to the traditional signal processing models of

time signals and images and more sophisticated models such

as graph signal processing (GSP), graphon signal processing

(WSP) among others [1], [6], [33].

Since it is A the algebraic object defining the structural rules

of information processing, the non commutativity in an alge-

braic model is associated to A. This is, any non commutative

convolutional signal model is given by (A,M, ρ) where A
is a non commutative algebra. For the reader unfamiliar with

algebraic concepts, we remark that one representative example

of this type of algebra is Mn×n(C), which is the set of matrices

of dimension n×n with entries in C. It is an algebra, since it is

a vector space over C and the product of two matrices of size

n× n is again a matrix of the same size.

Now we recall the notion of generators in algebraic signal

models.

Definition 1: (Generators). For an associative algebra with

unity A we say the set G ⊆ A generates A if all a ∈ A can

be represented as polynomial functions of the elements of G.

We say elements g ∈ G are generators of A and we denote as

a = p(G) the polynomial that generates a.

Representing the elements of A as polynomial functions of

a set of generators highlights the fact that such generators char-

acterize the algebra, and can be conceived as a measure of the

degrees of freedom associated to the algebra. Consequently, the

realization of the generators by means of the homomorphism

ρ, called shift operators, play a central role when analyzing

algebraic signal models. We introduce its formal definition next.

Definition 2: (Shift Operators). Let (A,M, ρ) be an alge-

braic signal model. Then, if G ⊂ A is a generator set of A, the

operators S = ρ(g) with g ∈ G are called shift operators. The

set of all shift operators is denoted by S .

Then, we can express any element ρ(a) ∈ End(M) as a poly-

nomial function of the shift operators. In particular, if a = p(G)
we have that

ρ(a) = pM
(
ρ(G)

)
= pM

(
S
)
= p

(
S
)
, (3)

Fig. 2. Example of a multigraph signal processing model. The signal x ∈
R6 defined on the multigraph G = (V, {E1, E2}) is associated to the nodes
V , while the shift operator Si is associated to the set of edges Ei.

where pM indicates the polynomial of form p but whose in-

dependent variables are the shift operators. For the sake of

simplicity we drop the subindex in p in our subsequent discus-

sion since it is clear where p is defined from the independent

variable.

To facilitate the understanding of these basic concepts we

present an example.

Example 1: (Multigraph signal processing). A multigraph

consists of a common set of vertices and multiple separate

sets of edges. Consider the specific case G = (V, {E1, E2})
consisting of a set of N vertices V and two separate edge sets

E1 and E2 – see Fig. 2. Associated with each edge set we

consider matrix representations S1 and S2. This is an algebraic

signal processing model in which the vector space of signals

M = C
N contains vectors in C

N with entries associated with

each node of the multigraph and the algebra A = C[t1, t2] is

the set of non commutative polynomials of two variables. The

algebra C[t1, t2] is generated by the monomials t1 and t2. The

homomorphism ρ is defined by mapping the generators t1 and

t2 to ρ(t1) = S1 and ρ(t2) = S2, where the shift operators Si

are the matrix representations of the corresponding set of edges

Ei. Then, if p(t1, t2) = t21 + t1t2 + 2t2t1 + t22 + 1 the filtering

in (2) takes the form

ρ
(
t21 + t1t2 + 2t2t1 + t22 + 1

)
x

=
(
S2
1 + S1S2 + 2S2S1 + S2

2 + 1
)
x. (4)

We refer the reader to Appendix F in the supplementary

material for a more sophisticated example on multigraph signal

processing in the light of ASP. In Appendix B and Appendix C

of the paper it is shown how classical group signal processing

and convolutional quaternion signal processing can be seen as

particular cases of algebraic signal models.

Remark 1: It is important to highlight that the definition of

an algebraic signal model is independent of any norm that could

be associated to M, if any. As we will discuss in subsequent

sections (see Section VI) we will endow M with a norm in

order to analyze the size of perturbations, and doing this will not

affect the structure of the triplet (A,M, ρ). We also remark that

the algebra A is not associated to a norm, but it happens that A
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can be isomorphic to algebras that are naturally endowed with a

norm. This is something we exploit in Section III to characterize

subsets of the algebra and spectral representations.

III. SPECTRAL REPRESENTATIONS OF NON COMMUTATIVE

FILTERS

In this section we discuss spectral representations of filters

and signals. We will show that spectral representations in

non commutative signal models are determined by matrix

polynomials and that frequencies themselves are described

by matrices instead of scalars. This introduces technical

challenges, and yet we will also show that despite the

significant differences with respect to the commutative

scenario, spectral filtering is an analog of spectral filtering in

commutative signal models. Additionally, this analog behavior

extends to the norms of the operators, in particular the norm

of non commutative filters is determined by the norm of the

spectral responses which can be characterized in analogous

ways to those in commutative signal models when considering

induced norm on direct sums of spaces.

The notion of spectral decomposition descends from the

concepts of irreducible and completely reducible subrepresen-

tations of an algebra [5], [34], [35], [36], [37]. Widely known

notions of spectral decompositions used in graph signal pro-

cessing (GSP), discrete signal processing (DSP), and discrete

time signal processing (DTSP) among others, are obtained as

particular cases of a decomposition of representations of an

algebra as a sum of irreducible subrepresentations. Then, in

order to present a natural generalization of frequency decom-

positions in non commutative ASM, we discuss the concepts

of subrepresentation, irreducibility and decomposability. We

restrict our attention to algebras that have a finite number of

generators.

Definition 3: Let (M, ρ) be a representation of A. Then,

a representation (U , ρ) of A is a subrepresentation of (M, ρ)
if U ⊆ M and U is invariant under all operators ρ(a) for all

a ∈ A, i.e. ρ(a)u ∈ U for all u ∈ U and a ∈ A.

The notion of subrepresentation is tied to the property of in-

variance since subrepresentations are invariant under the action

of the instantiations of elements of A in End(M). Notice that

when considering representations of an algebra with a single

generator, the spaces generated by subsets of eigenvectors of

ρ(a) determine the subrepresentations of (M, ρ).
Now, we introduce formally irreducible subrepresentations

which provide a minimal structural unit of invariance.

Definition 4: A representation (M, ρ) (with M �= 0) is

irreducible or simple if the only subrepresentations of (M, ρ)
are (0, ρ) and (M, ρ).

The irreducibility property of a subrepresentation implies

that there is not a subspace that has its own invariance under

the action of the elements of the algebra. Additionally, notice

that one dimensional subrepresentations are always irreducible.

It is important to point out that the calculation of irreducible

subrepresentations entails a significant computational cost – see

Appendix K in the supplementary material.

As we will show in the next subsection, irreducibility can

be used to write a general representation as a decomposition

in terms of irreducible subrepresentations. To show this we

introduce the notion of direct sum of representations. Given

two representations (M1, ρ1) and (M1, ρ2) of an algebra A
we can obtain a new representation, called the direct sum

representation, as (M1 ⊕ M1, ρ) where ρ(a)(u1 ⊕ u2) =
ρ1(a)u1 ⊕ ρ2(a)u2.

A. Fourier Decompositions and Spectral Representation of

Filters

Using the ideas and concepts discussed above we intro-

duce the notion of Fourier decomposition in algebraic signal

processing.

Definition 5: (Fourier Decomposition). For an algebraic

signal model (A,M, ρ) we say that there is a spectral or Fourier

decomposition if

(M, ρ) ∼=
⊕

(Ui,φi)∈Irr{A}

(Ui, φi), (5)

where the (Ui, φi) are irreducible subrepresentations of (M, ρ).
Any signal x ∈ M can be therefore represented by the map ∆
given by

∆ : M →
⊕

(Ui,φi)∈Irr{A}

Ui

x 	→ x̂, (6)

known as the Fourier decomposition of x and the projection of

x̂ in each Ui are the Fourier components represented by x̂(i).
In Definition 5 it is assumed that each individual subrep-

resentation (Ui, φi) cannot be expressed as a direct sum of

irreducible subrepresentations isomorphic to (Ui, φi). This as-

sumption is analogous to the assumption of not having repeated

eigenvalues when considering spectral decompositions where

the irreducible subrepresentations have dimension equal to 1.

This choice is done for the sake of simplicity and we refer the

reader to Appendix K of the supplementary material for a more

sophisticated formulation of the Fourier decompositions. We

remark that the decomposition in (5) and (6) is unique up to

isomorphism – see Appendix K in the supplementary material.

It is worth pointing out that the homomorphisms φi associ-

ated to each non isomorphic irreducible representation define

the frequency associated to the vector space Ui [5] – see Fig. 3.

In commutative scenarios, like for instance in GSP, we have

dim(Ui) = 1. In this case the term φi(a) is a scalar value which

corresponds to the eigenvalues of ρ(a) while Ui is the space

spanned by the i-th eigenvector.1 If dim(Ui) > 1 then φi(a) is

a matrix. This last scenario is typical when non commutative

algebras are involved.

We synthesize the role of Fourier decompositions and the

filtering operation in the following theorem.

Theorem 1: (Filtering Spectral Theorem) Let (A,M, ρ) be

an algebraic signal model where A has generators {gk}
m
k=1, and

1We refer the reader to Appendix G in the supplementary material where
we show with more details how the Fourier transform in GSP can be obtained
as a particular case of Definition 5.
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Fig. 3. Spectral decomposition in an ASM: The maps φi indicate the
frequencies while each Ui is an eigenspace. Notice that if a ∈ A is
a polynomial in terms of the generators of A, then ρ(a) and φi(a) are
polynomial operators in terms of the shift operators in End(M) and End(Ui),
respectively. When dim(Ui) = 1, φi(a) are polynomials in terms of the ith
eigenvalue of the operator ρ(a).

ρ(a) is the realization of a ∈ A in End(M) by means of ρ. If

(M, ρ) ∼=
⊕

(Ui,φi)∈Irr{A}(Ui, φi) then

ρ (p(g1, . . . , gm)) = p (S1, . . . ,Sm)

=
∑

i

p (Λ1,i, . . . ,Λm,i)Pi, (7)

where Pi is the projection operator on Ui and Λk,i = φi(gk).
Additionally, if y = ρ (p(g1, . . . , gm))x, then

ŷi = p (Λ1,i, . . . ,Λm,i) x̂i, (8)

where the sub index i indicates a projection on Ui.

Proof: See Appendix G in the supplementary material.

Theorem 1 exhibits similarities in form with the classical

spectral theorem for commutative signal models but also sub-

stantial differences. Indeed, Theorem 1 is a generalization of the

classical spectral theorem where decompositions of operators

are expressed in terms of projections on spaces spanned by more

than just one vector. As indicated in Appendix G, Theorem 1

follows from the fact that the restriction of the homomorphism

ρ to an invariant subspace Ui given by φi is again a homo-

morphism. Therefore, if p(g1, . . . , gm) is a polynomial so it is

ρ(p(g1, . . . , gm)) and φi(p(g1, . . . , gm)) – and they have the

same coefficients. Additionally, the dimensions of M and Ui

will determine the dimensions of the independent variables in

ρ(p(g1, . . . , gm)) and φi(p(g1, . . . , gm)).
The algebraic filter a ∈ A determines the form and properties

of the spectral response indicated by the homomorphisms φi.

Therefore, classes of filters in A lead to specific classes of filters

defined in the spectral domain. We use this fact and an auxiliary

matrix algebra, Ã, to provide a concrete characterization of

Fig. 4. Schematic representation of the spectral representation C̃ of a subset
of filters C ⊂ A algebraic signal model. The properties of ρ(C) are determined

by C which is characterized by the elements in C̃.

subsets of filters in A. Ã is endowed with a norm and is

isomorphic to A – see Fig. 4.

In Ã the generators can be considered as variables tak-

ing specific values on a vector space. In particular, given

any (A,M, ρ) with A generated by {gi}
m
i=1 we can asso-

ciate Ã =
{
p : Mm

r,r(C) 	→ Mr,r(C)
∣∣ p : polynomial

}
, where

Mr,r(C) is the space of matrices of size r × r whose entries

belong to C, while Mm
r,r(C) is the m-times Cartesian product

of Mr,r(C). Additionally, we endow Ã with a norm. It is

possible to see that there is a natural isomorphism ι between

A and Ã given by ι(gi) = Λi ∈ Mr,r(C). We attribute the

properties of a set of filters realized in the set C̃ ⊂ Ã to the

set C =
{
a ∈ A| ι(a) ∈ C̃

}
. The value of r is selected as

r = max {di} , where di are the dimensions of the irreducible

subrepresentations of (M, ρ). It is worth pointing out that the

value of the di depends on ρ, and in general di ≪ dim(M) [1],

[5], [35], [38]. Taking into account this, we formally introduce

the spectral representation of a filter.

Definition 6: Let (A,M, ρ) be an ASM where A is an

algebra with generators {gi}
m
i=1. Let Ã the matrix algebra iso-

morphic to A given by

Ã =
{
p(Λ1, . . . ,Λm) : Mm

r,r(C)

	→ Mr,r(C)
∣∣p : polynomial

}
, (9)

where r = max {di}, and di are the dimensions of the

irreducible subrepresentations of (M, ρ). Then, we say

that p(Λ1, . . . ,Λm) ∈ Ã is the spectral representation of

p(g1, . . . , gm) ∈ A.

Remark 2: It is important to remark that a substantial

part of the technical challenges that have made the analysis

of non commutative signal models and architectures elusive,

is precisely the difficulty associated to the use of the Fourier

representations. As we just discussed, some frequencies are not

described by scalars but instead by matrices. Part of our contri-

bution in this paper is precisely the fact that we have overcome

these technical challenges and as the reader can corroborate in

Appendix D the formal proof of our stability results make use

of tools different from those used in [1] for commutative signal

models where frequencies are associated to scalars.

As a final comment it is worth highlighting that the notion

of aliasing on the spectral domain for non commutative signal

models is analog to that one of commutative models. The dif-

ference is that the representation of the aliased information is

expressed in terms the basis of the Ui spaces where aliasing

takes place.
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Fig. 5. Algebraic Neural Network {(Aℓ,Mℓ, ρℓ;σℓ)}
3

ℓ=1
with three layers

indicating how the input signal x is processed and mapped into x3. In each
layer the information is transformed by a convolutional filter ρℓ(aℓ), followed
by a pointwise nonlinearity ηℓ and a pooling operator Pℓ.

IV. ALGEBRAIC NEURAL NETWORKS WITH NON

COMMUTATIVE ALGEBRAS

Algebraic neural networks (AlgNNs) are stacked layered

structures (see Fig. 5) where the processing of information in

each layer is carried out by means of filters of an algebraic

signal model and pointwise nonlinear operators. For a training

set T = {x,y} with inputs x and outputs y, it is possible to

learn the algebraic filters aℓ ∈ Aℓ in each layer of the AlgNN to

produce a mapping representation. This allows an estimation of

the output to an unseen input x̃ ∈ T . The data from the training

set T is used to find subsets of filters Pℓ ⊂ Aℓ that minimize a

cost function of the form
∑

(x,y)∈T fPℓ
(x,y), where fPℓ

(x,y)
is a fitting metric that penalizes the difference between y and

the output of the AlgNN produced when the input is x. In the

ℓ-th layer of the AlgNN, an incoming signal xℓ−1 from the layer

ℓ−1 is filtered by means of the convolution ρℓ(aℓ)xℓ−1. Then,

a pointwise nonlinear operator ηℓ : Mℓ → Mℓ is applied

and finally a pooling operator Pℓ : Mℓ → Mℓ+1 matches

information between Mℓ and Mℓ+1. The output signal of the

layer ℓ can be written as

xℓ = σℓ (ρℓ(aℓ)xℓ−1) = Φ(xℓ−1,Pℓ,Sℓ). (10)

We use the symbol Φ(xℓ−1,Pℓ,Sℓ) to make emphasis in the

fact that the filters used in each layer belong to specific subsets

of the algebra and that a specific family of shift operators is

being used. If several features per layer are used, we use the

notation

x
f
ℓ = σℓ

(
Fℓ∑

g=1

ρℓ

(
a
gf
ℓ

)
x
g
ℓ−1

)
, (11)

where the super index f indicates the f th feature and ℓ the

layer were information is being processed. To denote an AlgNN

with L layers we use {(Aℓ,Mℓ, ρℓ;σℓ)}
L

1 , where σℓ = Pℓηℓ.

As pointed out in [1], traditional neural networks (CNNs),

graph neural networks (GNNs), and graphon neural networks

(WNNs) among others, can be obtained as particular instan-

tiations of a general AlgNN with a commutative algebra. For

our discussion we consider that σℓ = Pℓηℓ is Cℓ-Lipschitz and

σℓ(0) = 0. The role of ηℓ is crucial for the performance of any

AlgNN, since it is the nonlinearity of ηℓ what allows the AlgNN

to redistribute spectral information and compensate restrictions

imposed on the filters. There are many possible choices for ηℓ
that could improve the generalization capacity of the AlgNN.

Typically a low computational cost ηℓ is selected. The operator

Pℓ : Mℓ → Mℓ+1 performs an operation of dimensionality

reduction. In particular instantiations of AlgNNs like GNNs,

such operator can be associated to graph coarsening techniques

or optimal sampling strategies for bandlimited signals [39]. In

what follows we present some examples of concrete non com-

mutative convolutional architectures instantiated as particular

cases of non commutative algebraic neural networks (AlgNNs).

Remark 3: Note that the action of the pointwise nonlin-

earity, ηℓ, and the pooling operator, Pℓ, is defined in terms of

a basis of Mℓ. This is, given a basis
{
b
(ℓ)
i

}

i
of Mℓ we have

ηℓ

(∑
i αib

(ℓ)
i

)
=

∑
i ηℓ(αi)b

(ℓ)
i , and Pℓ : span({b

(ℓ)
i }i) →

span({b
(ℓ+1)
i }i). In our analysis, the specifics of such basis are

not relevant as long as the operator σℓ = Pℓηℓ is Lipschitz and

σℓ(0) = 0. Notice also that since Pℓ performs dimensionality

reduction, there are multiple choices for linear and nonlinear

versions of Pℓ depending on the properties of Mℓ [40], [41],

[42] and we consider those choices for which σℓ = Pℓηℓ is

Lipschitz and σℓ(0) = 0. We point out however, that the optimal

selection of such basis and the operators ηℓ and Pℓ opens up an

interesting future research direction.

Example 2: (Multigraph neural networks). Let us con-

sider a multigraph G = (V, {Er}
m
r=1) with set of nodes V ,

|V| = N and multiset of edges {Er}
m
r=1. Let Si be a ma-

trix representation of the multigraph on the set of edges Ei,
which could be the adjacency matrix or a Laplacian matrix of

the graph (V, Ei). Then, the ℓ-th layer of a multigraph neu-

ral network is composed by convolutional operators followed

by a pointwise nonlinearity and a pooling operator. The con-

volutional filters are given by the multivariable polynomials

(see Example 3 in the supplementary material): p(S1, . . . ,Sm).
Then, given the input xℓ to the ℓ-th layer of the multigraph

neural network, we leverage symmetries on the multigraph to

obtain yℓ = p(S1, . . . ,Sm)xℓ. After this, we apply a point-

wise nonlinear operator ηℓ : R
N → R

N to obtain zℓ =
ηℓ (yℓ), with zℓ(u) = max {yℓ(u), 0}, and where zℓ(u) is the

u-th component of zℓ. Besides the convolutional filter and the

pointwise nonlinear operator, an operation of pooling may be

considered to reduce the computational cost of processing with

multiple filters. For multigraph neural networks, the pooling

operator may be defined using the zeroing approach used for

GNNs in [39], where the information is forced to be zero in

a subset of nodes. This is done under the hypothesis that the
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information in those nodes is less relevant or redundant. Then, if

zeroing is used the pooling operator is given by Pℓ : R
N → R

N

with xℓ+1 = Pℓ(zℓ) and xℓ+1(u) = 0 for any u ∈ U ⊂ V ,

and where the subset U could be chosen according to a specific

heuristic or the minimization of a cost function. Notice that for

the sake of simplicity, in this example we considered one filter

per layer, but we can indeed use several filters.

We refer the reader to Appendix B and Appendix C for a

discussion on how convolutional group neural networks and

quaternion neural networks can be seen as particular cases of a

generic AlgNN.

Remark 4: The cost of the convolution in the ℓ-th layer is

O(N2
ℓ m

KFℓGℓ), where Nℓ = dim(Mℓ) is the dimension of

the vector space, m is the number of generators in the algebra,

Fℓ is the number of input features, Gℓ is the number of output

features, and K is the order of the polynomial filters. The

number of learnable parameters in each layer is O(mKFℓGℓ),
which does not depend on the dimension of the vector space.

It is important to remark that the complexity associated with

the learnable parameters can be reduced when adapting pruning

algorithms like the one proposed in [16], [19], which reduces

efficiently the number of monomials in an polynomial operator.

V. ALGEBRAIC PERTURBATION MODELS

For our discussion we consider perturbations of the generic

algebraic signal model (A,M, ρ) determined by a perturbation

of ρ. As discussed in [1], if the realization of algebraic filters

in the algebra is achieved by ρ, it is natural to consider that

mismatches in the model occur on ρ. In the following definition

we state formally the notion of perturbation in the context of

ASP.

Definition 7: (ASP Model Perturbation [1]) Let (A,M, ρ)
be an ASP model with algebra elements generated by g ∈ G
(Definition 1) and recall the definition of the shift operators S =
ρ(g) (Definition 2). We say that (A,M, ρ̃) is a perturbed ASP

model if for all a = p(G) we have that

ρ̃(a) = p
(
ρ̃(g)

)
= p

(
S̃
)
, (12)

where S̃ is a set of perturbed shift operators of the form

S̃ = S+T(S), (13)

for all shift operators S ∈ S .

From Definition 7 we can see that the effect of a perturbation

on the homomorphism ρ is expressed in terms of perturbations

of the shift operators, which at the same time produce a per-

turbed version of any algebraic filter. Notice that ρ̃ is a general

map that is not necessarily a homomorphism, but it could be. As

shown in [1] this notion of perturbation is associated to practical

scenarios in GSP, WSP and group signal processing.

The notion of stability is tied to the concept of size of a

deformation. To measure the size of those deformations on

the space of operators we use norms. In particular, we use

the operator norms induced by a norm associated to M. If

dim(M) < ∞ the specifics of the norm in M are not relevant

since all norms are equivalent [43]. If M is infinite dimensional

we select a norm that guarantees that every bounded operator

in End(M) is Hilbert-Schmidt and that the induced norm in a

direct sum of replicas of M satisfies the maximum property –

see Appendix H in the supplementary material. We remark

that this does not affect the structure of any algebraic signal

model (A,M, ρ). We now state the formal definition of stability

considered in our analysis.

Definition 8: (Operator Stability [1]). Given operators p(S)
and p(S̃) defined on the models (A,M, ρ) and (A,M, ρ̃) (cf.

Definition 7) we say the operator p(S) is Lipschitz stable if there

exist constants C0, C1 > 0 such that

∥∥∥p(S)x− p(S̃)x
∥∥∥ ≤

[
C0 sup

S∈S
‖T(S)‖

+ C1 sup
S∈S

∥∥DT(S)
∥∥+O

(
‖T(S)‖2

)] ∥∥x
∥∥, (14)

for all x ∈ M. In (14) DT(S) is the Fréchet derivative of the

perturbation operator T.

The right hand side of (14) provides a measure of the de-

formation produced by T(S). Then, Definition 8 states that a

given operator is stable to a perturbation T(S) if the deforma-

tion induced in the operator is proportional to the size of the

deformation. For our discussion we consider the perturbation

model given by

T(Si) = T0,i +T1,iSi, (15)

which is composed of an absolute or additive perturbation Ti,0

and a relative or multiplicative perturbation Ti,1Si. The family

of perturbations is ruled by the condition

‖Ti,r‖F ≤ δ ‖Ti,r‖ , (16)

where δ > 0. This is, the Frobenius norm of the perturbation

operators is bounded by a scalar factor of the operator norm.

Remark 5: The notion of stability discussed here is stability

to deformations on the operator space. This is the same kind

of deformation that is studied in [1] for commutative algebraic

filters and in [2] for graph filters. It is not the same as the domain

deformations studied in [4]. Although different in principle,

both notions can be related [1]. For instance, a small defor-

mation of the time axis for time signals implies that signals

will not have translation symmetry but instead quasi translation

symmetry. This can be seen as a perturbation of the time delay

operator. It is important to point out that in all scenarios – do-

main and operator deformations – a stable operators must have

changes that are proportional in size to the given deformations.

This is done by using metrics used to measure the size of the

diffeomorphisms involved in each case [44], [45], [46].

VI. STABILITY THEOREMS

In the following definitions we state properties of algebraic

filters in A in terms of their spectral representations in Ã (see

Def. 6). This will be used in the derivation of the stability re-

sults. We start introducing the notions of Lipschitz and integral

Lipschitz filters.

Definition 9: Let (A,M, ρ) be an ASM where A has

generators {gi}
m
i=1. Let Ã the algebra of matrices containing

the spectral representations of the elements in A (see Def. 6).
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We say that p(g1, . . . , gm) ∈ A is L0-Lipschitz if there exists

L0 > 0 such that

‖p(x1, . . . , xm)− p(x̃1, . . . , x̃m)‖

≤ L0 ‖(x1, . . . , xm)− (x̃1, . . . , x̃m)‖ , (17)

for all xi, x̃i and where p(x1, . . . , xm) ∈ Ã. Additionally, it is

said that p(g1, . . . , gm) ∈ A is L1-integral Lipschitz if there

exists L1 > 0 such that
∥∥Dp|xi

(x1, . . . , xm) {(·)xi}
∥∥ ≤ L1, (18)

for all xi, where Dp|xi
(x1, . . . , xm) is the partial Fréchet

derivative of p(x1, . . . , xm) ∈ Ã, and ‖·‖ is the operator norm.

From now on we denote the set of algebraic Lipschitz filters

byAL0
and the set of algebraic integral Lipschitz filters by AL1

.

Now we introduce the first stability theorem for algebraic

signal models with non commutative algebras with multiple

generators.

Theorem 2: Let (A,M, ρ) be an ASM where A is gen-

erated by {gi}
m
i=1 and let ρ(gi) = Si ∈ End(M) for all i. Let

ρ̃(gi) = S̃i ∈ End(M), where (A,M, ρ̃) is a perturbed version

of (A,M, ρ) and S̃i is related withSi by the perturbation model

in (13). Then, for any p ∈ A we have
∥∥∥p(S1, . . . ,Sm)x− p(S̃1, . . . , S̃m)x

∥∥∥

≤ ‖x‖

m∑

i=1

(∥∥Dp|Si
(S1, . . . ,Sm)T(Si)

∥∥+O
(
‖T(Si)‖

2
))
,

(19)

where Dp|Si
(S) is the partial Fréchet derivative of p on Si.

Proof: See Appendix D-A.

It is worth pointing out that in (19) the upper bound adds the

contributions of the deformation in each direction Si given by

the shift operators. Each individual contribution associated to

the perturbation of Si is determined by the Fréchet derivative of

the filters acting on the perturbation, and this is true no matter

what function T(Si) is being considered.

In the following theorems we provide the basic stability result

for algebraic filters showing how with a restriction of the filters

shaped by the functional form of the right hand side of (19)

leads to stability.

Theorem 3: Let (A,M, ρ) be an ASM where A is a non

commutative algebra with m generators {gi}
m
i=1. Let (A,M, ρ̃)

a perturbed version of (A,M, ρ) by means of the perturbation

model in (15). Then, if p ∈ AL0
∩ AL1

it holds that
∥∥Dp|Si

(S1, . . . ,Sm)T(Si)
∥∥ ≤ δL0 sup

Si∈S
‖T(Si)‖

+ δ L1 sup
Si∈S

‖DT(Si)‖. (20)

Proof: See Appendix D-B.

From Theorems 2 and 3 we can state the stability results

for filters in algebraic models with multiple generators in the

following corollary.

Corollary 1: Let (A,M, ρ) be a non commutative ASM

where A has generators {gi}
m
i=1. Let (A,M, ρ̃) be a perturbed

version of (A,M, ρ) associated to the perturbation model in

(15). If p ∈ AL0
∩ AL1

⊂ A, the operator p(S1, . . . ,Sm)

is stable in the sense of Definition 8 with C0 = mδL0 and

C1 = mδL1.

Proof: Replacing (20) from Theorem 3 into (19) from

Theorem 2 and organizing the terms.

Notice that the stability property of the algebraic filters comes

at the expense of their selectivity. A restriction on the subsets

of the algebra naturally limits the type of frequency repre-

sentations. Additionally, it is worth pointing out that it is the

functional form of T(Si) the one feature that dictates the types

of restrictions imposed on the algebra, necessary to guarantee

stability.

Remark 6: We remark that the non commutativity imposes

multidimensional frequency representations, but even in this

scenario we have a trade-off between stability and selectivity.

We could therefore say that although the non commutativity of

the algebra does not change the fact that filters can be stable

and selective, the multidimensional nature of the frequency

representations leads to restrictions that can be captured only by

means of matrix algebras. This in itself implies that two filters

with identical functional form – symbolic expression – do not

have the same stability properties if one of them is associated to

a commutative model and the other to a non commutative one.

A. Stability of Non Commutative Algebraic Neural Networks

In this section we extend the stability results obtained

for algebraic filters to operators representing AlgNNs. Let

{(Aℓ,Mℓ, ρℓ;σℓ)}
L

ℓ=1 be an AlgNN with L layers, and whose

perturbed version is represented as {(Aℓ,Mℓ, ρ̃ℓ;σℓ)}
L

ℓ=1. We

start stating formally how the algebraic operators are affected

by the functions that map information between layers.

Theorem 4: Let {(Aℓ,Mℓ, ρℓ;σℓ)}
L

ℓ=1 be an algebraic

neural network and {(Aℓ,Mℓ, ρ̃ℓ;σℓ)}
L

ℓ=1 its perturbed version

by means of the perturbation model in (15). We consider one

feature per layer and non commutative algebras Aℓ with m

generators. If Φ(xℓ−1,Pℓ,Sℓ) and Φ
(
xℓ−1,Pℓ, S̃ℓ

)
represent

the ℓ-th mapping operators of the AlgNN and its perturbed

version, it follows that
∥∥∥Φ(xℓ−1,Pℓ,Sℓ)− Φ

(
xℓ−1,Pℓ, S̃ℓ

)∥∥∥

≤ Cℓδ‖xℓ−1‖m

(
L
(ℓ)
0 sup

Si,ℓ

‖T(ℓ)(Si,ℓ)‖

+ L
(ℓ)
1 sup

Si,ℓ

‖DT(ℓ)(Si,ℓ)‖

)
(21)

where Cℓ is the Lipschitz constant of σℓ, and Pℓ = AL0
∩AL1

represents the domain of ρℓ. The index (ℓ) makes reference to

quantities and constants associated to the layer ℓ.

Proof: See Appendix J-A1 in the supplementary material.

Theorem 4 highlights the role of the maps σℓ in the stability

of the algebraic operators. In particular, we can see that the

effect of such functions is only to scale the stability bound of

the algebraic operators. If Cℓ = 1, the stability bounds for the

operators in the layers of the AlgNN are identical to the stability

bounds for the algebraic filters. However, it is important to
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remark that the discriminability of the layer operators in the

AlgNN is enriched by the pointwise nonlinearities.

Notice that the resemblance between the results provided in

Theorem 4 and previous results for commutative architectures

is rooted in the fact that the same notion of stability and the

same type of perturbations are considered in both scenarios.

However, there is a substantial difference between the stability

bounds. In the non commutative scenario we have that the

restrictions on the subsets of the algebra are dictated by matrix

functions and not scalar maps. Additionally, as can be seen

in the proof of the theorems above, the estimate of the upper

bounds on the change of the operators requires a more general

representation of spectral responses not given by the traditional

spectral theorem.

Now we are ready to state the stability theorem for a general

AlgNN.

Theorem 5: Let {(Aℓ,Mℓ, ρℓ;σℓ)}
L

ℓ=1 be an algebraic

neural network and {(Aℓ,Mℓ, ρ̃ℓ;σℓ)}
L

ℓ=1 its perturbed version

by means of the perturbation model in (15). We consider one

feature per layer and non commutative algebras Aℓ with m

generators. If Φ
(
x, {Pℓ}

L
1 , {Sℓ}

L
1

)
and Φ

(
x, {Pℓ}

L
1 , {S̃ℓ}

L
1

)

represent the mapping operator and its perturbed version, it

follows that
∥∥∥Φ

(
x, {Pℓ}

L
1 , {Sℓ}

L
1

)
− Φ

(
x, {Pℓ}

L
1 , {S̃ℓ}

L
1

)∥∥∥

≤

L∑

ℓ=1

∆ℓ

(
L∏

r=ℓ

Cr

)(
L∏

r=ℓ+1

Br

)(
ℓ−1∏

r=1

CrBr

)
‖x‖,

(22)

where Cℓ is the Lipschitz constant of σℓ, ‖ρℓ(a)‖ ≤ Bℓ

for all a ∈ Pℓ, and Pℓ = AL0
∩ AL1

represents the domain

of ρℓ. The functions ∆ℓ are given by

∆ℓ = δm

(
L
(ℓ)
0 sup

Si,ℓ

‖T(ℓ)(Si,ℓ)‖+ L
(ℓ)
1 sup

Si,ℓ

‖DT(ℓ)(Si,ℓ)‖

)
,

(23)

with the index (ℓ) indicating quantities and constants associated

to the layer ℓ.

Proof: See Section J-A2 in the supplementary material.

This final result highlights that the stability of an AlgNN

is inherited from the stability properties associated to the op-

erators in each layer. Each layer of the AlgNN contributes to

increase the size of the stability constants, and we can observe

that with the appropriate normalization of Cℓ and Bℓ, we obtain

a stability bound that is in essence the same derived for filters

and for the mapping operators in each layer. However, the

discriminability power associated to the AlgNN is by far larger

than the one related with the operators in the layers and the

filters. This is a consequence of the pointwise nonlinearities

mapping information between layers. It is important to highlight

that the σℓ that map information between layers are identical

for commutative and non commutative architectures. However,

they way they redistribute spectral information is tied to the

nature of the spectral representations. While in commutative ar-

chitectures such redistribution is always done between spaces of

the same dimension – one dimensional representations –, in non

commutative AlgNNs the redistribution of spectral information

occurs in general between spaces of different dimension.

VII. NUMERICAL EXPERIMENTS

In order to provide numerical evidence of the stability results

derived for AlgNN with non commutative algebras, we consider

two architectures: Multigraph Neural Networks (MultiGNN)

and Quaternion Convolutional Networks (QCN). For the first,

we propose an architecture for learning on multigraphs and

show that if the learned filters are penalized to be Integral

Lipschitz, the model is much more resilient to perturbations

enforced on the graph. This architecture is used for a rating

prediction task on the MovieLens-100K dataset [47]. We then

apply the quaternion architecture introduced in [14] to an image

classification task using the MNIST dataset [48] and observe

that model performance quickly diminishes when additive and

relative perturbations are applied to the quaternion filters. As we

will elaborate in Subsection VII-B, due to the cyclic nature of

the generators in the quaternion algebra, no filter in (26) can be

integral Lipschitz. As a consequence, no filter can be selected to

mitigate the perturbations that severely affect the performance

of the QCN.

A. Multigraph Neural Networks

We first consider the application of the Multigraph Neural

Network as a movie recommendation system [49]. Using the

MovieLens-100K dataset containing 100,000 ratings from 943

users, we model the system as a multigraph. Nodes represent

movies which are connected by two classes of edges: one

measuring the rating similarity and the other measuring the

genre similarity. The signals supported by this multigraph are

user ratings, with the task of inferring unseen ratings based on

ratings given to other movies. On this task, we carry out stability

experiments which measure robustness to estimation error from

the training set. We find that Multigraph Neural Networks that

are penalized to employ integral Lipschitz filters are most stable

to perturbations.

Multigraph Formation: From the 1582 movies available,

we use the 200 with the highest number of ratings. The movie

Toy Story is used as the target movie for predicted ratings. Of

users who rated this movie, we define a node signal as the

rating 1-5 they gave to each movie or 0 if they did not rate it.

These signals are divided with a 90%/10% train/test split. Using

the training set, we add rating edge weights between movies

using the Pearson correlation coefficient and genre edge weights

through the Jaccard similarity of overlapping genres. To appeal

to sparsity, the 20 highest weighted edges of both edge classes

are kept for each node, and the rest of the edges are removed.

Stability: In contrast with the scenario of the quaternion

algebras, multigraph signal models are associated with a very

rich algebra: the regular algebra of polynomials with multi-

ple independent variables. This guarantees the existence of

subclasses of filters that are Lipschitz and integral Lipschitz.

Therefore, it is possible to learn filters – Lipschitz and integral

Lipschitz – that can mitigate the effect of deformations on the

shift operators. We illustrate this in our experiments analyzing
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(a) (b)

Fig. 6. Stability to perturbations caused by estimation error for the Movie Recommendation problem. We demonstrate in (a) the difference in evaluation
measure as the ratio of training samples is increased, where the penalized MultiGNN maintains the smallest difference for all ratios. This trend is also held
in (b) where we showcase the difference in the output of the convolutional layer. Then, MultiGNN with IL filters provide more stable and consistent rating
predictions with respect to estimation error perturbations.

the magnitude of change in the filters and operators networks

when subjected to deformations.

Architectures and Training: In our stability experiments,

we consider three architectures. The first, MultiFilter, is a

learned linear multigraph filter. We also train a Multigraph

Neural Network (MultiGNN) and another which is regularized

by an estimate of the filter’s integral Lipschitz constant (Multi-

GNN IL), seeking to train filters that are integral Lipschitz. All

architectures employ a convolutional layer with 3 filter taps

and 64 output features, a ReLU nonlinearity function, and a

local linear readout layer mapping the output rating to a single

scalar rating estimate. We minimize the smooth L1 loss using

an ADAM optimizer for 40 epochs, and evaluate using the root

mean squared error (RMSE). Results are reported as the average

and standard deviation of performance across 5 random splits

of the dataset.

Estimation Error Experiment: To simulate perturbations

as a result of estimation error, we first train each architecture on

90% of the training set. At evaluation, we replace the underlying

multigraph support with an estimate generated by a training set

ranging from 10% to 90% of the size of the overall dataset.

First, we find the difference in RMSE between the trained and

evaluated models. The regularized MultiGNN maintains the

smallest difference for each training set size as demonstrated in

Fig. 6(a). We also compare the norm of the difference in output

of the convolutional layer. As can be seen in Fig. 6(b), the Multi-

GNN with integral Lipschitz filters is approximately an order

of magnitude more stable than the unregularized MultiGNN.

B. Quaternion Convolutional Networks

We now consider a non commutative AlgNN proposed in lit-

erature: Quaternion Convolutional Networks. Quaternions have

shown to be useful tools for modeling spatial transformations

with diverse applications to computer graphics, quantum me-

chanics, and signal processing. Gaudet and Maida [14] propose

a deep convolutional architecture for learning through use of

quaternion convolutions, quaternion batch-normalization, and

a quaternion weight initialization scheme. We use this archi-

tecture as the basis for our second stability experiment.

Architecture: Quaternion convolutions occur through con-

volving a quaternion filter matrix W = A + iB + jC + kD

with a quaternion vector h = w + ix + jy + kz according

to (29) – see Appendix C. In forming a Quaternion Convo-

lutional Network, we compose layers of quaternion convolu-

tions, applying a nonlinear function to the output of each layer.

We then append quaternion dense layers, which are traditional

fully-connected neural networks applied component-wise. The

resultant embedding is shaped into the desired output shape

using a readout layer. Our particular architecture is composed of

three quaternion convolutional layers (with 32 channels each),

two quaternion dense layers (with 82 and 48), and a readout

layer, using the ReLU function as the nonlinearity.

Stability: We recall that one of the requirements to guarantee

stability to the perturbations in (15) is the existence of sub-

classes of filters in (26) that are Lipschitz and integral Lipschitz.

Although in principle any filter in (26) can be written by consid-

ering arbitrary powers on the generators of the algebra, due to

the cyclic nature of {1, i, j,k}, such representations reduce to

a linear combination of the generators. Therefore, the subclass

of integral Lipschitz filters in (26) is empty. Additionally, while

the filters in (26) can still be Lipschitz, the Lipschitz constants

will be large. Thus, the performance of the QCN architecture –

as defined in [14] – is expected to be severely affected by

perturbations, without the potential to design stable filters. We

demonstrate this vulnerability in our numerical experiments.

Synthetic Experiment: To corroborate these theoretical re-

sults, we first train an unperturbed architecture. Then, during

evaluation, we inject noise in the first quaternion convolutional

layer by perturbing A, a layer of the quaternion filter matrix

W1. More precisely, we first consider additive perturbations

by replacing A with Ã1 = A+T1, where T1 has its compo-

nents sampled from the uniform distribution [−ε1, ε1]. We also

observe relative perturbations by substituting A with Ã2 =
A + T2A, where T2 has its values drawn from the uniform

distribution [ε2, ε2].
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TABLE I
STABILITY OF QUATERNION CONVOLUTIONAL NETWORKS TO ADDITIVE

AND RELATIVE PERTURBATION

Additive Perturbation Relative Perturbation
ε1 First Con. Last Con. Acc. ε2 First Con. Last Con. Acc.

0.005 27,813 4,415 0.991 0.05 24,986 6,316 0.991
0.01 55,467 9,542 0.991 0.1 49,961 13,100 0.990
0.05 289,610 78,092 0.968 0.5 256,754 79,819 0.956
0.1 604,553 213,046 0.772 1 533,462 158,565 0.825
0.5 3,303,611 234,771 0.222 5 2,975,365 1,361,751 0.321

We apply this architecture to the image classification task

using the MNIST dataset [48]. Following [50], we form the

quaternion input for each pixel by repeating the grayscale value

along each of the three imaginary components and zeroing out

the real component. We train the unperturbed architecture for 10

epochs using a batch size of 500. After training, we first evaluate

the performance of the unperturbed architecture on the test

samples. We then apply additive and multiplicative perturbation

to the first quaternion convolutional layer for various values of

ε1 and ε2, and observe the new accuracy (Acc.) and norm of

the difference between the perturbed and unperturbed architec-

tures of the output from the first quaternion convolutional layer

(First Con.) and the last quaternion convolutional layer (Last

Con.). Average results across 10 noise samplings are reported

in Table 1.

Our results find that Quaternion Convolutional Networks are

particularly sensitive to small additive and relative perturbations

applied in the first layer, as performance quickly diminishes as

ε1 and ε2 increases. These results indicate that an architecture

trained to strictly minimize loss not result in stable filters.

VIII. DISCUSSION AND CONCLUSIONS

We analyzed non commutative algebraic neural networks

(AlgNNs) providing general stability results applicable to con-

volutional architectures such as multigraph-CNNs, quaternion-

CNNs, quiver-CNNs, and Group-NNs (non commutative)

among others. We have shown that non commutative convo-

lutional neural networks can be stable. This property has an

analogous form to the stability bounds of commutative signal

models but with substantial differences. As we showed in previ-

ous sections, the restrictions necessary to guarantee stability are

defined by algebras of matrices, which highlights the fact that

the stability of filters in non commutative signal models is not a

trivial extension of the stability results for commutative models.

This is a consequence of the fact that spectral representations

in non commutative signal models are given by matrix and not

scalar functions.

As shown in Theorem 2, the size of the deformation of a

filter operator p(S1, . . . ,Sm) is bounded by the norm of the

Fréchet derivative of p acting on T(Si). This holds for any

arbitrary perturbationT(Si) indicated in (13) and it highlights

the versatility of the deformation model for the representation

of a large variety of perturbations.

Notice that non commutative models naturally embed prop-

erties of those signal frameworks where there are not shift op-

erator invariances, i.e. Sip(S1, . . . ,Sm) �= p(S1, . . . ,Sm)Si.

The stability results derived in this paper show that despite the

lack of this invariance, stability is possible and it comes at a

price on selectivity and with stronger restrictions on the spectral

responses of the filters.

We point out that our results can be extended to more elab-

orated versions of T(Si). This opens up interesting research

applications where T(Si) can be tailored to more specific

scenarios where stable filters could be designed for T(Si) =∑
r TrS

r
i , and the restrictions imposed on the algebra will be

determined by the properties of the operators Tr.

APPENDIX A

BASIC ALGEBRA CONCEPTS

Algebra: We say that the vector space A is an algebra if A is

equipped with a product. This is, there is an operation of product

between two elements of A that results in another element of

A [35]. Let us denote by ab the product between a and b with

a, b ∈ A. Then, we say that the algebra A is unital if there exists

a multiplicative unit element 1 ∈ A such that a1 = 1a = a for

all a ∈ A. Typical examples of algebras are:

• C: The set of complex numbers is a vector space over C

itself. Using as algebra product in C the ordinary product

between complex numbers we can see C as an algebra.

• C[t]: The set of polynomials with coefficients in C and

independent variable t is a vector space over C. Using as

algebra product the ordinary product between polynomials

we can see C[t] as an algebra.

• Mr×r(C): The space of matrices of size r×r with entries

in C is a vector space over C. Using as algebra product the

ordinary product between matrices we can see Mr×r(C)
as an algebra.

It is important to remark that the formal definition of a

product is given by a bilinear map. We say that the map mA :
A × A → A is bilinear if mA is linear on each argument.

Then, talking about an operation that behaves like a product

we talk about a bilinear map that assigns the value of the given

product [35].

Endomorphisms: Let M be a vector space and let End(M)
be the space of linear maps fromM onto itself. If dim(M) = n,

then End(M) is isomorphic to the space of matrices of size

n× n. This is, whenever the dimension of M is finite we can

think about End(M) as a space of matrices.

APPENDIX B

GROUP SIGNAL PROCESSING AND GROUP NEURAL NETWORKS

Classical convolutional information processing on locally

compact groups is given by the algebraic model (AG,M, ρ),

whereM =
{∑

g∈G x(g)g, x(g) ∈ C

}
is the set of complex

valued functions defined on the group G. The algebra AG is

the group algebra, which is given by AG = M. The homo-

morphism ρ is given by ρ(a) = La with Lax = ax. Then, the

convolution between a group filter and a group signal takes the

form

ρ

⎛
⎝
∑

g∈G

a(g)g

⎞
⎠x =

∑

g∈G

a(g)gx =
∑

g∈G

∑

h∈G

a(g)x(h)gh.

(24)
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Notice that the representation of the convolution can also be re

written making u = gh, which leads to [36]

∑

g,h∈G

a(g)x(h)gh =
∑

u,h∈G

a(uh−1)x(h)u. (25)

We emphasize that the role of this example is to show that

classical group convolutions – as considered in [17] – are one

particular case of algebraic convolutions. What is more, it is

one particular case of the many algebraic convolutions that can

be associated to the same group algebra. This is, given a non

commutative group G and its associated group algebra AG, it is

possible to define different convolutional models (AG,M, ρ)
when different choices of M and ρ are made [15]. This implies

that it is possible to leverage the symmetries of the group under

a convolutional signal model in different ways and in vector

spaces of arbitrary dimension.

Notice that when convolutions are computed as in [17], a lift-

ing process is required to map the signals – usually not defined

on the group – on the groupG. IfG is continuous – a Lie group –

computing the group convolution requires the approximation of

a Haar integral that generalizes (25) to locally compact groups

[34]. In [15] the computing of the convolutions – including

convolutions with Lie groups – is performed considering an

ASM (AG,M, ρ), where AG is the group algebra associated

to the group G, M is a vector space of arbitrary dimension

and ρ is the homomorphism that will translate approximations

of elements in AG into concrete operators. In [15] lifting is

not necessary since the implementation of the filters in AG is

carried out by means of an efficient approximation of ρ.

A group convolutional neural network is a stacked layered

structure where information in each layer is processed using

group convolutions. With convolutions performed as in [15],

in each layer of the architecture information is processed ac-

cording to the triplet (AG,Mℓ, ρℓ). The information is mapped

between layers by means of σℓ = Pℓηℓ where ηℓ is a point-

wise nonlinearity and Pℓ is a dimensionality reduction operator.

When dealing with discrete scenarios we have dim(M) < ∞
and the action of ηℓ is expressed in terms of a canonical basis

in R
dim(M).

Notice that the processing of information with [17] can be

seen as a particular case of the convolutional architectures pro-

posed in [15] with the advantage that in [15] there is no need for

the discretization of the Haar integral since the implementation

of the filters relies on building an accurate approximation of ρℓ
in (AG,Mℓ, ρℓ).

APPENDIX C

QUATERNION SIGNAL PROCESSING AND QUATERNION

NEURAL NETWORKS

Let Q be the algebra on C generated by the symbols i,

j,k and the unit element 1, where i2 = j2 = k2 = −1, ij =
−ji = k, jk = −kj = i, ki = −ik = j. Q is known

as the algebra of quaternions [38]. Using Q is possible to

build quaternion-based algebras that can be used to define

convolutional models. In [14] such models are build upon the

algebra

A = {p1(t)1 + p2(t)i+ p3(t)j + p4(t)k| 1, i, j,k ∈ Q},
(26)

and where pi(t) =
∑k

k=0 hi,kt
k are elements of the algebra

of polynomials of a single variable. We can see that A is a

vector space when considering the sum component wise on

the quaternion elements, and the multiplication by scalars. The

product algebra in A follows the distribution product of the

quaternions. Then, we can define the quaternion convolutional

model (A,M, ρ), where

M =
{
x11 + x2i+ x3j + x4k| 1, i, j,k ∈ Q; xi ∈ R

N
}
,

(27)

while the homomorphism ρ is given according to

ρ (p1(t)1 + p2(t)i+ p3(t)j + p4(t)k)

= p1(C)1 + p2(C)i+ p3(C)j + p4(C)k, (28)

where ρ(t) = C ∈ R
N×N is the discrete time delay operator.

Then, the convolutional action of a filter ρ(f) = F on u ∈ M
is given by

Fu = (p1(C)x1 − p2(C)x2 − p3(C)x3 − p4(C)x4) 1

+ (p1(C)x2 − p2(C)x1 − p3(C)x4 − p4(C)x3) i

+ (p1(C)x3 − p2(C)x4 − p3(C)x1 − p4(C)x2) j

+ (p1(C)x4 − p2(C)x3 − p3(C)x2 − p4(C)x1)k.
(29)

Notice that pi(C)xi is the ordinary Euclidean convolution in

R
N between a filter and the signal xi. We emphasize that the

particular form of (29) is a consequence of the non commuta-

tivity of the filter operators from A in (26), which is inherited

from the quaternion algebra.

A quaternion neural network as introduced in [14] is a

stacked layered structure where information is processed in

each layer according to (29). The information processed in the

layer ℓ has the form uℓ = x11 + ix2 + jx3 + kx4, while the

convolutional filters are of the form F = A1+iB+jC+kD.

The action of the filter F on the signal u follows the ordinary

product between quaternions considering that A,B,C,D

act as Euclidean convolution operators on xi as indicated in

(29). Then, given an input uℓ to the ℓ-th layer we leverage

the symmetries given by the quaternion algebra to obtain

yℓ = Fuℓ. After this a point-wise nonlinear operator ηℓ is

applied to obtain zℓ = ηℓ(yℓ) with zℓ(u) = max {yℓ(u), 0},

and where zℓ(u) is the u-th component of zℓ. A

conventional pooling operator Pℓ : R
N → R

M performs

traditional sampling on a quaternion signal according to

Pℓ(uℓ) = 1Pℓ(x1) + iPℓ(x2) + jPℓ(x3) + kPℓ(x4).

APPENDIX D

PROOF OF THEOREMS

A. Proof of Theorem 2

Proof: To simplify notation we use S = (S1, . . . ,Sm),
and we start taking into account the definition of the Fréchet
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derivative

p(S+ ξ) = p(S) +Dp(S) {ξ}+ o(‖ξ‖). (30)

Taking the norm on both sides of (30) and applying the triangle

inequality it follows that

‖p(S+ ξ)− p(S)‖ ≤ ‖Dp(S) {ξ}‖+O
(
‖ξ‖2

)
(31)

for all ξ = (ξ1, . . . , ξm) ∈ End(M)m. Now, we use the

properties of the total derivative (see [51] pages 69-70) to obtain

‖Dp(S) {ξ} ‖ ≤
∑m

i=1

∥∥Dp|Si
(S) {ξi}

∥∥, which leads to

‖p(S+ ξ)− p(S)‖ ≤

m∑

i=1

∥∥Dp|Si
(S) {ξi}

∥∥+O
(
‖ξ‖2

)
.

(32)

Then, taking into account that

‖p(S+ ξ)x− p(S)x‖ ≤ ‖x‖ ‖p(S+ ξ)− p(S)‖ (33)

we have

‖p(S+ ξ)x− p(S)x‖

≤ ‖x‖

(
m∑

i=1

∥∥Dp|Si
(S) {ξi}

∥∥+O
(
‖ξ‖2

)
)
, (34)

and selecting ξi = T(Si) we complete the proof.

B. Proof of Theorem 3

Proof: We start evaluating the expression Dp|Si
in terms of

the specific form of the perturbation to obtain

Dp|S(S1, . . . ,Sm) {T(Si)} = Dp|Si
(S1, . . . ,Sm) {Ti,0}

+Dp|Si
(S1, . . . ,Sm) {Ti,1Si}.

(35)

Taking the norm in (35) and using the triangular inequality we

have

∥∥Dp|Si
(S1, . . . ,Sm) {T(Si)}

∥∥
≤

∥∥Dp|Si
(S1, . . . ,Sm) {Ti,0}

∥∥
+
∥∥Dp|Si

(S1, . . . ,Sm) {Ti,1Si}
∥∥. (36)

Now we analyze each term in (36). First, we start that the

Fréchet derivative of p(S1, . . . ,Sm) with respect to Si acting

on T0,i is a linear operator Dp|Si
from End(M) into End(M)

that can be expressed as

Dp|Si
{T0,i} =

∞∑

r=1

fr(S1, . . . ,Sm)T0,ihr(S1, . . . ,Sm),

(37)

where fr(S1, . . . ,Sm) and hr(S1, . . . ,Sm) are polynomial

functions of S1, . . . ,Sm. As stated in [43] (p. 267),

when the operator is assumed to be Hilbert-Schmidt

(finite Frobenius norm) there is a unique linear operator

Dp|Si
(S1, . . . ,Sm) {·} ∈ End(M)∗ ⊗ End(M) with ‖Dp|S1

(S1, . . . ,Sm) {·} ‖ = ‖Dp|S1
(S1, . . . ,Sm) {·} ‖, acting on a

vectorized version of T0,i. In particular we have

Dp|Si
(S1, . . . ,Sm) =

∞∑

r=1

h∗
r(S1, . . . ,Sm)⊗ fr(S1, . . . ,Sm).

(38)

Now, we recall that since the representation (M, ρ) can be

expressed as a direct sum of the irreducible subrepresentations.

Then, any polynomial fromAmapped into End(M) by ρ can be

expressed in terms of such direct sum by means of the spectral

theorem representation (Theorem 1), this is

fr(S1, . . . ,Sm) =

q∑

k=1

fr (Λ1,k, . . . ,Λm,k)Pk, (39)

h∗
r(S1, . . . ,Sm) =

q∑

k=1

h∗
r (Λ1,k, . . . ,Λm,k)Pk. (40)

Then, substituting (39) and (40) in (38) we have

Dp|Si
(S1, . . . ,Sm) =

∞∑

r=1

(
q∑

k=1

h∗
r (Λ1,k, . . . ,Λm,k)Pk

⊗

q∑

k=1

fr (Λ1,k, . . . ,Λm,k)Pk

)
.

(41)

Taking into account the properties of the tensor product it fol-

lows that:

Dp|Si
(S1, . . . ,Sm) =

q∑

k,ℓ=1

(
∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)

⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)) (Pk ⊗ Pℓ)).
(42)

where we have that

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ))

=

{
Dp|Λi,k

(Λ1,k, . . . ,Λm,k) if k = ℓ

Γk,ℓ if k �= ℓ
, (43)

where

Dp|Λi,k
(Λ1,k, . . . ,Λm,k) =

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)

⊗ fr (Λ1,k, . . . ,Λm,k)), (44)

is uniquely associated to Dp|Λi,k
(Λ1,k, . . . ,Λm,k), which is

the Fréchet derivative of p (Λ1,k, . . . ,Λm,k) with respect o

Λi,k. Additionally, we point that the terms in the sum of (42)
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are unique, and consequently can be expressed as a direct sum.

This is,

Dp|Si
(S1, . . . ,Sm) =

q⊕

k,ℓ=1

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)

⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)) (Pk ⊗ Pℓ).
(45)

Then, if we calculate the norm of Dp|Si
(S1, . . . ,Sm) and we

take into account the maximum property (Definition 12), it

follows that
∥∥Dp|Si

(S1, . . . ,Sm)
∥∥ = max

(k,ℓ)

{∥∥Dp|Λi,k

∥∥ , ‖Γk,ℓ‖
}
. (46)

First, we recall that
∥∥Dp|Λi,k

∥∥ =
∥∥Dp|Λi,k

∥∥ and since p is L0-

Lipschitz by Theorem 8 we have that
∥∥Dp|Λi,k

∥∥ ≤ L0. We

focus now on estimating the norm of Γkℓ. First, we recall that

Γkℓ =
∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)),

(47)

with k �= ℓ. Now, we notice that it is possible to define a ho-

momorphism θ between the algebras of operators End(Uk)
∗ ⊗

End(Uk) and End(Uk)
∗ ⊗ End(Uℓ) with ℓ < k, which is given

by

θ

(
∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,k, . . . ,Λm,k))

)

=

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)). (48)

By means of Theorem 7 it follows that ‖Γkℓ‖ ≤
∥∥Dp|Λi,k

∥∥,

and therefore leads to ‖Γkℓ‖ ≤ L0. Then, with the calculations

above we have
∥∥Dp|Si

(S1, . . . ,Sm)
∥∥ ≤ L0. We recall that for

bounded operators we have
∥∥Dp|Si

(S1, . . . ,Sm) {T0,i}
∥∥

≤
∥∥Dp|Si

(S1, . . . ,Sm) {T0,i}
∥∥
F
,

and as stated in [43] (p. 267) we also have that
∥∥Dp|Si

(S1, . . . ,Sm) {T0,i}
∥∥
F

≤
∥∥Dp|Si

(S1, . . . ,Sm)
∥∥ ‖T0,i‖F .

Then, taking into account that ‖T0,i‖F ≤ δ ‖T0,i‖, we reach
∥∥Dp|Si

(S1, . . . ,Sm) {T0,i}
∥∥ ≤ L0δ sup

Si

‖T(Si)‖. (49)

Now, we turn our attention to the term ‖Dp|Si
(S1, . . . ,Sm)

{T1,iSi} ‖ in (36). We start using the notation

Dp|Si
(S1, . . . ,Sm) {T1,iSi} = D̃p|Si

(S1, . . . ,Sm) {T1,i}.
(50)

Now, we point out that

D̃p|Si
{T1,i} =

∞∑

r=1

fr(S1, . . . ,Sm)T1,ihr(S1, . . . ,Sm),

(51)

where fr(S1, . . . ,Sm) and hr(S1, . . . ,Sm) are polynomial

functions of S1, . . . ,Sm. When the operator is assumed to

be Hilbert-Schmidt there is a unique linear operator given by

D̃p|Si
(S1, . . . ,Sm) {·} ∈ End(M)∗ ⊗ End(M) with ‖D̃p|Si

(S1, . . . ,Sm) {·} ‖ = ‖D̃p|Si
(S1, . . . ,Sm) {·} ‖, acting on

a vectorized version of T1,i [43] (p. 267). In particular we

have

D̃p|Si
(S1, . . . ,Sm) =

∞∑

r=1

h∗
r(S1, . . . ,Sm)⊗ fr(S1, . . . ,Sm).

(52)

Since (M, ρ) can be expressed as a direct sum of the irreducible

subrepresentations. Then, any polynomial from A mapped into

End(M) by ρ can be expressed in terms of such direct sum

by means of the spectral theorem representation (Theorem 1),

this is

fr(S1, . . . ,Sm) =

q∑

k=1

fr (Λ1,k, . . . ,Λm,k)Pk, (53)

h∗
r(S1, . . . ,Sm) =

q∑

k=1

h∗
r (Λ1,k, . . . ,Λm,k)Pk. (54)

Then, substituting (53) and (54) in (52) we have

D̃p|Si
(S1, . . . ,Sm) =

∞∑

r=1

(
q∑

k=1

h∗
r (Λ1,k, . . . ,Λm,k)Pk

⊗

q∑

k=1

fr (Λ1,k, . . . ,Λm,k)Pk

)
.

Taking into account the properties of the tensor product it

follows that:

D̃p|Si
(S1, . . . ,Sm) =

q∑

k,ℓ=1

(
∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)

⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)) (Pk ⊗ Pℓ)),
(55)

where we have that

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ))

=

{
D̃p|Λi,k

(Λ1,k, . . . ,Λm,k) if k = ℓ

Γk,ℓ if k �= ℓ
, (56)

with

D̃p|Λi,k
(Λ1,k, . . . ,Λm,k)

=

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,k, . . . ,Λm,k)),

(57)

is uniquely associated to Dp|Λi,k
(Λ1,k, . . . ,Λm,k){(·)Λi,k}.

Like in the scenarios discussed above, we point that the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:22:01 UTC from IEEE Xplore.  Restrictions apply. 



PARADA-MAYORGA et al.: CONVOLUTIONAL FILTERS AND NEURAL NETWORKS WITH NONCOMMUTATIVE ALGEBRAS 2697

terms in the sum of (55) are unique, and consequently can be

expressed as a direct sum as follows

D̃p|Si
(S1, . . . ,Sm) =

q⊕

k,ℓ=1

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)

⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)) (Pk ⊗ Pℓ).
(58)

If we calculate the norm of D̃p|Si
(S1, . . . ,Sm) and we use the

maximum property (Definition 12), it follows that

∥∥∥D̃p|Si
(S1, . . . ,Sm)

∥∥∥ = max
(k,ℓ)

{∥∥∥D̃p|Λi,k

∥∥∥ , ‖Γk,ℓ‖
}
. (59)

Since

∥∥∥D̃p|Λi,k

∥∥∥ =
∥∥∥D̃p|Λi,k

∥∥∥, and p is L1-integral Lipschitz,

we have that

∥∥∥D̃p|Λi,k

∥∥∥ ≤ L1. Now we analyze the norm of

Γkℓ. First, we recall that

Γkℓ =

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)),

(60)

with k �= ℓ. We point out that it is possible to define a homomor-

phism θ between the algebras of operators End(Uk)
∗⊗End(Uk)

and End(Uk)
∗ ⊗ End(Uℓ) with k < ℓ, which is given by

θ

(
∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,k, . . . ,Λm,k))

)

=

∞∑

r=1

(h∗
r (Λ1,k, . . . ,Λm,k)⊗ fr (Λ1,ℓ, . . . ,Λm,ℓ)). (61)

By Theorem 7, it follows that ‖Γkℓ‖ ≤
∥∥∥D̃p|Λi,k

∥∥∥ , which leads

to ‖Γkℓ‖ ≤ L1, and therefore

∥∥∥D̃p|Si
(S1, . . . ,Sm)

∥∥∥ ≤ L1. If

D̃p|Si
(S1, . . . ,Sm) is a bounded operator, we have

∥∥∥D̃p|Si
(S1, . . . ,Sm) {T1,i}

∥∥∥

≤
∥∥∥D̃p|Si

(S1, . . . ,Sm) {T1,i}
∥∥∥
F
,

and as stated in [43] (p. 267) we also have that

∥∥∥D̃p|Si
(S1, . . . ,Sm) {T1,i}

∥∥∥
F

≤
∥∥∥D̃p|Si

(S1, . . . ,Sm)
∥∥∥ ‖T1,i‖F .

Taking into account that ‖T1,i‖F ≤ δ ‖T1,i‖ , we reach

∥∥Dp|Si
(S1, . . . ,Sm) {T1,iSi}

∥∥ ≤ L1δ ‖T1,i‖, (62)

and since DT(Si) = T1,i, this leads to

∥∥Dp|Si
(S1, . . . ,Sm) {T1,iSi}

∥∥ ≤ L1δ sup
Si

‖DT(Si)‖. (63)
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